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Higher Arithmetic K-Theory

By

Yuichiro TAKEDA*

Abstract

A concrete definition of higher K-theory in Arakelov geometry is given. The
K-theory defined in this paper is a higher extension of the arithmetic Ko-group of
an arithmetic variety defined by Gillet and Soulé. Products and direct images in this
K-theory are discussed.

8§1. Introduction

The aim of this paper is to provide a new definition of higher K-theory in
Arakelov geometry and to show that it enjoys the same formal properties as
the higher algebraic K-theory of schemes.

Let X be a proper arithmetic variety, namely, a regular scheme which is
flat and proper over Z, the ring of integers. In the research on the arithmetic
Chern character of a hermitian vector bundle on X, Gillet and Soulé defined
the arithmetic Ko-group Ko(X) of X [9]. It can be viewed as an analogue in
Arakelov geometry of the Ky-group of vector bundles on a scheme.

After the advent of IA(O(X ), its higher extension was discussed in [6, 7, 14].
In these papers one common thing was suggested that higher arithmetic K-
theory should be obtained as the homotopy group of the homotopy fiber of
the Beilinson’s regulator map. To be more precise, there should exist a group
KM, (X) for each n > 0 fitting into the long exact sequence

$= K1 (X) 5 OHE T (XR() = KMa(X) = Kn(X) = -
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where H} (X, R(p)) is the real Deligne cohomology of X and p is the Beilinson’s
regulator map.

To get the homotopy fiber, a simplicial description of the regulator map
is necessary. And it has already been given by Burgos and Wang in [6]. For
a compact complex manifold M, they introduced an exact cube of hermitian
vector bundles on M and associated with it a differential form called a higher
Bott-Chern form. This gives a homomorphism of complexes

ch : ZS, (M) — D*(M, p)[2p + 1]

from the homology complex ZS’\*(M ) of the S-construction of the category of
hermitian vector bundles on M to the complex D*(M, p) computing the real
Deligne cohomology of M defined in [4]. It is the main theorem of [6] that the
following map coincides with the Beilinson’s regulator map:

p i Kon(M) =m0y (S(M) T8 B,y (25.(0) T BHE T (ML R(p)).
Applying this to the complex manifold X (C) associated with X, we can obtain
a simplicial description of the regulator map for X.

In this paper, we will give another definition of higher arithmetic K-theory
for a proper arithmetic variety. One of remarkable features of our arithmetic
K-theory is that it is given as an extension of the algebraic K-theory by the
cokernel of the regulator map.

Before explaining our method, let us recall the definition of I/(\'O(X ) by
Gillet and Soulé [9]. For a proper arithmetic variety X, let A”P(X) be the
space of real (p, p)-forms w on X (C) such that F. w = (—1)Pw for the complex
conjugation F, on X(C) and let A(X) = OpAPP(X)/(Im O + Im ). Then
IA(O(X ) is defined as a factor group of the free abelian group generated by pairs
(E,w) where E is a hermitian vector bundle on X and w € A(X). Relations
on pairs are given by each short exact sequence € : 0 — B/ — E — E" — 0
and ', w" € A(X) as follows:

(E",W') + (E",w") = (B, + " + ch(€)),

where c~h(8) is the Bott-Chern secondary characteristic class of €.

The above definition of I?O(X ) can be rephrased in terms of loops and
homotopies on |S(X)|, the topological realization of the S-construction of the
category of hermitian vector bundles on X. Consider a pair (I,w), where [
is a pointed simplicial loop on |S(X)| and w € A(X). Two pairs (I,w) and
(I',w') are said to be homotopy equivalent if there is a cellular homotopy H :
(S x I)/({*} x I) — |S(X)| from I to I’ such that the Bott-Chern secondary
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characteristic class c~h(H ) of H, which is defined in a natural way, is equal to
w'—w. Let 71 (]S(X)], ch) denote the set of all equivalence classes of such pairs.
Then it carries the structure of an abelian group and the map

Ko(X) — 71(|5(X)], ch)

given by (F,w) — (I, —w), where I3 is the simplicial loop on 15(X)| deter-
mined by E, is proved to be bijective.

Let us generalize this observation to higher homotopy groups in a general
setting. Take a pointed CW-complex T and a homomorphism

p:Cu(T) = W,

from the reduced homology complex of T" to a chain complex of abelian groups
W.. Let S™ denote the n-dimensional sphere and consider a pair (f,w) of a
pointed cellular map f : S™ — T and w € W, = W, /Imo. Two pairs (f,w)
and (f',w’) are said to be homotopy equivalent if there is a pointed cellular
homotopy H : (S™ x I)/({*} x I) — T from f to f’ such that the image of
the fundamental chain of H by p is equal to (—1)"T!(w’ — w). This actually
gives an equivalence relation on the set of such pairs. The set of homotopy
equivalence classes has the structure of a group and it becomes an abelian
group when n > 2. This group is denoted by 7,(T,p) and called the n-th
homotopy group of T" modified by p. We define the n-th arithmetic K-theory
of a proper arithmetic variety X as the (n + 1)-th homotopy group of [S(X)|
modified by the higher Bott-Chern form:

E,(X) = Fupa (|S(X)] ch).
We will show that IA(n (X)) possesses the same properties as the usual higher
K-theory of schemes. More precisely, we will show the following:
(1) Fundamental exact sequence:
K1 (X) = D1 (X) = Kn(X) = Kn(X) =0,

where Dy 11(X) = Dpy1(X)/Imdp. In the case of Ko(X), this exact
sequence has been obtained in [9].

(2) Chern class map:
ch, : K,,(X) — D, (X).

If we denote KM, (X) = Kerch,, then we can obtain the long exact se-
quence

= K1 (X) B @ HP N (X, R(p)) — KMy (X) — Kn(X) 2 -
p
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We show that K M, (X) is canonically isomorphic to the homotopy fiber of
the Bott-Chern form.

(3) Arakelov K -theory: Fix an F-invariant Kéhler metric hx on X (C). The
pair X = (X,hy) is called an Arakelov variety. We can define Arakelov
K-group of X as

K. (X)= {x € IA(n(X); ch,, (x) is a harmonic form with respect to hx} )
We have the exact sequence

Ko (X) 2 §H§DP—”—1(X, R(p)) — Kn(X) — K,(X) — 0.

(4) Products: K,(X) has a product

Kn(X) x K (X) = Kpym(X).

It does not admit the associative law. But if we restrict this to K. (X), it
becomes associative. It is shown that the product is graded commutative
up to 2-torsion.

(5) Functoriality: For arbitrary morphism f : X — Y, we can define pull back
map
Ky (Y) — Ky (X).
It is compatible with product. Suppose that f is smooth and projective,

and fix a Kéhler metric on the relative tangent bundle of f(C) : X(C) —
Y (C). Then we can define direct image homomorphism

ot Kn(X) — Kp(Y).
The projection formula for ﬁ and f* holds.
From the above properties, we can obtain a non-canonical decomposition
of K, (X) into three summands:

Kn(X) ~ Kp(X)® (Dps1 (X)) Kerdp) & (%H%p_”_l(X, R(p))/ Im p) .

The Bass’ conjecture says that the first summand is a finitely generated abelian
group. The second one is an infinite dimensional R-vector space, and the Beilin-
son’s conjectures imply that the third one becomes a real torus.

Let us describe the organization of the paper: In §2 we introduce some
materials used in the paper, such as S-construction, exact cubes and higher
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Bott-Chern forms. In §3 we propose the notion of modified homotopy groups.
In §4 we give the definition of the higher arithmetic K-group K, (X ) and deduce
the fundamental exact sequence. We also define the Arakelov K-group. In
85 we prove a product formula for higher Bott-Chern forms. It provides an
alternative proof of the fact that the regulator map respects the products. In
86, we discuss product in higher arithmetic K-theory. In §7, we define a direct
image homomorphism in higher arithmetic K-theory. To do this we employ
the higher analytic torsion form of an exact hermitian cube defined by Roessler
[13]. Moreover we establish the projection formula.

§2. Preliminaries
§2.1. Conventions on complexes

Let us first settle some conventions on complexes. By complex of an abelian
category 2, we mean a family of objects {A*},cz with differential ds : A¥ —
AR+ For a complex A* and n € Z, the n-th translation A[n]* is defined as
A[n}k = A"+k and dA[n] = (—1)ndA.

By chain complez we mean a family of objects {Ag}r>0 with boundary
04 : Ay — Ap_;. For a complex A* = (A¥ d,) such that A*¥ = 0 for k > 0,
we can define a chain complex A, as Ay, = A™F and dy = 94. The n-th
translation A[n], of a chain complex A, for n > 0 is defined as A[n]; = Ax_n
and 8,4[74 = (—1)”3,4.

§2.2. S-construction

In this subsection we recall the S-construction developed by Waldhausen
[15]. Throughout this paper, we assume that any small exact category has
a distinguished zero object denoted by 0. Let [n] be the finite ordered set
{0,1,...,n} and Ar[n] the category of arrows of [n]. For a small exact category
A, let S,2 be the set of functors E : Ar[n] — 2 satisfying the following
conditions for E; ; = E(i < j):

(1) E;; =0 for any 0 <i < n.

(2) Forany i < j <k, E;; — E; , — E, 1 is a short exact sequence of 2.
For example, Sy = {0}, S12 is the set of objects of A and S22 is the set of
short exact sequences of 2. The functor S : [n] — 5,2 becomes a simplicial

set with the base point given by 0 € Sp2. It is shown in [15] that S is
homotopy equivalent to the Quillen’s Q-construction of . Therefore the (n +
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1)-th homotopy group m,4+1(S%,0) is isomorphic to K;(2), the algebraic K-
theory of .

§2.3. Exact n-cubes

Let us recall the notion of an exact n-cube. For more details, see [5, 6].
Let (—1,0,1) be the ordered set consisting of three elements. An n-cube
of a small exact category 2 is a covariant functor from the n-th power of
(—1,0,1) to A. For an n-cube F, we denote by Fa,,. .. ., the image of an
object (ai,...,a,) of (—=1,0,1)". For integers ¢ and j satisfying 1 < i <
n and —1 < j < 1, an (n — 1)-cube 85]-' is given by (agf)al,_ﬂanfl =
Forrcti1sjicviran_q- 1t is called a face of F. For an object o of (—1,0,
1)"~1 and an integer i satisfying 1 < i < n, a 1-cube 92F called an edge of F
is

falv--woﬁ,fl1_17(1751“-70“171 fal7-~-70¢i717010‘1?7~--7an—1 ‘Fal1~--7ai71717ai7--~104n71'

An n-cube F is said to be ezact if all edges of F are short exact sequences.
Let C,2 denote the set of all exact n-cubes of . If F is an exact n-cube,
then any face 9] F is also exact. Hence 9 induces a map

& CLU — Cp 2.

Let F be an exact n-cube of 2. For an integer 4 satisfying 1 <i <n+1,
let s!F be an exact (n + 1)-cube such that its edge 0% (s1F) is F, )
Similarly, let s; ' F be an exact (n 4 1)-cube such that 9% (s; ' F) is 0 — F, i
Fao. An exact cube written as sf F is said to be degenerate.

Let ZC,,2 be the free abelian group generated by C,,2 and D,, C ZC,,2 the
subgroup generated by all degenerate exact n-cubes. Let ZCHQl = 72C,2/D,
and

n 1
0= (~1)"IG]  ZCA — LC, 2
i=1j=—1
Then ZC*Ql = (ZCan, 0) becomes a chain complex.

In [6, §4.4], an exact (n — 1)-cube Cub(E) for any E € S,2 is constructed
and it is shown that E — Cub(F) induces a homomorphism of complexes

Cub : ZS,2[1] — ZC, 2.
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§2.4. Higher Bott-Chern forms

In this subsection we recall higher Bott-Chern forms developed by Burgos
and Wang. For more details, see [5, 6]. First we introduce the recipient of
higher Bott-Chern forms. Let M be a compact complex algebraic manifold,
namely, the analytic space consisting of all C-valued points of a smooth proper
algebraic variety over C. Let € (M) be the space of real smooth differential
forms of degree p on M and EP(M) = ER(M) ®@g C. Let EP9(M) be the space
of complex differential forms of type (p,q) on M. Set

el M)(p—-1)n @ &I (M), n<2p,

p'+q'=n—1

DM, p) = p'<p,q'<p
ALPY =\ 620 01 () 1 €70 (M) 1 Ker d, n = 2p,
0, n > 2p

and define a differential dp : D"(M, p) — D" (M, p) by

—m(dw), n<2p—1,
dp(w) =< —200w, n=2p—1,
0, n>2p—1,

where 7 : E"(M) — D™(M,p) is the canonical projection. Then it is shown in
[4, Thm. 2.6] that the pair (D*(M,p),dp) is a complex of R-vector spaces with

H"(D*(M,p),dp) ~ H5 (M, R(p))

for n < 2p.

By a hermitian vector bundle E = (E,h) on M we mean an algebraic
vector bundle E on M with a smooth hermitian metric h. Let Kz denote the
curvature form of the unique connection on E that is compatible with both the
metric and the complex structure. Let us write

cho(E) = Tr(exp(—K%5)) € %DQP(M,])).

An exact hermitian n-cube on M is an exact n-cube made of hermitian
vector bundles on M. Let F = {E,} be an exact hermitian n-cube on
M. We call F an emi-n-cube if the metric on any E, with a; = 1 coin-

cides with the metric induced from Eal,u.,aiq,O,a for the surjection

il Qn
Ea1,~~,ai71,0,04i+1,m,an — Eq.

For an emi-1-cube & : E_; — Ey — E;, a canonical way of constructing
a hermitian vector bundle tr; € on M x P! connecting Eo with E_1 @ E; is
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given in [6]. More precisely, if (x : y) denotes the homogeneous coordinate of
P! and z = z/y, then tr; € is a hermitian vector bundle on M x P! satisfying
the following conditions:

try 8|z:0 ~ Fo, try 8|z:00 ~ E,1 @Fl.

For an emi-n-cube F, let tri(F) be an emi-(n — 1)-cube on M x P! given by
tr1(F)a = tri(9%(F)) for a € (—1,0,1)""1 and tr,(F) a hermitian vector
bundle on M x (P')" given by

n times

—_—~—
try (F) = try try ... tre (F).

Let 7; : (P1)™ — P! be the i-th projection and z; = 7fz. For an integer i
satisfying 1 < i < n,

‘ 4d g d o(i d_ai d_g n
8= 3 (1) log e PTTE A p TIO A SRy o)
oc6, %o (2) Zo(d) Zo(i+1) Zo(n)

which is a differential form with logarithmic poles on (P')". The Bott-Chern
form of an emi-n-cube F is

1
ch, (F :7/ cho(tr, (F)) AT, € @D*~"(M, p),
)= 7 o, PoltEn () AT €GP0 )
where
GRS i i
Tn— ! Z(fl) Sn

i=1

A process to produce an emi-n-cube \F from an arbitrary exact hermitian
n-cube F is given in [6]. By virtue of this process, we can extend the definition
of the Bott-Chern form to an arbitrary exact hermitian n-cube.

Definition 2.1.  The Bott-Chern form of an exact hermitian n-cube F
is an element of @,D?P~" (M, p) given as follows:

1
ch, (F) = EENED /Pl)n cho(trp (AF)) A Th.

Theorem 2.2 ([6]).  Let P(M) denote the category of hermitian vector

bundles on M and let ZC, (M) = ZC'*SA’(M) Then F +— chy,(F) induces a
homomorphism

ch: ZC, (M) — §D*(M7p)[2p]~
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Moreover, the following map

~

Ko (M) =11 (S(M)) T8 H, 4 (25.(M))

8 H,(ZC.(M)) S @ HZP~"(M,R(p))
P

coincides with the Beilinson’s requlator map.

83. Modified Homotopy Groups
§3.1. Definition of modified homotopy groups

In this section we develop a general framework used later in this paper. Let
I be the closed interval [0, 1] equipped with the usual CW-complex structure.
Throughout this paper we identify the n-dimensional sphere S™ with I™/9I".
Therefore S™ consists of two cells and any point of S™ except the base point is
expressed by an n-tuple of real numbers (¢y,...,t,) with 0 < ¢; < 1.

Let T be a pointed CW-complex and x € T the base point. Let sk, (T)
be the n-th skeleton of T when n > 0 and sk_;(7T) = {*}. For n > 0, let
us write Cp,(T) = Hy,(skn(T),skn—1(T);Z), the n-th relative homology group
of the pair (sk,(T),sk,—1(T)). Let 0 : Cp,(T) — Cp—1(T) be the connecting
homomorphism for the triple (sk,,(7T"),skn—1(T),skn—2(T)). Then (C«(T),d) is
a chain complex whose homology group is isomorphic to the reduced homology
group of T

Suppose that a chain complex of abelian groups (W, d) and a homomor-
phism of chain complexes p : C\.(T') — W, are given. Let W, =W, /Im 0. Let
us consider a pair (f,w) of a pointed cellular map f: S™ — T and w € WnH.
A cellular homotopy from one pair (f,w) to another pair (f/,w’) is a pointed
cellular map H : (S™ x I)/({*} x I) — T satisfying the following:

(1) H(x,0) = f(x) and H(z,1) = f'(x).

(2) Let [S™ x I] € Cpy1(S™ x I) denote the fundamental chain of S™ x I,
where the orientation on S™ x I is inherited from the canonical orientation
of the interval I. Then

W —w=(=1)"MpH,([S" x I]).

