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Higher Arithmetic K-Theory
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∗

Abstract

A concrete definition of higher K-theory in Arakelov geometry is given. The
K-theory defined in this paper is a higher extension of the arithmetic K0-group of
an arithmetic variety defined by Gillet and Soulé. Products and direct images in this
K-theory are discussed.

§1. Introduction

The aim of this paper is to provide a new definition of higher K-theory in
Arakelov geometry and to show that it enjoys the same formal properties as
the higher algebraic K-theory of schemes.

Let X be a proper arithmetic variety, namely, a regular scheme which is
flat and proper over Z, the ring of integers. In the research on the arithmetic
Chern character of a hermitian vector bundle on X, Gillet and Soulé defined
the arithmetic K0-group K̂0(X) of X [9]. It can be viewed as an analogue in
Arakelov geometry of the K0-group of vector bundles on a scheme.

After the advent of K̂0(X), its higher extension was discussed in [6, 7, 14].
In these papers one common thing was suggested that higher arithmetic K-
theory should be obtained as the homotopy group of the homotopy fiber of
the Beilinson’s regulator map. To be more precise, there should exist a group
KMn(X) for each n ≥ 0 fitting into the long exact sequence

· · · → Kn+1(X)
ρ→ ⊕

p
H2p−n−1

D (X, R(p)) → KMn(X) → Kn(X) → · · · ,
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600 Yuichiro Takeda

where Hn
D(X, R(p)) is the real Deligne cohomology of X and ρ is the Beilinson’s

regulator map.
To get the homotopy fiber, a simplicial description of the regulator map

is necessary. And it has already been given by Burgos and Wang in [6]. For
a compact complex manifold M , they introduced an exact cube of hermitian
vector bundles on M and associated with it a differential form called a higher
Bott-Chern form. This gives a homomorphism of complexes

ch : ZŜ∗(M) → D∗(M, p)[2p + 1]

from the homology complex ZŜ∗(M) of the S-construction of the category of
hermitian vector bundles on M to the complex D∗(M, p) computing the real
Deligne cohomology of M defined in [4]. It is the main theorem of [6] that the
following map coincides with the Beilinson’s regulator map:

ρ : Kn(M) � πn+1(Ŝ(M)) Hurewicz−→ Hn+1(ZŜ∗(M))
H(ch)−→ H2p−n

D (M, R(p)).

Applying this to the complex manifold X(C) associated with X, we can obtain
a simplicial description of the regulator map for X.

In this paper, we will give another definition of higher arithmetic K-theory
for a proper arithmetic variety. One of remarkable features of our arithmetic
K-theory is that it is given as an extension of the algebraic K-theory by the
cokernel of the regulator map.

Before explaining our method, let us recall the definition of K̂0(X) by
Gillet and Soulé [9]. For a proper arithmetic variety X, let Ap,p(X) be the
space of real (p, p)-forms ω on X(C) such that F

∗
∞ω = (−1)pω for the complex

conjugation F∞ on X(C) and let Ã(X) = ⊕pA
p,p(X)/(Im∂ + Im ∂). Then

K̂0(X) is defined as a factor group of the free abelian group generated by pairs
(E, ω) where E is a hermitian vector bundle on X and ω ∈ Ã(X). Relations
on pairs are given by each short exact sequence E : 0 → E′ → E → E′′ → 0
and ω′, ω′′ ∈ Ã(X) as follows:

(E′, ω′) + (E′′, ω′′) = (E, ω′ + ω′′ + c̃h(E)),

where c̃h(E) is the Bott-Chern secondary characteristic class of E.
The above definition of K̂0(X) can be rephrased in terms of loops and

homotopies on |Ŝ(X)|, the topological realization of the S-construction of the
category of hermitian vector bundles on X. Consider a pair (l, ω), where l

is a pointed simplicial loop on |Ŝ(X)| and ω ∈ Ã(X). Two pairs (l, ω) and
(l′, ω′) are said to be homotopy equivalent if there is a cellular homotopy H :
(S1 × I)/({∗} × I) → |Ŝ(X)| from l to l′ such that the Bott-Chern secondary
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characteristic class c̃h(H) of H, which is defined in a natural way, is equal to
ω′−ω. Let π̂1(|Ŝ(X)|, c̃h) denote the set of all equivalence classes of such pairs.
Then it carries the structure of an abelian group and the map

K̂0(X) → π̂1(|Ŝ(X)|, c̃h)

given by (E, ω) �→ (lE,−ω), where lE is the simplicial loop on |Ŝ(X)| deter-
mined by E, is proved to be bijective.

