The *b*-functions for Prehomogeneous Vector Spaces of Commutative Parabolic Type and Universal Generalized Verma Modules

By

Atsushi KAMITA*

Abstract

We shall give a new elementary proof of the uniform expression for the *b*-functions of prehomogeneous vector spaces of commutative parabolic type obtained by Muller, Rubenthaler and Schiffmann [5] by using micro-local analysis. Our method is similar to Kashiwara's approach using the universal Verma modules. We shall also give a new proof for the criterion of the irreducibility of the generalized Verma module in terms of *b*-functions due to Suga [10], Gyoja [1], Wachi [13].

§1. Introduction

In this paper we deal with the *b*-functions of the invariants on the flag manifolds G/P. In the case where P is a Borel subgroup, Kashiwara [3] determined the *b*-functions by using the universal Verma modules. For general parabolic subgroups P we show that *b*-functions are regarded as generators of ideals defined by universal generalized Verma modules. When the unipotent radical of P is commutative, we determine the generator.

Let \mathfrak{g} be a simple Lie algebra over the complex number field \mathbb{C} , and let G be a connected simply-connected simple algebraic group with Lie algebra \mathfrak{g} . Fix a parabolic subalgebra \mathfrak{p} of \mathfrak{g} . We denote the reductive part of \mathfrak{p} and the nilpotent part of \mathfrak{p} by \mathfrak{l} and \mathfrak{n} respectively. Let L be the subgroup of G

Communicated by M. Kashiwara. Received June 5, 2003. Revised May 21, 2004. 2000 Mathematics Subject Classification(s): 17B10, 20G05.

Supported by the 21st century COE program "Constitution of wide-angle mathematical basis focused on knots."

^{*}OCAMI, Department of Mathematics, Osaka City University, Osaka 558-8585, Japan. e-mail: kamita@sci.osaka-cu.ac.jp

^{© 2005} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

corresponding to \mathfrak{l} . Let R be the symmetric algebra of the commutative Lie algebra $\mathfrak{p}/[\mathfrak{p},\mathfrak{p}]$. For a Lie algebra \mathfrak{a} we set $U_R(\mathfrak{a}) = R \otimes_{\mathbb{C}} U(\mathfrak{a})$ where $U(\mathfrak{a})$ denotes the enveloping algebra of \mathfrak{a} . The canonical map $c: \mathfrak{p} \to R$ induces a one-dimensional $U_R(\mathfrak{p})$ -module R_c . Let \mathbb{C}_{μ} be the one-dimensional \mathfrak{p} -module with weight μ . Set $R_{c+\mu} = R_c \otimes_{\mathbb{C}} \mathbb{C}_{\mu}$. Then $R_{c+\mu}$ is a one-dimensional $U_R(\mathfrak{p})$ module.

For a character μ of \mathfrak{p} we regard μ as a weight of \mathfrak{g} , and let $V(\mu)$ be the irreducible \mathfrak{g} -module with highest weight μ . We assume that the weight μ of \mathfrak{g} is dominant integral. We define a $U_R(\mathfrak{g})$ -module homomorphism

$$\iota: U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} R_{c+\mu} \to U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} (R_c \otimes_{\mathbb{C}} V(\mu))$$

by $\iota(1 \otimes 1) = 1 \otimes 1 \otimes v_{\mu}$, where v_{μ} is the highest weight vector of $V(\mu)$. For a $U_R(\mathfrak{g})$ -module homomorphism ψ from $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} (R_c \otimes_{\mathbb{C}} V(\mu))$ to $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} R_{c+\mu}$ the composite $\psi\iota$ is the multiplication on $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} R_{c+\mu}$ by an element ξ of R:

The set Ξ_{μ} consisting of all $\xi \in R$ induced by $U_{R}(\mathfrak{g})$ -module homomorphisms from $U_{R}(\mathfrak{g}) \otimes_{U_{R}(\mathfrak{p})} (R_{c} \otimes_{\mathbb{C}} V(\mu))$ to $U_{R}(\mathfrak{g}) \otimes_{U_{R}(\mathfrak{p})} R_{c+\mu}$ as above is an ideal of R. We can construct a particular homomorphism $\psi_{\mu} : U_{R}(\mathfrak{g}) \otimes_{U_{R}(\mathfrak{p})} (R_{c} \otimes_{\mathbb{C}} V(\mu)) \to U_{R}(\mathfrak{g}) \otimes_{U_{R}(\mathfrak{p})} R_{c+\mu}$ by considering the irreducible decomposition of $V(\mu)$ as a \mathfrak{p} -module (see Section 3 below). However, there is an example where $\xi_{\mu} \in \Xi_{\mu}$ is not a generator of the ideal Ξ_{μ} (cf. Remark 1). Note that Kashiwara [3] gave the generator of Ξ_{μ} when P is a Borel subgroup.

Let $\psi \in \operatorname{Hom}_{U_R(\mathfrak{g})}(U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} (R_c \otimes_{\mathbb{C}} V(\mu)), U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{p})} R_{c+\mu})$ and let $\xi \in \Xi_{\mu}$ be the corresponding element. Then as in Kashiwara [3] we can define a differential operator $P(\psi)$ on G satisfying

$$P(\psi)f^{\lambda+\mu} = \xi(\lambda)f^{\lambda}$$

for any character λ of \mathfrak{p} which can be regarded as a dominant integral weight of \mathfrak{g} . Here, f^{λ} denotes the invariant on G corresponding to λ (see Section 4 below) and ξ is regarded as a function on $\operatorname{Hom}(\mathfrak{p}, \mathbb{C})$.

In the rest of Introduction we assume that the nilpotent radical \mathfrak{n} of \mathfrak{p} is commutative. Then the pair (L, \mathfrak{n}) is a prehomogeneous vector space via the adjoint action of L. In this case there exists exactly one simple root α_0 such that the root space \mathfrak{g}_{α_0} is in \mathfrak{n} . We denote the fundamental weight corresponding to α_0 by ϖ_0 .

We define an element $\xi_0 \in R$ by

$$\xi_0(\lambda) = \prod_{\eta \in Wt(\varpi_0) \setminus \{\varpi_0\}} \left((\lambda + \rho + \varpi_0, \lambda + \rho + \varpi_0) - (\lambda + \rho + \eta, \lambda + \rho + \eta) \right)$$

where $\lambda \in \mathbb{C}\varpi_0$, $Wt(\varpi_0)$ is the set of the highest weights of irreducible \mathfrak{l} -submodules of $V(\varpi_0)$ and ρ is the half sum of positive roots of \mathfrak{g} .

Theorem 1.1. We have $\xi_0 = \xi_{\varpi_0}$, and the ideal Ξ_{ϖ_0} of R is generated by ξ_0 .

We denote by ψ_0 the homomorphism satisfying $\psi_0 \iota = \xi_0 id$.

Let \mathfrak{n}^- be the nilpotent part of the parabolic subalgebra of \mathfrak{g} opposite to \mathfrak{p} . We can define a constant coefficient differential operator $P'(\psi_0)$ on $\mathfrak{n}^- \simeq \exp(\mathfrak{n}^-)$ by

$$(P(\psi_0)f)|_{\exp(\mathfrak{n}^-)} = P'(\psi_0)(f|_{\exp(\mathfrak{n}^-)}).$$

Theorem 1.2. If the prehomogeneous vector space (L, \mathfrak{n}) is regular, then $P'(\psi_0)$ is coincide with the differential operator defining the b-function b(s) of the unique irreducible relative invariant of (L, \mathfrak{n}) , and $b(s) = \xi_0(s\varpi_0)$.

Note that the uniform expression of the *b*-function of (L, \mathfrak{n}) given in Theorem 1.2 was already obtained by Muller, Rubenthaler and Schiffmann [5] by using the micro-local analysis.

Moreover, using the commutative diagram (1.1) for ξ_0 and ψ_0 we give a new proof of the following criterion of the irreducibility of the generalized Verma module due to Suga [10], Gyoja [1], Wachi [13]:

 $U(\mathfrak{g}) \otimes_{U(\mathfrak{g})} \mathbb{C}_{s_0 \varpi_0}$ is irreducible $\iff \xi_0((s_0 - m) \varpi_0) \neq 0$ for any $m \in \mathbb{Z}_{>0}$.

The author expresses the gratitude to Professor T. Tanisaki for his valuable advice.

§2. Prehomogeneous Vector Spaces

In this section we recall some basic facts on prehomogeneous vector spaces (see Sato and Kimura [8]).

Definition 2.1.

- (i) For a connected algebraic group G over the complex number field C and a finite dimensional G-module V, the pair (G, V) is called a prehomogeneous vector space if there exists a Zariski open orbit O in V.
- (ii) We denote the ring of polynomial functions on V by $\mathbb{C}[V]$. A nonzero element $f \in \mathbb{C}[V]$ is called a relative invariant of a prehomogeneous vector space (G, V) if there exists a character χ of G such that $f(gv) = \chi(g)f(v)$ for any $g \in G$ and $v \in V$.
- (iii) A prehomogeneous vector space is called regular if there exists a relative invariant f such that the Hessian $H_f = \det(\partial^2 f / \partial x_i \partial x_j)$ is not identically zero, where $\{x_i\}$ is a coordinate system of V.

For a prehomogeneous vector space (G, V) with open orbit O, we set $S = V \setminus O$. Let $S_i = \{v \in V | f_i(v) = 0\}$ $(1 \leq i \leq l)$ be the one-codimensional irreducible components of S. Then all f_i are relative invariants, and for any relative invariant f there exist $m_i \in \mathbb{Z}_{\geq 0}$ such that $f \in \mathbb{C}f_1^{m_1} \cdots f_l^{m_l}$ (see Sato-Kimura [8]). These irreducible polynomials f_1, \ldots, f_l are called basic relative invariants.

In the remainder of this section we assume that G is reductive. Then we have the following proposition.

Proposition 2.1 (see [8]). The prehomogeneous vector space (G, V) with open orbit O is regular if and only if $S = V \setminus O$ is a hypersurface.

Let V^* be the dual space of V. The pair (L, V^*) is also a prehomogeneous vector space by $\langle gv^*, v \rangle = \langle v^*, g^{-1}v \rangle$, where \langle , \rangle is the natural pairing of V^* and V. If $f \in \mathbb{C}[V]$ is a relative invariant of (G, V) with character χ , then there exists a relative invariant f^* of (G, V^*) with character χ^{-1} . For $h \in \mathbb{C}[V^*]$ we define a constant coefficient differential operator $h(\partial)$ by

$$h(\partial) \exp\langle v^*, v \rangle = h(v^*) \exp\langle v^*, v \rangle,$$

where $v \in V$ and $v^* \in V^*$. Then there exists a polynomial $b(s) \in \mathbb{C}[s]$ such that

$$f^*(\partial)f^{s+1} = b(s)f^s.$$

This polynomial is called the *b*-function of f. It is known that deg $b = \text{deg } f = \text{deg } f^*$ (see [6]).