It can be shown that the cellular homotopy gives an equivalence relation on
the set of pairs. Two pairs are said to be homotopy equivalent if there exists a
cellular homotopy between them. We denote by 7,,(T', p) the set of all homotopy
equivalence classes of pairs.
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Let us define a multiplication on the set 7, (T, p). Let TV T = {(z,y) €
T xT;x ==or y=x*}. Then we can define a natural map TVT — T by
(z,%) — z and (%,y) — y. A comultiplication map p : S™ — S™ Vv S™ is given
by
M(tl’m’tn):{((tl,tQ,...,Qtn),*), 0<ty <1,
(%, (t1,t2,...,2t, — 1)), L<t, <1,

and a homotopy inverse map v : S™ — S™ by v(t1,...,tn—1,tn) = (t1,. -, tn—1,
1 —tp). For two pointed cellular maps f,g: S™ — T, let us write
fog:sn vt My L
and
Flosn gn L

A multiplication of two pairs (f,w) and (g, 7) is

(fiw)-(g;7) = (f - g,w + 7).

It is easy to show that the multiplication - is compatible with the homotopy
equivalence relation on pairs. Hence it gives rise to a multiplication on 7, (T, p).

Let us next verify the associativity of the multiplication. For three pointed
cellular maps f, g, h : S™ — T, a cellular homotopy H; : (S"xI)/({*}xI) =T
from (f-g)-hto f-(g-h)is given as follows:

f(tlr"atn—h,jjfi)a O<tn < UTHa
Hi(t, sttt u) = gt . tno1, 4ty —u— 1), 4L <, < w2
h(ty, ... tyy, dn=2=t) w2 <, < 1

Since the image of H; is contained in sk, (T"), we have (H;).([S™ x I]) = 0 in
Cr41(T). Hence H; becomes a cellular homotopy from ((f,w) - (g,7)) - (h,n)
t0 (£,)- ((g:7) - (h,m)) for any w, 7,17 € W1,

Finally we show the existence of unit and inverse with respect to the mul-
tiplication -. Let 0 : S™ — T be the map given by 0(S™) = {x}. For a pointed
cellular map f: S™ — T, a homotopy Hs from f -0 to f is given as follows:

IN

flt, oty 2, 0 <, < 4L

u+1
*, o

IA

Hg(tl,...,tn_l,tn,u):{ b o<1
n .
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A homotopy Hs from 0 - f to f can be given in a similar form. Moreover, a
homotopy H, from f - f~! to 0 is given as follows:

f(tla--wtnfhfi_”;/‘)? 0<t, < 1_Tu7
Hy(ty, - tno1,tn,u) = < *, S8 <, < 1,
—2t,+2
f(tla"'atn—hltqu% uTHStn<1

A homotopy Hs from f~' - f to 0 can be given in a similar form. These
homotopies are all cellular and their images are contained in sk, (T"). Hence
(f,w)-(0,0) and (0,0) - (f,w) are homotopy equivalent to (f,w), and (f,w) -
(f~',—w) and (f~!,—w) - (f,w) are homotopy equivalent to (0,0).

Theorem 3.1.  For n > 1, the multiplication - gives the structure of a
group on T, (T, p) and when n > 2, it becomes commutative.

Proof. The former part has already been proved. When n > 2, for two
pointed cellular maps f,g : S™ — T, f - g is homotopy equivalent to g - f.
A homotopy between them is described in every textbook of homotopy theory,
and it is easy to see that the image of this homotopy is also contained in sk, (T').
Hence (f - g,0) is homotopy equivalent to (g - f,0). |

Definition 3.2.  The group 7, (7T, p) is called the n-th homotopy group
of T modified by the homomorphism p.

Let ¢ : 7,(T,p) — m,(T) denote the surjection obtained by forgetting
elements of W,, ;1. Then we have the following;:

Theorem 3.3.  There is an exact sequence

T (T) L Wait 5 Fa(T, p) < ma(T) = 0,
where the map p is given by

H i Hy
urewicz )28 +1(p)

5 T (T) et (1) 5 Hy (W) € W

and the map a by a(w) = [(0,w)] € T, (T, p).

Proof. The cellular approximation theorem implies that Ima = Ker(.
Hence we have only to show that Kera = Im p. For w € Wn+1, the pair (0,w)
is homotopy equivalent to (0,0) if and only if there is a cellular homotopy
H:(S"xI)/({x} x I) = T from 0 to 0 such that (—1)""1pH,([S" x I]) = w.
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Since H(S™ x 8I) = {x}, H gives a pointed cellular map H' : S"*! — T. Then
w is equal to the image of (—1)"*1[H’] € m,41(T) by p, therefore Ker a C Im p.
The opposite inclusion Imp C Kera can be verified by regarding a pointed
cellular map S™*! — T as a cellular homotopy from 0 to O. |

83.2. A homomorphism from a modified homotopy group

For a pair (f,w) as in the previous subsection, let p(f,w) = pf.([S"]) +
ow € W,.

Proposition 3.4. The above p(f,w) gives rise to a homomorphism
p:wn(T,p) — Wy

and Imp is contained in Ker(0 : W, — W, _1).

Proof. Tt H: (S™ xI)/({x} x I) — T is a cellular homotopy from (f,w)
to (f',w’), then

OH,([S" x I]) = (=1)"(f([S"]) = f«([S"])

in C,,(T) and pH,([S™ x I]) = (—1)""}(w' — w). Hence we have
p(f,w) = pf([S"]) + O
= pfi([S") +( )" 1 opH.([S™ x 1])) + 0w
= pfi([S") + 0" —w) + 0w
= p(f', "),
therefore p(f,w) gives rise to a homomorphism from 7, (T, p). The inclusion
Im p C Ker(9 : W,, — W,,_1) is obvious. O

The exact sequence in Theorem 3.3 implies the following corollaries:
Corollary 3.5.  There is an exact sequence
Tt (1) Lo Hya (W) 5 7o (T, p) 28 (1) @ Kerd S H, (W) — 0,
where Ker 0 = Ker(0 : Wy, — W,,_1) and cl(z,w) = p(x) — [w].
Corollary 3.6. Forn >1, let
T (T, p)o = Ker(p : @ (T, p) — Wh).

Then there is a long exact sequence

S Tt (T) 2 Hoot (W) % 70 (T, po > mn(T) L -
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§3.3. Comparison to the homotopy group of the homotopy
fiber of p

In this subsection we show that 7, (T, p)o is canonically isomorphic to the
n-th homotopy group of the homotopy fiber of the map p. Here we work with
the category of simplicial sets, not with the category of CW-complexes. Let us
first recall Dold-Kan correspondence. See [11] for a concrete account.

Let A be a simplicial abelian group. Then we obtain the chain complex
associated to A by A, = (4,,0 = >_,(—1)'9;). We can define another chain
complex N A, called the normalized chain complex of A. It is a subcomplex of
A, such that the inclusion is a quasi-isomorphism.

For a chain complex W, of abelian groups, we can construct a simplicial
abelian group T'(W,). The group of n-th simplexes of I'(W,) is the direct sum
of W,, with the subgroup generated by degenerate simplexes, and the canonical
projection

0 : T(Wo) = W,

is a homomorphism of chain complexes. The homotopy group of I'(W,) is
canonically isomorphic to the homology group of W.,:

Tn(D(WL)) =~ H, (W),

Dold-Kan correspondence [11, Cor. III. 2.3] says that the functors N and T" are
mutually inverse.
Suppose T = | K], the topological realization of a pointed simplicial set K.
Let ZK denote the simplicial abelian group spanned by K and ZK, denote the
chain complex associated to ZK. We can regard p as the homomorphism from
7K ,:
p: LK, —» C.(|K|) —» W..

Then we have the map of simplicial sets

o K — ZK = T(NZK,) — T(ZK,) "2 T (w,).
Lemma 3.7.  The map
#
7K, 25 T(W,), -2 W,

coincides with p.

Proof. We have ZK, = NZK, @ D, and T'(W,), = W, & D/, where D,
and D! are subcomplexes generated by degenerate elements. Since pi comes
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from the map of simplicial sets, it is described as
pOY

ZK, = NZK, ® D, " W, @ D, =T(W,).,

where 9 = pi

D,-

For x € ZK,, take the decomposition x = xn + xp, where xxy € NZK,
and zp € D,. Then opi(z) = p(zn) = p(z) — p(zp). Since p factors through
C.(|K|), we have p(zp) = 0, hence pp(z) = p(z). O

Theorem 3.8.  Let Fib,s denote the homotopy fiber of pt. Then for
n > 1 there exists a canonical isomorphism

Wn(Fibpu) ~ %n(|K|,p)0

making the following diagram commutative up to multiplication by +1:

H, (W)

i ! | i |

g1 ([Kl) —2— Hop1(Wa) —2— Zn(IK], plo —— mn(|K]) —L— Hn(Wa).

g1 (K) ——— mp 1 (T(Ws)) ——— “n(Fibpn) — m(K)

Proof. Take a Kan complex K’ with an anodyne extension K — K'.
Since I'(W,) is also a Kan complex by [11, Lem. I. 3.4], there is an extension
pF K ['(W,) of p*. Let p’ be the homomorphism of chain complexes given
as follows:

2
ZK! 25 T (W), -2 W,

It is easily shown that the image of any degenerate simplex of K’ by p’ is zero.
Hence p’ gives the homomorphism C,(|K’|) — W,. By Lemma 3.7 we have the
commutative diagram

ZK'

Therefore we may assume that K itself is a Kan complex.

Let A[l] be the simplicial set represented by [1] and fix {0} € A[l], =
Hom([0], [1]) as the base point. Let Home(A[1],I'(W,)) denote the function
complex from A[l] to I'(W,) preserving the base point. Define F' to be the
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cartesian product of the following diagram:

Home(A[1],T(W,))

Ik
ot
K —— L(W.),

where i¢ is the map taking composite with the injection é; : {1} — A[1]. Then

the topological realization of F' is homotopy equivalent to Fiby;.

Let A[n] be the simplicial set represented by [n] and 9A[n] its boundary.
Note that the topological realization of A[n|/0A[n] is the n-dimensional sphere
S™ with the usual cellular decomposition into two cells. Since F' is a Kan com-
plex, the homotopy group of F is given by the set of all maps from A[n|/0A[n]
to F' modulo simplicial homotopy.

Take a map of pointed simplicial sets f : A[n]/0A[n] — F. Then we have
two maps:

fi : Aln]/0An] L5 F ™5 K,
fo : Aln]/0A[n] L F 2 Home(A[L], T(W,)),
where 7 and 7o are the projections. Let
[f1l = 8™ = [A[n]/0A[n]| — |K]|
be the topological realization of f; and
F5+ (Aln] x A1])/(0A[n] x A[1]) U (A[n] x {0}) — T'(W.)

be the map corresponding to fo. Let [A[n] x A[1]] be the fundamental chain
and wy, = of2 ([Aln] x A[1]]) € Wyy1. Then
dwy, = ¢ f5.(O[A[] x A[L]))
= (=1)"ef5.([Aln] x {1}])
= (=1)"pp* fr. ([A[]])
= (=1)"pfr.([A[]).

Hence the pair (|f1],(—1)""twy,) gives an element of 7, (| K|, p)o.
Let f,g: Aln]/0A[n] — F be maps of pointed simplicial sets and

H: (Aln] x A[])/(0A[n] x A[1]) — F
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a homotopy from f to g. Let
Hy : (Aln] x A[1))/(0A[n] x A[1]) 25 F =5 K,
Hy : (Aln] x A[1))/(0A[n] x A[1]) 25 F 2 Fome(A[1], T(W,)).
The map H; is a homotopy from f; to g;. Let
HE : (Aln] x A[1] x A[1])/(0A[n] x A[1] x A[1])U(A[n] x A[1] x {0}) — D(W,)

the map corresponding to Hy. If we denote wy, = (,DHg*([A[TL] x A[1]x A[1]]) €
W42, then
dwn, = (=1)"pHS, ([Aln] x {1} x A[1]] = [A[n] x {0} x A[L]
—[Aln] x A[1] x {1}])
= (—1)"(wg, —wp) + (=1)" " pH1. ([Aln] x A[1]]).

Hence

[(Lf] (=)™ wp,)] = [(gul, (=)™ wg, )],
which tells that f +— [(|f1], (=1)"Tlwy,)] gives rise to a map

Tn(F) = Tn(|K], p)o-

Next we show that the above map is a homomorphism of groups. Let
fy9,h: Aln]/OA[n] — F be maps of pointed simplicial sets and o : A[n+1] —
F a map such that 0,-10 = f,0h4+10 = ¢,0,0 = h and 0jo is the map
collapsing to the base point for j < n — 2. Then [f] + [g] = [h] in 7, (F) and
any sum in 7, (F) is described in this way. Let

o An+1] -5 F S K,
oy : Aln+1] - F 2 Home (A[1],T(W,,))
and
ok (Aln+1] x A[1])/(Aln+1] x {0}) — T(W,,)

the map corresponding to 0. If we denote wy, = ok, ([Aln + 1] x A[l]]) €
W42, then

Oy, = b, ([0AI + 1] x A[L]] + (=1)" M A[n + 1] x {1}])
= (=" Hwpy +wg, —wny) + (1) por (Al + 1])).

Hence o is a homotopy from f; - g1 to hy such that

por([Aln +1]]) = wp, —wp, —wg, + (=1)" 10wy, .
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Hence

[(1hal, (=)™ wny)] = (L], ()" wp)] + (g1l (-1)" wg, )],

which tells that the map 7, (F) — 7, (| K|, p)o is a homomorphism of groups.
It is obvious that the diagram

mT(F) ——— m(K)
~ ¢
T (K], p)o —— mu(|K])
is commutative. Consider the following diagram:
T (P(We)) —— mu(F)
Hy 1 (Wy) —— 7 (|K, p)o-

In the above, the upper horizontal arrow is obtained from the map of simplicial
sets

Home(A[1]/OA[1),T(W,)) — F =K x Home(A[l],T'(W,))
(W)

given by v — (x,7), where * is the base point of K and 7 is the element of
Fome(A[1],T'(W,)) given by . Take a map of pointed simplicial sets

Aln]/dA[n] — Homae(A[1]/OA[1],T(W,))
and let
W' i An] x A[1]/8(An] x A[1]) — T(W,,)

be the map corresponding to w. Then the image of
[w] € M1 (D(WL)) = 1y (Homa (A[L]/OA[L], T(W.)))

by the map
Tt 1 (W) — mn (F) — T (| KT, p)o

is [(0, (=1)"*w? ([A[n] x A[1]]))]. This shows that the above diagram is com-
mutative up to multiplication by (—1)"*1.
It is obvious from the five lemma that m,(F) — 7,(|K|, p)o is an isomor-

phism. O
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83.4. A functoriality of modified homotopy groups

Let T and T’ be pointed CW-complexes and let W, and W/ be chain
complexes. Let a : T — T’ be a pointed cellular map and let p : C.(T) — W,

/

P Cu(T") — W/ and 8 : W, — W/ be homomorphisms of chain complexes
that make the diagram
Cu(T) —=— Cu(T")

l |
B /
W, —— W]
commutative up to a homotopy ®. In other words, there is a homomorphism
®: Cu(T) — W), satistying p'a, — Bp = 0P + ®0.

Proposition 3.9. Under the above notations, we can define a homo-
morphism
(a76a (D)* : %n(T7 p) - %n(T/7p/)

by [(f,w)] — [(af, B(w)=Pf.([S™]))]. This homomorphism enjoys the following
functorial property: Let o : T — T and o : T' — T" be pointed cellular
maps and let B : W, — W! and ' : W. — W/ be homomorphisms of chain
complexes. We assume that the squares

/

Cu(T) =% C(T') —=— C.(T")

l o l o l W
s g

are commutative up to homotopies ® and @' respectively. Then
(04/7 5/7 @/)*(a7 B, (I))* = (O/Oz, 6/ﬁ> ﬁ/q) + (I)la*)* : %n(Tu P) - /ﬂ:n(T”a PN)-

Proof. Let f, f': 8™ — T be pointed cellular maps and w,w’ € Wn+1. If
H:(S™xI)/({*} xI) — T is a cellular homotopy from (f,w) to (f’,w’), then

(1)1 e Ho([S™ x 1))
= (=1)""BpH.([S™ x 1)) + (=1)" 9@ H.([S™ x I])
+(=1)" T ®OH, ([S™ x 1))
= (B(w') — @£2([S™") — (B(w) — @£u([S™)))

modulo Imd. This tells that the map aH : (S™ x I)/({*} x I) — T’ is
a cellular homotopy from (af, B(w) — @£ ([S™])) to (af’, B(w') — DfL([S™])).
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Hence (a, 8, @), is well-defined. The functorial property can be shown by an

easy calculation. O
Proposition 3.10. Under the above notations, we have a commutative
diagram

| s, E

’

Fa(T', )~ W,
Proof. For a pointed cellular map f: S™ — T,

panfo([S™]) = Bpfe([S™]) = 02 f.([S™]).

Hence

p'(a, B, @) ([(f,w)]) = o' ([(af, B(w) = L(S™D)])
= pof([S"]) + 0(B(w) — @£.([S"]))
= B(pf+([S™]) + Ow)
= Bp(((f,w)])-

84. Definition of Arithmetic K-groups
84.1. Triviality of the Bott-Chern form of a degenerate element

In this subsection we prove that the Bott-Chern form of a degenerate
element of 5,2 vanishes. We begin with the following lemma:

Lemma 4.1.  For any F € S,2, we have

Cub(soE) = 57! Cub(E),
Cub(s, E) = s Cub(E)

and if 1 <i<mn-—1, then we have
Cub(s;E) = 7; Cub(s; E),

where T; € &,, is the transposition of i and i + 1.
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Proof. In order to prove the lemma, we use [6, Prop. 4.5], in which all
faces of Cub(F) for E € 5,2 are described. Using this proposition, we can
show that

o7 Cub(soFE) = 0,
dY Cub(sgE) = 0] Cub(soE) = Cub(E).