Let us generalize this observation to higher homotopy groups in a general
setting. Take a pointed CW-complex T and a homomorphism

ρ : C∗(T ) → W∗

from the reduced homology complex of T to a chain complex of abelian groups
W∗. Let Sn denote the n-dimensional sphere and consider a pair (f, ω) of a
pointed cellular map f : Sn → T and ω ∈ W̃n = Wn/ Im ∂. Two pairs (f, ω)
and (f ′, ω′) are said to be homotopy equivalent if there is a pointed cellular
homotopy H : (Sn × I)/({∗} × I) → T from f to f ′ such that the image of
the fundamental chain of H by ρ is equal to (−1)n+1(ω′ − ω). This actually
gives an equivalence relation on the set of such pairs. The set of homotopy
equivalence classes has the structure of a group and it becomes an abelian
group when n ≥ 2. This group is denoted by π̂n(T, ρ) and called the n-th
homotopy group of T modified by ρ. We define the n-th arithmetic K-theory
of a proper arithmetic variety X as the (n + 1)-th homotopy group of |Ŝ(X)|
modified by the higher Bott-Chern form:

K̂n(X) = π̂n+1(|Ŝ(X)|, ch).

We will show that K̂n(X) possesses the same properties as the usual higher
K-theory of schemes. More precisely, we will show the following:

(1) Fundamental exact sequence:

Kn+1(X) → D̃n+1(X) → K̂n(X) → Kn(X) → 0,

where D̃n+1(X) = Dn+1(X)/ ImdD. In the case of K̂0(X), this exact
sequence has been obtained in [9].

(2) Chern class map:
chn : K̂n(X) → Dn(X).

If we denote KMn(X) = Ker chn, then we can obtain the long exact se-
quence

· · · → Kn+1(X) ρ→ ⊕
p
H2p−n−1

D (X, R(p)) → KMn(X) → Kn(X) ρ→ · · · .
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We show that KMn(X) is canonically isomorphic to the homotopy fiber of
the Bott-Chern form.

(3) Arakelov K-theory: Fix an F∞-invariant Kähler metric hX on X(C). The
pair X = (X, hX) is called an Arakelov variety. We can define Arakelov
K-group of X as

Kn(X) =
{

x ∈ K̂n(X); chn(x) is a harmonic form with respect to hX

}
.

We have the exact sequence

Kn+1(X)
ρ→ ⊕

p
H2p−n−1

D (X, R(p)) → Kn(X) → Kn(X) → 0.

(4) Products: K̂∗(X) has a product

K̂n(X) × K̂m(X) → K̂n+m(X).

It does not admit the associative law. But if we restrict this to K∗(X), it
becomes associative. It is shown that the product is graded commutative
up to 2-torsion.

(5) Functoriality: For arbitrary morphism f : X → Y , we can define pull back
map

f̂∗ : K̂n(Y ) → K̂n(X).

It is compatible with product. Suppose that f is smooth and projective,
and fix a Kähler metric on the relative tangent bundle of f(C) : X(C) →
Y (C). Then we can define direct image homomorphism

f̂∗ : K̂n(X) → K̂n(Y ).

The projection formula for f̂∗ and f̂∗ holds.

From the above properties, we can obtain a non-canonical decomposition
of K̂n(X) into three summands:

K̂n(X) � Kn(X) ⊕ (Dn+1(X)/ Ker dD) ⊕
(
⊕
p
H2p−n−1

D (X, R(p))/ Imρ

)
.

The Bass’ conjecture says that the first summand is a finitely generated abelian
group. The second one is an infinite dimensional R-vector space, and the Beilin-
son’s conjectures imply that the third one becomes a real torus.

