Publ. RIMS, Kyoto Univ.
41 (2005), 471-495

The b-functions for Prehomogeneous Vector
Spaces of Commutative Parabolic Type and
Universal Generalized Verma Modules

By

Atsushi KAaMITA*

Abstract

We shall give a new elementary proof of the uniform expression for the b-functions
of prehomogeneous vector spaces of commutative parabolic type obtained by Muller,
Rubenthaler and Schiffmann [5] by using micro-local analysis. Our method is similar
to Kashiwara’s approach using the universal Verma modules. We shall also give a
new proof for the criterion of the irreducibility of the generalized Verma module in
terms of b-functions due to Suga [10], Gyoja [1], Wachi [13].

81. Introduction

In this paper we deal with the b-functions of the invariants on the flag
manifolds G/P. In the case where P is a Borel subgroup, Kashiwara [3] de-
termined the b-functions by using the universal Verma modules. For general
parabolic subgroups P we show that b-functions are regarded as generators of
ideals defined by universal generalized Verma modules. When the unipotent
radical of P is commutative, we determine the generator.

Let g be a simple Lie algebra over the complex number field C, and let
G be a connected simply-connected simple algebraic group with Lie algebra
g. Fix a parabolic subalgebra p of g. We denote the reductive part of p and
the nilpotent part of p by [ and n respectively. Let L be the subgroup of G
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corresponding to [. Let R be the symmetric algebra of the commutative Lie
algebra p/[p,p]. For a Lie algebra a we set Ug(a) = R ®c U(a) where U(a)
denotes the enveloping algebra of a. The canonical map ¢ : p — R induces a
one-dimensional Ug(p)-module R.. Let C, be the one-dimensional p-module
with weight p. Set Req, = Re ®@c C,. Then Ry, is a one-dimensional Ur(p)-
module.

For a character u of p we regard u as a weight of g, and let V(1) be the
irreducible g-module with highest weight u. We assume that the weight u of g
is dominant integral. We define a Ug(g)-module homomorphism

t:Ur(8) ®ug(p) Rern — Ur(8) Qugp) (Re @c V(1))

by «(1®1) = 1® 1 ® vy, where v, is the highest weight vector of V(u).
For a Ug(g)-module homomorphism v from Ugr(g) ®uy,p) (Re ®c V() to
Ur(9) ®up(p) Reqp the composite 1p¢ is the multiplication on Ur(g) ®uy, (p) Ret
by an element £ of R:

Ur(9) ®un(p) Betp

(L) /| e

Ur(9) @up(p) (Re @c V(1)) - Ur(8) @ug(p) Retp-

The set =, consisting of all £ € R induced by Ugr(g)-module homomorphisms
from Ur(g) @v(p) (Re®c V(1)) to Ur(9) vy (p) Retp as above is an ideal of R.
We can construct a particular homomorphism v, : Ur(g)®up) (Rc®cV (1)) —
Ur(9) ®@ug(p) Retp by considering the irreducible decomposition of V(1) as a
p-module (see Section 3 below). However, there is an example where &, € =, is
not a generator of the ideal =, (cf. Remark 1). Note that Kashiwara [3] gave
the generator of =, when P is a Borel subgroup.

Let ¢ € Homy, (g)(Ur(8) @vp(p) (Re®@c V(1)), Ur(8) vy (p) Req ) and let
& € E, be the corresponding element. Then as in Kashiwara [3] we can define
a differential operator P(¢)) on G satisfying

P(y) fA7 = (N

for any character A of p which can be regarded as a dominant integral weight
of g. Here, f* denotes the invariant on G corresponding to A (see Section 4
below) and & is regarded as a function on Hom(p, C).

In the rest of Introduction we assume that the nilpotent radical n of p is
commutative. Then the pair (L,n) is a prehomogeneous vector space via the
adjoint action of L. In this case there exists exactly one simple root ay such that
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the root space go, is in n. We denote the fundamental weight corresponding
to ag by wy.
We define an element &, € R by

fo(N) = 11 (A +p+@o, A+ p+wo) —(A+p+n,A+p+n))
n€EWt(wo)\{wo}

where A € Cwg, Wi(wg) is the set of the highest weights of irreducible I-
submodules of V(wp) and p is the half sum of positive roots of g.

Theorem 1.1.  We have &y = {x,, and the ideal =, of R is generated
by o-

We denote by 1y the homomorphism satisfying gt = &pid.
Let n~ be the nilpotent part of the parabolic subalgebra of g opposite to
p. We can define a constant coefficient differential operator P’(v) on n~ ~
exp(n~) by
(P(%0) f)lexpn-y = P'(%0)(flexp(n-))-

Theorem 1.2.  If the prehomogeneous vector space (L,n) is regular,
then P’(1g) is coincide with the differential operator defining the b-function
b(s) of the unique irreducible relative invariant of (L,n), and b(s) = &y (swo).

Note that the uniform expression of the b-function of (L, n) given in The-
orem 1.2 was already obtained by Muller, Rubenthaler and Schiffmann [5] by
using the micro-local analysis.

Moreover, using the commutative diagram (1.1) for & and g we give
a new proof of the following criterion of the irreducibility of the generalized
Verma module due to Suga [10], Gyoja [1], Wachi [13]:

U(9) ®u(p) Cspwy is irreducible <= &o((so — m)wo) # 0 for any m € Zo.

The author expresses the gratitude to Professor T. Tanisaki for his valuable
advice.

8§2. Prehomogeneous Vector Spaces

In this section we recall some basic facts on prehomogeneous vector spaces
(see Sato and Kimura [8]).
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Definition 2.1.

(i) For a connected algebraic group G over the complex number field C and a
finite dimensional G-module V, the pair (G, V) is called a prehomogeneous
vector space if there exists a Zariski open orbit O in V.

(ii) We denote the ring of polynomial functions on V' by C[V]. A nonzero
element f € C[V] is called a relative invariant of a prehomogeneous vector
space (G, V) if there exists a character x of G such that f(gv) = x(g)f(v)
forany g € G andv e V.