§3. Universal Generalized Verma Modules

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} with Cartan subalgebra \mathfrak{h} . Let $\Delta \subset \mathfrak{h}^*$ be the root system and $W \subset \operatorname{GL}(\mathfrak{h})$ the Weyl group. For $\alpha \in \Delta$ we denote the corresponding root space by \mathfrak{g}_{α} . We denote the set of positive roots by Δ^+ and the set of simple roots by $\{\alpha_i\}_{i \in I_0}$, where I_0 is an index set. Let ρ be the half sum of positive roots of \mathfrak{g} . We set

$$\mathfrak{n}^{\pm} = igoplus_{lpha \in \Delta^+} \mathfrak{g}_{\pm lpha}, \quad \mathfrak{b}^{\pm} = \mathfrak{h} \oplus \mathfrak{n}^{\pm}.$$

For $i \in I_0$ let $h_i \in \mathfrak{h}$ be the simple coroot and $\varpi_i \in \mathfrak{h}^*$ the fundamental weight corresponding to *i*. We denote the longest element of *W* by w_0 . Let (,)be the *W*-invariant nondegenerate symmetric bilinear form on \mathfrak{h}^* . We denote the irreducible \mathfrak{g} -module with highest weight $\mu \in \sum_{i \in I_0} \mathbb{Z}_{\geq 0} \varpi_i$ by $V(\mu)$ and its highest weight vector by v_{μ} . For a Lie algebra \mathfrak{a} we denote the enveloping algebra of \mathfrak{a} by $U(\mathfrak{a})$.

For a subset $I \subset I_0$ we set

$$\Delta_{I} = \Delta \cap \sum_{i \in I} \mathbb{Z} \alpha_{i}, \qquad \qquad \mathfrak{l}_{I} = \mathfrak{h} \oplus \left(\bigoplus_{\alpha \in \Delta_{I}} \mathfrak{g}_{\alpha} \right),$$

$$\mathfrak{n}_{I}^{\pm} = \bigoplus_{\alpha \in \Delta^{+} \setminus \Delta_{I}} \mathfrak{g}_{\pm \alpha}, \qquad \qquad \mathfrak{p}_{I}^{\pm} = \mathfrak{l}_{I} \oplus \mathfrak{n}_{I}^{\pm},$$

$$\mathfrak{h}_{I} = \mathfrak{h} / \sum_{i \in I} \mathbb{C} h_{i}, \qquad \qquad \mathfrak{h}_{I}^{*} = \sum_{i \in I_{0} \setminus I} \mathbb{C} \varpi_{i}.$$

Let W_I be the subgroup of W generated by the simple reflections corresponding to $i \in I$. We denote the longest element of W_I by w_I . Let $\mathfrak{h}_{I,+}^*$ be the set of dominant integral weights in \mathfrak{h}_I^* . For $\mu \in \mathfrak{h}_I^*$ we define a one-dimensional $U(\mathfrak{p}_I^+)$ module $\mathbb{C}_{I,\mu}$ by

$$\mathbb{C}_{I,\mu} = U(\mathfrak{p}_I^+) \Big/ \big(U(\mathfrak{p}_I^+)\mathfrak{n}^+ + \sum_{h \in \mathfrak{h}} U(\mathfrak{p}_I^+)(h - \mu(h)) + U(\mathfrak{p}_I^+)(\mathfrak{n}^- \cap \mathfrak{l}_I) \big).$$

We denote the canonical generator of $\mathbb{C}_{I,\mu}$ by 1_{μ} . Set $M_I(\mu) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_I^+)} \mathbb{C}_{I,\mu}$, which is called the scalar generalized Verma module with highest weight μ . We denote the irreducible \mathfrak{p}_I^+ -module with highest weight $\mu \in \sum_{i \in I} \mathbb{Z}_{\geq 0} \varpi_i + \sum_{i \notin I} \mathbb{Z} \varpi_i$ by $W(\mu)$.

Let G be a connected simply-connected simple algebraic group with Lie algebra \mathfrak{g} . We denote the subgroups of G corresponding to $\mathfrak{h}, \mathfrak{b}^{\pm}, \mathfrak{n}^{\pm}, \mathfrak{l}_{I}, \mathfrak{n}_{I}^{\pm}$ by $T, B^{\pm}, N^{\pm}, L_{I}, N_{I}^{\pm}$ respectively.

Let R_I be the symmetric algebra of \mathfrak{h}_I , and define a linear map $c: \mathfrak{h} \to R_I$ as the composite of the natural projection from \mathfrak{h} to \mathfrak{h}_I and the natural injection from \mathfrak{h}_I to R_I . Set $U_{R_I}(\mathfrak{a}) = R_I \otimes_{\mathbb{C}} U(\mathfrak{a})$ for a Lie algebra \mathfrak{a} .

We set for $\mu \in \mathfrak{h}_I^*$

$$J_{I,c+\mu} = U_{R_I}(\mathfrak{p}_I^+)\mathfrak{n}^+ + \sum_{h\in\mathfrak{h}} U_{R_I}(\mathfrak{p}_I^+)(h-c(h)-\mu(h)) + U_{R_I}(\mathfrak{p}_I^+)(\mathfrak{n}^-\cap\mathfrak{l}_I),$$
$$R_{I,c+\mu} = U_{R_I}(\mathfrak{p}_I^+) / J_{I,c+\mu}.$$

We denote the canonical generator of $R_{I,c+\mu}$ by $1_{c+\mu}$.

Definition 3.1. For $\mu \in \mathfrak{h}_I^*$ set $M_{R_I}(c+\mu) = U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} R_{I,c+\mu}$. We call this $U_{R_I}(\mathfrak{g})$ -module the universal scalar generalized Verma module.

Note that $M_{R_{\emptyset}}(c)$ is the universal Verma module in Kashiwara [3]. For $\lambda \in \mathfrak{h}_{I}^{*}$ we regard \mathbb{C} as an R_{I} -module by $c(h_{i})1 = \lambda(h_{i})$. Then we have

$$\mathbb{C} \otimes_{R_I} M_{R_I}(c+\mu) = M_I(\lambda+\mu).$$

The next lemma is obvious.

Lemma 3.1. End_{$U_{R_I}(\mathfrak{q})$} $(M_{R_I}(c+\mu)) = R_I.$

For $\mu \in \mathfrak{h}_I^*$ we define a $U_{R_I}(\mathfrak{g})$ -module homomorphism

$$\iota_{\mu}: M_{R_{I}}(c+\mu) \longrightarrow U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} V(\mu))$$

by $\iota_{\mu}(1 \otimes 1_{c+\mu}) = 1 \otimes 1_c \otimes v_{\mu}$. We denote by Ξ_{μ} the ideal of R_I consisting of ξ such that there exists $\psi \in \operatorname{Hom}_{U_{R_I}(\mathfrak{g})}(U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} V(\mu)), M_{R_I}(c+\mu))$ satisfying $\psi_{\iota_{\mu}} = \xi$ id. Let us give a particular element ξ_{μ} of Ξ_{μ} for $\mu \in \mathfrak{h}_{I,+}^*$.

Lemma 3.2. For $\mu_1, \mu_2 \in \sum_{i \in I} \mathbb{Z}_{\geq 0} \varpi_i + \sum_{j \notin I} \mathbb{Z} \varpi_j$ we define a function p_{μ_1,μ_2} on \mathfrak{h}_I^* by

$$p_{\mu_1,\mu_2}(\lambda) = (\lambda + \rho + \mu_1, \lambda + \rho + \mu_1) - (\lambda + \rho + \mu_2, \lambda + \rho + \mu_2),$$

which is regarded as an element of R_I . Then we have

$$p_{\mu_1,\mu_2} \operatorname{Ext}^1_{U_{B_r}(\mathfrak{q})}(W_1, W_2) = 0,$$

where $W_i = U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{g}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} W(\mu_i)).$

Proof. The action of the Casimir element of $U(\mathfrak{g})$ on $U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} W(\mu))$ is given by the multiplication by $p_{\mu} \in R_I$, where $p_{\mu}(\lambda) = (\lambda + \rho + \mu, \lambda + \rho + \mu) - (\rho, \rho)$ for $\lambda \in \mathfrak{h}_I^*$. Using this action, we can easily check that $p_{\mu_1,\mu_2} = p_{\mu_1} - p_{\mu_2}$ is an annihilator.

Lemma 3.3. For any $\mu \in \mathfrak{h}_{I,+}^*$ there exist \mathfrak{p}_I^+ -submodules F_1, F_2, \ldots, F_r of $V(\mu)$ and weights $\eta_1, \eta_2, \ldots, \eta_{r-1} \in \sum_{i \in I} \mathbb{Z}_{\geq 0} \varpi_i + \sum_{i \in I_0 \setminus I} \mathbb{Z} \varpi_i$ satisfying the following conditions:

- (i) $\mathbb{C}v_{\mu} = F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_r = V(\mu).$
- (ii) $F_{i+1}/F_i \simeq W(\eta_i)^{\oplus N_i}$ for some positive integer N_i .
- (iii) $\eta_i \neq \eta_j$ for $i \neq j$.

Proof. For a non-negative integer m we set

$$P(m) = \left\{ \lambda \in \mathfrak{h}^* \mid \mu - \lambda = \sum_{i \in I_0} m_i \alpha_i \text{ and } \sum_{i \notin I} m_i = m \right\},\$$
$$V_m = \bigoplus_{\lambda \in P(m)} V(\mu)_{\lambda},$$

where $V(\mu)_{\lambda}$ is the weight space of $V(\mu)$ with weight λ . Then V_m is an l_I -module, and we have the irreducible decomposition

$$V_m = \tilde{W}(\eta_{m,1})^{\oplus N_{m,1}} \oplus \dots \oplus \tilde{W}(\eta_{m,t_m})^{\oplus N_{m,t_m}}$$

where $\tilde{W}(\eta)$ is the irreducible l_I -module with highest weight η , and $\eta_{m,i} \neq \eta_{m,j}$ for $i \neq j$. For $1 \leq i \leq t_m$ we define a \mathfrak{p}_I^+ -submodule $F_{m,i}$ of $V(\mu)$ by

$$F_{m,i} = V_0 \oplus \cdots \oplus V_{m-1} \oplus \tilde{W}(\eta_{m,1})^{\oplus N_{m,1}} \oplus \cdots \oplus \tilde{W}(\eta_{m,i})^{\oplus N_{m,i}}.$$

Then we have the sequence

$$\mathbb{C}v_{\mu} = F_{0,1} \subsetneq \cdots \subsetneq F_{m-1,t_{m-1}} \subsetneq F_{m,1} \subsetneq F_{m,2} \subsetneq \cdots \subsetneq F_{r,t_r} = V(\mu).$$

It is clear that the above sequence satisfies the conditions (ii) and (iii).

For $\mu \in \mathfrak{h}_{I,+}^*$, we fix the sequence $\{F_1, F_2, \ldots, F_r\}$ of \mathfrak{p}_I^+ -submodules of $V(\mu)$ satisfying the conditions of Lemma 3.3, and set $\xi_{\mu} = \prod_{i=1}^{r-1} p_{\mu,\eta_i} \in R_I$.

Theorem 3.4. For $\mu \in \mathfrak{h}_{L+}^*$ we have $\xi_{\mu} \in \Xi_{\mu}$.