Let us describe the organization of the paper: In §2 we introduce some
materials used in the paper, such as S-construction, exact cubes and higher
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Bott-Chern forms. In §3 we propose the notion of modified homotopy groups.
In §4 we give the definition of the higher arithmetic K-group K̂∗(X) and deduce
the fundamental exact sequence. We also define the Arakelov K-group. In
§5 we prove a product formula for higher Bott-Chern forms. It provides an
alternative proof of the fact that the regulator map respects the products. In
§6, we discuss product in higher arithmetic K-theory. In §7, we define a direct
image homomorphism in higher arithmetic K-theory. To do this we employ
the higher analytic torsion form of an exact hermitian cube defined by Roessler
[13]. Moreover we establish the projection formula.

§2. Preliminaries

§2.1. Conventions on complexes

Let us first settle some conventions on complexes. By complex of an abelian
category A, we mean a family of objects {Ak}k∈Z with differential dA : Ak →
Ak+1. For a complex A∗ and n ∈ Z, the n-th translation A[n]∗ is defined as
A[n]k = An+k and dA[n] = (−1)ndA.

By chain complex we mean a family of objects {Ak}k≥0 with boundary
∂A : Ak → Ak−1. For a complex A∗ = (Ak, dA) such that Ak = 0 for k > 0,
we can define a chain complex A∗ as Ak = A−k and dA = ∂A. The n-th
translation A[n]∗ of a chain complex A∗ for n ≥ 0 is defined as A[n]k = Ak−n

and ∂A[n] = (−1)n∂A.

§2.2. S-construction

In this subsection we recall the S-construction developed by Waldhausen
[15]. Throughout this paper, we assume that any small exact category has
a distinguished zero object denoted by 0. Let [n] be the finite ordered set
{0, 1, . . . , n} and Ar[n] the category of arrows of [n]. For a small exact category
A, let SnA be the set of functors E : Ar[n] → A satisfying the following
conditions for Ei,j = E(i ≤ j):

(1) Ei,i = 0 for any 0 ≤ i ≤ n.

(2) For any i ≤ j ≤ k, Ei,j → Ei,k → Ej,k is a short exact sequence of A.

For example, S0A = {0}, S1A is the set of objects of A and S2A is the set of
short exact sequences of A. The functor SA : [n] �→ SnA becomes a simplicial
set with the base point given by 0 ∈ S0A. It is shown in [15] that SA is
homotopy equivalent to the Quillen’s Q-construction of A. Therefore the (n +
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1)-th homotopy group πn+1(SA, 0) is isomorphic to Ki(A), the algebraic K-
theory of A.

§2.3. Exact n-cubes

Let us recall the notion of an exact n-cube. For more details, see [5, 6].
Let 〈−1, 0, 1〉 be the ordered set consisting of three elements. An n-cube
of a small exact category A is a covariant functor from the n-th power of
〈−1, 0, 1〉 to A. For an n-cube F , we denote by Fα1,...,αn

the image of an
object (α1, . . . , αn) of 〈−1, 0, 1〉n. For integers i and j satisfying 1 ≤ i ≤
n and −1 ≤ j ≤ 1, an (n − 1)-cube ∂j

i F is given by (∂j
i F)α1,...,αn−1 =

Fα1,...,αi−1,j,αi,...,αn−1 . It is called a face of F . For an object α of 〈−1, 0,

1〉n−1 and an integer i satisfying 1 ≤ i ≤ n, a 1-cube ∂α
icF called an edge of F

is

Fα1,...,αi−1,−1,αi,...,αn−1 → Fα1,...,αi−1,0,αi,...,αn−1 → Fα1,...,αi−1,1,αi,...,αn−1 .

An n-cube F is said to be exact if all edges of F are short exact sequences.
Let CnA denote the set of all exact n-cubes of A. If F is an exact n-cube,

then any face ∂j
i F is also exact. Hence ∂j

i induces a map

∂j
i : CnA → Cn−1A.