(iii) A prehomogeneous vector space is called regular if there exists a relative
invariant f such that the Hessian H; = det(8?f/dx;0x;) is not identically
zero, where {z;} is a coordinate system of V.

For a prehomogeneous vector space (G, V) with open orbit O, we set S =
V\O. Let S; = {v € V|fi(v) = 0} (1 < i <) be the one-codimensional
irreducible components of S. Then all f; are relative invariants, and for any

relative invariant f there exist m; € Zx¢ such that f € Cf{"* .- f;™" (see Sato-
Kimura [8]). These irreducible polynomials fi1,..., f; are called basic relative

invariants.
In the remainder of this section we assume that G is reductive. Then we
have the following proposition.

Proposition 2.1 (see [8]). The prehomogeneous vector space (G, V') with
open orbit O is reqular if and only if S =V \ O is a hypersurface.

Let V* be the dual space of V. The pair (L, V*) is also a prehomogeneous
vector space by (gv*,v) = (v*, g~ w), where (, ) is the natural pairing of V*
and V. If f € C[V] is a relative invariant of (G, V) with character x, then there
exists a relative invariant f* of (G, V*) with character x~!. For h € C[V*] we
define a constant coefficient differential operator h(9) by

h(9) exp(v*,v) = h(v*) exp(v*, v),

where v € V and v* € V*. Then there exists a polynomial b(s) € C[s] such
that

FrO) T =0(s)f.
This polynomial is called the b-function of f. It is known that degb = deg f =
deg f* (see [6]).
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83. Universal Generalized Verma Modules

Let g be a simple Lie algebra over C with Cartan subalgebra . Let A C h*
be the root system and W C GL(h) the Weyl group. For o € A we denote the
corresponding root space by g.. We denote the set of positive roots by AT and
the set of simple roots by {e;}ic1,, where Iy is an index set. Let p be the half
sum of positive roots of g. We set

nF = P gia.  bE=bh@nt

aceAt

For i € I let h; € h be the simple coroot and w; € h* the fundamental weight
corresponding to i. We denote the longest element of W by wg. Let ( , )
be the W-invariant nondegenerate symmetric bilinear form on h*. We denote
the irreducible g-module with highest weight u € >, Z>ow; by V(u) and
its highest weight vector by v,. For a Lie algebra a we denote the enveloping
algebra of a by Ul(a).

For a subset I C Iy we set

Ar=ANY " Za, [1—h@<@9a>,

i€l a€Af
n}t: @ J+a; p?::[l @n}ta
a€AT\A7
br =15/ Chi, b= Y Cwm
el iGIo\I

Let W7 be the subgroup of W generated by the simple reflections corresponding
to ¢ € I. We denote the longest element of Wi by wy. Let b7 , be the set of
dominant integral weights in h3. For u € b} we define a one-dimensional U (p} )-
module Cy ,, by

Cru =U}) /(UGN + S U7 ) (= p(h) + U}~ N11)),

heh

We denote the canonical generator of Cy,, by 1,,. Set My(u) = U(g)@U(p;r)(CI’,L,
which is called the scalar generalized Verma module with highest weight pu.
We denote the irreducible p?—module with highest weight u € >, ; Z>ow; +
> j¢1 Lwj by W(p).

Let G be a connected simply-connected simple algebraic group with Lie
algebra g. We denote the subgroups of G corresponding to b, b=, n*, [}, nIjE by
T,B* N* L, NIjE respectively.
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Let Ry be the symmetric algebra of b, and define a linear map c: h — Ry
as the composite of the natural projection from b to h; and the natural injection
from by to R;. Set Ug,(a) = R; ®c U(a) for a Lie algebra a.

We set for p1 € b7

Tretn = Ur, (070" + > Un, (pF)(h = c(h) — p(h)) + Ur, (p]) (0™ N 1),
hep

RI,c+p = UR1 (p}_)/JLC'HV

We denote the canonical generator of Ry .y, by Lei,.

Definition 3.1.  For p € h} set Mg, (c+ p) = Ug,(9) ®UR,(p}r) Ricip-
We call this Ug, (g)-module the universal scalar generalized Verma module.

Note that Mg, (c) is the universal Verma module in Kashiwara [3]. For
A € by we regard C as an Ry-module by ¢(h;)1 = A(h;). Then we have

C®pr; Mg, (c+ p) = Mi(A+ p).
The next lemma is obvious.
Lemma 3.1.  Endy, () (Mg, (c+p)) = Rr.
For p1 € i we define a Ug, (g)-module homomorphism
tu: Mp, (e + 1) — Ur,(9) @y, oty (Bre @c V(p))

by ¢, (1®1c1,) = 1®1.®v,. We denote by =, the ideal of Ry consisting of £ such

that there exists ¢ € Homyy, (q)(Ur,(8) @y, (vr) (Bre ®c V), MR, (¢ + p))
satisfying ¢, = {id. Let us give a particular element &, of =, for u € b7 .

Lemma 3.2.  For py,pz € ) ;o Lo + Zﬁ] Zwo; we define a func-
tion Py, e, 0N by by

Purpe(A) = A+ p+p, A+ p+p1) = (A+p+ p2, A+ p+ p2),
which is regarded as an element of Ry. Then we have
Pur s EthljRI (@ (W1, W2) =0,
where W; = Ug, (g) B, (b7) (Rr,c @c W(1i)).

Proof. The action of the Casimir element of U(g) on Ug,(g) B, (07)
(Rre ®c W(p)) is given by the multiplication by p, € R;, where p,(\) =
A+p+p,A+p+p)—(p,p) for A € h}. Using this action, we can easily check
that pu, u, = Dy, — Du, is an annihilator. |
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Lemma 3.3.  Forany p € b , there exist p}”‘-submodules F,F, ... F,.

of V(p) and weights m1,m2,...,1M—1 € > ;c; Lxowi + Zielo\l Zwo; satisfying
the following conditions:

(i) Cou=F CF S CF =V(u).
(i) Fip1/F; = W(n;)®Ni for some positive integer N;.
(iil) n #n; fori#j.