Hence Cub(soE) = s; ' Cub(E). The second identity can be shown in a similar
way. The last identity follows from

&7 Cub(s;E) = 6{+1 Cub(s;E)

for 1 <i<mn-—1and —1 < j < 1, which can be shown also by using [6,
Prop. 4.5]. O

Let &,, denote the n-th symmetric group. For ¢ € G,, and an exact n-
cube F of a small exact category 2, let o F be an exact n-cube defined by
(0F )y, = F o (19100 (29510 (my - LT S, C ZCR2A be the subgroup generated
by exact n-cubes F such that 7, F = F for some integer ¢ with 1 <i <n — 1.
Set

Cub,, () = ZC,2A/(D,, + Sy).

Lemma 4.2.  We have 9S,, C Sp,—1. Hence Cub,(2) = (Cub,,(2),9)
becomes a chain complex.

Proof. Let F be an exact n-cube satisfying m,F = F. If k& < 4, then
NF = NnF = 110, F and if k > i+ 1, then NF = olnF = 1,0l F.
Furthermore, 7 F = F implies that 9] F = 9/, F. Hence

1
OF = Y > (-)FTelFes, .
k#ii+1j=—1

O

Lemma 4.3.  Let F be an exact hermitian n-cube on a complex algebraic
manifold M. For any o € &, there is a canonical isometry o(AF) ~ A(oF).

Proof. As seen in [6, §3], the emi-n-cube AF is written as A, - - Ao\ F,
where each A; is an endomorphism of the chain complex 25* (M), and it is easy
to see that o(A;F) = Ayiy(0F). Hence it is sufficient to show the existence of
a canonical isometry A\;A; ~ A;A;. For simplicity, we prove it only in the case
of n =2.
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For an exact hermitian 2-cube F = {E; ;}, AaA;F is given as follows:

E 1@k, 19E 1181 ——FE 1081 00L 9B, ——FE |, 8E],

| ! l

EO,fl@Ei,71 & Eo, @Ei,l - EO,O@ELO@E{M @Ei,l —’E(,),l @Ei,l

| ! !

/ !/ / !/ !
El,_1®E, - Elo®E, - By

where E; ;1s the same vector bundle as F; ; equipped with the metric induced
from Ejp . On the other hand, A\ A2 F is given as follows:

E 1, 1®LE 119E, 181 ———FE 10808, ®@L109E ;, ——E ;8 E],

! ! l

Eo,—1® Eo1 GBEi,fl @Ei,l - E0:0®E6,1 @Ei,o@Ei,l —’E(,),l @Ei,l

| ! |

!/ !/ ! !/ !
El,_1®E, - Elo®E, - Eyq

Hence an isometry AoA1F =~ A A2 F is given by appropriate permutations of
direct summands. O

Theorem 4.4.  The Bott-Chern form of a degenerate element of §n(M)
18 zero.

Proof. For an integer i with 1 <i <n — 1, let ¢; : (P*)" — (P})" denote
the involution interchanging the i-th and the (i 4+ 1)-th components. Then by
[13, Prop. 2.1] and Lemma 4.3, there is an isometry ¢} tr,,(AF) =~ tr,(ArF).
Furthermore, it follows from the definition of T;, that ¢;T,, = —T,,. Hence if
7 F = F, then

chn(F) = [ cloltna (W) AT,
@
= / t7(cho(try, (AF)) AT,,) = — chy(F),
@O
therefore ch,, (F) = 0.
By Lemma 4.1, the cube Cub(F) associated with a degenerate element

E e §n (X) is either a degenerate cube or a cube satisfying 7,F = F for some
1 <i < n—2. Hence we can say that ch,_1(E) = 0. O



620 YUICHIRO TAKEDA

84.2. Definition of higher arithmetic K-theory

Let X be a proper arithmetic variety. Let X (C) denote the compact com-
plex manifold consisting of C-valued points on X and Fu, : X(C) — X(C) the
complex conjugation. The real Deligne cohomology of X is the F;—invariant
part of that of X (C):

H3 (X, R(p)) = H{(X(C),R(p)) ==,

Hence if we set B
D"(X,p) = D"(X(C),p) ==,

then we have an isomorphism

By a hermitian vector bundle on X we mean a pair E = (E, h) of a vector
bundle F on X and an Fy-invariant smooth hermitian metric h on E(C). An
exact hermitian n-cube on X is an exact n-cube made of hermitian vector bun-
dles on X. Since the Chern form chg(E) is contained in &,D?P(X, p), the Bott-
Chern form of an exact hermitian n-cube on X is contained in &,D?**~"(X,p).

Let f]A)(X) be the category of hermitian vector bundles on X, S(X) the
S-construction of f]A’(X), and (/JLE)*(X) = Cub*(fﬁ(X)). If we set D, (X) =
@®,D?~"(X, p), then by Theorem 4.4 we can obtain a homomorphism of chain
complexes

ch: C.(18(X)]) <2 Cub, (X)[1] -2 D, (X)[1].

Definition 4.5.  The n-th arithmetic K-group K, (X) of X is the (n+

1)-th homotopy group of |S(X)| modified by ch:

Kn(X) = Fps1(IS(X)], ch).
Applying Theorem 3.3 to the present context, we can obtain the following;:
Theorem 4.6.  There is an exact sequence
K1 (X) = D1 (X) = Kn(X) = Kn(X) =0,
where Dy i1 (X) = Dypyr(X)/Imdop.

As we mentioned in §1, the 0-th arithmetic K-group has already been
defined by Gillet and Soulé in [9]. Let us recall their definition again.
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Consider a pair (E,w) of a hermitian vector bundle £ on X and w €
D1(X). Let Ko(X) be the abelian group generated by all such pairs modulo
the subgroup generated by

(B, ')+ (E",W") — (B, +W" —chy(&))

for all short exact sequences € : 0 — E/ — E — E7 — 0 and o', 0" € D1(X).
We denote by [(E,w)] the element of JACO(X) represented by a pair (E,w).
Strictly speaking, the group 5/%0()( ) is different from the one defined by
Gillet and Soulé up to a constant factor. This results from a difference of
Chern-Weil forms. In fact, they think of the Chern-Weil form of E as the

following real form:
(o (%))
r | ex .
P 2y —1
1

Hence the (p,p)-part of the above form is equal to an cho(E)®»). For
w=3 wp€ ®,D*~1(X p) = D1(X), let

2
Ow) = N

p

then ©(w) is a real form such that —©(ch;(€)) modulo Im d+Im 0 is the Bott-
Chern secondary characteristic class of €. Hence (E,w) — (E,O(w)) gives an
isomorphism from Ko(X) to Gillet and Soulé’s arithmetic Ky-group of X.

Theorem 4.7.  There is a canonical isomorphism

~

: Ko(X) = 71(|S(X)], ch) = Ko(X).

Q)

Proof. Since §1(X) is the set of all hermitian vector bundles on X and
So (X) = {*}, any hermitian vector bundle E on X gives a pointed simplicial
loop I5 : St — |S(X)|. Moreover, any short exact sequence & : 0 — E/ — E —
E" — 0 gives a 2-simplex Ag in §(X) whose faces are dgAg = E”, 01Ag = E
and 0,A¢ = E’. If we regard Ag as a cellular homotopy from I - I5m to I,
then chy ((Ag).[S* x I]) = ch;(&). Hence we have

(g7 - 1, 0)] = (I cha (€))]

in 7,(]S(X)|,ch). This tells that (E,w) (I, —w) gives rise to a homomor-
phism of groups

~

: Ko(X) — 71(|S(X)], ch) = Ko(X).

Q)
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Consider the following commutative diagram:

Ki(X) —— Dy(X) —2— Ko(X) —— Ko(X) —— 0

e e

Ky(X) —— Dy(X) — Ro(X) —— Ko(X) —— 0.

Q)
—
o

The upper sequence is exact by [9, Theorem 6.2] and the lower one is exact by
Theorem 4.6. Hence & is bijective by the five lemma. O

Let ¢ : X — Y be a morphism of proper arithmetic varieties. Then we
have a commutative diagram

C.(5(Y))) —— D.(Y)[1]

e s

C.(18(X))) —2— D.(X)[1].

Hence we obtain a pull back homomorphism

" Ku(Y) = K (X)

by @*([(f;w)]) = [(¢"f, ¢"w)].
Let

chy, : Kn(X) = Dp(X)
be the map introduced in §3.2, that is,
chy ([(f,w)]) = chn(f) — dpw,

where ch, (f) = ch(f.([S"*1])) € D,(X). We call it the Chern form map.
Applying Corollary 3.5, Corollary 3.6 and Theorem 3.8 to the present situation,
we can obtain the following corollaries:

Corollary 4.8.  There is an exact sequence
Kp1(X) 5 0HE " (X, R(p)) — Kn(X)
P

) Ko (X) @ Kerdn % ©HZ (X, R(p)) - 0,
p

where cl(x,w) = p(x) — [w] and p is the Beilinson’s regulator map.
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Corollary 4.9.  Let KM, (X) denote the kernel of the Chern form map.
Then there is a long exact sequence
= K (X) B oHY T THX R(p) — KMy (X) = Ko (X) 5
P
Moreover, KM, (X) is canonically isomorphic to the (n+1)-th homotopy group
of the homotopy fiber of
ch?: S§(X) — (D, (X)[1]),

where ch? is the map of pointed simplicial sets constructed from ch in the way
as shown in §3.3.

We conclude this subsection by calculating the higher arithmetic K-theory
of the ring of integers. Let K be an algebraic number field and Ok its ring
of integers. Let X = Spec Ok. Since X(C) is zero-dimensional, Ds,(X) = 0
if n > 0 and Do,y 1(X) is the recipient of the regulator map for Ks,11(Ok).
Hence the exact sequence of Theorem 4.6 implies

fA{QnH(OK) ~ Kont1(Ok)

and

Foo=id
0 — Coker <p : Kop+1(0Ok) — ( D CR(n)) )
o: K~
— Ko (Ox) — Kon(Og) — 0,

where Ko, (Of) is a finite abelian group and the Borel’s theorem [3] says that
Coker p is a quotient of a finite dimensional R-vector space by a lattice.

84.3. Arakelov K-theory

Let M be a compact algebraic Kéahler manifold with a Kahler metric hy,.
Let HE (M) be the space of real harmonic forms on M with respect to hys and
FHP9(M) the space of harmonic forms of type (p,q). Set

HHM)(p—-1)n @& H(M), n<2p,

n p'+q'=n—1
Hp (M, p) = p'<p,q’'<p
G (M) (p) N HPP (M), n = 2p.

Then the short exact sequence

0— FPH" "(M,C) —» H""(M,R(p — 1)) — H}(M,R(p)) — 0
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for n < 2p or the short exact sequence
0 — H2P(M,R(p)) — FPH*(M,C) — H*(M,R(p — 1)) — 0
yields an isomorphism
Hi (M, R(p)) ~ Ha (M, p)

for n < 2p.

Let us return to the arithmetic situation. An Arakelov variety is a pair
X = (X, hx) of an arithmetic variety X and an F,-invariant Kihler metric
hx on X (C). We now assume that X is proper over Z. Let 3, (X) denote the
space of harmonic forms with respect to hx in D, (X), that is,

3a(X) = @365 (X(C), p) =
p

Then there is an isomorphism H,,(D.(X),dp) ~ H,(X), which implies the
following:

Proposition 4.10.  There is an orthogonal decomposition
Kerdp =Imdp & H,(X)
in Dp(X).

Definition 4.11.  The subgroup K,(X) = (ch,,)~! (H,(X)) of IA(n(X)
is called the n-th Arakelov K-group of X = (X, hx).

Theorem 4.12. There is an eract sequence

Kn1(X) B @, HY "X, R(p) — Kn(X) = Kn(X) — 0.
Proof. This is derived from the fact that [(0,w)] € K, (X) if and only if
dpw = 0, which follows from Proposition 4.10. O

Kiinnemann has constructed a section of the inclusion from the Arakelov
Chow group to the arithmetic Chow group in [12]. We adapt his method to
the inclusion K, (X) — I?n(X) Let H : D, (X) — H,(X) be the orthogonal
projection with respect to the Lo-inner product. Let (f,w) be a pair of a
pointed cellular map f : S"*! — |S(X)| and w € Dyy1(X). Then we can
take wy € Dp+1(X) such that chy,(f) — dpwy is harmonic and H(wy) = H(w).
Existence and uniqueness of wy follow from Proposition 4.10.
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If (f,w) is homotopy equivalent to (f’,w’), then
chy (f') —dp (W —wy — w) = chyp(f) — dpwy

and H(w' —wp —w) = H(w'). Hence wj = ' — wy — w, therefore (f,wy) is
homotopy equivalent to (f”, wjli) Hence we can obtain a section

o K (X) = K,(X)

by o([(f,w)]) = [(f,ws)]. The map o is called the harmonic projection of

~

Ka(X).

85. A Product Formula for Higher Bott-Chern Forms
§5.1. A product formula

We begin this section by recalling the multiplicative structure on D™ (M, p)
for a compact complex algebraic manifold M introduced in [4]. Let

o:D"(M,p) ® D™(M,q) — D" (M,p + q)
be a homomorphism given by
zoy = (—1)"(0zP~ 1) —gr(n=PP=DY Ay 4 g A (Byla b D) Gy (m—aa—1))

ifn <2 andm < 2¢and zey =z Ayif n = 2p or m = 2¢. Here z(®F)
is the («,)-part of the differential form z. Then it satisfies dp(x @ y) =
dprey+ (—1)"z edpy and x ey = (—1)""y e . Moreover, it induces the
product in the real Deligne cohomology defined in [1].

The higher Bott-Chern forms are not compatible with products, that is,
chy4m (F ®G) is not equal to chy, (F) e ch,, (G) in general. But since the Beilin-
son’s regulator K, (M) — H.%pin(M,]R(p)) respects the products, it is quite
natural to expect that the difference chy,m(F @ G) — chy, (F) e ch,, (G) is writ-
ten in terms of exact forms.

Let us introduce another operation on D™(M,p). For integers ¢ and j
satisfying 1 <i<mand 1 <j <m, let

i—1
aZ}m —1_ 2(n-;7n)_1 Z (n+mn:i;j+1) (i-&-i—l),

a=0

where (§) = % When b < 0 or a < b, () is assumed to be zero.
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n,m __ n,m nm _ ___mmn
Lemma 5.1. We have ;5 = =0 anda” =—a;;".

Proof. Let us recall the following formula on binomial coefficients:

a

> Gl () = ()

a=0
Using this identity, we have
i—1
@ T g = 2 2075 TN () ()
a=0

n—i

n+m 1§ : 2+] 1 n+m 71— j+1)

a=0
L n
_ o _ ofntm\— n+m—i—j+1) (i+j—1
=2-2("") " > ("I (Y
a=0
=0.
Furthermore,
J—1
mmi n+m -1 m+n ] 1+1 j+i—1)
a. ;. =
75t [
a:O
m

= L a() Y () )

[e3%

I
.

= -14+2("m)

1]z

(nia) G-

Q
I
<

If we put 6=174+j—1— «, then

i—1

A = L a() Y (M ()
B=0
n,m

=G -

O

For x € D*~"(M,p) and y € D2~™(M,q) with n,m > 1, we define
another operation z A y as follows:

TAYy= E aZ;mm(p—n+z—17p—l) /\y(q—mﬂ—l,q—J).
1<i<n
1<j<m
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Ifn=0o0rm =0, then x A y is defined to be zero. The first claim of Lemma 5.1
implies that x A y € D2PTO—n=m=1L(Af 5 4 ¢) and the second claim implies
that x A y = (=1)vm*ntmy A o

Theorem 5.2.  Let F (resp. G) be an exact hermitian n-cube (resp. m-
cube) on M, then

chpym(F ®G) — chy,(F) @ ch,, (G) = (—1)" dp (ch,, (F) A ch,,(G))
+ (—=1)"chy,—1(0F) A chy(G) — chy, (F) A chyy,—1(0G).

85.2. Proof of Theorem 5.2

Let us first prepare some notations. For differential forms wq,...,u, on
M, let (uh...,un)("’ﬁ) be the («, 8)-part of duj A -+ A du,. When u; is a
(pi, pi)-form, let

(U17 R un)(l) = Z(uh LI} un)(p+i’p+n7i)
p

and
Sh(ut, .. up) = (i — 1)(n — i) Z D) g (ug, . Ty e )Y,

Then S (u1,...,u,) € D,(M) if u; € D(M). If we take u; as log|z|?,
Si (log |13, .. .,1log |2,|?) is nothing but S? introduced in §2.4.