Let F be an exact n-cube of A. For an integer i satisfying 1 ≤ i ≤ n + 1,
let s1

iF be an exact (n + 1)-cube such that its edge ∂α
ic(s1

iF) is Fα
id→ Fα → 0.

Similarly, let s−1
i F be an exact (n + 1)-cube such that ∂α

ic(s−1
i F) is 0 → Fα

id→
Fα. An exact cube written as sj

iF is said to be degenerate.
Let ZCnA be the free abelian group generated by CnA and Dn ⊂ ZCnA the

subgroup generated by all degenerate exact n-cubes. Let Z̃CnA = ZCnA/Dn

and

∂ =
n∑

i=1

1∑
j=−1

(−1)i+j+1∂j
i : Z̃CnA → Z̃Cn−1A.

Then Z̃C∗A = (Z̃CnA, ∂) becomes a chain complex.
In [6, §4.4], an exact (n− 1)-cube Cub(E) for any E ∈ SnA is constructed

and it is shown that E �→ Cub(E) induces a homomorphism of complexes

Cub : ZS∗A[1] → Z̃C∗A.
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§2.4. Higher Bott-Chern forms

In this subsection we recall higher Bott-Chern forms developed by Burgos
and Wang. For more details, see [5, 6]. First we introduce the recipient of
higher Bott-Chern forms. Let M be a compact complex algebraic manifold,
namely, the analytic space consisting of all C-valued points of a smooth proper
algebraic variety over C. Let E

p
R
(M) be the space of real smooth differential

forms of degree p on M and Ep(M) = E
p
R
(M) ⊗R C. Let Ep,q(M) be the space

of complex differential forms of type (p, q) on M . Set

Dn(M, p) =


En−1

R
(M)(p − 1) ∩ ⊕

p′+q′=n−1

p′<p,q′<p

Ep′,q′
(M), n < 2p,

E
2p
R

(M)(p) ∩ Ep,p(M) ∩ Ker d, n = 2p,

0, n > 2p

and define a differential dD : Dn(M, p) → Dn+1(M, p) by

dD(ω) =


−π(dω), n < 2p − 1,

−2∂∂ω, n = 2p − 1,

0, n > 2p − 1,

where π : En(M) → Dn(M, p) is the canonical projection. Then it is shown in
[4, Thm. 2.6] that the pair (D∗(M, p), dD) is a complex of R-vector spaces with

Hn(D∗(M, p), dD) � Hn
D(M, R(p))

for n ≤ 2p.
By a hermitian vector bundle E = (E, h) on M we mean an algebraic

vector bundle E on M with a smooth hermitian metric h. Let KE denote the
curvature form of the unique connection on E that is compatible with both the
metric and the complex structure. Let us write

ch0(E) = Tr(exp(−KE)) ∈ ⊕
p
D2p(M, p).

An exact hermitian n-cube on M is an exact n-cube made of hermitian
vector bundles on M . Let F = {Eα} be an exact hermitian n-cube on
M . We call F an emi-n-cube if the metric on any Eα with αi = 1 coin-
cides with the metric induced from Eα1,...,αi−1,0,αi+1,...,αn

for the surjection
Eα1,...,αi−1,0,αi+1,...,αn

→ Eα.
For an emi-1-cube E : E−1 → E0 → E1, a canonical way of constructing

a hermitian vector bundle tr1 E on M × P1 connecting E0 with E−1 ⊕ E1 is
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given in [6]. More precisely, if (x : y) denotes the homogeneous coordinate of
P1 and z = x/y, then tr1 E is a hermitian vector bundle on M × P1 satisfying
the following conditions:

tr1 E|z=0 � E0, tr1 E|z=∞ � E−1 ⊕ E1.

For an emi-n-cube F , let tr1(F) be an emi-(n − 1)-cube on M × P1 given by
tr1(F)α = tr1(∂α

nc(F)) for α ∈ 〈−1, 0, 1〉n−1, and trn(F) a hermitian vector
bundle on M × (P1)n given by

trn(F) =

n times︷ ︸︸ ︷
tr1 tr1 . . . tr1(F).