Proof. For a non-negative integer m we set

P(m)z{)\eb*u—/\:Zmiai and Zmizm},

i€l i
V= @ V(un
AEP(m)

where V(u)a is the weight space of V(u) with weight A\. Then V,, is an [;-
module, and we have the irreducible decomposition

Vin = W (s 1) 2570 @2 @ W (1, )2

where W(n) is the irreducible [;-module with highest weight 0, and 1,,; # 7m,;
for i # j. For 1 <i < t,, we define a p}-submodule F,, ; of V(u) by

Fm,i =Vo@® - -V, 1 & W(nm,l)@Nm’l DD W(rrlm’i)@NnL,i.
Then we have the sequence
(CUM =F1C S Fnt1ty S 1 C 2GS Fy, = V(U)'

It is clear that the above sequence satisfies the conditions (ii) and (iii). O

For u € b7, we fix the sequence {F1, Fy, ..., F.} of pF-submodules of
V(u) satisfying the conditions of Lemma 3.3, and set £, = H:;ll Pum: € Rr.

Theorem 3.4.  For pp € by | we have §, € E,.
Proof. Tt is clear that Ug,(g) B, (07) (Rrc ®c F1) ~ Mg, (c+ p). Let

v = Ury(8) @y oy (Bre ®c Fj) — Ug,(9) @y, o5y (Bre @c Fj1) be the
canonical injection. We show that there exists a commutative diagram

URI (g) ®URI (P;—) (RI’C ®(C Fl) — MRI (C + ,U,)

(3.1) Lﬂ'*l"'“l ll’[:f;f Pun;
Ur;(8) @y, (o1 (Br.c ©c Fj) R Mg, (c+p)
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by the induction on j. Assume that there exists a commutative diagram (3.1)

for j (> 1). From the exact sequence

0 —— Ur,(9) @y, (pt) (Bre ©c Fj) —— Ug,(9) O, o) (Bre @c Fj1)
—— Ur:(8) @y, (1) (Brc ©c Fj1 /Fj) —— 0,

we have a long exact sequence

0 —— Homy, (g)(Ur, (9) By, (o) (Br1c @ Fj1/Fj), Mg, (c+ p))
——  Homy,, (5)(Ur, (9) @y, (v1) (Br.e ®c Fj1), Mp,(c+p))
s Homyy, (g) (URI (9) ®URI(p?) (Rr.c®c Fj), Mg,(c+ M))
5 Ext%]RI(g) (Ur, (9) ®r, (vF) (Rrc®c Fj41/F;), Mg,(c+ p))

—_
By Lemma 3.2 we have 0(py,n,;%;) = Pun;0(¢;) = 0. Hence there exists an

element ;11 € Homy, (4 (Ur, (9) U, (1) (R1.c ®c Fji1), Mg, (c+ p)) such
that ¢ 11t = puy,; ;. Hence we have the commutative diagram

Ur, () ®UR1 »h) (Rre®c F1) == Mg, (c+pn)
Lj71“~L1J/ ll—[z;ll Druin;
Ur:(8) @y, (o) (Bre ©c F)) . Mg, (c+ p)
J

L]'J( J{pp,nj

Ur;(8) @y, oty (Bre @c Fjp1) ——— Mg, (c+ p).

wj-f—l

In particular 9,.¢,, = &,. Therefore {, € 5. 1

Let ¢, € HomURI(g)(URI (g)®UR,(pT)(RI’C®CV(/“L))’ Mg, (c+p)) satisfying
Yuty = &,. Note that 9, is non-zero since £, # 0.

Remark 1. In general £, is not a generator of the ideal =,,. For example
let g be a simple Lie algebra of type G2. We take the simple roots «; and as
such that ay is short. If I = {2} and p = w;, then we have

§u = (c(h) + 1) (c(hn) +2)(c(hr) + 3)(2¢(h1) +5)

up to constant multiple. But (c(h1) + 1)(2¢(h1) +5) € Z,.
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Remark 2. For I = () it is shown in Kashiwara [3] that =, is generated

by
p(ha)—1
=11 T (cha)+plha)+3),
acEA+  j=0

where h,, is the coroot corresponding to . Now we have ¢(ho) + p(ha) +J =
Pup—(u(ha)—j)a UP to constant multiple. Let Wi(u) be the set of weights of

V(p). Then we have £, = HneWt(u)\{u} Ppn» SO fg ¢ C*¢, in general.

84. Semi-invariants

Let A be a dominant integral weight. We regard the dual space V(\)* as
a left g-module via (zv*,v) = (v*, —zv) for z € g, v* € V(A)* and v € V(A).
We denote the lowest weight vector of V/(A)* by vi. We normalize v} by
(v}, va) = 1.

Definition 4.1.  We define a regular function f* on G by f*(g) =
(v3s gua)-

For b* € B* and g € G we have
FAO7gbT) = A" ()N (T (9),

where AT is the character of B* corresponding to A. This function f* is called
B~ x Bt-semi-invariant. Note that fA1t32 = fA1 fA2

Fix p € b7 ,. We take a basis {v, j }o<j<n of V(1) consisting of weight vec-
tors such that v, o = v, is the highest weight vector and v, ,, is the lowest. We
denote the dual basis of V()" by {v}, ;}. For a Ug, (g)-module homomorphism

¥ U, (8) @y, (1) (Rre ©c V(p)) ——— Mg, (c+p)
we define elements Y, € Ug, (n} ) for 0 < j <n by
YAl ®uyu,;) = Yj/ ® Loty

and define an element ¢ € 2, by £ = ¢¢,,. Note that Yy =§. Let 7, =7 : Rf —
U(3_;¢1 Chi) be the algebra isomorphism defined by 7(c(h;)) = h; — u(h;) for
i¢ 1. Set m(32;a;®y;) = ;y;m(a;) for aj € Ry and y; € U(ny ). Clearly we

have y @ Loty = 7(y) @ Loy, € Mp, (c+11) (y € Up, (7). We set ¥; = w(Y}).
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We define differential operators P, (1) and P, (1)) on G by

> {gvp 55 vu0) (R(Y))9)(9),

(Pu(®)#)(9)

<
Il
=)

|
M=

(Pu(@)#)(9) (904,55 V) (B(Y5)9) (9),

<.
Il
=)

where R(y) (y € U(g)) is the left invariant differential operator induced by the
right action of G on itself. Then we have the following theorem.