Proof. It is clear that $U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} F_1) \simeq M_{R_I}(c+\mu)$. Let $\iota_j : U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} F_j) \to U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1})$ be the canonical injection. We show that there exists a commutative diagram

by the induction on j. Assume that there exists a commutative diagram (3.1) for $j \geq 1$. From the exact sequence

$$0 \longrightarrow U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j}) \xrightarrow{\iota_{j}} U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1}) \\ \longrightarrow U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1}/F_{j}) \longrightarrow 0,$$

we have a long exact sequence

$$0 \longrightarrow \operatorname{Hom}_{U_{R_{I}}(\mathfrak{g})} \left(U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1}/F_{j}), M_{R_{I}}(c+\mu) \right)$$

$$\longrightarrow \operatorname{Hom}_{U_{R_{I}}(\mathfrak{g})} \left(U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1}), M_{R_{I}}(c+\mu) \right)$$

$$\longrightarrow \operatorname{Hom}_{U_{R_{I}}(\mathfrak{g})} \left(U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j}), M_{R_{I}}(c+\mu) \right)$$

$$\xrightarrow{\delta} \operatorname{Ext}^{1}_{U_{R_{I}}(\mathfrak{g})} \left(U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1}/F_{j}), M_{R_{I}}(c+\mu) \right)$$

$$\longrightarrow \cdots$$

By Lemma 3.2 we have $\delta(p_{\mu,\eta_j}\psi_j) = p_{\mu,\eta_j}\delta(\psi_j) = 0$. Hence there exists an element $\psi_{j+1} \in \operatorname{Hom}_{U_{R_I}(\mathfrak{g})}(U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} F_{j+1}), M_{R_I}(c+\mu))$ such that $\psi_{j+1}\iota_j = p_{\mu,\eta_j}\psi_j$. Hence we have the commutative diagram

In particular $\psi_r \iota_\mu = \xi_\mu$. Therefore $\xi_\mu \in \Xi_\mu$.

Let $\psi_{\mu} \in \operatorname{Hom}_{U_{R_{I}}(\mathfrak{g})} (U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} V(\mu)), M_{R_{I}}(c+\mu))$ satisfying $\psi_{\mu}\iota_{\mu} = \xi_{\mu}$. Note that ψ_{μ} is non-zero since $\xi_{\mu} \neq 0$.

Remark 1. In general ξ_{μ} is not a generator of the ideal Ξ_{μ} . For example let \mathfrak{g} be a simple Lie algebra of type G_2 . We take the simple roots α_1 and α_2 such that α_1 is short. If $I = \{2\}$ and $\mu = \varpi_1$, then we have

$$\xi_{\mu} = (c(h_1) + 1)(c(h_1) + 2)(c(h_1) + 3)(2c(h_1) + 5)$$

up to constant multiple. But $(c(h_1) + 1)(2c(h_1) + 5) \in \Xi_{\mu}$.

Remark 2. For $I = \emptyset$ it is shown in Kashiwara [3] that Ξ_{μ} is generated by

$$\xi^{0}_{\mu} = \prod_{\alpha \in \Delta^{+}} \prod_{j=0}^{\mu(h_{\alpha})-1} (c(h_{\alpha}) + \rho(h_{\alpha}) + j),$$

where h_{α} is the coroot corresponding to α . Now we have $c(h_{\alpha}) + \rho(h_{\alpha}) + j = p_{\mu,\mu-(\mu(h_{\alpha})-j)\alpha}$ up to constant multiple. Let $Wt(\mu)$ be the set of weights of $V(\mu)$. Then we have $\xi_{\mu} = \prod_{\eta \in Wt(\mu) \setminus \{\mu\}} p_{\mu,\eta}$, so $\xi_{\mu}^{0} \notin \mathbb{C}^{\times} \xi_{\mu}$ in general.

§4. Semi-invariants

Let λ be a dominant integral weight. We regard the dual space $V(\lambda)^*$ as a left \mathfrak{g} -module via $\langle xv^*, v \rangle = \langle v^*, -xv \rangle$ for $x \in \mathfrak{g}, v^* \in V(\lambda)^*$ and $v \in V(\lambda)$. We denote the lowest weight vector of $V(\lambda)^*$ by v_{λ}^* . We normalize v_{λ}^* by $\langle v_{\lambda}^*, v_{\lambda} \rangle = 1$.

Definition 4.1. We define a regular function f^{λ} on G by $f^{\lambda}(g) = \langle v_{\lambda}^*, gv_{\lambda} \rangle$.

For $b^{\pm} \in B^{\pm}$ and $g \in G$ we have

$$f^{\lambda}(b^-gb^+) = \lambda^-(b^-)\lambda^+(b^+)f^{\lambda}(g),$$

where λ^{\pm} is the character of B^{\pm} corresponding to λ . This function f^{λ} is called $B^{-} \times B^{+}$ -semi-invariant. Note that $f^{\lambda_{1}+\lambda_{2}} = f^{\lambda_{1}}f^{\lambda_{2}}$.

Fix $\mu \in \mathfrak{h}_{I,+}^*$. We take a basis $\{v_{\mu,j}\}_{0 \le j \le n}$ of $V(\mu)$ consisting of weight vectors such that $v_{\mu,0} = v_{\mu}$ is the highest weight vector and $v_{\mu,n}$ is the lowest. We denote the dual basis of $V(\mu)^*$ by $\{v_{\mu,j}^*\}$. For a $U_{R_I}(\mathfrak{g})$ -module homomorphism

$$\psi: U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} V(\mu)) \longrightarrow M_{R_I}(c+\mu)$$

we define elements $Y'_j \in U_{R_I}(\mathfrak{n}_I^-)$ for $0 \le j \le n$ by

$$\psi(1\otimes 1_c\otimes v_{\mu,j})=Y'_j\otimes 1_{c+\mu},$$

and define an element $\xi \in \Xi_{\mu}$ by $\xi = \psi \iota_{\mu}$. Note that $Y'_{0} = \xi$. Let $\pi_{\mu} = \pi : R_{I} \to U(\sum_{i \notin I} \mathbb{C}h_{i})$ be the algebra isomorphism defined by $\pi(c(h_{i})) = h_{i} - \mu(h_{i})$ for $i \notin I$. Set $\pi(\sum_{j} a_{j} \otimes y_{j}) = \sum_{j} y_{j}\pi(a_{j})$ for $a_{j} \in R_{I}$ and $y_{j} \in U(\mathfrak{n}_{I}^{-})$. Clearly we have $y \otimes 1_{c+\mu} = \pi(y) \otimes 1_{c+\mu} \in M_{R_{I}}(c+\mu)$ $(y \in U_{R_{I}}(\mathfrak{n}_{I}^{-}))$. We set $Y_{j} = \pi(Y'_{j})$.

We define differential operators $P_{\mu}(\psi)$ and $\tilde{P}_{\mu}(\psi)$ on G by

$$(P_{\mu}(\psi)\varphi)(g) = \sum_{j=0}^{n} \langle gv_{\mu,j}^{*}, v_{\mu,0} \rangle (R(Y_{j})\varphi)(g),$$
$$(\tilde{P}_{\mu}(\psi)\varphi)(g) = \sum_{j=0}^{n} \langle gv_{\mu,j}^{*}, v_{\mu,n} \rangle (R(Y_{j})\varphi)(g),$$

where R(y) $(y \in U(\mathfrak{g}))$ is the left invariant differential operator induced by the right action of G on itself. Then we have the following theorem.

Theorem 4.1. Let $\mu \in \mathfrak{h}_{I,+}^*$ and

$$\psi \in \operatorname{Hom}_{U_{R_{I}}(\mathfrak{g})}(U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})} (R_{I,c} \otimes_{\mathbb{C}} V(\mu)), M_{R_{I}}(c+\mu)).$$

Then we have

$$P_{\mu}(\psi)f^{\lambda+\mu} = \xi(\lambda)f^{\lambda}$$

for any $\lambda \in \mathfrak{h}_{I,+}^*$. Here ξ is the element of Ξ_{μ} defined by $\xi = \psi \iota_{\mu}$.

Proof. We can prove this theorem similarly to Kashiwara [3, Theorem 2.1]. We give the sketch of the proof. First we can show that $P_{\mu}(\psi)f^{\lambda+\mu}$ is right N^+ -invariant. Since B^-N^+ is an open dense subset of G, it is sufficient to show the statement on B^- . Next we can show that $(R(Y_j)f^{\lambda+\mu})(B^-) = 0$ for $j \geq 1$. By definitions we have $(R(Y_0)f^{\lambda+\mu})(g) = \xi(\lambda)f^{\lambda+\mu}(g)$ and $\langle gv_{\mu,0}^*, v_{\mu,0} \rangle = f^{\mu}(g)^{-1}$ for $g \in B^-$. So we have $P_{\mu}(\psi)f^{\lambda+\mu} = \xi(\lambda)f^{\lambda}$ on B^- .

For a dominant integral weight λ we define a function \tilde{f}^{λ} on G by

$$\tilde{f}^{\lambda}(g) = \langle v_{w_0\lambda}^*, gv_{\lambda} \rangle,$$

where $v_{w_0\lambda}^*$ is the highest weight vector which is normalized by $\langle v_{w_0\lambda}^*, \dot{w}_0 v_\lambda \rangle = 1$ and $\dot{w}_0 \in N_G(T)$ is a representative element of $w_0 \in W = N_G(T)/T$. Since $\tilde{f}^{\lambda}(\dot{w}_0g) = f^{\lambda}(g)$, we obtain the following lemma.

Lemma 4.2. Let $\lambda, \mu \in \mathfrak{h}_{L+}^*$. For any $g \in G$ we have

$$(\dot{P}_{\mu}(\psi)\dot{f}^{\lambda})(\dot{w}_0g) = (P_{\mu}(\psi)f^{\lambda})(g).$$

By Theorem 4.1 we have the following corollary.

Corollary 4.3. Let
$$\mu \in \mathfrak{h}_{I,+}^*$$
. We have
 $\tilde{P}_{\mu}(\psi)\tilde{f}^{\lambda+\mu} = \xi(\lambda)\tilde{f}^{\lambda}$

for any $\lambda \in \mathfrak{h}_{I,+}^*$. Here ξ is the element of Ξ_{μ} defined by $\xi = \psi \iota_{\mu}$.

§5. Commutative Parabolic Type

In the remainder of this paper we assume that

$$I = I_0 \setminus \{i_0\}$$

and that the highest root θ of \mathfrak{g} is in $\alpha_{i_0} + \sum_{i \neq i_0} \mathbb{Z}_{\geq 0} \alpha_i$. Then it is known that $[\mathfrak{n}_I^{\pm}, \mathfrak{n}_I^{\pm}] = \{0\}$ and the pairs $(L_I, \mathfrak{n}_I^{\pm})$ are prehomogeneous vector spaces via the adjoint action, which are called of commutative parabolic type. The all pairs (\mathfrak{g}, i_0) of commutative parabolic type are given by the Dynkin diagrams of Figure 1. Here the white vertex corresponds to i_0 .

Since \mathfrak{n}_I^- is identified with the dual space of \mathfrak{n}_I^+ via the Killing form, the symmetric algebra $S(\mathfrak{n}_I^-)$ is isomorphic to $\mathbb{C}[\mathfrak{n}_I^+]$. By the commutativity of \mathfrak{n}_I^- we have $S(\mathfrak{n}_I^-) = U(\mathfrak{n}_I^-)$. Hence $\mathbb{C}[\mathfrak{n}_I^+]$ is identified with $U(\mathfrak{n}_I^-)$.