Lemma 5.3.  Ifw; is a (p;,p;)-form on M, then

DS (w1, ... uy) = il(n — i) (ug, . .., un)®

+ (n—1) Z(—l)aaguaS;_l(ul, ey Ty e ey U

a=1
and

S (ury . ytp) = (i — D0 — i+ 1) (ug, ..., uy) Y

n

— (i = 1)) (~1)*00uaSi T (U1, T, ).

a=1

Proof. We have
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NE

BSE (ur, ... upn) = (i — Ditn — i)' S (=1)°+19 (ua(ul, . ,@,...,un)@—D)

a=1
= (i—D!(n—0) (=1)* M 0ua(ur, ... o, .. up) Y
a=1
+ (=D n—i)! > (=1)*Tug
a=1

x> (=1 00up(ur, . T, Ty )T

<«
+ ) (=10 (ur, ... T U )Y
a<f
=il(n— ) (ug, ..., u,)?
+ (i — 1Y Z 1) 90ug

X )y (U e Ty e UGy )Y
Z( « 5 s Uarsy s U3, s Un

a<f
+Z “Ue ( ul,...,@,...,i;,...,un)(i*l)
B<a
n
= il(n — i) (ur, ..., un) D + (n =)D (=1)P00usS},_(ua, ..., 05, ... up).
B=1
The second identity can be proved in a similar way. [l

Lemma 5.4.  For (p;,p;)-forms u; and (g;,q;)-forms v;,

k
Sner(ula sy U, U1, 7’Um)
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Hence
n+m
Z(—l)k5§+m(u1,...,umvl,...,vm)
k=1
—i—)i+j-1)! _, ,
_Z Hﬂ n+m Z])(Z+] ) Sl( 1 "7un)/\(vl7"'7vm)(j)
I (n—9)!(i—1)!
0<j<m
(n+m—i—j)(i+j—1)! ; ;
+ 1)t T (1, o) D AST (01, .., U).
Oén (m—=j)(G—1)!
1<j<m

Proof. We have

S (UL, Uy VT, )

n
:(k'—l) n+m— k Z oz+l ula-~-7a;7~-'7un7vl7"'avm)(k71)

X (Uty ey Un,y Uty ey UG, e ey Uy

=(k—1D!(n+m—k)! En:(—l)““ua

a=1
k . .
X <Z(u1,...,ﬁ;,...,un)(11) /\(vl,...,vm)(k’))
i=1
+ (= 1)"(k = Dln +m — k)! Z 1) g
k .
Zul,...,u (k— J)/\( ,@,...,vm)o_l)
j=1
k
k=D!(n+m—k)! oi 7
((Z)l()ﬁs (ul,...,un)/\(vl,...,v )(k )
i=1
k
n k—1)!(n+m—k)! —4 i
+(-1) %(ul,...,un)(k DNSI (01, V).
j=1
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If we assume that u; and v; are in Dq (M), then by Lemma 5.3 we have

n m
d [ D (=1)'Sh (. un) A (=18 (v, vm)
i=1 j=1
= Z (=)™ a; " dS), (u, . un) A S (v1, -, Um)
1<i<n
1<j<m
+ (=1t Z (—1)i+jaZ;mS%(u1, o Ug) NS (V1. )
1<i<n
1<j<m
= Z (—1)"4l(n — MNa™ —al it ), . ) DA ST (01, o)
0<i<n
1<5<m
+ 3 ()M dal + ialT)
1<i<n—1
1<j<m

x(Z( 1)*00uqS? (ul,...,@,...,un)As;(vl,...,um)>

a=1

+ (=DM Y (D) m = ) e = ag)

1<i<n
0<j<m

X 8% (ug, .. un) A (VL. ) )
+ (-1t Z (=) ((m = j)a;™ + jai )

1<i<n
1<j<m—1

x | S8 (ug,. .. up, Z 55)61;55’ (1,08, o)

n+m—i—j+1) _

Let us compute the coefficients of the above expression. Since ( o

(R () and () = (L) + (),

n—o n—1l—a a—1

i—1

afy =A== 2 Y (I ()
a=0
)
—1+20) S () ()
a=0

=207 () (Y

n n—
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for1<i<n-—1and
i—1

af = apy = 120" Y (T ()
a=0

i—1
n+my—1 n+m—i—j\ (i+Jj
=12 Y ()
a=0
= 20"\ (TR ()
=2 )

n m—j J

for 1 < j <m — 1. It follows from the definition of a ™ and Lemma 5.1 that

mo_ 1— 2(n+m)—1 (n-l—m—j)7

al,j n n
= 1 a(r T (),
= a() T (),
=12 7 ),
Moreover, by Lemma A.1 we have
(n - 7’) + al-‘rl ,J
i—1 i
=n- 2("27")71 <(” =) D (I () i ) () (T )>
a=0 a=0
i—1
=n—2n("i) Y () ()
a=0
. n—1m
na; ;
and

:m_2(n47rlm)—1 Gm_j)Z(n+mniaj+1 1+] 1 +]Z n+m i— ] 2+]>

n+m—1y—1 n+m—i—j\ (i+j—
=m—2m (") N () ()
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These computations imply that

n n

d [ D (=1)'Sh (. un) A (=18 (v1, . vm)
i=1 j=1
_ 2(n<i;m)—1 Z (_1)i+ji!(n . i)!(nJr:Ll:iifj) (i+];71)
0<i<n
1<j<m

X (uq,.. .,un)(i) A Sﬂﬁ(vl, cee s Um)

n

+n Z 1) Higl > 1 m (—1)*00uq
1<i<n—1 a=1
1<j<m
X SL (Usy e Ty Un) A ST (V1 )
2= ()T ST (S m - (i) (e
1<i<n
0<j<m

xSi(uh...,un)/\(vl,... vm)(j)
+ (=)™ m Z -1) HrJanm Y0 (ug, ..y up)

1<i<n
1<j<m71

A Z 15000557 (1., T3, -+, Um)

-y (—1)jn!(u1, ) O A ST (1, )

1<j<m
— > (=Dl un) ™ A ST (v, )
1<j<m
= > (D) mIS () A (01, v) )
1<i<n
— Z (=)™ mISE (uy, . un) A (V1 Um)(m)
1<i<n
o n+m\ —1 i+j (n+m—i—j)!(i+j—1)!
=2("7) Y (DT,
0<i<n
1<j<m
X (U, .. un) D A ST (01, Um)
+n Z 1)l 0™y " (—1)*00uq
1<i<n—1 a=1

1<j<m



HIGHER ARITHMETIC K-THEORY 633

X S (Ut Uy Un) NS (01, Um)
n -1 i+5 (ntm—i—j ) (i+j—1)!
+2(_1) (n—;m) Z (_1) +i +(n7i){()i(7f—)]! )
1<i<n
0<j<m
><Si(ul,...,un)/\(vl,...,vm)(j)
n™tHm Z D a8 (uy, L ug)
1<i<n
1<j<m—1

Z 12000557, (01,05, -, Um)

- (= Sh(uty ey up)F(=1)"OS (U, .y un)) A ST (V1. v)
1<j<m
—Z DS (ug, . un ) A (DS, (U1, v+ (=1)™OST (V1. v)) -
1<i<n

Applying Lemma 5.4 to the above, we can obtain the following:

Proposition 5.5.  For u; € D1(M) and v; € D1(M), we have

n m
Z(—l)iS,iL(ul, ceyUp) A Z(—l)ijn(vl, ey Um)
i=1 j=1
1n+m
=2(=1)" (") T Y (1ESE (st vr )
k=1
n
+n Z Dl H Ny (1) 00uq
1<i<n—1 a=1
1<j<m
X S (Uny e Uy Un) AST (01, U)
D™ m Z D a8 (g, )
1<i<n
1<j<m—1

/\Z 12000557, (01,05, .., Um)

+ (1)t (Z(—nis,@(ul,...,un)) o [ D (-1)Sh(ve, ... vm)

i=1 j=1

Let us return to the proof of Theorem 5.2. We may assume that F and
G are emi-cubes. For s < t, let m : (P!)! — (P!)® denote the projection
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given by (z1,...,2) — (z1,...,7s) and let m : (P1)! — (P!)* denote the
projection given by (z1,...,7;) — (T4_sy1,...,2¢). Let u; = log|z|? for i =
L,...,n and v; = log|z,4;|? for 5 = 1,...,m. If we regard 99log|z]|? as
—27T\/—_1((5{Zi:0} — 0{2,=00}), then the above identity is still valid as currents
on (P!)". Hence we have

dp (chy, (F) A chyp(G)) = —d(chy, (F) A chy(9))

(71)n+m+1

T 4nlml(2n/—1)ntm /(]p1)n+m 77 cho (try F) A 75 cho(trm G)

Ad <i(1)iﬁs§,>a zm:( 17587,

i—1 j=1
1y N v
= 2rm)iEry D / cho(trnm (F @ G) A Y (=1)"Shp
(]P)l)n#ﬂn =1
1 n+m+41
+ 1 1)'(m|()277\/—)n+m7 / cho(trn4m—1(0F ® G))
(P1)n+m—1
A Z H"™*ais bmasgi  AmSI
1<i<n—1
1<j<m

(—1)™
T D@D 1 /(]Pl)wm1 cho(trn4m—1(F ® 9G))

i4j n,m— 1 * i * o
A E (-)"™a; 1S, Am3ST
1<i<n
1<j<m—1

SV ho (b o (F
+ 4An!m!(2m/—1)ntm /(]P)l)n+m C O( rn+m( ® g))

A (Z(—niw;s;)- > _(~1)m3s,

i=1 j=1
= (—1)"" chypym(F @ G) + ch,,_1(0F) A ch,,(G)

+ (=)™ ch, (F) A ch,y,(0G) + (—1)™ ch,, (F) o chy, (G).

86. Product
86.1. Notations on bisimplicial sets

A bisimplicial set is a contravariant functor from the category of pairs of
finite ordered sets to the category of sets. The product S x T" and the reduced
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product S AT of two simplicial sets .S, T are examples of bisimplicial sets. The
topological realization |S| of a bisimplicial set S is defined in a similar way to
that of a simplicial set.

For a bisimplicial set S, let A(S) denote the simplicial set given by [n] —
S([n], [n]). Then its topological realization |A(S)] is a subdivision of |S|. Hence
the identity map |S| — |A(S)] is cellular, although the inverse is not.

86.2. Product in higher K-theory

In this subsection we review the product in higher algebraic K-theory by
means of the S-construction [15]. For a small exact category 2, let S, S, be
the set of functors

E: Ar[n] x Ar[m] — A, (i <j,a <B8) = Eij)x(a,8)
satisfying the following conditions:

(1) Eiiyx(a,p) = 0 and B j)x(a,a) = 0.

(2) For any i <j <k and o <0, EGj)x(p) = Eirx@p) = EGrx(as
is a short exact sequence of 2.

(3) Forany i < j and o < <, Eijyx(a.8) = Eig)x(am = Eij)x(ar) 1
a short exact sequence of 2.

Then ([n], [m]) — S,S»2 is a bisimplicial set. Let us denote it by S2. The
natural identification S51.9,,2 = 5,,2 yields a map of bisimplicial sets

ST A SA — S,

and its adjoint map |SA| — QSPA| is proved to be a homotopy equiva-
lence.
When 2 is equipped with tensor product, we can define a map of bisim-
plicial sets
m:SANSA— S@A

by m(E, F) ¢ jyx (a,3) = Fi,j ® Fa,s. This induces a pairing
Mt T 1 (|SAN) X Tyn1 (|SA]) = Tonpmp2(|SA]).

Combining this with the isomorphisms K, () ~ m,11(|SA|) =~ m,42(]SPA)
yields the product in higher algebraic K-theory K, ().
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86.3. G-construction

In [8], Gillet and Grayson have constructed a simplicial set G2 associated
with a small exact category 2 that is homotopy equivalent to the loop space of
the S-construction S2A. In this subsection we recall their construction.

Let G2 be the set of pairs (E*,E~) of ET,E~ € 5,12 with gET =
doFE~. Then [n] — G,2 becomes a simplicial set by 9y (E+, E~) = (O 11 ET,
Ok11E7) and sg(ET,E7) = (sg1 BT, sp1E7). We fix 0 = (0,0) € Go2 as
the base point of G.

Let A[l] be the simplicial set represented by [1]. Let ¢ denote the element

of A[1],, given by
0, i<k,
(i) = .
1, 1>k.

7

Then A[1], = {to,t1,---,tn+1}. Let
XT:‘L: : A[Hn X GpA — S,

be the maps given by

0o E*, k=0,
XTiL(Lk’(E+7E_)) = { 0

(so)" M0 E*, k>1.

Then xT = {x:}: A(A[1] x GA) — SA are maps of simplicial sets such that

xF({0} x GA) = x and x| {1}xaa = X |{1}xca-
Let T" be the simplicial set given by the following cocartesian square:

A[l]
{0 U {1} < >T1.
All]

We fix 0 as the base point of T'. The topological realization of T is the
barycentric subdivision of the circle S* = I/9I. Gluing the maps x*, we
obtain a map of simplicial sets

X AT AG2) — S

It is the main theorem of [8] that the adjoint map |G| — Q|S| to |x]| is
a homotopy equivalence . Therefore we have an isomorphism m;(|G|,0) ~
K; ().
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We next introduce a description of the product in K-theory by means of
G-construction. Let

GG ={(ETT BT B~ E=7); E** € 5,15, 1%,
QETE = 0B~ F,0)EFT = 9yE* 7},

where 9y is the boundary map on the first factor of the bisimplicial set S22
and 9] is the boundary map on the second factor. Then ([n], [m]) — GG,
becomes a bisimplicial set. Let us denote it by GPU. Let R: G, — GoG,2
be the map given by R(ET, E~) = (E*,E~,0,0). Then it is shown in [8] that
R induces a homotopy equivalence R : GA — G,

Let us define a map of bisimplicial sets

m&  GAN GA — G

by m¢(E,F)** = E* @ F* for E = (ET,E") € G,Q and F = (F*,F~) €
G 2. Then the pairing

m& 1, (|G, 0) X 70 (|G|, 0) = g (|G, 0)

induces the product in K, (2).
Finally, let us define an exact cube associated with an element of G2 or
G2, The map x yields a homomorphism of chain complexes

Cub : C,(|G|) 2= C, (|SAN[~1] £ Cub., ().

Let us define Cub(E) € Cub,, () associated with F = (E*,E~) € G, as
the image of [E] € C.(|G|) by the above map. In other words, Cub(E) =
Cub(E*) — Cub(E~). Similarly, we define an exact (n + m)-cube associated
with £ = (E**) € G,,G,,2 by

Cub(E) = Cub(ET") — Cub(E*T™) — Cub(E~ ") + Cub(E~ "),

where Cub(E**) is the image of the element of E** € S, 15,, 12 by the

homomorphism
Sn+1Sm412U — Cub, (Sp4+12A) — Cub,, (Cub,, () = Cub,m ().

When E = (E*%) is degenerate, the associated cube Cub(E) is zero in Cub, ()
by Lemma 4.1. Hence E = (E**) — Cub(E) induces a homomorphism

Cub : C,(|GPA|) — Cub, ().
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Proposition 6.1.  The following diagram is commutative:

Cub ® Cub
—_——————>

C.(1GA)) ® C.(|G]) Cub, () ® Cub, ()

m*G 24
C. (G — o Cub..(21)

R. id
C, (|G| S| LE Cub, (2).

§6.4. Pairing f]ACO X I?n — I?n

For a proper arithmetic variety X, let a(X) = G(UAJ(X)), the G-con-
struction of the category of hermitian vector bundles on X. Then there is

a homomorphism of chain complexes

ch: C.(|G(X)]) <8 Cub,(X) <25 D,(X).
Proposition 6.2.  The map x : A(T* A G(X)) — 5(X) yields an iso-
morphism
X+ : T (|G(X)], ch) ~ 711 (|S(X)], ch)
by [(f,w)] — [(X(AAf), —w)]. Hence forn > 1 there is a canonical isomorphism

K(X) = Fu(|G(X)], ch).

Proof. Tt is obvious that the map (f,w) — (x(1 A f),—w) gives rise to
a homomorphism of the modified homotopy groups. Consider the following
commutative diagram:

41 (|G(X) )—"—Dn41(X) 7 (IG(X)], ch) T (|G(X)]) ——0

|- p |- |x [

Trr2(18(X))) D Tt (IS(X)])

D1 (X) ———Fnr1(|S(X)], ch)

0,

where the upper and lower sequences are exact by Theorem 3.3. Hence the
proposition follows from the five lemma. O

If we set G (X) = G(Q)(fJA’(X))7 then we have

ch: C,.(|GP (X)) 28 Cub, (X) -2 D, (X)



HIGHER ARITHMETIC K-THEORY 639

and the following square is commutative by Proposition 6.1:

C.(1GX)) —— D.(X)

lR* J{id
C.(GP (X)) —F— Du(X).
Hence R induces an isomorphism
R, : 7, (|G(X)|, ch) ~ 7, (|G®(X)|, ch).
The product JACO(X) X JACO(X) — IJACO(X) given in [9] is written as follows:
[(E,w)] x [(F,7)] = [(E® F,chy(E) e T+ w e chy(F) +wedpT)],

and it makes IJACO(X ) a commutative associative algebra. To construct product
in higher arithmetic K-theory, we will use the G-construction. However, since
we have not had any expression of K 0(X) by means of the G-construction, we
have to distinguish the cases including I/(\'o (X) from the general case.

Let (E,n) be a pair of a hermitian vector bundle E on X and n € @1(X)
and let (f,w) be a pair of a pointed cellular map f : S™ — |G(X)| and w €
Dpy1(X). Let us define a product of these pairs by

(E,n) x (f,w) = (E® f,cho(E) e w +n e chy(f) +n ¢ dpw),
where @ f: 5™ 4 |G(X)] £ |1G(X)].

Theorem 6.3.  The above product gives rise to a pairing

x 1 Ko(X) x Knp(X) — Kn(X).

Proof. To prove the theorem, we have to show that (E,n) x (f,w) is
compatible with the equivalence relations for Ko(X) and K,,(X). Let us first
show the compatibility with the relation for K, (X).