Theorem 4.1.  Let p € b7 , and

¢ € Homyy, (g)(Ur, (8) @y, oy (Bre ©@c V(1)) MR, (¢ + ).

Then we have
Pu() fAH =€) £
for any A\ € b7 . Here £ is the element of E,, defined by § = .

Proof. We can prove this theorem similarly to Kashiwara [3, Theorem
2.1]. We give the sketch of the proof. First we can show that P, () fA*# is right
NT-invariant. Since B~ N is an open dense subset of G, it is sufficient to show
the statement on B~. Next we can show that (R(Y;)f**)(B~) = 0 for j >
1. By definitions we have (R(Yp)f#)(g) = &(A)fAM(g) and (gv}; o, v0) =
f*(g)~! for g € B~. So we have P, (¢) A =¢(\) f* on B~ O

For a dominant integral weight A we define a function f* on G by
FA9) = (Wl gua),

where vy, , is the highest weight vector which is normalized by (vaO v Wovn) =1
and 1wy € Ng(T) is a representative element of wg € W = Ng(T')/T. Since
A (og) = f*(g), we obtain the following lemma.

Lemma 4.2.  Let A\, € bj . For any g € G we have
(Pﬂ(zp)fk)(wog) = (Pu(l/J)f)\)(g)
By Theorem 4.1 we have the following corollary.
Corollary 4.3.  Let p € b7 .. We have
Bu() 2 = ¢

Jor any X\ € b7 . Here £ is the element of E,, defined by § = tu,,.
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§5. Commutative Parabolic Type

In the remainder of this paper we assume that

I'=1Io\ {io}
and that the highest root 6 of g is in oy, + Z#io Z>oa;. Then it is known
that [n¥,nF] = {0} and the pairs (L;,nF) are prehomogeneous vector spaces

via the adjoint action, which are called of commutative parabolic type. The all
pairs (g,i9) of commutative parabolic type are given by the Dynkin diagrams
of Figure 1. Here the white vertex corresponds to ig.

Since n; is identified with the dual space of n}r via the Killing form, the
symmetric algebra S(n} ) is isomorphic to C[n}]. By the commutativity of n;
we have S(n;) = U(n; ). Hence C[n}] is identified with U(n} ).

Set v1 = a;,. For ¢ > 1 we take ;11 as the lowest root in

li={ae AT\ Ar|a+v; ¢ Aand o —v; ¢ AU{0} for all j < i}.

Let r = r(g,i9) be the index such that I'._; # @ and I', = (). Note that
(7i,v;) = 0 for i # j. It is known that all 4; have the same length (see Moore
[4]). For 1 <i<r weset \; = —(71 + -+ ;). The following fact is known
(see [2], [9], [11]).

Lemma 5.1.  As an ad(l;)-module, U(n} ) is multiplicity free, and

Unj)= @ 1w,

HEXTI_1 Lx0Ai
where I(p) is an irreducible [r-submodule of U(n; ) with highest weight p.

Let f; € U(n}) be the highest weight vector of I();). Since U(n;) is
naturally identified with the symmetric algebra S(n; ), we can determine the
degree of f € U(ny). If f € U(n} ) is a weight vector with weight u € —doy;, +
> icr Z<oay, then f is homogeneous and deg f = d. In particular deg f; = i.

Considering the [I7, [;]-module homomorphism U(n; ) — V(w;,) such that
U > UV, , we have the following corollary.

Corollary 5.2.  There ezists a finite subset M of >.._, Z>o\; such that

V(wio) = @ I(/u‘)qu‘,o'

pneM

We have the following facts on Lj-orbits in nf (see Tanisaki [12] §1 or
Wachi [13] §12).
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Figure 1. Commutative Parabolic Type
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Proposition 5.3.

(i) n}' consists of Lr-orbits Co,Ch, ..., Cy satisfying the closure relation

{0}=CocCiC---CC,=n}.

Here C; is the Zariski closure of C;.
(ii) For 1 <i <1 we set I, = C[nf|I(\;). Then Z; is the defining ideal of
Ci1.
Remark 3. The orbit C, is open. Set S =n} \C,. Then S = HI;Ol C; =
C,_1. By Lemma 2.1, the following are equivalent.
(i) (Lr,n}) is regular.

(ii) f, is the unique basic relative invariant.

(i) dimI(A,) = 1.
Let h.,, be the coroot corresponding to ;. We set h~ = >""_| Ch.,. Then
we have the following lemmas.

Lemma 5.4 (Moore [4]).  For 3 € AT N Ay there are three possible

forms of the restriction B|y-:

(i) Bly- =0. Then BE£v; ¢ A for all i.

(ii) Bly- = —HFlp-. Then B+~ & A for all i # j.

(iii) Bly- = 5=y~ (j > k). Then B+~ ¢ A for all i # j, k and B+, ¢ A.
Set D = {a; | i € I'}. For a subset A’ of A, A’(§7) is defined by

A'(h7) = {ﬂ €Y Qi | Bly- =aly- (a€ A')}'

i=1

Lemma 5.5 (Moore [4]).  There are two possibilities as follows.
Case (a):

1 .
L e =) | 1<z<r—1}u{0},

>
—~
N=pl
\_l
Il

(ArnAY) b (w%)llgiﬁjér},

(7j+’7i)|1§i§jé7“}-

Il
— N N
= N N

(AT\AN(Db)
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Case (b):

S
—~
N
\_l

I

(’Yz‘+1—%‘)|1§i§7°—1}
U

(ArnAT) ()

Il
—

NI~ NI~ N

(AT\AD(H7)

Remark 4. By Weyl’s dimension formula, there exists 3 € AN AT such
that 8- = —3%ls- if and only if dimI(\,) # 1. In other words the case
where (L7,n*) are regular coincides with the case (a) in Lemma 5.5.