Let πi : (P1)n → P1 be the i-th projection and zi = π∗
i z. For an integer i

satisfying 1 ≤ i ≤ n,

Si
n =

∑
σ∈Sn

(−1)σ log |zσ(1)|2
dzσ(2)

zσ(2)
∧ · · · ∧

dzσ(i)

zσ(i)
∧

dz̄σ(i+1)

z̄σ(i+1)
∧ · · · ∧

dz̄σ(n)

z̄σ(n)
,

which is a differential form with logarithmic poles on (P1)n. The Bott-Chern
form of an emi-n-cube F is

chn(F) =
1

(2π
√
−1)n

∫
(P1)n

ch0(trn(F)) ∧ Tn ∈ ⊕
p
D2p−n(M, p),

where

Tn =
(−1)n

2n!

n∑
i=1

(−1)iSi
n.

A process to produce an emi-n-cube λF from an arbitrary exact hermitian
n-cube F is given in [6]. By virtue of this process, we can extend the definition
of the Bott-Chern form to an arbitrary exact hermitian n-cube.

Definition 2.1. The Bott-Chern form of an exact hermitian n-cube F
is an element of ⊕pD

2p−n(M, p) given as follows:

chn(F) =
1

(2π
√
−1)n

∫
(P1)n

ch0(trn(λF)) ∧ Tn.

Theorem 2.2 ([6]). Let P̂(M) denote the category of hermitian vector
bundles on M and let Z̃Ĉ∗(M) = Z̃C∗P̂(M). Then F �→ chn(F) induces a
homomorphism

ch : Z̃Ĉ∗(M) → ⊕
p
D∗(M, p)[2p].
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Moreover, the following map

Kn(M) = πn+1(Ŝ(M)) Hurewicz−→ Hn+1(ZŜ∗(M))
Cub−→ Hn(Z̃Ĉ∗(M)) ch→ ⊕

p
H2p−n

D (M, R(p))

coincides with the Beilinson’s regulator map.

§3. Modified Homotopy Groups

§3.1. Definition of modified homotopy groups

In this section we develop a general framework used later in this paper. Let
I be the closed interval [0, 1] equipped with the usual CW-complex structure.
Throughout this paper we identify the n-dimensional sphere Sn with In/∂In.
Therefore Sn consists of two cells and any point of Sn except the base point is
expressed by an n-tuple of real numbers (t1, . . . , tn) with 0 < ti < 1.

Let T be a pointed CW-complex and ∗ ∈ T the base point. Let skn(T )
be the n-th skeleton of T when n ≥ 0 and sk−1(T ) = {∗}. For n ≥ 0, let
us write Cn(T ) = Hn(skn(T ), skn−1(T ); Z), the n-th relative homology group
of the pair (skn(T ), skn−1(T )). Let ∂ : Cn(T ) → Cn−1(T ) be the connecting
homomorphism for the triple (skn(T ), skn−1(T ), skn−2(T )). Then (C∗(T ), ∂) is
a chain complex whose homology group is isomorphic to the reduced homology
group of T .

Suppose that a chain complex of abelian groups (W∗, ∂) and a homomor-
phism of chain complexes ρ : C∗(T ) → W∗ are given. Let W̃n = Wn/ Im ∂. Let
us consider a pair (f, ω) of a pointed cellular map f : Sn → T and ω ∈ W̃n+1.
A cellular homotopy from one pair (f, ω) to another pair (f ′, ω′) is a pointed
cellular map H : (Sn × I)/({∗} × I) → T satisfying the following:

(1) H(x, 0) = f(x) and H(x, 1) = f ′(x).
(2) Let [Sn × I] ∈ Cn+1(Sn × I) denote the fundamental chain of Sn × I,

where the orientation on Sn×I is inherited from the canonical orientation
of the interval I. Then

ω′ − ω = (−1)n+1ρH∗([Sn × I]).