Set $\gamma_1 = \alpha_{i_0}$. For $i \ge 1$ we take γ_{i+1} as the lowest root in

$$\Gamma_i = \{ \alpha \in \Delta^+ \setminus \Delta_I \mid \alpha + \gamma_j \notin \Delta \text{ and } \alpha - \gamma_j \notin \Delta \cup \{0\} \text{ for all } j \leq i \}.$$

Let $r = r(\mathfrak{g}, i_0)$ be the index such that $\Gamma_{r-1} \neq \emptyset$ and $\Gamma_r = \emptyset$. Note that $(\gamma_i, \gamma_j) = 0$ for $i \neq j$. It is known that all γ_i have the same length (see Moore [4]). For $1 \leq i \leq r$ we set $\lambda_i = -(\gamma_1 + \cdots + \gamma_i)$. The following fact is known (see [2], [9], [11]).

Lemma 5.1. As an $\operatorname{ad}(\mathfrak{l}_I)$ -module, $U(\mathfrak{n}_I^-)$ is multiplicity free, and

$$U(\mathfrak{n}_I^-) = \bigoplus_{\mu \in \sum_{i=1}^r \mathbb{Z}_{\ge 0} \lambda_i} I(\mu),$$

where $I(\mu)$ is an irreducible \mathfrak{l}_I -submodule of $U(\mathfrak{n}_I^-)$ with highest weight μ .

Let $f_i \in U(\mathfrak{n}_I^-)$ be the highest weight vector of $I(\lambda_i)$. Since $U(\mathfrak{n}_I^-)$ is naturally identified with the symmetric algebra $S(\mathfrak{n}_I^-)$, we can determine the degree of $f \in U(\mathfrak{n}_I^-)$. If $f \in U(\mathfrak{n}_I^-)$ is a weight vector with weight $\mu \in -d\alpha_{i_0} + \sum_{i \in I} \mathbb{Z}_{\leq 0} \alpha_i$, then f is homogeneous and deg f = d. In particular deg $f_i = i$.

Considering the $[\mathfrak{l}_I, \mathfrak{l}_I]$ -module homomorphism $U(\mathfrak{n}_I^-) \to V(\varpi_{i_0})$ such that $u \mapsto uv_{\varpi_{i_0}}$, we have the following corollary.

Corollary 5.2. There exists a finite subset M of $\sum_{i=1}^{r} \mathbb{Z}_{\geq 0} \lambda_i$ such that

$$V(\varpi_{i_0}) = \bigoplus_{\mu \in M} I(\mu) v_{\varpi_{i_0}}.$$

We have the following facts on L_I -orbits in \mathfrak{n}_I^+ (see Tanisaki [12] §1 or Wachi [13] §12).

Figure 1. Commutative Parabolic Type

Proposition 5.3.

(i) \mathfrak{n}_I^+ consists of L_I -orbits C_0, C_1, \ldots, C_r satisfying the closure relation

 $\{0\} = C_0 \subset \overline{C_1} \subset \cdots \subset \overline{C_r} = \mathfrak{n}_I^+.$

Here $\overline{C_i}$ is the Zariski closure of C_i .

(ii) For $1 \leq i \leq r$ we set $\mathcal{I}_i = \mathbb{C}[\mathfrak{n}_I^+]I(\lambda_i)$. Then \mathcal{I}_i is the defining ideal of $\overline{C_{i-1}}$.

Remark 3. The orbit C_r is open. Set $S = \mathfrak{n}_I^+ \setminus C_r$. Then $S = \coprod_{i=0}^{r-1} C_i = \overline{C_{r-1}}$. By Lemma 2.1, the following are equivalent.

- (i) (L_I, \mathfrak{n}_I^+) is regular.
- (ii) f_r is the unique basic relative invariant.
- (iii) dim $I(\lambda_r) = 1$.

Let h_{γ_i} be the coroot corresponding to γ_i . We set $\mathfrak{h}^- = \sum_{i=1}^r \mathbb{C}h_{\gamma_i}$. Then we have the following lemmas.

Lemma 5.4 (Moore [4]). For $\beta \in \Delta^+ \cap \Delta_I$ there are three possible forms of the restriction $\beta|_{\mathfrak{h}^-}$:

(i) $\beta|_{\mathfrak{h}^-} = 0$. Then $\beta \pm \gamma_i \notin \Delta$ for all *i*.

(ii)
$$\beta|_{\mathfrak{h}^-} = -\frac{\gamma_j}{2}|_{\mathfrak{h}^-}$$
. Then $\beta \pm \gamma_i \notin \Delta$ for all $i \neq j$.

(iii) $\beta|_{\mathfrak{h}^-} = \frac{\gamma_j - \gamma_k}{2}|_{\mathfrak{h}^-} \ (j > k)$. Then $\beta \pm \gamma_i \notin \Delta$ for all $i \neq j, k$ and $\beta + \gamma_j \notin \Delta$. Set $D = \{\alpha_i \mid i \in I\}$. For a subset Δ' of Δ , $\Delta'(\mathfrak{h}^-)$ is defined by

$$\Delta'(\mathfrak{h}^{-}) = \left\{ \beta \in \sum_{i=1}^{r} \mathbb{Q}\gamma_i \mid \beta|_{\mathfrak{h}^{-}} = \alpha|_{\mathfrak{h}^{-}} \ (\alpha \in \Delta') \right\}.$$

Lemma 5.5 (Moore [4]). There are two possibilities as follows. Case (a):

$$D(\mathfrak{h}^{-}) = \left\{ \frac{1}{2} (\gamma_{i+1} - \gamma_i) \mid 1 \le i \le r - 1 \right\} \cup \{0\},$$
$$(\Delta_I \cap \Delta^+)(\mathfrak{h}^{-}) = \left\{ \frac{1}{2} (\gamma_j - \gamma_i) \mid 1 \le i \le j \le r \right\},$$
$$(\Delta^+ \setminus \Delta_I)(\mathfrak{h}^{-}) = \left\{ \frac{1}{2} (\gamma_j + \gamma_i) \mid 1 \le i \le j \le r \right\}.$$

Case (b):

$$D(\mathfrak{h}^{-}) = \left\{ \frac{1}{2} (\gamma_{i+1} - \gamma_i) \mid 1 \le i \le r - 1 \right\} \cup \left\{ -\frac{1}{2} \gamma_r \right\} \cup \{0\},$$
$$(\Delta_I \cap \Delta^+)(\mathfrak{h}^-) = \left\{ \frac{1}{2} (\gamma_j - \gamma_i) \mid 1 \le i \le j \le r \right\} \cup \left\{ -\frac{1}{2} \gamma_i \mid 1 \le i \le r \right\},$$
$$(\Delta^+ \setminus \Delta_I)(\mathfrak{h}^-) = \left\{ \frac{1}{2} (\gamma_j + \gamma_i) \mid 1 \le i \le j \le r \right\} \cup \left\{ \frac{1}{2} \gamma_i \mid 1 \le i \le r \right\}.$$

Remark 4. By Weyl's dimension formula, there exists $\beta \in \Delta_I \cap \Delta^+$ such that $\beta|_{\mathfrak{h}^-} = -\frac{1}{2}\gamma_i|_{\mathfrak{h}^-}$ if and only if dim $I(\lambda_r) \neq 1$. In other words the case where $(L_I, \mathfrak{n}^{\pm})$ are regular coincides with the case (a) in Lemma 5.5.

Lemma 5.6. If (L_I, \mathfrak{n}_I^+) is regular, then γ_r is the highest root θ . If (L_I, \mathfrak{n}_I^+) is not regular, then $\theta|_{\mathfrak{h}^-} = \frac{\gamma_r}{2}|_{\mathfrak{h}^-}$.

Proof. Assume that (L_I, \mathfrak{n}_I^+) is regular. Let us show that $\gamma_r + \alpha_j \notin \Delta$ for any $j \in I_0$. Since $\gamma_r, \alpha_{i_0} \in \Delta^+ \setminus \Delta_I, \gamma_r + \alpha_{i_0}$ is not a root. If $j \in I$, then we have $\alpha_j = \frac{\gamma_k - \gamma_{k-1}}{2}$ or 0 on \mathfrak{h}^- by Lemma 5.5 and Remark 4. So we have $\alpha_j + \gamma_r \notin \Delta$ by Lemma 5.4. Hence γ_r is the highest root.

Next we assume that (L_I, \mathfrak{n}_I^+) is not regular. Then there exists a simple root α_{j_0} such that $\alpha_{j_0} = -\frac{\gamma_r}{2}$ on \mathfrak{h}^- . Since $(\gamma_r, \alpha_{j_0}) < 0$, we have $\gamma_r + \alpha_{j_0} \in \Delta$. In particular $\theta \in \gamma_r + \alpha_{j_0} + \sum_{j \neq i_0} \mathbb{Z}_{\geq 0} \alpha_j$. So we have on \mathfrak{h}^-

$$\theta = \frac{\gamma_r}{2} + \sum_{i=1}^{r-1} a_i \frac{\gamma_{i+1} - \gamma_i}{2} - a_r \frac{\gamma_r}{2}$$
$$= -a_1 \frac{\gamma_1}{2} + \sum_{i=2}^{r-1} (a_{i-1} - a_i) \frac{\gamma_i}{2} + (1 - a_r + a_{r-1}) \frac{\gamma_r}{2},$$

where $a_i \in \mathbb{Z}_{\geq 0}$. By Lemma 5.5, we have $\theta|_{\mathfrak{h}^-} = \frac{\gamma_k + \gamma_l}{2}|_{\mathfrak{h}^-}$ or $\frac{\gamma_k}{2}|_{\mathfrak{h}^-}$. Therefore all a_i must be 0, and $\theta|_{\mathfrak{h}^-} = \frac{\gamma_r}{2}|_{\mathfrak{h}^-}$.

Since \mathfrak{n}_I^+ is an irreducible \mathfrak{l}_I -module, we have $w_I \alpha_{i_0} = \theta$ and $w_I \overline{\omega}_{i_0} = \overline{\omega}_{i_0}$.

Lemma 5.7. $\lambda_r = w_I w_0 \varpi_{i_0} - \varpi_{i_0}$.

Proof. Let $v_{w_0 \varpi_{i_0}}$ be the lowest weight vector of $V(\varpi_{i_0})$. Then $w_I w_0 \varpi_{i_0}$ is the highest weight of the irreducible $[\mathfrak{l}_I, \mathfrak{l}_I]$ -submodule generated by $v_{w_0 \varpi_{i_0}}$.

By Corollary 5.2 there exists $\mu = \sum_{i=1}^{r} m_i \lambda_i \in \sum_{i=1}^{r} \mathbb{Z}_{\geq 0} \lambda_i$ such that $I(\mu) v_{\varpi_{i_0}} = U([\mathfrak{l}_I, \mathfrak{l}_I]) v_{w_0 \varpi_{i_0}}$. In particular $\mu = w_I w_0 \varpi_{i_0} - \varpi_{i_0}$. Now

$$(w_I w_0 \varpi_{i_0} - \varpi_{i_0}, \alpha_{i_0}) = (w_0 \varpi_{i_0}, \theta) - (\varpi_{i_0}, \alpha_{i_0}) = (\varpi_{i_0}, -\theta) - (\varpi_{i_0}, \alpha_{i_0})$$
$$= -2(\varpi_{i_0}, \alpha_{i_0}) = -(\alpha_{i_0}, \alpha_{i_0})$$

and

$$(\mu, \alpha_{i_0}) = \sum_{i=1}^r m_i(\lambda_i, \alpha_{i_0}) = -\sum_{i=1}^r m_i(\alpha_{i_0}, \alpha_{i_0})$$

Therefore we have $\sum_{i=1}^{r} m_i = 1$, and $\mu = \lambda_k$ for an index k. Hence it is enough to show that k = r. We define the index $j \in I_0$ by $w_0 \alpha_{i_0} = -\alpha_j$. Then we have $w_I(\lambda_k + \varpi_{i_0}) = w_0 \varpi_{i_0} = -\varpi_j$. Since $w_I \alpha_{i_0} = \theta$, we have

$$(-\varpi_j, \alpha_{i_0}) = (w_I(\lambda_k + \varpi_{i_0}), \alpha_{i_0}) = (\lambda_k + \varpi_{i_0}, \theta).$$

Assume that (L_I, \mathfrak{n}_I^+) is regular. Then we have $\theta = \gamma_r$ by Lemma 5.6. Hence $(\lambda_k + \varpi_{i_0}, \theta) = -\delta_{kr}(\alpha_{i_0}, \alpha_{i_0}) + \frac{(\alpha_{i_0}, \alpha_{i_0})}{2}$. In particular $(-\varpi_j, \alpha_{i_0}) \neq 0$. Hence $j = i_0$, and $(\lambda_k + \varpi_{i_0}, \theta) = -\frac{(\alpha_{i_0}, \alpha_{i_0})}{2}$. So we have k = r.