Lemma 5.6.  If (L;,n}) is reqular, then =y, is the highest root 0. If
(L1, n}) is not regqular, then 0]y— = L[, -.

Proof. Assume that (Lr,n}) is regular. Let us show that v, + a; ¢ A
for any j € Iy. Since v,,a;, € AT\ Ay, v + a4, is not a root. If j € I, then
we have a; = %=L or 0 on h~ by Lemma 5.5 and Remark 4. So we have
a; + v ¢ A by Lemma 5.4. Hence 7, is the highest root.

Next we assume that (Ly,n) is not regular. Then there exists a simple
root oy, such that aj, = —% on h~. Since (., aj,) < 0, we have v, +a;, € A.

In particular 6 € 7, + oy + 32,4, Z>oc;. So we have on h~

r—1
i Yi+1 — Vi i
0:é+2ai72+2 Z—aré
i=

r—1
_ Vg g
= —al? + iz:;(al_l —a;) 5 +(1—-ar+ar_1)

?a
where a; € Z>o. By Lemma 5.5, we have 6],- = 229, or 2|, Therefore
all a; must be 0, and 0]y~ = L, -. O
+

Since nj is an irreducible [;-module, we have wra;, = 0 and wrw;, = w@;,.

Lemma 5.7. A\, = wjwow;, — Wi, -

Proof.  Let vyyw,, be the lowest weight vector of V (cw;,). Then wrwow;,
is the highest weight of the irreducible [(;, [;]-submodule generated by Vwgews, -
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By Corollary 5.2 there exists = Y/ m;\; € Y;_y Z>oXi such that I(p)ve,,
=U([ly, [ﬂ)vwowio. In particular p = wywow;, — w;,. Now

(wrwowiy — @iy, i) = (WoTiy, 0) — (@i, Qi) = (Wi, —0) — (@i, i)

= _Q(Wio’aio) = _(aio)aio)

and

T T
(1 0ig) = D mi(Niy i) = = Y mi( g, i, )
i=1 i=1

Therefore we have >_._, m; = 1, and u = A, for an index k. Hence it is enough
to show that & = r. We define the index j € Iy by wooy, = —a;. Then we
have wr (A + w;,) = wow;, = —w;. Since wra;, = 6, we have

(=@, iy) = (W1 (A + @iy )s iy) = (A + @i, 0).

Assume that (Ly, n}”‘) is regular. Then we have § = ~,. by Lemma 5.6. Hence
Ak + @iy, 0) = —0kr(0viy, viy) + (a(’iza“) In particular (—w;, o, ) # 0. Hence
Jj =g, and (Mg + @5y, 0) = —(0407;0) So we have k = r.

Next we assume that (Ll,n}') is not regular. By Lemma 5.6 we have
Oly- = %[y, s0

(ai07 aio) (ai07 aio) > O

(Ak + @iy, 0) = —Okr 5 5 >

Since (—wj, a;,) < 0, we have (A\; +w;,,0) = (—w;, o) = 0. Therefore j # iy
and k =r. O

Remark 5. By the proof of Lemma 5.7 we see that the prehomogeneous
vector space (L17n1+) is regular if and only if wooy, = —ay,. Hence the pairs
(g,i0) such that the corresponding prehomogeneous vector spaces are regular
are as follows: (Azn—1,n), (Bn,1), (Cpyn), (Dn, 1), (D2n,2n) and (E7,7).

For 1 € b7, = Z>owi, we take the lowest weight vector vy, of V(u).
Then the Ug, (g)-module Ug, (g) O, (o}) (Rrc®c V(w)) is generated by 1 ®
1. ®Uyyyp- For the Ug, (g)-module homomorphism v, defined in Section 3, there
exists a non-zero element u, € Ug, (n; ) such that ¢, (101 ®vwyu) = Up@leyp.
Since y(1 ® 1. ® vy,,) = 0 for any y € [rNn~, u, € Ur,(n;) is a lowest weight
vector with weight wop — p as an ad([;)-module. By Lemma 5.1 such a lowest
weight vector is unique up to constant multiple. Therefore u, = auuou where
a, € Ry \ {0} and uf, € U(n}) is the unique lowest weight vector with weight
wopt — pr- If 2(1® 1o @ Vuyyy) = 0 for & € Ug, (g), then we have zu, @ 1.1, =0
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since a, # 0. Hence we can define a Ug, (g)-module homomorphism wg from
Ur:(8) @y, (o) (Bre ©c V(w)) to Mg, (¢ + p) by

Y0 (2(1® 1o ® Vugp)) = 20, ® Loy

for any x € Ug,(g). We set 52 = ng# €=,
From the uniqueness of uﬂ we have

YA ® Le ® Vo) = aug @ leyy = ‘“/’2(1 ® 1 @ Vuop) (a € Ry)

for any ¢ € Homyy, (g) (U, (g)®UR, ) (R1,c®cV (1)), Mg, (c+p)). Therefore
we have the following.

Proposition 5.8.  Let p € b7 .. We have £, = R1§2.

We call the above homomorphism 1/12 the minimal map in this paper.
Let f, € U (n7 ) be the lowest weight vector of the irreducible [;-submodule
I(\).

Proposition 5.9.  Let u = mw;, € b7 . Under the identification exp :
n, ~ N; we have

(Bu@)e) = Fr (@)™ (el ).