It can be shown that the cellular homotopy gives an equivalence relation on
the set of pairs. Two pairs are said to be homotopy equivalent if there exists a
cellular homotopy between them. We denote by π̂n(T, ρ) the set of all homotopy
equivalence classes of pairs.
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Let us define a multiplication on the set π̂n(T, ρ). Let T ∨ T = {(x, y) ∈
T × T ; x = ∗ or y = ∗}. Then we can define a natural map T ∨ T → T by
(x, ∗) �→ x and (∗, y) �→ y. A comultiplication map µ : Sn → Sn ∨ Sn is given
by

µ(t1, . . . , tn) =

{
((t1, t2, . . . , 2tn), ∗) , 0 < tn ≤ 1

2 ,

(∗, (t1, t2, . . . , 2tn − 1)) , 1
2 ≤ tn < 1,

and a homotopy inverse map ν : Sn → Sn by ν(t1, . . . , tn−1, tn) = (t1, . . . , tn−1,

1 − tn). For two pointed cellular maps f, g : Sn → T , let us write

f · g : Sn µ→ Sn ∨ Sn f∨g−→ T ∨ T → T,

and
f−1 : Sn ν→ Sn f→ T.

A multiplication of two pairs (f, ω) and (g, τ ) is

(f, ω) · (g, τ ) = (f · g, ω + τ ).

It is easy to show that the multiplication · is compatible with the homotopy
equivalence relation on pairs. Hence it gives rise to a multiplication on π̂n(T, ρ).

Let us next verify the associativity of the multiplication. For three pointed
cellular maps f, g, h : Sn → T , a cellular homotopy H1 : (Sn×I)/({∗}×I) → T

from (f · g) · h to f · (g · h) is given as follows:

H1(t1, . . . , tn−1, tn, u) =


f(t1, . . . , tn−1,

4tn

u+1), 0 < tn ≤ u+1
4 ,

g(t1, . . . , tn−1, 4tn − u − 1), u+1
4 ≤ tn ≤ u+2

4 ,

h(t1, . . . , tn−1,
4tn−2−u

2−u ), u+2
4 ≤ tn < 1.

Since the image of H1 is contained in skn(T ), we have (H1)∗([Sn × I]) = 0 in
Cn+1(T ). Hence H1 becomes a cellular homotopy from ((f, ω) · (g, τ )) · (h, η)
to (f, ω) · ((g, τ ) · (h, η)) for any ω, τ, η ∈ W̃n+1.

Finally we show the existence of unit and inverse with respect to the mul-
tiplication ·. Let 0 : Sn → T be the map given by 0(Sn) = {∗}. For a pointed
cellular map f : Sn → T , a homotopy H2 from f · 0 to f is given as follows:

H2(t1, . . . , tn−1, tn, u) =

{
f(t1, . . . , tn−1,

2tn

u+1 ), 0 < tn ≤ u+1
2 ,

∗, u+1
2 ≤ tn < 1.
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A homotopy H3 from 0 · f to f can be given in a similar form. Moreover, a
homotopy H4 from f · f−1 to 0 is given as follows:

H4(t1, . . . , tn−1, tn, u) =


f(t1, . . . , tn−1,

2tn

1−u ), 0 < tn ≤ 1−u
2 ,

∗, 1−u
2 ≤ tn ≤ 1+u

2 ,

f(t1, . . . , tn−1,
−2tn+2

1−u ), u+1
2 ≤ tn < 1.

A homotopy H5 from f−1 · f to 0 can be given in a similar form. These
homotopies are all cellular and their images are contained in skn(T ). Hence
(f, ω) · (0, 0) and (0, 0) · (f, ω) are homotopy equivalent to (f, ω), and (f, ω) ·
(f−1,−ω) and (f−1,−ω) · (f, ω) are homotopy equivalent to (0, 0).

Theorem 3.1. For n ≥ 1, the multiplication · gives the structure of a
group on π̂n(T, ρ) and when n ≥ 2, it becomes commutative.

Proof. The former part has already been proved. When n ≥ 2, for two
pointed cellular maps f, g : Sn → T , f · g is homotopy equivalent to g · f .
A homotopy between them is described in every textbook of homotopy theory,
and it is easy to see that the image of this homotopy is also contained in skn(T ).
Hence (f · g, 0) is homotopy equivalent to (g · f, 0).

Definition 3.2. The group π̂n(T, ρ) is called the n-th homotopy group
of T modified by the homomorphism ρ.