Let H : (S™xI)/({*}xI) — |G(X)]| be a cellular homotopy from (f,w) to

(f',w'). We write chy,41(H) for choH,.([S™ x I]) € Dy11(X). Then ' —w =
(—=1)"*Lch, 1 (H) and the map

EoH: (5" x D/({x} x I) %1G(x)| 22 1G(x)|

is a cellular homotopy from E ® f to E ® f'. Furthermore, by Proposition 5.2
we have

ch, 1 (E® H) = cho(E) e ch, 1 (H) = (—1)"" chy(E) & (' — w).
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This tells that E ® H is a cellular homotopy from (E,n) x (f,w) to (E,n) x
().

Next we show the compatibility with the relation for UACO(X ). Let £:0 —
E — F — G — 0 be a short exact sequence of hermitian vector bundles on X.
Consider the following 1-dimensional subcomplex of |G(X)|:

€1 €2
(E®G,0) (FoG,G) (F,0),
where
EeG — FeG 0 —G
€1 = l l )
G G
F——FaG 0——G
l l
G G

We denote by v¢ : I — |G(X)| a cellular map such that g (I) = ereyt
For a pointed cellular map f: S™ — |G(X)], let

H : (8"xD)/({s}xT) 5 (Ix8")/(Ix {x}) “2 |G(X)|AIG(X)| ™ |G (),

where T'(s,t) = (t,s) for t € S™ and s € I. If Hyo(s) = H(s,0), then Hy is
written as

LEEDE/\id

n i A 5 Aoy mE A
S" S |G| TFS G| AIG(X)] = 1EP (X)),

where 155 1 S0 — |G(X)| is the pointed map determined by (E & G,0) €
@O(X). Since the diagram

~ e Nid ~ ~

IGX)| —— [G(X)[A|G(X)]

| E=ore [ me
R

GX)| ——  1GAX)

is commutative, we have Hy = R(E®G)® f). If H,(s) = H(s, 1), then we can
show that H, = R(F ® f) in the same way. Moreover, Proposition 5.2 implies
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that

chns1(H) = (=1)" chns1(m$ (ve A ([ x ™))

(—1)" by (1) @ clin(f)

(=1)" chy(€) e chn(f)

modulo Imdyp. Hence H is a cellular homotopy from (R((F@@)@ f)schi(&)e
ch,(f)) to (R(F ® f),0). Since R, : T,(|G(X)|,ch) — 7,(|G? (X)],ch) is
bijective,

[(E®G)® f,chi(&) e chy(f))] = [(F & f,0)]

in 7, (|G(X)], ch).
The short exact sequence € gives the relation

[(E,0)] +((G,0)] = [(F, — chy (€))]
in UACO(X). We have

[(E,0) x (f,w)]- [(G,0) x (f,w)] = [(E® f)- (G® [), (cho(E) + cho(G)) e w)]
and
[(Fv - Chl(g)) X (f7 w)]
= [(F ® f,cho(F) ew — chy (&) e chy, (f) — dp chy (&) e w)]
=[(E® Q) ® f,(cho(E) + cho(G)) e w)]

in %n(|@(X)|, ch). Hence Theorem 6.3 follows from Lemma 6.4 and Lemma 6.5
below. |

Lemma 6.4.  For a pointed cellular map f : S™ — |G(X)| and two
hermitian vector bundles E,G on X,

(EeofHeo @ f),0]=[((Eef) (G f)0)
in 7, (|G(X)|, ch).
Proof. Let us first describe the map (E ® f) @ (G ® f) explicitly. Since
f is a pointed cellular map, the map

g ‘g gn % " (E®fM>G®f) |A(G(X) % @(X))l
is also a pointed cellular map. Moreover, the direct sum of hermitian vector

bundles induces a map of simplicial sets @ : A(G(X) x G(X)) — G(X). Then
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the map (E® f) ® (G ® f) is expressed as the composition of these two cellular
maps, that is,

ERf)x(GRf) ~
—

Fef)oGof): s smxs [AG(X) x G(X))| = |G(X)].

Consider the homomorphism of chain complexes
chach: C,(|AG(X) x G(X))]) = Du(X) ® D, (X)
given by (E, F) — (ch,(E), ch,(F)) for E,F € G,,(X) and the inclusion
iny (resp. ing) : G(X) — A(G(X) x G(X))

given by inj(t) = (¢,*) (resp. ina(t) = (x,t)). Then we have the following
commutative diagram:

~ ch
CL(IG(X)]) — D.(X)
linl* (resp. ina,) J{inl (resp. ing)
CLIAG(X) x GX)]) =52 Du(X) @ Du(X),

where the right vertical arrow is inj(w) = (w,0) (resp. inz(w) = (0,w)). On
the other hand, the projection

~ ~

pry (resp. pra) : A(G(X) x @(X)) — G(X)

given by pri(z,y) = x (resp. pra(z,y) = y) is also a map of simplicial sets and
we have the following commutative diagram:

C.(AG(X) x G(X)))) 22D D (X) @ Du(X)

lpm* (vesp. pra.) lpm (vesp. pra)
~ h
C(G(X)) — D.(X),
where the right vertical arrow is pri(w,7) = w (resp. pra(w,7) = 7). Hence we
have four homomorphisms between the modified homotopy groups

PTjs

— 7 (|G(X)|,ch)

My,

Tu(|A(G(X) x G(X))|, ch & ch)

that induce an isomorphism

Fu(|G(X)], ch) ® 7, (|G(X)], ch) =~ 7, (|A(G(X) x G(X))|,ch & ch)
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—

by (2,9) — in1,(x) - ing.(y). The inverse of it is pri, & pra,. Since

L((Ee f) x (Ga [)A,0)]) =[(E® f,0)],
2. ((E @ f) x (G® [)A,0)]) =[(G® f,0)],

we have
(B f) x (G ))A,0)] = in((E® £,0)]) - ina.([(G ® £,0)])

in 7, (|A(G(X) x G(X))|,ch & ch).
The commutative diagram

C.(IAG(X) x G(X))]) 22 D, (X) @ Du(X)

Je- [+
-~ ch
C(IG(X)) — D.(X)
implies a homomorphism

Tu(|A(G(X) x G(X))|,ch@ ch) — 7, (|G(X)], ch).

Since @*Z/n\]* is the identity homomorphism, we have

(Eefe@e/f)0]=a. ((Fef)x (@ [)A0)
=[(E® f 0)]-[(G @ f,0)]
=[(E®f) (Ge f),0)].
Lemma 6.5. In the same notations as in Lemma 6.4, we have

(EeG)e f,0]=[(Ee/f)e (G o f),0)

in 7,(|G(X)], ch).
Proof. Consider the following diagram:

AG(X) x G(x)) E2XEO) A (G(X) x G(X))

B e

é(X) (E®G)® R

G(X) L, GOX).

643
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Let ag : @(X) — @(2)(X) be the upper map of the diagram and a; the lower
map. Then for P = (P*) € G,,(X), ap(P) and a; (P) are elements of GoG,,(X)
written as follows:

a(P)=(E@ P e (GePh),(EeP ) (Ge P),0,0),
a(P)=(Ee@) P (EaG)® P ,0,0).

The canonical isometries (E® P*) @ (G® P*) ~ (E®G)® P* give an element
of G1G,(X) whose Bott-Chern form is zero. Collecting these elements for all
P = (P*) provides a map of bisimplicial sets ¥ : A[1] x G(X) — G (X) such
that ¥(0,s) = ao(s) and ¥(1,s) = a;i(s). Therefore for any pointed cellular
map f:S8" — |G(X)],
n T n id x f =
H: (S 1)/ ({x} x I) = (I x S™)/(I x {x}) == (I x |G(X)])/(I x {+})
16?0
@)D (G®f)) to R(E®G)® f) such that

is a cellular homotopy from R(( to
(X)|,ch) — 7, (|G®(X)|,ch) is bijective, we

chyy1(H) = 0. Since R, : 7, (]
have

Q)

(E® e (@ /f),0l=[((EeG)® f0)

We can define a pairing K, (X) x JACO(X) — K,(X) by
[(f. )] < [(E,n)] = [(f @ E, (=1)" chn(f) @ n + w @ cho(E) + w ¢ dp1)],

where f ® E : S" ER |G(X)] o5 |é(X)| Combining these pairings with the
isomorphism & : Ko(X) ~ Ko(X), we can obtain a pairing

~

Xt Kp(X) X K (X) = K (X)
when n =0 or m = 0.
86.5. Pairing of higher arithmetic K-theory
In this subsection we define a pairing K, (X) X K (X) — Kpim(X) in
the case of n,m > 1. For two pointed cellular maps f : S™ — |G(X)| and

g: 8™ —|G(X)], let

fxg:smm = gm A sm L9 Gx0)| A |G 25 |G (X)),
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For w € Dyy1(X) and 7 € 5m+1(X), a product of pairs (f,w) and (g,7) is
defined by

(f,w) x (g,7)
=(fxg,(—1)"ch,(f) o7 +wech,(g9)+wedpr+ (—1)"ch,(f) A ch,,(g9)).

Proposition 6.6. The above product gives rise to a pairing

M : Fa(|G(X)], ch) X T (IG(X)], ch) = s (|G (X)), ch).

Proof. For a cellular homotopy H from (f,w) to (f/,w’), let H be a
cellular map given by

H: (S™™ x 1)/({x} x T) — |GX)| AGX)] ™5 |G (X)),

where the first map is (s1, $2,t) — (H(s1,t),9(s2)) for s1 € S™,s9 € S™
and t € I. Then H is a homotopy from f x g to f’ x g. Theorem 5.2 and
Proposition 6.1 imply that

chy,pm1(H )
= (=1)™ chp i1 (m$ (H x g).([S™ x T x 5™]))
= (=1)"ch, 41 (H) @ ch,,(g) + (—=1)"*™ L ch, (OH,([S™ x I])) A ch,,(g)
= (1) (W — w) e chy(g) + (1) (chy (f1) = chn(f)) A chin(g)
= (1) (W e chyy(9) + (=1)" chn (f') A chi(g))
— (=)™ (W e chp(g) + (=1)" chy(f) A chin(g))

modulo Im dp. This tells that the map H is a cellular homotopy from (f,w) x
(9,7) to (f',w') x (g,7).
If H' is a cellular homotopy from (g, 7) to (¢’,7’), we can show in the same

way that the map
ndm f/\H -~ m® | 5
("™ 1)/ ({#} x I) == [G(X)| A G(X)] 7= |GP(X))
is a cellular homotopy from (f,w) X (g,7) to (f,w) x (¢', 7). O

Definition 6.7. For n,m > 1, we define a product in higher arithmetic

K-theory
X Kp(X) X Kip(X) = Kpgpm (X)

by the following homomorphism:

mS

Fu(|G(X)], ch) X Fpn (|G (X)], ch) =5 R (JGP (X)), ch)

-1

R~ ~
B R (1G(X)], ch).



646 YUICHIRO TAKEDA

Proposition 6.8.  The Chern form map respects the products, that is,
we have

chy+m (z X y) = chy(z) o chy,(y)
forz € K,(X) and y € Kn(X).

Proof. Assume n,m > 1. Define the Chern form map on 7, 1, (|G (X)),
ch) by

chpym ([(f,w)]) = Chn+m(f*([5n+m})) + dpw € Dy (X).

Then chn+m(1§*(x)) = chyqm(z) for any x € %ner(\CA?(X)Lch). Hence it is
sufficient to show that chy, 1., (Mm% (z,y)) = ch, ()  ch,, (y).
For z = [(f,w)] and y = [(g,7)], Theorem 5.2 implies that

s (E(,9)) = i x )+ (—1)" cha(f) o 7+ o chn(9)
twedpT + (=1)" chy(f) A chin(g))
= (ch,(f) + dpw) e (ch,,(g) + dpT)
= ch,(z) e ch,, (y).

The case where n = 0 or m = 0 is trivial. [l

Remark 1. The map Cub : Sp1S,11(X) — @)n+m(X) gives rise to
a map

Cub : C.(1S@(X)|)[~2] — Cub,(X)
and the tensor product of hermitian vector bundles induces a map
C.(ISX)N[=1] @ Cu(S(X)N[-1] = C(| SO (X)])[-2].

But both of them are not compatible with the differentials. So it seems impos-
sible to the author to define a product in K, (X) by using the S-construction.

Remark 2. In [6], another complex %y (X, p) computing real Deligne
cohomology and higher Bott-Chern form with values in this complex are intro-
duced. In the same argument as in §4.1, we can prove that this Bott-Chern
form of any degenerate element of S (X) is zero. Hence we have

chrw : CL(|S(X)]) — %-’“%%*(Xm%

and we can define a new version of higher arithmetic K-theory:

K™W/(X) = fns1 (IS(X)], chyw).

n
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The complex Hi.y (X, p) is much bigger than D* (X, p), therefore IA(ELFW (X) is
not isomorphic to K, (X) even in the case of n = 0.

The advantage of working with 3%y, (X, p) rather than D*(X,p) is the
multiplicative property of chpy . In fact, it is proved in [6, §6] that 35y (X, p)
is equipped with graded commutative and associative product and chpy re-
spects the product structures on the both sides. Hence in this case we do not
need to deal with the operation A which compensates for the lack of compatibil-
ity of Bott-Chern forms with products, and we can define product in K ITW(X)
in a simpler form. Moreover, it can be proved that the product in I?fW(X)

satisfies the associative law.

86.6. The commutativity of the product

In this subsection we discuss the commutativity of the product in K, (X).
When n = 0 or m = 0, it is easy to prove that the product IA(n(X) X IA(m(X) —
IA(n_Hn(X) is commutative. So we concentrate to the case of n,m > 1.

For a small exact category %A, let L : G, — GGy be the map given
by L(EY,E~) = (E*,0,E~,0). Then it induces a homotopy equivalence L :
GA — GPY and it is homotopy equivalent to the map R. Similarly to the
case of the map R, we can obtain an isomorphism

L. : @,(|G(X)],ch) = 7, (IG®) (X)), ch).
Definition 6.9. For n,m > 1, we define a new product
X1 Kn(X) x K (X) = K (X)
by

~ ~ mnC ~ -1 ~
Fal|G(X)], ch) X T (IGCO)], ch) ™5 (|G ()], ch) > T (|G(X)], ch).

Let us compare this new product with the one given in the previous sec-
tion. Let T : S, 8 (X) — S,Sn(X) be the switching map T(E); j)x(a,3) =
E(a,8)x(i,j)- Then the map

H@'n@m(X) x A" x A™ — H@m@n(X) x A™ x A"

n,m

given by (E¥% t1,ty) + (T(E*¥),t,t;) induces an involution T on \6(2)()()\.
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Lemma 6.10.  The diagram

(G (X)) —L— D(X)

I [ia
CLG(X)]) —2— Du(X)
1s commutative. Hence we can obtain an isomorphism
T, : 7 (|GP(X)], ch) ~ 7, (|GP (X)|, ch)
by [(f,w)] = [(TF,w)].

Proof. If we denote by [E] the element of C, (|G (X)|) determined by
E € G,,Gp(X), then T, ([E]) = (—1)"™[T(E)]. Hence we have

chy (T2 ([E]))

(=1)™" chyp (Cub(T(E)))
(—=1)"™ chyy-pn (T, (Cub(E))),

where T, ,,(F) for an exact hermitian (n + m)-cube F is given by T,

(Flarsamim = Famitrtnimaiyan- Lhen it is easy to see that chyim,
(Thom(F)) = (=)™ chyym(F). Hence we can say that chy,1m(T.([E]) =
i (E). O

Proposition 6.11.  Let z € K,(X) and y € K,,(X) with n,m > 1.
Then we have
xxy=(—-1)""y x x.
L

Proof. For two pointed CW-complexes S7 and So, let T : S1ASy; — SoAST
denote the map given by T'(s1,$2) = (s2,81). For two pointed cellular maps
f:8" = |G(X)| and g : S™ — |G(X)|, we consider the following diagram:

s A sm ML G(X) A |G(X)] 2 |GO(X))

= | &
~ ~ G ~
SmA ST L G(X) A G(X)] —— |GP(X).
The left square is obviously commutative, but the right one is not. In fact, for
E € Gn(X) and F € G,py(X) we have TmC(E, F) i jyx(a.8) = Fas ® Fij and
mGT(E7 F)(i’j)x(aﬁ) = F;; ® E, 3. Hence a homotopy from TmC to mCT is
given by means of the canonical isometry P ® Q ~ Q ® P. Hence we can show
that [(T(f x¢),0)] = [((g x f)T,0)] in the same way as the proof of Lemma 6.5.
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If = [(f,w)] and y = [(g, 7)], then we have
(I(f, )], (g, 7))
(T(f xg), (=1)" chn(f) @ T + w @ chin(g) +w @ dpT

+ (=1)" ch,(f) A chn(g))]
=[((g x /)T, (=1)"™7 @ chp(f) + (—1) ™™ chp (g) o w
+(=1)" 7 e dpw + (—1)™ V™ ch, (g) A chy(f))].

Since T : S**t™ — S"*t™ is homotopic to (—1)"" idgntm, we have
T ([(f,@)] g, 7)]) = (=1 ([(g, 7)), [(f,@)])
in 7ppm (|G (X)], ch). Hence
(*D”mf*([(gw)] x [(f,0)]) = (=)™ @mE ([(g, 7)), [(F:)])

rJv ~G
=

= Tl (((f,@)], [(g,7)])
= TR((f,)] % [(9,7)])
= L(((£.0)] < [(g.7)]).
Since L, is bijective, we have completed the proof. O

~

Proposition 6.12.  Forz € 7,,(|G(X)], ch), R, (x) — L.(x) is contained
in Im(Dy,11(X) — 7n (|G (X)],ch)) and 2(R.(z) — L.(2)) = 0. In particular,

forx € Kp(X) andy € K,,,(X) withn,m > 1, x X y — x X y is contained in
L

Im(Drgms1 (X) = Knpm(X)) and 2(z x y — xy) = 0.