Proof. Let {v; }o<i<n be a basis of V(1) consisting of weight vectors such
that v, has the lowest weight wou. We denote the dual basis by {v;}. We
define elements Y; € Ug, (n;) by ¥0(1® 1. @ v;) = Y/ @ 1eyy. Set Vi = n(Yy)
Then we have

n

(Pa(@p)e)(9) = D {gvi, va) (R(Y) @) (9)-

i=0
For g € N; we have (gv},v,) = J; . Therefore it is sufficient to show that
(5.1) R(Y,) = f"(9)

By the definition of ¢, Y, is the lowest weight vector of ad(I;)-module U(n} )

with weight wop — pp = m(wow;, — w;,). By Lemma 5.7 the weight of f, is
wow;, — wi,. Hence we have Y,, = f;” up to constant multiple. Since nj is
commutative, we have R(y) = y(0) for any y € U(n; ). Hence the equation
(5.1) holds. O

Finally we define subalgebras of g. For 1 < p <r = r(g,ig) we set

A&):{ﬁeA+|ﬁ|b:wT%|b forsomelﬁjgkﬁp}.
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By Lemma 5.5 we have Aa) Cc AT\ A;. We define subspaces n(ip) of g by
+ — .
Ny = ZBEA(J;) g+3. Set [(p) = [na),n(p)] and I(p) ={iel]g, C [(p)}. Then

we have the following.

Lemma 5.10 (see Wallach [14] and Wachi [13]).  We set g(,) = n,) ®
lp) © na). Then g,y is a simple subalgebra of g with simple roots {ay,} U
{ai | i€ Iy}, and the pair (8(y),i0) is of reqular commutative parabolic type.
For any 1 < j < p we have f; € U(n(_p))7 and f, s a basic relative invariant of
(L(p),n?;))), where L,y is the subgroup of Ly corresponding to ).

Note that if (L, n}) is regular, then g(ry = @, and that if not regular, then
g9 & 8

86. Regular Type

In this section we assume that the prehomogeneous vector spaces (Ly, nli)
are regular. By Remark 5 we have wow;, = —w;,. We take v;, \; and f;
(1 <i<r =nr(gi)) as in Section 5. Then the highest weight vector f, €
U(n;) ~ C[n}] is the unique basic relative invariant of (L;,n}) with character
2t7;,, and it is also the lowest weight vector of the irreducible [;-module I(\;).

Proposition 6.1.  Let b(s) be the b-function of the basic relative invari-
ant of (Ly,n; ). Then for m € Zso we have

oy (5iy) = b(s +m —1)b(s +m —2)---b(s)

up to constant multiple.

Proof. For any |l € Ly and n € n; we have

Fo(Lexp(n)l™) = (womi, — wig) (1) (exp(n)) = —2w4, (1) f=7 (exp(n)).
Thus fwio
n; ~ N; . Hence we have
o = fr (@) (o

=b(s+m—1)b(s+m—2)- ..b(s)fsmo

.— is the basic relative invariant of (L, n; ) under the identification
I

Fr(@)m fletm=io

n; )s+m

"y
By Corollary 4.3 we have

meqzo ( 21131‘0 )f(s+m)wi0 = Snwio (S’ZDio)fswiU .
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Therefore the statement holds by Proposition 5.9. O

— ¢0

In the rest of this section we shall show that {, = w;, UP to constant

multiple.

Lemma 6.2.  For any 1 <1¢ <71 we have wrvy; = Yr—it1-

Proof. We show the statement by the induction on ¢. By Lemma 5.6
we have wryy = 0 = .. Assume that ¢ > 1 and wry; = Y41 for 1 <
j <i—1. Then we have v,_j41 £ wry; = Yr—it1 £ Yr—j41 € AU {0}, and
we have wry,—i+1 £7v; ¢ AU{0}. Hence wrvy,—i+1 € I'i—1. In particular
WrYr—it1 — Vi € Zke] Z>ooy,. By Lemma 5.5 there exist v, and ~y; such that
k <land wiy; = 7’“;71
(Yis wrYm) = (Viy Yr—m+1) = 0. Since (wry;,v) > 0, we have | < r —i+1
and v — wry; € AU{0}. Now we have 7 — wry; = 252 on h~. By Lemma
5.5 if vy —wry; # 0, it is a positive root. Therefore we have v,_;41 — wry;, =
(Yr—ivr =)+ (—wrys) € Y per Lxoar. Hence wryr—iy1—7i € Y per L<ou,
and we have wyy,_j11 = %- O

on h=. For any m > r — i + 2 we have (wrv;,Vm) =

By Lemma 6.2 we can show the following easily.
Corollary 6.3.  The lowest weight wiA.—1 of I(Ar—1) 18 A + iy
Lemma 6.4. For any 1 < p <r =r(g,i9) we have

€iofp ® Loy € Up, (1 N7 ) (fp—1 ® Loy p) C Mg, (c+ p),

where €, € ga,, \ {0}

Proof. By Lemma 5.10 it is sufficient to show that the statement holds
for p = r. We define y € Ug, (n} ) by

€io (fr ® lepp) =y @ Legp

Since [e;,,[; Nn~] = {0} and f, is the lowest weight vector of the ad(l;)-
module U(n} ), y is the lowest weight vector as an ad(l;)-module. Moreover
the weight of y is A, +c, = wrA,_1, which is the lowest weight of the irreducible
component I(A.—1) = ad(U(Iy)) fr—1. Therefore we have

Yy 1C+H € UR[([I n n_)(fr—l b2 10+M)'
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Corollary 6.5.  Let u € U(n") with weight ko, + Y, mic. Then we
have
Ufr & 1c+u € URI([I N n_)(frfk oy 1c+u)~

Proof. We shall show the statement by the induction on k. If £ = 0, then
the statement is clear. Assume that & > 0, and the statement holds for k — 1.
We write u =} uje;,uf;, where u; € U(ly Nn™) and u} € U(n™). Then the
weight of u; is in (k — 1)ay, + > ;c; Z>0i, and hence we have

Ufr ® lc+u € Z ujeioURz ([1 N ni)(fr—k-&-l ® 1c+u)
J

c URI([I)(eiofr7k+1 ® 1c+#).