Next we assume that (L_I, \mathfrak{n}_I^+) is not regular. By Lemma 5.6 we have $\theta|_{\mathfrak{h}^-} = \frac{\gamma_r}{2}|_{\mathfrak{h}^-}$, so

$$(\lambda_k + \varpi_{i_0}, \theta) = -\delta_{kr} \frac{(\alpha_{i_0}, \alpha_{i_0})}{2} + \frac{(\alpha_{i_0}, \alpha_{i_0})}{2} \ge 0.$$

Since $(-\varpi_j, \alpha_{i_0}) \leq 0$, we have $(\lambda_k + \varpi_{i_0}, \theta) = (-\varpi_j, \alpha_{i_0}) = 0$. Therefore $j \neq i_0$ and k = r.

Remark 5. By the proof of Lemma 5.7 we see that the prehomogeneous vector space (L_I, \mathfrak{n}_I^+) is regular if and only if $w_0\alpha_{i_0} = -\alpha_{i_0}$. Hence the pairs (\mathfrak{g}, i_0) such that the corresponding prehomogeneous vector spaces are regular are as follows: $(A_{2n-1}, n), (B_n, 1), (C_n, n), (D_n, 1), (D_{2n}, 2n)$ and $(E_7, 7)$.

For $\mu \in \mathfrak{h}_{I,+}^* = \mathbb{Z}_{\geq 0} \varpi_{i_0}$ we take the lowest weight vector $v_{w_0\mu}$ of $V(\mu)$. Then the $U_{R_I}(\mathfrak{g})$ -module $U_{R_I}(\mathfrak{g}) \otimes_{U_{R_I}(\mathfrak{p}_I^+)} (R_{I,c} \otimes_{\mathbb{C}} V(\mu))$ is generated by $1 \otimes 1_c \otimes v_{w_0\mu}$. For the $U_{R_I}(\mathfrak{g})$ -module homomorphism ψ_{μ} defined in Section 3, there exists a non-zero element $u_{\mu} \in U_{R_I}(\mathfrak{n}_I^-)$ such that $\psi_{\mu}(1 \otimes 1_c \otimes v_{w_0\mu}) = u_{\mu} \otimes 1_{c+\mu}$. Since $y(1 \otimes 1_c \otimes v_{w_0\mu}) = 0$ for any $y \in \mathfrak{l}_I \cap \mathfrak{n}^-$, $u_{\mu} \in U_{R_I}(\mathfrak{n}_I^-)$ is a lowest weight vector with weight $w_0\mu - \mu$ as an $\operatorname{ad}(\mathfrak{l}_I)$ -module. By Lemma 5.1 such a lowest weight vector is unique up to constant multiple. Therefore $u_{\mu} = a_{\mu}u_{\mu}^0$ where $a_{\mu} \in R_I \setminus \{0\}$ and $u_{\mu}^0 \in U(\mathfrak{n}_I^-)$ is the unique lowest weight vector with weight $w_0\mu - \mu$. If $x(1 \otimes 1_c \otimes v_{w_0\mu}) = 0$ for $x \in U_{R_I}(\mathfrak{g})$, then we have $xu_{\mu}^0 \otimes 1_{c+\mu} = 0$ since $a_{\mu} \neq 0$. Hence we can define a $U_{R_{I}}(\mathfrak{g})$ -module homomorphism ψ_{μ}^{0} from $U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{g}_{T}^{+})} (R_{I,c} \otimes_{\mathbb{C}} V(\mu))$ to $M_{R_{I}}(c+\mu)$ by

$$\psi^0_\mu(x(1\otimes 1_c\otimes v_{w_0\mu}))=xu^0_\mu\otimes 1_{c+\mu}$$

for any $x \in U_{R_I}(\mathfrak{g})$. We set $\xi^0_{\mu} = \psi^0_{\mu} \iota_{\mu} \in \Xi_{\mu}$.

From the uniqueness of u^0_{μ} we have

$$\psi(1 \otimes 1_c \otimes v_{w_0\mu}) = au^0_\mu \otimes 1_{c+\mu} = a\psi^0_\mu (1 \otimes 1_c \otimes v_{w_0\mu}) \quad (a \in R_I)$$

for any $\psi \in \operatorname{Hom}_{U_{R_{I}}(\mathfrak{g})}(U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}_{I}^{+})}(R_{I,c} \otimes_{\mathbb{C}} V(\mu)), M_{R_{I}}(c+\mu))$. Therefore we have the following.

Proposition 5.8. Let
$$\mu \in \mathfrak{h}_{I+}^*$$
. We have $\Xi_{\mu} = R_I \xi_{\mu}^0$.

We call the above homomorphism ψ^0_{μ} the minimal map in this paper.

Let $\tilde{f}_r \in U(\mathfrak{n}_I^-)$ be the lowest weight vector of the irreducible \mathfrak{l}_I -submodule $I(\lambda_r)$.

Proposition 5.9. Let $\mu = m \varpi_{i_0} \in \mathfrak{h}_{I,+}^*$. Under the identification exp: $\mathfrak{n}_I^- \simeq N_I^-$ we have

$$(\tilde{P}_{\mu}(\psi^{0}_{\mu})\varphi)|_{\mathfrak{n}_{I}^{-}} = \tilde{f}_{r}(\partial)^{m}(\varphi|_{\mathfrak{n}_{I}^{-}})$$

Proof. Let $\{v_i\}_{0 \le i \le n}$ be a basis of $V(\mu)$ consisting of weight vectors such that v_n has the lowest weight $w_0\mu$. We denote the dual basis by $\{v_i^*\}$. We define elements $Y'_i \in U_{R_I}(\mathfrak{n}_I^-)$ by $\psi^0_\mu(1 \otimes 1_c \otimes v_i) = Y'_i \otimes 1_{c+\mu}$. Set $Y_i = \pi(Y'_i)$ Then we have

$$(\tilde{P}_{\mu}(\psi^{0}_{\mu})\varphi)(g) = \sum_{i=0}^{n} \langle gv_{i}^{*}, v_{n} \rangle (R(Y_{i})\varphi)(g).$$

For $g \in N_I^-$ we have $\langle gv_i^*, v_n \rangle = \delta_{i,n}$. Therefore it is sufficient to show that

(5.1)
$$R(Y_n) = \tilde{f}_r^m(\partial)$$

By the definition of ψ^0_{μ} , Y_n is the lowest weight vector of $\operatorname{ad}(\mathfrak{l}_I)$ -module $U(\mathfrak{n}_I^-)$ with weight $w_0\mu - \mu = m(w_0\varpi_{i_0} - \varpi_{i_0})$. By Lemma 5.7 the weight of \tilde{f}_r is $w_0\varpi_{i_0} - \varpi_{i_0}$. Hence we have $Y_n = \tilde{f}_r^m$ up to constant multiple. Since \mathfrak{n}_I^- is commutative, we have $R(y) = y(\partial)$ for any $y \in U(\mathfrak{n}_I^-)$. Hence the equation (5.1) holds.

Finally we define subalgebras of \mathfrak{g} . For $1 \leq p \leq r = r(\mathfrak{g}, i_0)$ we set

$$\Delta_{(p)}^{+} = \left\{ \beta \in \Delta^{+} \mid \beta|_{\mathfrak{h}^{-}} = \frac{\gamma_{j} + \gamma_{k}}{2}|_{\mathfrak{h}^{-}} \text{ for some } 1 \le j \le k \le p \right\}.$$

By Lemma 5.5 we have $\Delta_{(p)}^+ \subset \Delta^+ \setminus \Delta_I$. We define subspaces $\mathfrak{n}_{(p)}^\pm$ of \mathfrak{g} by $\mathfrak{n}_{(p)}^\pm = \sum_{\beta \in \Delta_{(p)}^+} \mathfrak{g}_{\pm\beta}$. Set $\mathfrak{l}_{(p)} = [\mathfrak{n}_{(p)}^+, \mathfrak{n}_{(p)}^-]$ and $I_{(p)} = \{i \in I \mid \mathfrak{g}_{\alpha_i} \subset \mathfrak{l}_{(p)}\}$. Then we have the following.

Lemma 5.10 (see Wallach [14] and Wachi [13]). We set $\mathfrak{g}_{(p)} = \mathfrak{n}_{(p)}^- \oplus \mathfrak{l}_{(p)} \oplus \mathfrak{n}_{(p)}^+$. Then $\mathfrak{g}_{(p)}$ is a simple subalgebra of \mathfrak{g} with simple roots $\{\alpha_{i_0}\} \sqcup \{\alpha_i \mid i \in I_{(p)}\}$, and the pair $(\mathfrak{g}_{(p)}, i_0)$ is of regular commutative parabolic type. For any $1 \leq j \leq p$ we have $f_j \in U(\mathfrak{n}_{(p)}^-)$, and f_p is a basic relative invariant of $(L_{(p)}, \mathfrak{n}_{(p)}^+)$, where $L_{(p)}$ is the subgroup of L_I corresponding to $\mathfrak{l}_{(p)}$.

Note that if (L_I, \mathfrak{n}_I^+) is regular, then $\mathfrak{g}_{(r)} = \mathfrak{g}$, and that if not regular, then $\mathfrak{g}_{(r)} \subsetneq \mathfrak{g}$.

§6. Regular Type

In this section we assume that the prehomogeneous vector spaces $(L_I, \mathfrak{n}_I^{\pm})$ are regular. By Remark 5 we have $w_0 \varpi_{i_0} = -\varpi_{i_0}$. We take γ_i, λ_i and f_i $(1 \leq i \leq r = r(\mathfrak{g}, i_0))$ as in Section 5. Then the highest weight vector $f_r \in U(\mathfrak{n}_I^-) \simeq \mathbb{C}[\mathfrak{n}_I^+]$ is the unique basic relative invariant of (L_I, \mathfrak{n}_I^+) with character $2\varpi_{i_0}$, and it is also the lowest weight vector of the irreducible \mathfrak{l}_I -module $I(\lambda_r)$.

Proposition 6.1. Let b(s) be the b-function of the basic relative invariant of (L_I, \mathfrak{n}_I^-) . Then for $m \in \mathbb{Z}_{>0}$ we have

$$\xi^{0}_{m\varpi_{i_0}}(s\varpi_{i_0}) = b(s+m-1)b(s+m-2)\cdots b(s)$$

up to constant multiple.