Proof. Since R is homotopy equivalent to L, R, (z) — L. (z) is contained
in Tm(D,41(X) — Tn(|GP(X)|,ch)). If f: S™ — |G(X)] is a pointed cellular
map, then there is a pointed cellular map

H: (8™ x D)/({x} x I) = |GP(X)]
such that H(s,0) = Rf(s) and H(s,1) = Lf(s). Let
H' =TH: (5" x I)/({x} x I) — |G?(X)],

then we have H'(s,0) = Lf(s) and H'(s,1) = Rf(s). The commutative square
in Lemma 6.10 implies that ch,4+1(H’) = chyp41(H). Gluing the maps H and
H’ on the boundaries, we obtain a cellular map

HUH' : (S™ x TY/({x} x T") — |G® (X)),

where T is the barycentric subdivision of S*.
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Lemma 6.13. Ifn > 1, there is a surjection
p: ST (8™ x SY)/({x} x SY)

such that p~1((S™ — {*}) x S1) — (8™ — {*}) x St is a homeomorphism.

Proof. We describe the space S™*! as follows:
SME = {(2,t1,...,tn) ECXR™ [P +t] + -+ 17 =1}.

Let S"~1 = {(0,t1,...,t,) € S"*1}. Then the map S"*!\ S"~1 — B" x §1

given by
z
(Z,tl,...7tn)l—> ((tl,...,tn), )

V1=t - —t2
is a homeomorphism, where B" = {(t1,...,t,) € R";t3 +--- + 12 < 1}. Since
(S™ x S1)/({*} x S1) is the one-point compactification of B™ x S, this homeo-
morphism can be extended to the map p : "1 — (8™ x S1)/({} x St) which
satisfies the above condition. O

Let us return to the proof of Proposition 6.12. Since T is the barycentric
subdivision of S, the Bott-Chern form of the map

F oS 2 (sm o 7Y /({x) x TV 122 16O (x)]

is 2chy,41(H) up to sign. Therefore 2ch, 11 (H) is contained in the image of
Tnr1(|GP(X)]) — Diy1(X). Hence 2[(0, chyy1(H))] = 0 in 7, (|G (X)), ch)
by Theorem 3.3. For z = [(f,w)] € 7, (|G(X)], ch),

«(x) = L(x) = [(RF,0)] — [(Lf,0)]
= (_1)n+1 [(07 Chn-‘rl (H))]’

=)

therefore 2(R, (z) — L, (z)) = 0. O
Combining Proposition 6.11 with Proposition 6.12 yields the following:

Theorem 6.14. Let # € K,(X) and y € K,(X). Then z x y —
(=1)™yxx is a 2-torsion element contained in Im(Dy4me1(X) = Kpam(X)).
Hence the product in K.(X) is graded commutative up to 2-torsion.
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86.7. The lack of the associativity

In this subsection we discuss the associativity of the product in K, (X).
Let G (X) be the trisimplicial set given by taking G three times. Then the
tensor product of hermitian vector bundles gives the following maps:

mS : G (X) A G(X) — G¥(X),
m®: G(X) A G (X) - G (X).
Let R : G(X) — G®(X) be a homotopy equivalent map given by R(E)+++ =

E* and R(E)*~* = R(E)""* = R(E)~* =0 for E = (E*,E~) € G,(X).
Under the above notations, the following diagram

G(X)AG(X) A G(X) T GO(X) A G(X)

ll/\mG lmG

G

GX)ANG(X) 2  GO(X)

is commutative up to a homotopy arising from the natural isometry (E® F) ®
G~ E® (F®G). This commutative diagram implies the associativity of the
product in usual algebraic K-theory K, (X).
For two pointed cellular maps f : S* — |G®(X)| and g : S™ — |@(X)\,
let
fxg: s LG (X)| A 1G0T 16O (X))

We define a pairing
M 7 (|G (X)], ch) X T (|G(X)], ch) = Ty (|GE (X)), ch)
by

((f> @) (g, T)]) =
[(fxg, (=1)" chn(f) @ TH+w @ chy(g) + w @ dpT + (—1)" chn (f) A chin(g))]-

The well-definedness of the pairing can be verified in the same way as the proof
of Proposition 6.6. We can also define a pairing

S R (|G(X)], ch) X T (|G (X)], ch) = Frn (IGE (X)), ch)

by the same expression as above. Then the associativity of the product in
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~

K, (X) is equivalent to the commutativity of the following diagram:

0 (1G(X)],ch) X (|G(X)]ch) x 7 (|G(X)] ch)

%Xid \im

Frrm (1GP) (X)],ch) x 7o (|G(X) |, ch) Fu(|G(X)],ch) X T4 (|G (X))

\ /

7Tn+7n+l(|G(3) (X Ch)

However, the diagram is not commutative. Take [(f,w)] € %n(|@(X)|,ch),
[(g,7)] € T (|G(X)],ch) and [(h,n)] € T(|G(X)],ch). Then in the same way
as the proof of Lemma 6.5, we can prove the identity

[((f > g) x B, 0)] = [(f x (g x 1), 0)]
in 7 pmit(|JG®(X)], ch). Hence an easy calculation implies the following:

Proposition 6.15. We have

g (S ([(Fw)), [(g: DD, [(hym)]) = S (I(F,w)),mE (g, 7], [(h,m)]))
= [(O’T(fhg’ h,w,T, 77))]

in Fpgmet (|G (X)), ch), where

r(f,9,h,w,7,m)
= (=1)"((chn(f) + dpw) @ 7) ® (chy(h) + dpn)
= (=1)"(chn(f) + dpw) ® (7 ® (chy(h) + dpn))
+ (=)™ chpn (f % g) @1+ (=1)"(chy (f) & chi(g)) @ dpn
— (=1)"" ™ chy,(f) o (chin(g) ® 1)
+ (w e ch,,(g)) @ chy(h) — (=1)"t™dpw e (ch,,(g) A chy(h))
—wech,(gxh)+ (wechy,(g))edpn— (—1)"""dpw e (ch,,(g) ®n)
+ (=1)"(chu(f) & chp(g)) o chy(h) + (=1)" "™ chypm(f % g) & chy(h)
— (=)™ ch,,(f) ® (ch,,(g) A chy(h)) — (—=1)" chy, (f) A chyuyi(g x h).
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Lemma 6.16.  Assume nml > 1 and let & € D, (X), 8 € D (X) and
Y E DZ(X)
1) We have
(aep)ey—ae(fery)
= (=)™ (9" £ ol T A (8T £ HBET DY Ay
—aAl (85(_1’_’”) + 56(—"%—1)) A (a,y(—l»—l) + g,y(—l,—l)).

2) Ifdpa=dpf =0, then

—aNdB Ndpy, 1 >2

(a-ﬂ)-v—ao(ﬁw):{o, o

modulo Im dp .
3) IfdpfB =dpy =0, then

(—D)"t™Mdpa ANdB Ay, n>2,

(a-ﬂ)wm(ﬂw)—{& e

modulo Imdp.
4) Ifdpa=dpy =0, then

(—D)"aAddpB Ay, m>2,

(wﬁ)w—a-(ﬂw)z{a S

modulo Im dp .

Proof. The identity in 1) follows from an easy calculation. If [ > 2 and
dpa =dpf =0, then

(aef)ey—ae(fer)
= (=1)"""da ANdB Ny —a AdB A (dy + dp7)
= (=D)""d(a ANdB A7) —aAdB A dpy.

The form a A dB A~y is contained in D3PHatr)—n—m=I=1(x n 1+ ¢+ p) and
dp(aNdB Avy) =—d(aAdB Avy). Hence we have

(vefB)ey—ae(fey)=—aAdBAdpy
modulo Imdp. When [ = 1, we have

(aeB)ey—as(Bey)=(~1)" " dp(andB ).
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Hence 2) holds. The identities in 3) and 4) can be proved in the same way. O
Let us calculate r(f, g, h,w, 7,n) by using Lemma 6.16. If nml > 1, then

(=1)"((chn(f) + dpw) ® 7) @ (chy(h) + dpn)
= (=1)"(chn(f) + dpw) e (7 ® (chy(h) + dpn))
= (—1)"*™* 1 (ch,, (f) + dpw) A ddpT A (chy(h) + dpn)

and

(w o chi,(g)) @ dpn — (=1)" " dpw e (chi(g) @ n)
= (1) dpw A dchy,(g) Adon

modulo Im dp. Since

Chim (f % g) = chy(f) @ chyn(g) + (=1)"dop (chn(f) & chim(g))

by Theorem 5.2, we have

(=1)" ™ chpm (f X g) @17+ (=1)"(chn(f) A chim(g)) @ dpy
— (=) chy, (f) ® (chy(g) ® 1)
=(=1)"""(chn(f) ® chyn(g)) @1 — (=1)" ™ chy(f) ® (chn(g) ® 1)
=(—1)"""* ch, (f) A dchy,(g) Adpn

modulo Im dp. In the same way we have

(w e ch,,(g)) @ chy(h) —w e chy,i(g x h) — (=1)" " dpw e (ch,,(g) A chy(h))
= (—1)"""*"dpw A dchpy,(g) A chy(h)

modulo Im dp. As for the last four terms, we have the following:
Proposition 6.17.  Ifnml > 1, then we have
(—=1)"(chn(f) & chim(g)) @ chy(h) = (=1)" "™ chn(f) ® (chin(g) & chy(h))

+ (=1)"" chy, 1 (f % g) A chy(h) — (—=1)" chy, (f) A chyai(g X h)
= (—=1)""* 1 ch,,(f) A dch,,(g) A chy(h)

modulo Im dp.

We will prove this proposition in §6.9. Substituting these identities into
that in Proposition 6.15 yields that

r(fugv h,w,T, 77) = (71)n+m+1(Chn(f)+d@w)/\d(Chm(g)+d@7—)/\(Chl(h’)+an)

modulo Im dp.
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Theorem 6.18.  The product in higher arithmetic K-theory does not
satisfy the associative law. In fact, if x € K,,(X),y € Kpn(X) and z € Kj(X)
fornml > 1, we have

(xxy)xz—axx(yx2z)=][0,(=1)"T" ch,(z) Adch,,(y) Ach(2))]

in Knims1(X). Hence (x X y) X z = x x (y x 2) holds when nml = 0 or

ye Kn(X) ore=y=z.

Proof. When nml > 1, we have already proved this identity. The identity
(x xy) x z=2a x (y X z) in the case of nml = 0 follows from the definition of
the product and Lemma 6.16. o

86.8. Product in Arakelov K-theory
For a proper Arakelov variety X = (X, hx), let us define a pairing
K (X) % K (X) = Knm(X)
by (z,y) — o(z X y), where o is the harmonic projection defined in §4.3.

Theorem 6.19.  The above pairing makes K.(X) a graded associative
algebra. That is to say, it follows that

olo(x xy) xz)=c(x x oy X 2))

for z,y,z € K.(X).

Proof. This identity is obvious when nml = 0, so we may assume that
nml > 1. We first prove the identity

olo(x xy) xz)=0c((x Xy) X 2)

for z € K,,(X),y € K,n(X) and z € K;(X). It follows from the definition of o
that o(z x y) =z x y + [(0, )] where a € Dy p41(X) with H(a) = 0. Then
we have

olw x y) x 2 = (@ x y) x 2+ [(0,a o chy(2))],

therefore

ooz xy) x z) = (x xy) x 2 +[(0,a e chy(2) + §)]
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where 8 € Dy pm4i1+1(X) with H(3) = 0. Let o be the sum of (p—1,p—n—m)-
part of @ and o the sum of (p—n—m, p—1)-part of a. Since ch;(z) is harmonic,

aech(z) = (=1)"" 1 (9a’ — da’) A chy(2).

Since da’ Achy(z) is O-exact and Do’ Achy(2) is D-exact, we have H(aech;(z)) =
0, so H(w e chy(z) + B) = 0. Therefore o(o(z x y) x 2) = o((z x y) X 2). In
the same way, we can show that o(z X o(y x 2)) = o(z X (y x z)). Hence by
Thm. 6.18 we can obtain the desired identity. 1

86.9. Proof of Proposition 6.17

For w € D, (X) and for an integer ¢ with 1 <i < n, set
w(fi,7n+i71) — Z(‘L}(pfi,;ofnJrif1)7

where wP=#P=7+=1) i5 the (p —i,p—n+i— 1)-part of w. Then for w € D, (X)
and 7 € D,,,(X), we can write w A 7 as follows:

WAT= Za?}mw(fi’fnﬂfl) A (=hmmti=1)
Set
P =(—1)"(chn(f) A chyn(g)) @ chy(h) — (=1)" "™ chy,(f) ® (chim(g) A chy(h))
+ (=)™ chyyn (f X g) A chy(h) — (=1)" chy, (f) A chyyi(g X R),

and let ®(f) (resp. ®(g) and ®(h)) be the part of ® including the derivatives
of ch,(f) (resp. ch,,(g) and chy(h)). In other words, ® = ®(f) + ®(g) + ®(h)
such that

O(f) = (=)™ 1D chy (f) 1™ = Dehy, ()T D) A (chyn(g) A chy(R))
(=™ ((a chn(£)E™ — Feh, (/) D) A chm(g))A chy(h)

+ (=)™ Z a" mdch ( nti—1,—1) Achm(g)(_m+j_1’_j) A chy(h),
1<i<n
<j<m

®(g) = (=1)" "™ (chn () A (D chn(9) 7™ = Dchn(9) ™™ 7Y)) & cly(h)

+ (_1)n+m+1 Z a:t,jm Chn(f)(—n-i-i—l,—i) A dChm(g)(_m+j_1’_j)
1<i<n
1<j<m
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A chy(h)
+ (=)™ ey (f) 8 (9 chin(9)' 0 7™ = G chi ()™ V) A chy(h)

+ (=) ehy, (f) o | Y0 aldchy, (9) T T Achy (B)CHRTLR)

1<j<m
<k<l

and

®(h) = (—1)"(chn(f) A chm(g)) A (3Chl(h)(*1’*l) _ EChl(h)(*l’*l))
(=)™ by (f) B <Chm(g) A (8 chy (h) 1D — gchl(h)(*l’*l)))

+ (=1)"ch,(f) A Z ally L by (g) Lm0 A by () (TR LR
1<j<m
1<k<l

Let us first calculate ®(f). It follows from dp(ch,(f)) = 0 that dch,
(f)nti=b=) = _Jch, (f) T for 1 < i < n — 1. Then ®(f) is ex-
pressed as follows:

£ =b5m0 Y Fchn(£) T A chy, (9) T T A chy () TR TR

0,5,k
1<j<m
1<k<lI
D0 B e (D) Al ()T Ay ()Y
1<i<n
1<j<m
1<k<I
where
by = (C1)™afi + (S 4 (<) el
l -1 —j 1
_ (71)m m, +2( 1)m+1(n-;m) (n-ﬁ—zz J)aZZm ,
;m,l )0 +m,l +m,l
bzzk = (—1)m+1a;.rfk + (—1)ma2+;nk + (- 1)ma2+;"k x a7
l 1 j+1 +m,l
:( 1)m+1 m, +2( 1) (ntm) (n 7]L+ )a2+;’fk7
and
m,l +m,l +m,l ;
= (CD)™ Xamﬁ(*l)m itik XAy

=21 () () (!

for1<i<n-—1.
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Lemma 6.20. I[f1<j<mandl1<k<I, then

n

n+m -1 n+m z 7 z+j—1) n+m,l _ _m,l
z: i itk T Tk
=0

Proof. By Lemma A.2 and Lemma A.3, we have

n
n+m 12 n+m z 7 1+j71) n—+m,l
% i+j,k
=0
n

_ n+m -1 n+m 1 J 7.+j71)
z : %

=0

__2(n+m)*1(n+nu4)—1 (n+ﬂkﬁ—j)c+i—w

-

n n+m n—1
=0
X (T (Y

j—1
= 1=2() XD (T (R
a=0

_m,l
= %k
Let
1 i—1
nml _ ¢ 1\ym, ml _ o/ 1ym nt+m\— 2 : n+m—a—j\ (a+ji—1\ n+m,l
Ci,j,k - ( 1) aj,k 2( 1) ( n ) ( n—ao )( o )a’oz+j,k .
a=0
Then we have
n,m,l n,m,l
Lk = O0jk
nmd  nmil _ jgnm,l
Cijk T Cit1k = Yk
for 1 <47 <mn—1and by Lemma 6.20,
n,m,l bn ,m,l
Cn,j,k n,j,k *
Let ¥ be a differential form given by
U — Z Cn ml ( n+i—1,—1) A Chm(g)(7m+j71’7j) A Chl(h)(fl%»kfl,fk).
1<i<n
1<j<m

1<k<lI
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Lemma 6.21. It follows that ¢ ";il ikl = Cigh ' Hence U is

contained in Dy ymyi42(X).