Here note that [e;,, Ug, ([ "n~)] = 0. By Lemma 6.4 we have

eiofT‘*k+1 & 1c+u € URI([I N n_)(frfk & 1c+u)'

Therefore we obtain

ufr Y 16+M € URI([I)(fT—k 0y 1c+u) = URI([I N n_)(fr—k 0y 1c+u)'

|

Theorem 6.6.  We have &o, = [ Py rj i, € CF 9%, where
C* =C\{o0}.

Proof.  Let v_g, be the lowest weight vector of V(w;,). Since f, is the
lowest weight vector of U(n} ) with weight —2wj, we have w?mo (181.8v-, ) =
fr® Lepo,, - It s clear that

Wi, — WoWj, = 2wi0 =—-\ € rog, + ZZZOQi‘
il
Set P(j) = {\ | @i, — A € jauy + > ;c; Z>oa; ). We define an [;-submodule V
of V(w,,) by
V} = @ V(wio))\
AEP(J)
(cf. Section 3). Note that V; # 0 for 0 < j < r. We take the irreducible

decomposition of V;

Vj = W(nj,l) DD W(nj,Nj)v
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where W(n) is an irreducible [;-module with highest weight 1. Let v;; be the
highest weight vector of W (n;1). There exists an element u; € U(nt) such
that u; xv_w, = vjk. Then the weight of u; is in (7 — j)ai, + D i Zou-
By Corollary 6.5 we have

Voo 1@ Lo @ wjk) = ujptl, (101 @ v_g,)
= Uj,kfr 4 1c+wi0 € URI([I n ﬂ_)fj ® 1C+Wi0'

Since vj j, is the highest weight vector, we have
i (1@ 1@ vjk) € Ri(fi © leyes,)-

In particular 7, = A\j +w@;, for 1 <k < Nj, and the irreducible decomposition
of V(w;,) as an [;-module is given by

T
V(wio) = @ W(/\j + in)GBNj’
j=0
where we set A\g = 0. (By Corollary 5.2 we have N; = 1 for any j.) Therefore
we have &, = H;:I Pw,y A+, » Which is regarded as a polynomial function
on Cw;,. Since degpin,AjeriO =1 for j > 1, we have deggwio = r. Now
we have degﬁ?ﬂio = degb(s) = degf, = r. From Proposition 5.8 we have
§w,y € Cxﬁ?ﬂio, hence the statement holds. |

For 1 <i<j<rwesetc;=faecA NAT | a- = 2521}
It is known that ¢;; = {oe € AT\ A | afy- = % p-+ and this number
is independent of i or j (see [15]). Set ¢y = ¢;;. Then we have (2p,7;) =
do(14co(j—1)), where dy = (a;,, o, ). In particular (2p, A;) = fjdo(lJr%co).
Since (7;,7;) = 6, ;do, we have (w;,, wi,) = (Aj + @iy, Aj +@4,) for 1 < j <r.

Hence we have

. 7j—1
P, N+, (swiy) = —2(swi, + ps )‘j) = jdo (5 +1+ 5 CO>

and the b-function is written by

b(s)—lf[l(s+1+j2lco)

up to constant multiple (cf. Muller, Rubenthaler and Schiffmann [5]).
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87. Non-regular Type

Assume that the prehomogeneous vector space (L, n}*‘) is not regular. We
take v;, A; and f; (1 < i <r =r(g,i)) as in Section 5. For y = mw;, € b7+
we denote by 7,, the highest weight vector of the irreducible [;-submodule of
V(1) generated by the lowest weight vector of V'(1t). The weight of 9,, is wrwopu.
We take u € Ug,(n;) as ¢¥§(1®@ 1, ® 0,) = u ® ey, By the definition of 1))
we have u € U(ny ). Moreover u is the highest weight vector of U(n; ) with
weight wrwop — p = wr(wop — p). By Lemma 5.7 we have wy(wop — i) = mA,.
Therefore we have u = f". Set fg = ngu € R;.

We define subalgebras g, [y and n?i) of g as in Lemma 5.10. We set
pr =1 @ n?‘r) We denote by V(p) the irreducible g(ry-module with highest
weight p. Let Iy be an index set of simple roots of g(,), that is, Iy = Iy U {zo}
(see Lemma 5.10). We set I = Iy and g = g, for simplicity. Let R be
an enveloping algebra of > ici, Chi/ > ic; Chi. Since we have the canonical
identification R; ~ R, a Ug, (§)-submodule

M(C + /u‘) URI( ) ®UR (pt) Ry RS

of Mg, (c+ p) is a universal scalar generalized Verma module associated with
g. We define an element fg of R ~ R; by the multiplication map on M (c+ )
induced by the minimal map

Uy 2 Ur, (8) @, (5+) (Rre ®c V(i) — M(c+ p).
Then we have the following.
Proposition 7.1.
(i) Under the identification R ~ Ry we have fg = 52 for we by .
(i) &, €CHEL, |

Proof. (i) We have U(§)v,, =~ V (1), and @, is its lowest weight vector. The
restriction %) on Ug, (g 8) ®uy, (5+) (R, @cU(g)vy) is YY) since ) (19©1.00,) =
f @ Loy Hence we have £ @ 1oy, = ¥5(10 1, @v,) = 95(1© 1, @ v,) =
fu @ Loty B

(ii) Since the pair (g,14o) is of regular type, we have deg 58_”0 =7 (see the
proof of Theorem 6.6). Similarly to the proof of Theorem 6.6 we can show that
deg{w,, = 7. By (i) we have deg f?mo = deg&yw, . Since Eg, = Rjg%
€w, € 2w, , we have &, € C*¢l . D

‘0 0 0 0

As a result, we have the following.
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Theorem 7.2.  For any pair (g,i9) of commutative parabolic type, the
ideal 2, is generated by &, -

88. Irreducibility of Generalized Verma Modules

Let (Ly,n; ) be a prehomogeneous vector space of commutative parabolic
type. Set {ip} = Ip \ I. In this section we give a new proof of the following
well-known fact (Suga [10], Gyoja [1], Wachi [13]).