Proof. For any $l \in L_I$ and $n \in \mathfrak{n}_I^-$ we have

$$\tilde{f}^{\varpi_{i_0}}(l\exp(n)l^{-1}) = (w_0\varpi_{i_0} - \varpi_{i_0})(l)\tilde{f}^{\varpi_{i_0}}(\exp(n)) = -2\varpi_{i_0}(l)\tilde{f}^{\varpi_{i_0}}(\exp(n)).$$

Thus $\tilde{f}^{\varpi_i}|_{\mathfrak{n}_I^-}$ is the basic relative invariant of (L_I, \mathfrak{n}_I^-) under the identification $\mathfrak{n}_I^- \simeq N_I^-$. Hence we have

$$\begin{split} f_r(\partial)^m \tilde{f}^{(s+m)\varpi_{i_0}}|_{\mathfrak{n}_I^-} &= f_r(\partial)^m (\tilde{f}^{\varpi_{i_0}}|_{\mathfrak{n}_I^-})^{s+m} \\ &= b(s+m-1)b(s+m-2)\cdots b(s)\tilde{f}^{s\varpi_{i_0}}|_{\mathfrak{n}_I^-}. \end{split}$$

By Corollary 4.3 we have

$$\tilde{P}_{m\varpi_{i_0}}(\psi^0_{m\varpi_{i_0}})\tilde{f}^{(s+m)\varpi_{i_0}} = \xi^0_{m\varpi_{i_0}}(s\varpi_{i_0})\tilde{f}^{s\varpi_{i_0}}.$$

Therefore the statement holds by Proposition 5.9.

In the rest of this section we shall show that $\xi_{\varpi_{i_0}} = \xi^0_{\varpi_{i_0}}$ up to constant multiple.

Lemma 6.2. For any $1 \le i \le r$ we have $w_I \gamma_i = \gamma_{r-i+1}$.

Proof. We show the statement by the induction on *i*. By Lemma 5.6 we have $w_I\gamma_1 = \theta = \gamma_r$. Assume that i > 1 and $w_I\gamma_j = \gamma_{r-j+1}$ for $1 \le j \le i-1$. Then we have $\gamma_{r-i+1} \pm w_I\gamma_j = \gamma_{r-i+1} \pm \gamma_{r-j+1} \notin \Delta \cup \{0\}$, and we have $w_I\gamma_{r-i+1} \pm \gamma_j \notin \Delta \cup \{0\}$. Hence $w_I\gamma_{r-i+1} \in \Gamma_{i-1}$. In particular $w_I\gamma_{r-i+1} - \gamma_i \in \sum_{k \in I} \mathbb{Z}_{\ge 0}\alpha_k$. By Lemma 5.5 there exist γ_k and γ_l such that $k \le l$ and $w_I\gamma_i = \frac{\gamma_k \pm \gamma_l}{2}$ on \mathfrak{h}^- . For any $m \ge r-i+2$ we have $(w_I\gamma_i, \gamma_m) =$ $(\gamma_i, w_I\gamma_m) = (\gamma_i, \gamma_{r-m+1}) = 0$. Since $(w_I\gamma_i, \gamma_l) > 0$, we have $l \le r-i+1$ and $\gamma_l - w_I\gamma_i \in \Delta \cup \{0\}$. Now we have $\gamma_l - w_I\gamma_i = \frac{\gamma_l - \gamma_k}{2}$ on \mathfrak{h}^- . By Lemma 5.5 if $\gamma_l - w_I\gamma_i \neq 0$, it is a positive root. Therefore we have $\gamma_{r-i+1} - w_I\gamma_i =$ $(\gamma_{r-i+1} - \gamma_l) + (\gamma_l - w_I\gamma_i) \in \sum_{k \in I} \mathbb{Z}_{\ge 0}\alpha_k$. Hence $w_I\gamma_{r-i+1} - \gamma_i \in \sum_{k \in I} \mathbb{Z}_{\ge 0}\alpha_k$, and we have $w_I\gamma_{r-i+1} = \gamma_i$.

By Lemma 6.2 we can show the following easily.

Corollary 6.3. The lowest weight $w_I \lambda_{r-1}$ of $I(\lambda_{r-1})$ is $\lambda_r + \alpha_{i_0}$.

Lemma 6.4. For any $1 \le p \le r = r(\mathfrak{g}, i_0)$ we have

 $e_{i_0}f_p \otimes 1_{c+\mu} \in U_{R_I}(\mathfrak{l}_I \cap \mathfrak{n}^-)(f_{p-1} \otimes 1_{c+\mu}) \subset M_{R_I}(c+\mu),$

where $e_{i_0} \in \mathfrak{g}_{\alpha_{i_0}} \setminus \{0\}$.

Proof. By Lemma 5.10 it is sufficient to show that the statement holds for p = r. We define $y \in U_{R_I}(\mathfrak{n}_I^-)$ by

$$e_{i_0}(f_r \otimes 1_{c+\mu}) = y \otimes 1_{c+\mu}$$

Since $[e_{i_0}, \mathfrak{l}_I \cap \mathfrak{n}^-] = \{0\}$ and f_r is the lowest weight vector of the $\mathrm{ad}(\mathfrak{l}_I)$ module $U(\mathfrak{n}_I^-), y$ is the lowest weight vector as an $\mathrm{ad}(\mathfrak{l}_I)$ -module. Moreover the weight of y is $\lambda_r + \alpha_{i_0} = w_I \lambda_{r-1}$, which is the lowest weight of the irreducible component $I(\lambda_{r-1}) = \mathrm{ad}(U(\mathfrak{l}_I))f_{r-1}$. Therefore we have

$$y \otimes 1_{c+\mu} \in U_{R_I}(\mathfrak{l}_I \cap \mathfrak{n}^-)(f_{r-1} \otimes 1_{c+\mu}).$$

488

Corollary 6.5. Let $u \in U(\mathfrak{n}^+)$ with weight $k\alpha_{i_0} + \sum_{i \in I} m_i \alpha_i$. Then we have

$$uf_r \otimes 1_{c+\mu} \in U_{R_I}(\mathfrak{l}_I \cap \mathfrak{n}^-)(f_{r-k} \otimes 1_{c+\mu}).$$

Proof. We shall show the statement by the induction on k. If k = 0, then the statement is clear. Assume that k > 0, and the statement holds for k - 1. We write $u = \sum_{j} u_{j} e_{i_{0}} u'_{j}$, where $u_{j} \in U(\mathfrak{l}_{I} \cap \mathfrak{n}^{+})$ and $u'_{j} \in U(\mathfrak{n}^{+})$. Then the weight of u'_{j} is in $(k - 1)\alpha_{i_{0}} + \sum_{i \in I} \mathbb{Z}_{\geq 0}\alpha_{i}$, and hence we have

$$uf_r \otimes 1_{c+\mu} \in \sum_j u_j e_{i_0} U_{R_I}(\mathfrak{l}_I \cap \mathfrak{n}^-)(f_{r-k+1} \otimes 1_{c+\mu})$$
$$\subset U_{R_I}(\mathfrak{l}_I)(e_{i_0}f_{r-k+1} \otimes 1_{c+\mu}).$$

Here note that $[e_{i_0}, U_{R_I}(\mathfrak{l}_I \cap \mathfrak{n}^-)] = 0$. By Lemma 6.4 we have

$$e_{i_0}f_{r-k+1}\otimes 1_{c+\mu}\in U_{R_I}(\mathfrak{l}_I\cap\mathfrak{n}^-)(f_{r-k}\otimes 1_{c+\mu})$$

Therefore we obtain

$$uf_r \otimes 1_{c+\mu} \in U_{R_I}(\mathfrak{l}_I)(f_{r-k} \otimes 1_{c+\mu}) = U_{R_I}(\mathfrak{l}_I \cap \mathfrak{n}^-)(f_{r-k} \otimes 1_{c+\mu}).$$

Theorem 6.6. We have $\xi_{\varpi_{i_0}} = \prod_{j=1}^r p_{\varpi_{i_0},\lambda_j + \varpi_{i_0}} \in \mathbb{C}^{\times} \xi_{\varpi_{i_0}}^0$, where $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$.

Proof. Let $v_{-\varpi_{i_0}}$ be the lowest weight vector of $V(\varpi_{i_0})$. Since f_r is the lowest weight vector of $U(\mathfrak{n}_I^-)$ with weight $-2\varpi_0$, we have $\psi^0_{\varpi_{i_0}}(1\otimes 1_c\otimes v_{-\varpi_{i_0}}) = f_r \otimes 1_{c+\varpi_{i_0}}$. It is clear that

$$\varpi_{i_0} - w_0 \varpi_{i_0} = 2 \varpi_{i_0} = -\lambda_r \in r \alpha_{i_0} + \sum_{i \in I} \mathbb{Z}_{\ge 0} \alpha_i$$

Set $P(j) = \{\lambda \mid \varpi_{i_0} - \lambda \in j\alpha_{i_0} + \sum_{i \in I} \mathbb{Z}_{\geq 0}\alpha_i\}$. We define an \mathfrak{l}_I -submodule V_j of $V(\varpi_{i_0})$ by

$$V_j = \bigoplus_{\lambda \in P(j)} V(\varpi_{i_0})_{\lambda}$$

(cf. Section 3). Note that $V_j \neq 0$ for $0 \leq j \leq r$. We take the irreducible decomposition of V_j

$$V_j = \tilde{W}(\eta_{j,1}) \oplus \cdots \oplus \tilde{W}(\eta_{j,N_j}),$$

where $\tilde{W}(\eta)$ is an irreducible \mathfrak{l}_I -module with highest weight η . Let $v_{j,k}$ be the highest weight vector of $\tilde{W}(\eta_{j,k})$. There exists an element $u_{j,k} \in U(\mathfrak{n}^+)$ such that $u_{j,k}v_{-\varpi_{i_0}} = v_{j,k}$. Then the weight of $u_{j,k}$ is in $(r-j)\alpha_{i_0} + \sum_{i \in I} \mathbb{Z}_{\geq 0}\alpha_i$. By Corollary 6.5 we have

$$\psi^{0}_{\varpi_{i_{0}}}(1 \otimes 1_{c} \otimes v_{j,k}) = u_{j,k}\psi^{0}_{\varpi_{i_{0}}}(1 \otimes 1_{c} \otimes v_{-\varpi_{i_{0}}})$$
$$= u_{j,k}f_{r} \otimes 1_{c+\varpi_{i_{0}}} \in U_{R_{I}}(\mathfrak{l}_{I} \cap \mathfrak{n}^{-})f_{j} \otimes 1_{c+\varpi_{i_{0}}}.$$

Since $v_{i,k}$ is the highest weight vector, we have

$$\psi^0_{\varpi_{i_0}}(1 \otimes 1_c \otimes v_{j,k}) \in R_I(f_j \otimes 1_{c+\varpi_{i_0}}).$$

In particular $\eta_{j,k} = \lambda_j + \varpi_{i_0}$ for $1 \le k \le N_j$, and the irreducible decomposition of $V(\varpi_{i_0})$ as an \mathfrak{l}_I -module is given by

$$V(\varpi_{i_0}) = \bigoplus_{j=0}^{r} \tilde{W}(\lambda_j + \varpi_{i_0})^{\oplus N_j},$$

where we set $\lambda_0 = 0$. (By Corollary 5.2 we have $N_j = 1$ for any j.) Therefore we have $\xi_{\varpi_{i_0}} = \prod_{j=1}^r p_{\varpi_{i_0},\lambda_j + \varpi_{i_0}}$, which is regarded as a polynomial function on $\mathbb{C}\varpi_{i_0}$. Since deg $p_{\varpi_{i_0},\lambda_j + \varpi_{i_0}} = 1$ for $j \geq 1$, we have deg $\xi_{\varpi_{i_0}} = r$. Now we have deg $\xi_{\varpi_{i_0}}^0 = \deg b(s) = \deg f_r = r$. From Proposition 5.8 we have $\xi_{\varpi_{i_0}} \in \mathbb{C}^{\times} \xi_{\varpi_{i_0}}^{\omega}$, hence the statement holds.