Proof. We have

n,m,l
Cn—itl,m—j+1,0—k+1

]
= (D)™ 11—k

n—1i
n-l—m)_l Z (noetimh (a+z_j)a21$ij+l,l—k+l

- 2(_]‘)m( n n—ox
a=0
n—u
_ ( 1)m+1 ml + 2( ) (nJ:lm)*l Z (nfgirgéfl) (aJrZLiJ)aZt’(TJ’rlj,k
a=0
n
— ( 1)m+1 ml + 2( l)m(n—;m)fl Z (ﬂ"!‘é—l) (n—gtg—.?)agi;’?];l
B=i
Hence Lemma 6.20 implies that
n,m,l
Crn—it1,m—j+1,1—k+1
= (=)™ a4 2(-1)m
i—1
ol K A I DY G (e L
B=0
i—1
= (~1)may = 2= () T Y () (Y
B8=0
=i

|

Let us denote the parts of d¥ including the derivatives of ch,(f), ch,,(g)
and ch;(h) by U(f), U(g) and ¥ (h) respectively. Then d¥ = U(f)+¥(g)+T(h)

and

Z cn ,m ldCh f)(—n-i—z'—l,—z')

1,5,k
1<i<n
1<j<m
1<k<l
A chm(g)(_m*‘j_l’_j) A Chl(h)(_l-‘rk_l’_k)
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S D ey ()T A cly (g) T A cly () CEHELR)
1<j<m
1<k<I

n,m,l n,m,l —n+i—1,—i
+ Z (cij — Cit1,je)0chn (it

1<i<n-—1
1<j<m
1<k<I

A chp, (g )(fmﬂ‘fl,fj) /\Chl(h)(flﬂkfl,fk)
+ Z ”””ach )( L=n) A chm(g)(*mﬂfl,fj) /\Chl(h)(flﬂkfl,fk)

n]k
1<j<m
1<k<I

= (/).
Let us express ®(h) — W(h) as follows:

®(h) — ¥(h)
= N ey, ()T A by, () TR A By (B) D

1<i<n
1<j<m
+ ) dn ehn (/)R A chy, (9) T TR A @ chy (B) TR,
1<i<n
1<j<m
1<k<lI

Lemma 6.22. It follows that df;’}cl =0, therefore ®(h) — ¥(h) = 0.

Proof. When1<k<I[—-1,

m,l l l 1 ol m,l
i = (DM < (G = afia) = (G EE - i)
1 l 1

= (- _a?fﬁg) a;nk _a;nk-u)
1—1
+my~1 +m—a—j) (ati—1 +m,l +m,l
+2(=0" ()T Y (e ) (T (o = et i)
a=0
_ FmAly T ey T omepi— +k—1
=40 ) (ML
i—1
% Z (n+m+ln—_i;j—k+1) (z‘-i—j-;k—l)
a=0
n—1 -1
G aD B G
i—1

x Y (e Ry (R (v e (.
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Since
‘(n+?ln+l) (n—;m) _ (n—&-;n—&-l) (ml-l-—l)7 |
(e OIS = (RS RT (E,
(SR T = (OO,
we have

mn,m, n -1 -1 —j— j —
B = A () T ) (e (Y

m—j 7j—1
-1 -1
% (zz (n+m+ln*7i;j*k+1) (iJer;kfl) _ ZZ (nerJ:ll:sfjfk) (aJrj;rkl))
a=0 a=0
=0

by Lemma A.3. When k = 0,

a7t = ()" a4+ (—1)"al T x (L4l — (1)t

,7,0 .9 ,j ,5,1
1—1
n n+my—1 n+m—i—j R
—r (e S e e
a=0
m 1 imti—j
+2(=0)" (") (")
i—1
« 1-9 n+m+l 12 n+m+l —f— j-‘rl (z-‘ri—l))
( a=0

= 0 (<20 T )
Fa(—1yn(rEmy TE Y (e (et
a=0

% (_1 + 2(n+7ln+l)_1(n+m+ll—a—j)) )

Since
() () = () (),
we have
dn]n(z) _2 n-l’r-Lm) 1
i—1 ) i—1 ) ]
(Z ) - S )
a=0 a=0
-1 .
n+1 n+m+l) (mlJrl) (m+ll ])
i—1 ) 1—1 ) .
<Z n+m+l i—j+1 (H—_(]l—l) 7Z(n+mn-&-_l;a—j) (a—i—(jl—l))
a=0 a=0
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=0

n,m,l

by Lemma A.3. We can prove that d. i =0in the same way. 1

We finally calculate ®(g) — ¥(g). Let us express it as follows:

®(g) - ¥(g)
= el chy, ()L A D chyy ()™ A chy () CHETLR)

1<i<n
1<k<I

4 Z nn’zclch )( n+i71,7i)/\achm(g)(*m+j*1,*j)
1<i<n
1<j<m
1<k<l

A Chl(h/)(fH*kfl,fk)_

Lemma 6.23. When 1< j<m—1, e"]”Zl =0 and e?o"}ﬂl =e, :n"kl =
(_1)n+m+1.

Proof. When1<j<m-—1,

n, N ] +m-+ + l m n,
Ez j’ﬁ]i; ( )n " a’::».]n]i; X ( nj a; ]m+ )
] +m-+ 77L+l l l
( )n " a'?j+k: X ( ;nk: a;n+l k:)

m,l l
+ (=D (e — )

n+m n+m,l n,m n,m
:( 1)++1 + ( )

az+]k x i, 7a7]+1
+1 l l
+(—1)n+m+1(afﬁk —1) x (;nk - ;1:-1 k)
i—1
1 (n4my—1 +m—a—j\ (a+j—1}, n+m,l
2= () Y () (T
a=0
1 i—1
1(n+my~ +m—a—j—1y (a+jy ntm,l
_2(_1)n+m+ (nnm) Z(n mn—aaj )(aaj)az+;n+17k_
a=0

Hence we have

ZrTJlk 67‘1,’3‘775l
= (—prtmHt ?jﬁll g * (a ?ﬁlg‘ :LJquJ‘H)
G (@ )
P —

AL () () (e
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—(IE T (e )
= (- 1yt (nhm) T (i () gt

+m\ =L (mm—i—j\ (iti—1y ntm,l
2= () (ST () el
;m-l +1 l l

n (_1)n+m+1(a?ﬁ“&’j+k a’fﬁk )(a;”k - aﬁl %)

A1) () (R

n n— K2

_ (nerfifjfl) (i+j) n—+m,l )

n—i i i+j+1,k
= 2(=1) () T () () @ = el
+ (D" A T - al T @ — el )
= — () () T () () () T (e Ry (ke
A1) T gy (k) ) T etk ()
=0
and
er = (=) x (o aml)

n+m n,m-+l m,l
+ (=)"* +1(a1j+z = 1)(aj’ Jk —a; 1)

+ 2(_1)n+m+1(nJ7rlm) 1 ((n+77?7])a;l']‘gmvl _ (n+mn*j*1) ;Lif?lél)

— (71)n+m+1(an,m+l 1)( m,l ml )

1,5+k ]k - j+1k
_ 2(_1)n+m (n—:—lm)—l (n+z7, J) (a;};m,l o a;zilrtzk,l)
—1 s —1 i 1 _
i G Gy T Gt | b I (i [ )

— 4(—1)tm (n+m)*1 (n+mfj) (n+m+l) -1 (n+m+l7j7k) (j+lc71)

n n n+m n+m—j 7

=0.

Hence e?’ﬁc’l =01if 1 <7 <m — 1. On the other hand, when j = 0,

eront = (=)l (L ) + (< 1) agr
x (1— avlnkl) _ (_1)n+1cz,17’7;€7l
= (1)L T (g
+2(=1)"tm (mwfl)‘l (k) g

—1 v —
+ (=0 a = 2= 1) () T (e el T
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Hence we have

€it1,0k ~ €0,k
= (1)) (T
2= () (e
o 2(=1) () T g = gt
=2 ) T S e
= (1)) T @ — )

n
n—1 -k ,m41 m+l
201 () (M) (@ e

A R i [eirp I Gl ey

_ 4(_1)n+m(m+l) -1 (m+lfk) (n+m+l) -1 (n+m+lfi7k) (i+kfl)

=0
and
6?”6?]: — 2(_1)n+m+1 (nJ:lm)*l (n+$71)a?’-};m,l
n+m (m -1 m-+Il— n,m
2= () (M el
G A TC Ve (A I (R T
n+m n+m -1 n+m-+Il—
= 2(=1) (1= () T ()
(=1 (1= () ()
+ 2(_1)n+m (m-i-l)_l (m+l—k) (1 _ 2(n+m+l)_1 (n+m+l—k))
n+m =1 mtm4i—
= (=1 Ay ) T ()
m =1 mti— n+m =1 mtmyi—
=AD" T )
— (_1)n+m+1.
Hence ezgj}:l = (=1)"*™*l We can prove that e?rgnkl = (=1)"t™+1 in the
same way. ([l

Let us return to the proof of Proposition 6.17. By the above calculations,
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we have
D — dU
— (71)n+m+1 Z Chn(f)(fnJrifl,fi)
1<i<n
1<k<l

A <5chm(g)(*m»*1) + achm(g)(flﬁm)) A chy(B) (SR 1R
= (71)n+m+1 chn(f) A dChm(g) A Chl(h)

Since ¥ € Dy, 4mpi142(X) and dp¥ = —d¥, we have completed the proof. [

87. Direct Images
§7.1. Higher analytic torsion forms

We start this section by recalling the higher analytic torsion forms defined
by Bismut and Kohler [2]. We fix some notations.

Let ¢ : M — N be a smooth projective morphism of compact complex
algebraic manifolds. Let Tp be the relative tangent bundle of ¢ and we fix a
smooth hermitian metric h, on Ty that induces a Kéhler metric on each fiber
o !(y) for y € N. The pair (¢, hy) is called a Kdhler fibration. A real closed
(1,1)-form Q on M is called a Kdhler form with respect to h,, if the restriction
of  to ¢~ 1(y) is an associated Kihler form. Let us write Ty = (T'p, h,) and
denote by Td(T¢) the Todd polynomial for T.

Let E be a p-acyclic hermitian vector bundle on M, that is, E is a hermi-
tian vector bundle on M such that the higher direct image Ry, F is trivial for
i > 0. Then the direct image ¢, E becomes a vector bundle and is equipped
with the Lo-hermitian metric. The Grothendieck-Riemann-Roch theorem says
that the two closed forms

1
(QW\/Tl)dim(Af/N)

give the same cohomology class. The higher analytic torsion form T(E, ¢, Q) €

/ Td(T) cho(E) and chg(p.E)
M/N

D1(N) is a homotopy between these forms, namely,

1
(2my/—1)dim(M/N)

Dependence of T(E,,Q) on a Kihler form has been discussed in [2].

dpT(E, Q) = cho(p.F) - /M/N Td(T%) cho (E).

Following their argument, for two Kahler forms € and ' giving the same
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hermitian metric on T'p, we can obtain u(E,Q, Q') € Dy(N) such that
dpp(E,Q,Q) =T(E,¢,Q) - T(E, ¢, Q).

Finally let us discuss the compatibility of T'(E, ¢, ) and u(E,Q, Q') with
the pull back for a closed immersion. Consider the following cartesian square:

M’%M

[« e
N —" . N,

where ¢ and j are closed immersions and ¢ is a Kahler fibration with respect to a
smooth hermitian metric hy, on Tp. Then it follows that T'¢’" ~ j*T'p, therefore
a hermitian metric hy on T’ with which ¢’ becomes a Kéhler fibration is
induced from h,. If 2 is a Kahler form with respect to h,, then j*(1is a
Kahler form with respect to hr.

Take a ¢-acyclic hermitian vector bundle E on M. Then it is obvious
that the ingredients of the definitions of T(E, ¢, ) and u(E, 2, ') such as the
Bismut superconnection and the number operator are compatible with the pull
back for the immersions ¢ and j. Hence we have

iT(E, ¢, 0)=T(G*E,¢,j*Q),

i*u(E, 9, Q) = u(G B, Q).

87.2. Higher analytic torsion forms for cubes

In this subsection we introduce the higher analytic torsion form of an exact
hermitian n-cube defined by Roessler [13].

Let ¢ : M — N, Ty and h, be as in the previous subsection. Let F be
an exact hermitian n-cube made of p-acyclic vector bundles on M. Then AF
is also made of p-acyclic vector bundles and there is a canonical isomorphism
@ (try AF) = Atry, o F. When we put the Lo-metrics on the both sides, how-
ever, this isomorphism does not preserve the metrics. In [13, §3.1], Roessler
has constructed a hermitian vector bundle connecting these metrics. Namely,
he has defined a hermitian vector bundle h(F) on N x (P})"*! satisfying the
following conditions:

h(F)|x x {0y x (1) = @ (tT AF),

h(f)|XX{OO}X(]p1)n = Atr, o F
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and

W|X><(P1)i><{o}x([pl)nfi = h(aigj—')7
B(F) |1y focx 1yt = h(D] F) @ h(D}F)

for 1 < i < n. Let us write

Tl(j:v (P)
ey o
2(271’\/—_1)n+1(77/ + 1)! /(IPl)nJrl Cho(h( )) ;(_1) STH—l € Dn+1(N)-

Take a Kahler form {2 with respect to h, and

(_1)n+1
@rv—1)"(n + 1)!

n+1 o
To(F,p,2) = /(Pl)n Z(—l)z P (F) € Dpy1(N)

where
721+1(F) = S;L-‘rl(T(trn AF) ©, Q)a lOg |Zl|27 sty IOg |Zn|2)
Theorem 7.1 ([13, Thm. 3.6]).  We have
dDTI(]:7 (P) + Tl(aj:7 50)

(—1r / i
=chy(puF) — —— ho (s trp AF —1)'S;,
chy, (¢4 F) 2(2m /1) [Pl)nc o(epu tr );( )

and

dDTQ(f7 @, Q) + Tg(a./f, @, Q)

(=D" / -
= — ho (@ try, AF)
22y —1)mnl Jpryn (ipx tr ;
_ 1
(27‘(‘ /_1)dim(M/N)
Hence if we write T(F, ¢, Q) = T1(F, @) + To(F, ¢, ), then

[t ).
M/N

dQT(fa ®, Q) + T(afv 2 Q)
1

(QW\/__l)dim(M/N)

Let us discuss dependence of T'(F,,Q2) on a Kahler form Q. For u; €
Dl (M), let

— by (9. F) — /M/N TA(TP) chy, (F).

1
Cnlur,.. un) = 57 D () gy @ (o) @ (o)) -
oe6,
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Then it is easy to show that

Cn(ulr",

S2 ul,...,un).

z=1

Lemma 7.2.  Foruy; € Do(M) and u; € D1(M) with 2 <i <n, let

1 n

Cp(ut, ... un) = on Z(*l)wﬂ Z (*1)Sgndua(1) b (UU(2) o (- Ug(5) """ ).
Jj=1 eSS,
a(4)=1
Then we have
d'_DCn(Uq, Uz, .- . 7un)
n — e
= Cp(dpuy,ug, ..., u, —1—52_:2 dDuk o Cr_1(ut, gy .., Ug, +* ,Up).

Proof. Since dp(uev) = dpu e v+ (—1)48%y e dpv, we have

dpChr(u1,ug, ... up)
S S S gy amcy T 1y )
j=1 oc€e6, i<y
o(j)=1
S S o gy )
ji=1 0ce6,
o(j)=1
Z Yo Y () At (upy o (o) Uo) )
j=1 0€6, j<i
o(j)=1
1 n
2 X U gy 0 dpteg )
=1 0€6,
o(j)=1

1 S o
Q_ZZ Z sgno )H_JdDUk(Uc;(l)°("'Ua(z‘)"'ua(j)"'))
k=21i<j c€6,
o(4)=1
o(i)=k

n

1 s na 47 N
ton D D D) T g (o) @ (i) T )
k=2 j<i 0c€G,
o(j)=1
o(i)=k
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n
n

= Cp(dpur,ug, ... un) + 9 Z(*l)k(dﬂauk)cn—l(ul, e Uy Up).
k=2

O

Proposition 7.3.  Let Q and Q' be Kdihler forms with respect to a

smooth hermitian metric h, on Tp. For an exact hermitian n-cube F made

of p-acyclic vector bundles on M, let us write p(F) for p(trp, AF,Q,Q) €
Dy(N x (PH)™). Then we have

T(F,0,Q) —T(F,p, Q)

—2
= (27“/_—1),1_171,/@1) 1Cn(u(ﬁf),loglzllz7.-.,loglzn_llz)

modulo Imdp.
Proof. It follows from the definition that

T2(77 @, Q)
2

T 2rv/ D) (n+ 1)

Then by Lemma 7.2 we have
T(]:’ ¥, Q) - T(]:, ®s Q/) = TQ(]:? 1) Q) - TQ(]:’ 1) Q/)

/(1) C’nH(T(trnA]:7cp,Q),log\zl|2,...,log|zn|2).
P n

2
@2ry=1)"(n+1)!
/ Cri 1 (T(trn AF, 0,Q) — T(trp, AF, 0, ), log |21|2, .. ., log |z, |?)
(P1)"
- & / Crsr(dop(F), log |4 [, ,log|znl?)
T @2rV/—1)(n+1)! e 8141 1108 |2n
2
= dCh1 ((F), 1 o Tog |z |?
(27r\/—_1)"(n—|—1)!/(]1»1)n 0 (u(F),log |1 [ 0g|2n[)

n

1
- (_1)k71
(2my/—1)"n! kz=1
/1 d log | 2Co (u(F), log [21[2, ... 1og |24 ]2, .. og |2a?)
(Pr)m™

2
— d . 1 2. log|zn)?
V-1 + 1)1 </(Pl)n0 +1(p(F),log |z1] og | 2n| ))

2
- m/@n) _ Cu(p(0F),log|zf?, ... log |z [?).
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87.3. Definition of direct image homomorphism

In this subsection, we apply the results obtained so far to an arithmetic
situation and define a direct image homomorphism in higher arithmetic K-
theory. Let ¢ : X — Y be a smooth projective morphism of proper arithmetic
varieties. We fix an Fii-invariant smooth hermitian metric h, on T¢(C) such
that (¢(C),hy,) is a Kéhler fibration, and take an anti-Fu.-invariant Kéhler
form Q on X (C) with respect to h,. Let S (p-ac) denote the S-construction
of the category of y-acyclic hermitian vector bundles on X. Then the natural
inclusion § (p-ac) — S (X) is a homotopy equivalence, and the direct image of a
p-acyclic hermitian vector bundle with the Lo-metric gives a map of simplicial
sets ¢, : S(p-ac) — S(Y).