Theorem 8.1.  Let A = sow;, € . M;(N) is irreducible if and only if
10”1‘0 (A —mw;,) # 0 for any m € Zso.

We define f; € U(n; ) and gy (1 <@ <7 =r(g,ig)) as in Section 5.

Lemma 8.2.  For any m € Zxo, I(mA,) C C[nf]I(mA,_1).

Proof.  Let vy, be the highest weight vector of the irreducible g,.)-module
Vir),m with highest weight mw;,. Then any irreducible [, [(,)]-submodule
of Viy),m is isomorphic to I(,y(p) for p € >°;_; Z=oA; by Corollary 5.2. Here
I(;y(p) is the irreducible [(,)-submodule of U(n(;)) with highest weight p. So
it is enough to show that I(,y(mA,)v,, C (C[n?;)]l(r) (mAr—1)Upm,. Now, flv,, is
the lowest weight vector of V(,) ,,, and f;™ ; vy, is the lowest weight vector of the
irreducible g(,_1y-submodule g, _1)v, of V{;) ., Hence there exists y € U(g(,)N
n~) such that yf™ v = f™0m,. Since yf™ v, € (C[n?'r)]I(T)(m)\T_l)vm, we
have f™vy, € Clny 1) (mAr—1)vm. O

Corollary 8.3. Let2 < j <r. For any m € Zso and n € Z>q there
exists y € U(g;) Nn~) such that

yIim ff @1y = fT @ 1y € Mr(A).

Proof. 1t is enough to show the statement in the case where j = r. By
the proof of Lemma 8.2 there exists y; € U(n(;)) and y; € U(ly Nn™) such
that

> viad(y)(f) = £
Since ad(y])fr = 0, we have >, gy, [/ frr @ 1y = f"T" @ 1. O

Proposition 8.4.  Let K(# 0) be a submodule of My(\) for X € by. We
have fl*Mi(A) C K forn > 0.
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Proof. If K = Mj()), then the statement is clear. Assume that {0} #
K C M;(A\). By Lemma 5.1 any highest weight vector of M () as an [;-module
is given by the following form:

o e,

Since K has the highest weight vector as an [;-module, there exists an element
e fér @1y € K such that (ag,...,a,) # 0. By Corollary 8.3 there exists
uy =), uriuy ; € Ung))U(lz) Nn™) such that

u fitfs? @1y = f51T 2 @ 1,
Since ad(ly Nn™)f; = 0 for j > 2, we have
fén-i-az,”fgr@l)\:ulf{h ;2,,,f;zr®1>\€K'

Similarly, there exist wy,usa,...,u,—1 € U(n~) such that fortezt-ar @1, =
Up—1 - uguy f{ fo2 - O @ 1y, that is, we have fo1Te2t 4 @1, € K. Hence
for any y € U(n; ) we have

frttyely) =yt @l € K,
and the statement holds. O

Set pu = pp, = mw;, for any positive integer m, and let us prove Theorem
8.1 by using the commutative diagram

MRI(C—’_I‘L) —_— MRI(C+N’)

(8.1) al e

Ur;(8) @y, (o) (Bre @c V(p)) o Mz, (c+p).

n

Set A = sow;,. We denote the highest weight vector of V(1) by v,. Let v, be
the highest weight vector of the irreducible [;-module generated by the lowest
weight vector of g-module V' (u). Considering the functor C ®g, ( - ), where C
has the Rr-module structure via ¢(h;)1 = (A — p)(h;), we obtain the following
commutative diagram from (8.1):

Lml lsﬂ(km

U(8) @ypt) (Cra—pn ®c V(w) o M;(N),

m

where 1, (1® 1)) =1® 1x_, ®v, and ¥, (1@ 1, ®7,) = f™ @ 1.



494 ATsusHI KAMITA

We assume that M(\) is irreducible. Since ¥0, # 0, we have Imy?, =
My (A). The weight space of U(g) Qu(pt) (Cra—p ®c V(p)) with weight X is
C(1 ® 1x—, ®vy), hence there exists a € C\ {0} such that

I®ly= w&(a @ Li-p ®uy) = a¢9an(l ®1y\) = afg(/\ — ) @15 #0.
By Propositions 6.1 and 7.1 we have
52()‘ - :u‘) = ‘871‘0 ()‘ - wio)g?wio ()‘ - 2721'0) e Owio (>‘ - mwio)'

Therefore we have 510@0 (A —mw;,) # 0 for any m € Zo.
Conversely, we assume that 5103% (A —mw,,) # 0 for any m € Zso. We set

N(m)="U(g) Qupt) (Cra—pm ®c V(ptm))-

Since ggm(A - :U“rn) =£2 ()‘ - wio)gzozio ()‘ - 2@7;0) T ggio (>‘ - mwio) 7& 07 we

wio
have

(e A= 1) T @ Ia,, @0, ) = €0 (A = ) T P (1@ 15)
=1®1,.

Hence 92, is surjective, and we have an isomorphism

N(m)/KerpQ ~ M;(\): T® 1x_p, @0, = [ @ 1y

for any m. Under this identification we have

1® ]')\7#71-%—1 ®'Ij,un+1 = f;H_l ® 1\ = f? (fr & 1>\) = f: 1® 1>\*#1 ®6ll,1'

Let K # 0 be a submodule of M;()\). By Proposition 8.4 for n > 0 we have

1® 1>\ﬁun+1 ® Vpppyy = fr1® Ix—py ® 0y, € K.
Hence we have

Mr(\) = N(n+1)/Keryp 4
=U@1®I\_p, , ®0,,,, CK.

Therefore K = M;()), and My(\) is irreducible. We complete the proof of
Theorem 8.1.
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