For $1 \leq i < j \leq r$ we set $c_{i,j} = \sharp\{\alpha \in \Delta_I \cap \Delta^+ \mid \alpha|_{\mathfrak{h}^-} = \frac{\gamma_j - \gamma_i}{2}|_{\mathfrak{h}^-}\}$. It is known that $c_{i,j} = \sharp\{\alpha \in \Delta^+ \setminus \Delta_I \mid \alpha|_{\mathfrak{h}^-} = \frac{\gamma_j + \gamma_i}{2}|_{\mathfrak{h}^-}\}$ and this number is independent of *i* or *j* (see [15]). Set $c_0 = c_{i,j}$. Then we have $(2\rho, \gamma_j) = d_0(1+c_0(j-1))$, where $d_0 = (\alpha_{i_0}, \alpha_{i_0})$. In particular $(2\rho, \lambda_j) = -jd_0(1+\frac{j-1}{2}c_0)$. Since $(\gamma_i, \gamma_j) = \delta_{i,j}d_0$, we have $(\varpi_{i_0}, \varpi_{i_0}) = (\lambda_j + \varpi_{i_0}, \lambda_j + \varpi_{i_0})$ for $1 \leq j \leq r$. Hence we have

$$p_{\varpi_{i_0},\lambda_j + \varpi_{i_0}}(s\varpi_{i_0}) = -2(s\varpi_{i_0} + \rho, \lambda_j) = jd_0\left(s + 1 + \frac{j-1}{2}c_0\right)$$

and the b-function is written by

$$b(s) = \prod_{j=1}^{r} \left(s + 1 + \frac{j-1}{2}c_0 \right)$$

up to constant multiple (cf. Muller, Rubenthaler and Schiffmann [5]).

§7. Non-regular Type

Assume that the prehomogeneous vector space (L_I, \mathfrak{n}_I^+) is not regular. We take γ_i , λ_i and f_i $(1 \leq i \leq r = r(\mathfrak{g}, i_0))$ as in Section 5. For $\mu = m \varpi_{i_0} \in \mathfrak{h}_{I,+}^*$ we denote by \tilde{v}_{μ} the highest weight vector of the irreducible \mathfrak{l}_I -submodule of $V(\mu)$ generated by the lowest weight vector of $V(\mu)$. The weight of \tilde{v}_{μ} is $w_I w_0 \mu$. We take $u \in U_{R_I}(\mathfrak{n}_I^-)$ as $\psi_{\mu}^0(1 \otimes 1_c \otimes \tilde{v}_{\mu}) = u \otimes 1_{c+\mu}$. By the definition of ψ_{μ}^0 we have $u \in U(\mathfrak{n}_I^-)$. Moreover u is the highest weight vector of $U(\mathfrak{n}_I^-)$ with weight $w_I w_0 \mu - \mu = w_I(w_0 \mu - \mu)$. By Lemma 5.7 we have $w_I(w_0 \mu - \mu) = m \lambda_r$. Therefore we have $u = f_r^m$. Set $\xi_{\mu}^0 = \psi_{\mu}^0 \iota_{\mu} \in R_I$.

We define subalgebras $\mathfrak{g}_{(r)}$, $\mathfrak{l}_{(r)}$ and $\mathfrak{n}_{(r)}^{\pm}$ of \mathfrak{g} as in Lemma 5.10. We set $\tilde{\mathfrak{p}}^+ = \mathfrak{l}_{(r)} \oplus \mathfrak{n}_{(r)}^+$. We denote by $\tilde{V}(\mu)$ the irreducible $\mathfrak{g}_{(r)}$ -module with highest weight μ . Let \tilde{I}_0 be an index set of simple roots of $\mathfrak{g}_{(r)}$, that is, $\tilde{I}_0 = I_{(r)} \sqcup \{i_0\}$ (see Lemma 5.10). We set $\tilde{I} = I_{(r)}$ and $\tilde{\mathfrak{g}} = \mathfrak{g}_{(r)}$ for simplicity. Let \tilde{R} be an enveloping algebra of $\sum_{i \in \tilde{I}_0} \mathbb{C}h_i / \sum_{i \in \tilde{I}} \mathbb{C}h_i$. Since we have the canonical identification $R_I \simeq \tilde{R}$, a $U_{R_I}(\tilde{\mathfrak{g}})$ -submodule

$$M(c+\mu) = U_{R_I}(\tilde{\mathfrak{g}}) \otimes_{U_{R_I}(\tilde{\mathfrak{g}}^+)} R_{I,c+\mu}$$

of $M_{R_I}(c + \mu)$ is a universal scalar generalized Verma module associated with $\tilde{\mathfrak{g}}$. We define an element $\tilde{\xi}^0_{\mu}$ of $\tilde{R} \simeq R_I$ by the multiplication map on $\tilde{M}(c + \mu)$ induced by the minimal map

$$\widetilde{\psi}^0_{\mu} : U_{R_I}(\widetilde{\mathfrak{g}}) \otimes_{U_{R_I}(\widetilde{\mathfrak{p}}^+)} (R_{I,c} \otimes_{\mathbb{C}} \widetilde{V}(\mu)) \to \widetilde{M}(c+\mu).$$

Then we have the following.

Proposition 7.1.

- (i) Under the identification $\tilde{R} \simeq R_I$ we have $\xi^0_\mu = \tilde{\xi}^0_\mu$ for $\mu \in \mathfrak{h}^*_{I,+}$.
- (ii) $\xi_{\varpi_{i_0}} \in \mathbb{C}^{\times} \xi^0_{\varpi_{i_0}}$.

Proof. (i) We have $U(\tilde{\mathfrak{g}})v_{\mu} \simeq \tilde{V}(\mu)$, and \tilde{v}_{μ} is its lowest weight vector. The restriction ψ^{0}_{μ} on $U_{R_{I}}(\tilde{\mathfrak{g}}) \otimes_{U_{R_{I}}(\tilde{\mathfrak{g}}^{+})} (R_{I,c} \otimes_{\mathbb{C}} U(\tilde{\mathfrak{g}})v_{\mu})$ is $\tilde{\psi}^{0}_{\mu}$ since $\tilde{\psi}^{0}_{\mu}(1 \otimes 1_{c} \otimes \tilde{v}_{\mu}) = f^{m}_{r} \otimes 1_{c+\mu}$. Hence we have $\xi^{0}_{\mu} \otimes 1_{c+\mu} = \psi^{0}_{\mu}(1 \otimes 1_{c} \otimes v_{\mu}) = \tilde{\psi}^{0}_{\mu}(1 \otimes 1_{c} \otimes v_{\mu}) = \tilde{\xi}^{0}_{\mu} \otimes 1_{c+\mu}$.

(ii) Since the pair $(\tilde{\mathfrak{g}}, i_0)$ is of regular type, we have $\deg \tilde{\xi}^0_{\varpi_{i_0}} = r$ (see the proof of Theorem 6.6). Similarly to the proof of Theorem 6.6 we can show that $\deg \xi_{\varpi_{i_0}} = r$. By (i) we have $\deg \xi^0_{\varpi_{i_0}} = \deg \xi_{\varpi_{i_0}}$. Since $\Xi_{\varpi_{i_0}} = R_I \xi^0_{\varpi_{i_0}}$ and $\xi_{\varpi_{i_0}} \in \Xi_{\varpi_{i_0}}$, we have $\xi_{\varpi_{i_0}} \in \mathbb{C}^{\times} \xi^0_{\varpi_{i_0}}$.

As a result, we have the following.

Theorem 7.2. For any pair (\mathfrak{g}, i_0) of commutative parabolic type, the ideal $\Xi_{\varpi_{i_0}}$ is generated by $\xi_{\varpi_{i_0}}$.

§8. Irreducibility of Generalized Verma Modules

Let (L_I, \mathfrak{n}_I^-) be a prehomogeneous vector space of commutative parabolic type. Set $\{i_0\} = I_0 \setminus I$. In this section we give a new proof of the following well-known fact (Suga [10], Gyoja [1], Wachi [13]).

Theorem 8.1. Let $\lambda = s_0 \varpi_{i_0} \in \mathfrak{h}_I^*$. $M_I(\lambda)$ is irreducible if and only if $\xi^0_{\varpi_{i_0}}(\lambda - m \varpi_{i_0}) \neq 0$ for any $m \in \mathbb{Z}_{>0}$.

We define $f_i \in U(\mathfrak{n}_I^-)$ and $\mathfrak{g}_{(i)}$ $(1 \leq i \leq r = r(\mathfrak{g}, i_0))$ as in Section 5.

Lemma 8.2. For any $m \in \mathbb{Z}_{>0}$, $I(m\lambda_r) \subset \mathbb{C}[\mathfrak{n}_I^+]I(m\lambda_{r-1})$.

Proof. Let v_m be the highest weight vector of the irreducible $\mathfrak{g}_{(r)}$ -module $V_{(r),m}$ with highest weight $m\varpi_{i_0}$. Then any irreducible $[\mathfrak{l}_{(r)},\mathfrak{l}_{(r)}]$ -submodule of $V_{(r),m}$ is isomorphic to $I_{(r)}(\mu)$ for $\mu \in \sum_{i=1}^{r} \mathbb{Z}_{\geq 0}\lambda_i$ by Corollary 5.2. Here $I_{(r)}(\mu)$ is the irreducible $\mathfrak{l}_{(r)}$ -submodule of $U(\mathfrak{n}_{(r)}^-)$ with highest weight μ . So it is enough to show that $I_{(r)}(m\lambda_r)v_m \subset \mathbb{C}[\mathfrak{n}_{(r)}^+]I_{(r)}(m\lambda_{r-1})v_m$. Now, $f_r^m v_m$ is the lowest weight vector of $V_{(r),m}$ and $f_{r-1}^m v_m$ is the lowest weight vector of the irreducible $\mathfrak{g}_{(r-1)}$ -submodule $\mathfrak{g}_{(r-1)}v_m$ of $V_{(r),m}$. Hence there exists $y \in U(\mathfrak{g}_{(r)}\cap \mathfrak{n}^-)$ such that $yf_{r-1}^m v_m = f_r^m v_m$. Since $yf_{r-1}^m v_m \in \mathbb{C}[\mathfrak{n}_{(r)}^+]I_{(r)}(m\lambda_{r-1})v_m$, we have $f_r^m v_m \in \mathbb{C}[\mathfrak{n}_{1}^+]I_{(r)}(m\lambda_{r-1})v_m$.