Proposition 7.4. If E is a degenerate element of §n+1(g0-ac), then
T(Cub(E), »,Q) = 0.

The proof is similar to that of Theorem 4.4, so we omit it. By virtue of
this proposition, taking higher analytic torsion forms yields a homomorphism

T(, ) : Cu(|S(¢-ac)]) — D.(Y).

In particular, the higher analytic torsion form of a pointed cellular map f :

S |S(p-ac)| is defined by T(f, ¢, Q) = T(f.([S"]), ¢, ). We abbrevi-

ate T(f, ¢, Q) to T(f) if the morphism ¢ and the Kéhler form  are fixed.
Let ¢ : Dy(X) — D.(Y) be the map given by

1 / S—
Yrw = _ Td(Tp)w.
2my/ =14/ Y) Jx ) v(c)

Then by Theorem 7.1 the diagram

Cu(IS(p-ac)l) —F— C.(S(V)])

o o

D.(X)[]  — = D.(Y)[1]

is commutative up to the homotopy —T'( , ¢, ). Hence by Proposition 3.9 we
can obtain a homomorphism

@(Q)* : ﬁn-{-l(‘g((ﬁ'ac)‘) Ch) - 7/1:71+1(|§(Y)|’ Ch)

by [(fv w)] = [(@*fy prw + T(fv ©s Q))]
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If Q' is another anti-F.-invariant Kahler form with respect to h, then it
follows from Proposition 7.3 that T'(f, ¢, Q) = T(f, ¢, ') modulo Im dp for any
pointed cellular map f : S"+1 — |S(¢-ac)|. Hence the homomorphism 3(£2),
depends only on the hermitian metric h, and does not concern the Kéhler form
Q.

Summing up the arguments in this subsection leads to the following:

Theorem 7.5. Let ¢ : X — Y be a smooth projective morphism of
proper arithmetic varieties. We fiz an F-invariant metric hy, on T'¢ such
that (¢(C), hy) is a Kdhler fibration. Then we can define a direct image homo-
morphism @(hy)y : Ko(X) — K, (Y) by

~ o ~ 4 P()w ~ 5
Tut1(1S(X)], ch) 2 Fop1 (1S(p-ac)], ch) == Fui1 (IS(Y)], ch),

where Q is an anti-Fuo-invariant Kdhler from on X (C) with respect to h,.

When n = 0, the isomorphism & : JACO(X) — Ko (X) gives an identification
between the direct image homomorphism defined above and ¢ : Ko (X) —
Ko(Y) in [10].

Proposition 3.10 implies that the diagram

Kn(X) =2 D, (X)

l@(hw)* pr!

Kn(Y) =22 D,(Y)

is commutative. In particular, we can obtain a direct image homomorphism in
K M-groups
P(hy)s : KMy(X) — KM, (Y).
Finally, we give a description of the direct image homomorphism by means
of the G-construction. Given a pointed cellular map f : S™ — \G(X)| forn > 1,
let T(ﬁcp,Ql = T(X*f*([S”]),go,AQ). Then we can obtain a homomorphism
P(Q2) : T (|G (p-ac)], ch) — 7 (|G(Y)|, ch) by

Q) ([(f,w)]) = [(pxf, pw = T(f, 0, 2))],

and it satisfies the following commutative diagram:

PO & (G

7n(|G(gp-ac)|, ch)
| %

~ o ) ~ o

fins1(1S(p-ac)|, ch) == Fp 1 (1S(Y)], ch).

~—

|, ch)

)

*
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Hence the direct image homomorphism in K, (X) can also be given as follows:

~ s ~ = () w ~ s
#a(|G(X)], ch) 2 7o (|G (p-ac)], ch) 2 7, (|G(Y)], ch).

§7.4. The projection formula

In this subsection we prove the projection formula in higher arithmetic
K-theory. We first consider the case of JACO—groups. Let o : X =Y, hy, and
Q be as in the last subsection. Let E be a hermitian vector bundle on Y and
F a p-acyclic hermitian vector bundle on X. Then the canonical isomorphism
0.(p*E® F) ~ E ® @, F preserves the metrics.

Let ¢ denote the direct image homomorphism in IJACO given in [10]. For
w e @1(Y) and T € @1(X), we have

=pi((p*E) @ F,9*w A cho(F) + ¢* cho(E) AT + p*dpw A T)
@ 1),m

where
- 1
1= (2 =) dim(X/Y)
+¢* cho(E) AT + ¢ dpw A T)

/ TA(TF) A (9*w A cho(F)
X(C)/Y(C)

~T(@*E®F)
1 J—
- 4 (cho(E) + dpw) A / Td(Te) A7
(27T /_1)d1m(X/Y) X(C)/Y(C) (

+wA (cho(puF) —dpT(F)) —T(¢*E @ F).
On the other hand, we have

(B,w) x p(F,7) = (E,w) ® (p. F, o7 — T(F))
= (E®¢.F,1),

where

/ 1 = 7
n = : (cho(E) + dpw) A TA(TP) AT
(2my/—1)dim(X/Y) X(0)/Y(©)

+ w A cho(psF) — (cho(E) 4+ dpw) A T(F).
Comparing these identities, we have

n—1 = -T(@*E&F) + cho(E) AT(F) + dp(w A T(F)).
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Hence the projection formula in UACO—groups is reduced to the following propo-
sition:

Proposition 7.6. Under the above notations, we have

T(p*E®F) = cho(E) ANT(F).

Proof. Let € be the infinite dimensional vector bundle on N consisting
of smooth sections of A*T*(1:9yp @ F. Let B, and N, denote the Bismut
superconnection and the number operator on € respectively. Let & be the
infinite dimensional vector bundle consisting of smooth sections of A*T*(1:9p®
(¢*E®F). Let B!, and N/, denote the Bismut superconnection and the number
operator on &’ respectively. Then we have a canonical isometry & ~ E® & and
under this identification, we have B, = 1® B, + Vz® 1 and N, = 1 ® N,,.
Substituting these into the definition of T(p*E ® F) in [2] yields the desired
identity. O

Let us move on to the higher case. We assume that n,m > 1. Consider
the following diagram:

N N mC (o* N
G(Y) A G(p-ac) m T, G@) (p-ac)

ll/\tp* lip*

GY)AGY) . aey).

This diagram is commutative up to a homotopy arising from the isometry
0 (p*E®F) ~ E® @, F. Hence for two pointed cellular maps f : S™ — |G(Y)|
and g : 8™ — |G(p-ac)|, [(«(¢"f x g),0)] = [(f X ¢xg,0)]. For w € Dy 1 (Y)
and 7 € D1 (X),
() (@™ (f,w) X (9,7)) = () (" f x g,(=1)"¢" chn(f) @ T + ¢"w @ chy (g)
+ (=1)"dpp*w e T+ (—=1)"¢" chn(f) A chm(g))
= (pu (" f x 9),m),

where

" (QWE_I)?;WY) (chn(f) + dpw) e / Td(Tp) AT

X(C)/Y(C)
+w e (chy,(pig) — dpT(g))
+ (=1)" chn(f) & (chin(peg) —dpT(g)) — T(0"f x g).
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On the other hand, we have

(f7w) X (P(hso)*(gﬂT) = (f7w) X (‘P*g7<P!T - T(g))

= (f x wxg,1'),
where
0 = (*ld)." <7y (chn(f) + dpw) o/ Td(Te) AT
(2my/=1)dim(X/Y) X(0)/Y(C)

— (=1)"(chn(f) + dpw)  T(g)
+ w e chy, (weg) + (—1)" chy(f) A chy(ig).

Hence we have
n—n" = (=1)"*ch,(f) A dpT(g) = T(*f x g) + (=1)" chn(f) @ T(g)

modulo Im dp. Thus the projection formula in higher arithmetic K-theory is
reduced to the following proposition:

Proposition 7.7.  For an ezxact hermitian n-cube F on'Y and an exact
hermitian m-cube G made of p-acyclic vector bundles on X, we have

dD(Chn(}_) A T(g)) = T(‘P*}—® g) + (*l)n Chn(f) i T(g)
+ chp 1 (0F) A T(G) + (1) ch,(F) A dpT(G).

Proof. We will prove the following identities:
dp (chn(F) A T1(G)) = = T1(¢"F x G) + (—1)" chyp(F) ¢ T1(G)
+ch,_1(0F) A Ty (G) 4 (—=1)" L ch, (F) A dpTi(G),
dp (chn(F) & T2(G)) = — Ta(¢"F x G) + (—1)" chyp(F) ¢ T2(G)
+ chy,_1(0F) A To(G) + (—=1)" L ch, (F) A dpTa(G).

These identities can be proved in the same way, so we will prove only the latter

one.
For t < s, let m; : (P1)® — (P!)! denote the projection my(x1,...,zs) =
(v1,...,2¢) and 7y : (P1)* — (P!)! denote the projection mo(z1,...,75) =
Tg—t41,---,%s). Then Proposition 5.5 implies that
+

d(chyn (F) & T2(G))

(—1)ntm+1

= @/t Il mr 1) /(]pl)n+m 71 cho(tr, AF)
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AdL YD (FD)TRS, a8, (G)

1<i<n
1<j<m+1
(i . Ny
= (27r\/j1)'rl,+'!n(n+m+1)! (Pl) N ’/Tl ChO(tI’n )\f) Z (—1)
e k=1

S7l§+m+1(7r; (tI‘m )‘g)a lOg ‘t1‘2u e IOg ‘tn+m‘2)

(—1)ntm+l

2(2m/—1) T =1 (n—1)!(m+1)! /(]P)l)ner1 T Cho(trn—1 )\8.7:)

i+j  n—1m+l_x i * Qi
A Z (=1)* Yag T1Sh—1 AT355,41(9)
1<i<n—1
1<j<m+1

+ % / 7'(';< Cho (trn )\f)
2(2m/—1) nlm! (P1yntm

NS (=D el S A s (00T (trm AG) A S3,)
1<i<n
1<j<m

+

(=pm*t

2(27r\/_)n+m fntm! [Pl)n#»ml WT ChO(trn )\F)

A Y (D) Far S, A S, (06)
1<i<n
1<j<m

™ »
+ 22/ —1)" il (mt 1) /(]Pl)wm 77 cho(try, AF)

A>T ()T S e msS L (9).
1<i<n
1<j<m+1

By Proposition 7.6, we have

7y cho(tr, AF)SE, 1 (3T (tr,, AG), log [t1 %, . . ., 10g [tnrm|?)
= Sﬁ+m+1(7r1 cho(trp AF) A 3T (tr,, AG), log |t1]?, . . ., 108 |tnim|?)
= Snimit (T(tnpm A(@*F @ G),log [t1]?, ..., log [t sm|?)
= Spimi (P F @ G).

Moreover,

m

_ym+1 . . _ .
AnTa(G) = e /( o D 08,10(@) - DA (@)
1
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- @fr%;n)jm'/ AOT (tr, AG) A Z(_l)jsgn
Hym Zs

)m+1

+ (27_{\/_)771 Tyl /]Pn)m 12 ]SJ 39

Hence

dp (chy, (F) A T2(G)) = —d(chy, (F) & T2(G))

(—1yntm n+m+1
T @rv=D)nEm (ndmt)! /(Pl)rL+ryL I;

(_1)kS7]§+m+1 (¢"F®G)

(=prtm
T v T T D)

/(]P’l) +m—1 Z (1) a7 " e (cho (trn—1 AOF)S),

1) A 7T;S£n+1(g)
1<i<n-1
1<j<m+1
1<i<n ()™
1<j<m

1 Y i 1 .
4 (‘anm! /(Pl)m OOT (trm AG) S = a1yt /( i Sg@(ag)>

+ (71)7714»1
2(27y/—1)n+mnl(m+1)!
1<i<n

‘/(]Pl)n,-km
1<j<m+1

~Ty(9*F @ G) + ch,_1(0F) & To(G)
+ (=)™ chy, (F) & dpTh(G)

Y (F1)mi(cho(tr, AF)S;,) @ 1357,41(G)

+ (—=1)" ch, (F) e T5(G).

O
Let us consider the case of n = 0 and m > 0. Let (E,w) be a pair of a

hermitian vector bundle E on Y and w € D(Y) and let (¢g,7) be a pair of a

pointed cellular map g : S™

— |@(g0—ac)\ and T € Dm+1( ). Then we have

P(Q).(p"(E,w) x (g,7))
= (P« (¢"E® g), pr(p*w @ (chy(g) + dpT)) + ¢1(¢" cho(E) o 7)
~T(p"E®yg)
= (p«(¢"E®

9),w ¢ i(chm(g) + dp7)) + cho(E) o (17 — T(9))-
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On the other hand, we have

(B, w) x 3(Q)«(g,7)
= (B ® pug,cho(E) o (o7 = T(g)) +w @ chin(psg) +w o (17 — T(g))
= (E ® @.g,cho(E) e (017 — T(g)) + w e dppyT + w e oy chyn(g)).

Hence we have

Q8" (B, w)]) x [(g:7)]) = [(B,w)] x &(Q)+([(g,7)])-

In the case of n > 0 and m = 0, we can prove the projection formula for
the pairing K, x Xy — K, in the same way. Hence we have the following
theorem:

Theorem 7.8. Let ¢ : X — Y be a projective smooth morphism of
proper arithmetic varieties. Let hy, be an Fo-invariant smooth hermitian met-
ric on Tp(C) such that (p(C), hy) is a Kdhler fibration. Then for y € K, (Y)
and x € K, (X),

Phe)«(@"y x x) =y X P(hy)« ().

Appendix A. Some Identities Satisfied by Binomial Coefficients

Lemma A.1. (1) For 0 <k <i, we have

k—1 k
(=9 3, (T )+ (R
a=0 a=0
k-1 o PN
= (n4m) Y (I (TN G- R (TS ().
a=0

In particular, we have

1—1 %

(n—a) > ("I 4 ] () ()

a=0 a=0
i—1

— () Y () (),
a=0

(2) For0 <k <i, we have

i—1
(m_j)Z(n+m—i—j+1 z+j 1 +jz n+m i—j z+])
n—ox
a=k

1—1
(n+m) > () () = =R () (F)
a=k
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In particular, we have

i—1
(m_j)zzz(n—&-mn—j;j—l-l z+] 1 +jz n-l—m i— ] 7,+j
a=0
i—1 o
= (n+m) )y (") ().
a=0

Proof. 'We will prove them by induction on k. When k = 0, the claim (1)
is trivial. If the claim (1) holds for k& — 1, then

k—1 k
(=) X (I Y () CP)
a=0 a=0
k—2 S S
= (nt+m) Y (W) () + =k D) ()
a=0
+ =) ("L (A i) ()
k—2
(n+m) Y (VIS (D + (= kD () (R
a=0
+n("E ) (D) i) ()
k—1
= (n+m) Y () () = G = R ST (R

n—l—m Z n+m i—j z+j—1)_’_(i_k)(n-&-;n:]j—j)(i-&-i—l).

n—1l—a

Hence the claim (1) holds for k.
The claim (2) for k = i is trivial. If (2) holds for k + 1, then

i—1
=D T S ()
= n—ox
1—1
=(n+m) Y (") G-k (Y
a=k+1

+ (m - j) (n+mnii;j+1) (z+] 1) _|_j(n+Z’L kz J) (zJ]gJ)

-1
= (ntm) > ("))
a=k+1
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+(m—j =i+ k+ D)) () - m () ()
+i () ()
i—1
—(ntm) S () (TN 4 (nm— k) (TP (Y
a=k+1

(ST )
i—1
=(n+m) y (")) - GRS (),
a=k
hence the claim (2) holds for k. O

Lemma A.2. We have

—1 n N it . S
(" (RS X0 (TR T (Y
0 a=0

.
I

I
—

_ S (LI kL) (k1)

m—« [e3%

Il
=]

«

Proof. Let F,, denote the left hand side of the above. Then we have

Fn — (n+m+l)_1

n

n . i+j—2
(15 e e X e ey

n
a=0

=1
i ""1Z+J1 l—im—j—k+1Y (i+j+hk—1
+ E(n%ﬂ::ilf]) (1+]if ) Z (ner:LrJ:nlL:]o; + )(H*JZ - ))
a=0
n

1 - il i
= () TN (i) (4 2)

n :
i=1
i+j—2

- <(” bmie 1) Y (e (o)
a=0

i+j—1
Hitj=1) X0 (T <i+jz’“‘1>> |
a=0

By Lemma A.1, we have

n
_n +m+1 n+m+l -1 n+m z j z+j72
F, =t )

n i—1
i=1
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i+j—2
% Z (n+m+l—i—j—k+1)(i+j+k—1)

n+m—1—«a «

-1 n_l . S it . L.
= (" (ST X (M ST )
=0 a=0
=Fn-1.
Hence F,, = Fp, that is,
j—1
Fo=3 ("TRE0RT.
a=0

Lemma A.3. If0<i<nandl <j<m, we have
(T (T = (T ()

In particular, we have

n n

n+m a— j a-l—j 1 m j n+j _ (n+m)

Proof. We prove the lemma by induction on i. When ¢ = 0, the statement
of the lemma is clear. If the identity holds for i — 1, then

i i—1

DT = > (I T + (S ()

a=0 a=0
1

— Z (n+77zl:aifj) (i+£71)

D () (T (RS (T
i i

=D ()T o () ()

a=0 a=1

- 3 (D).
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