Corollary 8.3. Let $2 \leq j \leq r$. For any $m \in \mathbb{Z}_{>0}$ and $n \in \mathbb{Z}_{\geq 0}$ there exists $y \in U(\mathfrak{g}_{(j)} \cap \mathfrak{n}^-)$ such that

$$yf_{j-1}^m f_j^n \otimes 1_{\lambda} = f_j^{m+n} \otimes 1_{\lambda} \in M_I(\lambda).$$

Proof. It is enough to show the statement in the case where j = r. By the proof of Lemma 8.2 there exists $y_i \in U(\mathfrak{n}_{(r)})$ and $y'_i \in U(\mathfrak{l}_{(r)} \cap \mathfrak{n}^-)$ such that

$$\sum_{i} y_{i} \operatorname{ad}(y'_{i})(f^{m}_{r-1}) = f^{m}_{r}.$$

we have $\sum_{i} y_{i} y'_{i} f^{m}_{r-1} f^{n}_{r} \otimes 1_{\lambda} = f^{m+n}_{r} \otimes 1_{\lambda}.$

Proposition 8.4. Let $K(\neq 0)$ be a submodule of $M_I(\lambda)$ for $\lambda \in \mathfrak{h}_I^*$. We have $f_r^n M_I(\lambda) \subset K$ for $n \gg 0$.

Since $\operatorname{ad}(y'_i)f_r = 0$,

Proof. If $K = M_I(\lambda)$, then the statement is clear. Assume that $\{0\} \neq K \subsetneq M_I(\lambda)$. By Lemma 5.1 any highest weight vector of $M_I(\lambda)$ as an \mathfrak{l}_I -module is given by the following form:

$$f_1^{a_1}\cdots f_r^{a_r}\otimes 1_\lambda.$$

Since K has the highest weight vector as an \mathfrak{l}_I -module, there exists an element $f_1^{a_1} \cdots f_r^{a_r} \otimes 1_\lambda \in K$ such that $(a_1, \ldots, a_r) \neq 0$. By Corollary 8.3 there exists $u_1 = \sum_i u_{1,i} u'_{1,i} \in U(\mathfrak{n}_{(2)}^-) U(\mathfrak{l}_{(2)} \cap \mathfrak{n}^-)$ such that

$$u_1 f_1^{a_1} f_2^{a_2} \otimes 1_{\lambda} = f_2^{a_1 + a_2} \otimes 1_{\lambda}.$$

Since $\operatorname{ad}(\mathfrak{l}_{(2)} \cap \mathfrak{n}^-)f_j = 0$ for $j \geq 2$, we have

$$f_2^{a_1+a_2}\cdots f_r^{a_r}\otimes 1_{\lambda}=u_1f_1^{a_1}f_2^{a_2}\cdots f_r^{a_r}\otimes 1_{\lambda}\in K.$$

Similarly, there exist $u_1, u_2, \ldots, u_{r-1} \in U(\mathfrak{n}^-)$ such that $f_r^{a_1+a_2+\cdots a_r} \otimes 1_{\lambda} = u_{r-1}\cdots u_2 u_1 f_1^{a_1} f_2^{a_2}\cdots f_r^{a_r} \otimes 1_{\lambda}$, that is, we have $f_r^{a_1+a_2+\cdots a_r} \otimes 1_{\lambda} \in K$. Hence for any $y \in U(\mathfrak{n}_I^-)$ we have

$$f_r^{a_1 + \cdots a_r}(y \otimes 1_{\lambda}) = y f_r^{a_1 + \cdots a_r} \otimes 1_{\lambda} \in K,$$

and the statement holds.

Set $\mu = \mu_m = m \varpi_{i_0}$ for any positive integer m, and let us prove Theorem 8.1 by using the commutative diagram

(8.1)
$$\begin{array}{c} M_{R_{I}}(c+\mu) & = & M_{R_{I}}(c+\mu) \\ & \iota_{\mu} \downarrow & \qquad \qquad \downarrow \xi^{0}_{\mu} \\ U_{R_{I}}(\mathfrak{g}) \otimes_{U_{R_{I}}(\mathfrak{p}^{+}_{I})} (R_{I,c} \otimes_{\mathbb{C}} V(\mu)) & \xrightarrow{\psi^{0}_{\mu}} & M_{R_{I}}(c+\mu). \end{array}$$

Set $\lambda = s_0 \varpi_{i_0}$. We denote the highest weight vector of $V(\mu)$ by v_{μ} . Let \tilde{v}_{μ} be the highest weight vector of the irreducible \mathfrak{l}_I -module generated by the lowest weight vector of \mathfrak{g} -module $V(\mu)$. Considering the functor $\mathbb{C} \otimes_{R_I} (\cdot)$, where \mathbb{C} has the R_I -module structure via $c(h_i)\mathbf{1} = (\lambda - \mu)(h_i)$, we obtain the following commutative diagram from (8.1):

where $\iota_m(1 \otimes 1_{\lambda}) = 1 \otimes 1_{\lambda-\mu} \otimes v_{\mu}$ and $\psi_m^0(1 \otimes 1_{\lambda-\mu} \otimes \tilde{v}_{\mu}) = f_r^m \otimes 1_{\lambda}$.

We assume that $M_I(\lambda)$ is irreducible. Since $\psi_m^0 \neq 0$, we have $\mathrm{Im}\psi_m^0 =$ $M_I(\lambda)$. The weight space of $U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_I^+)} (\mathbb{C}_{I,\lambda-\mu} \otimes_{\mathbb{C}} V(\mu))$ with weight λ is $\mathbb{C}(1 \otimes 1_{\lambda-\mu} \otimes v_{\mu})$, hence there exists $a \in \mathbb{C} \setminus \{0\}$ such that

$$1 \otimes 1_{\lambda} = \psi_m^0(a \otimes 1_{\lambda-\mu} \otimes v_{\mu}) = a\psi_m^0\iota_m(1 \otimes 1_{\lambda}) = a\xi_{\mu}^0(\lambda-\mu) \otimes 1_{\lambda} \neq 0.$$

By Propositions 6.1 and 7.1 we have

$$\xi^{0}_{\mu}(\lambda-\mu) = \xi^{0}_{\varpi_{i_{0}}}(\lambda-\varpi_{i_{0}})\xi^{0}_{\varpi_{i_{0}}}(\lambda-2\varpi_{i_{0}})\cdots\xi^{0}_{\varpi_{i_{0}}}(\lambda-m\varpi_{i_{0}}).$$

Therefore we have $\xi^0_{\varpi_{i_0}}(\lambda - m\varpi_{i_0}) \neq 0$ for any $m \in \mathbb{Z}_{>0}$. Conversely, we assume that $\xi^0_{\varpi_{i_0}}(\lambda - m\varpi_{i_0}) \neq 0$ for any $m \in \mathbb{Z}_{>0}$. We set

$$N(m) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_I^+)} (\mathbb{C}_{I,\lambda-\mu_m} \otimes_{\mathbb{C}} V(\mu_m))$$

Since $\xi^0_{\mu_m}(\lambda - \mu_m) = \xi^0_{\varpi_{i_0}}(\lambda - \varpi_{i_0})\xi^0_{\varpi_{i_0}}(\lambda - 2\varpi_{i_0})\cdots\xi^0_{\varpi_{i_0}}(\lambda - m\varpi_{i_0}) \neq 0$, we have

$$\psi_m^0(\xi_{\mu_m}^0(\lambda-\mu_m)^{-1}\otimes 1_{\lambda-\mu_m}\otimes v_{\mu_m}) = \xi_{\mu_m}^0(\lambda-\mu_m)^{-1}\psi_m^0\iota_m(1\otimes 1_\lambda)$$
$$= 1\otimes 1_\lambda.$$

Hence ψ_m^0 is surjective, and we have an isomorphism

$$N(m)/\mathrm{Ker}\psi_m^0 \simeq M_I(\lambda): \overline{1 \otimes 1_{\lambda-\mu_m} \otimes \tilde{v}_{\mu_m}} \mapsto f_r^m \otimes 1_\lambda$$

for any m. Under this identification we have

$$\overline{1 \otimes 1_{\lambda - \mu_{n+1}} \otimes \tilde{v}_{\mu_{n+1}}} = f_r^{n+1} \otimes 1_{\lambda} = f_r^n \left(f_r \otimes 1_{\lambda} \right) = f_r^n \overline{1 \otimes 1_{\lambda - \mu_1} \otimes \tilde{v}_{\mu_1}}.$$

Let $K \neq 0$ be a submodule of $M_I(\lambda)$. By Proposition 8.4 for $n \gg 0$ we have

$$\overline{1 \otimes 1_{\lambda - \mu_{n+1}} \otimes \tilde{v}_{\mu_{n+1}}} = f_r^n \,\overline{1 \otimes 1_{\lambda - \mu_1} \otimes \tilde{v}_{\mu_1}} \in K.$$

Hence we have

$$M_{I}(\lambda) = N(n+1)/\operatorname{Ker}\psi_{n+1}^{0}$$
$$= U(\mathfrak{g})\overline{1 \otimes 1_{\lambda - \mu_{n+1}} \otimes \tilde{v}_{\mu_{n+1}}} \subset K$$

Therefore $K = M_I(\lambda)$, and $M_I(\lambda)$ is irreducible. We complete the proof of Theorem 8.1.

References

- Gyoja, A., Highest weight modules and b-functions of semi-invariants, Publ. RIMS, Kyoto Univ., 30 (1994), 353-400.
- [2] Johnson, K., On a ring of invariant polynomials on a hermitian symmetric spaces, J. Alg., 67 (1980), 72-81.
- [3] Kashiwara, M., The universal Verma module and the b-function, Adv. Stud. Pure Math., 6 (1985), 67-81.
- [4] Moore, C. C., Compactifications of symmetric spaces. II : the Cartan domains, Amer. J. Math., 86 (1964), 358-378.
- [5] Muller, I., Rubenthaler, H. and Schiffmann, G., Structure des espaces préhomogènes associés à certains algèbres de Lie graduées, Math. Ann., 274 (1986), 95-123.
- [6] Sato, M., Theory of prehomogeneous vector spaces (Algebraic part) The English translation of Sato's lecture from Shintani's Note (translated by M. Muro), Nagoya Math. J., 120 (1990), 1-34.
- [7] Sato, M., Kashiwara, M., Kimura, T. and Oshima, T., Micro-local analysis of prehomogeneous vector spaces, *Invent. Math.*, 62 (1980), 117-179.
- [8] Sato, M. and Kimura, T., A classification of irreducible prehomogeneous vector spaces and their relative invariants, *Nagoya Math. J.*, 65 (1977), 1-155.
- [9] Schmid, W., Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math., 9 (1969), 61-80.
- [10] Suga, S., Highest weight modules associated with classical irreducible regular prehomogeneous vector spaces of commutative parabolic type, Osaka J. Math., 28 (1991), 323-346.
- [11] Takeuchi, M., Polynomial representations associated with symmetric bounded domains, Osaka J. Math., 10 (1973), 441-475.
- [12] Tanisaki, T., Highest weight modules associated to parabolic subgroups with commutative unipotent radicals, *Algebraic groups and their representations*, 73-90, Kluwer Acad. Publ., Dordrecht, 1998.
- [13] Wachi, A., Contravariant forms on generalized Verma modules and b-functions, Hiroshima Math. J., 29 (1999), 193-225.
- [14] Wallach, N. R., The analytic continuation of the discrete series. II, Trans. Amer. Math. Soc., 251 (1979), 19-37.
- [15] _____, Polynomial differential operators associated with Hermitian symmetric spaces, Proceedings of Fuji-Kawaguchiko conference on representation theory of Lie groups and Lie algebras, World Scientific, 1992.