Let ζ : π̂n(T, ρ) → πn(T ) denote the surjection obtained by forgetting
elements of W̃n+1. Then we have the following:

Theorem 3.3. There is an exact sequence

πn+1(T )
ρ̃→ W̃n+1

a→ π̂n(T, ρ)
ζ→ πn(T ) → 0,

where the map ρ̃ is given by

ρ̃ : πn+1(T ) Hurewicz−→ Hn+1(T )
Hn+1(ρ)−→ Hn+1(W∗) ⊂ W̃n+1

and the map a by a(ω) = [(0, ω)] ∈ π̂n(T, ρ).

Proof. The cellular approximation theorem implies that Im a = Ker ζ.
Hence we have only to show that Ker a = Im ρ̃. For ω ∈ W̃n+1, the pair (0, ω)
is homotopy equivalent to (0, 0) if and only if there is a cellular homotopy
H : (Sn × I)/({∗} × I) → T from 0 to 0 such that (−1)n+1ρH∗([Sn × I]) = ω.



�

�

�

�

�

�

�

�

610 Yuichiro Takeda

Since H(Sn ×∂I) = {∗}, H gives a pointed cellular map H ′ : Sn+1 → T . Then
ω is equal to the image of (−1)n+1[H ′] ∈ πn+1(T ) by ρ̃, therefore Ker a ⊂ Im ρ̃.
The opposite inclusion Im ρ̃ ⊂ Ker a can be verified by regarding a pointed
cellular map Sn+1 → T as a cellular homotopy from 0 to 0.

§3.2. A homomorphism from a modified homotopy group

For a pair (f, ω) as in the previous subsection, let ρ(f, ω) = ρf∗([Sn]) +
∂ω ∈ Wn.

Proposition 3.4. The above ρ(f, ω) gives rise to a homomorphism

ρ : π̂n(T, ρ) → Wn

and Im ρ is contained in Ker(∂ : Wn → Wn−1).

Proof. If H : (Sn × I)/({∗} × I) → T is a cellular homotopy from (f, ω)
to (f ′, ω′), then

∂H∗([Sn × I]) = (−1)n(f ′
∗([S

n]) − f∗([Sn]))

in Cn(T ) and ρH∗([Sn × I]) = (−1)n+1(ω′ − ω). Hence we have

ρ(f, ω) = ρf∗([Sn]) + ∂ω

= ρf ′
∗([S

n]) + (−1)n+1∂ρH∗([Sn × I])) + ∂ω

= ρf ′
∗([S

n]) + ∂(ω′ − ω) + ∂ω

= ρ(f ′, ω′),

therefore ρ(f, ω) gives rise to a homomorphism from π̂n(T, ρ). The inclusion
Im ρ ⊂ Ker(∂ : Wn → Wn−1) is obvious.

The exact sequence in Theorem 3.3 implies the following corollaries:

Corollary 3.5. There is an exact sequence

πn+1(T )
ρ̃→ Hn+1(W∗)

a→ π̂n(T, ρ)
ζ⊕ρ−→ πn(T ) ⊕ Ker ∂

cl→ Hn(W∗) → 0,

where Ker ∂ = Ker(∂ : Wn → Wn−1) and cl(x, ω) = ρ̃(x) − [ω].

Corollary 3.6. For n ≥ 1, let

π̂n(T, ρ)0 = Ker(ρ : π̂n(T, ρ) → Wn).

Then there is a long exact sequence

· · · ζ→ πn+1(T )
ρ̃→ Hn+1(W∗)

a→ π̂n(T, ρ)0
ζ→ πn(T )

ρ̃→ · · · .
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§3.3. Comparison to the homotopy group of the homotopy
fiber of ρ

In this subsection we show that π̂n(T, ρ)0 is canonically isomorphic to the
n-th homotopy group of the homotopy fiber of the map ρ. Here we work with
the category of simplicial sets, not with the category of CW-complexes. Let us
first recall Dold-Kan correspondence. See [11] for a concrete account.

Let A be a simplicial abelian group. Then we obtain the chain complex
associated to A by A∗ = (An, ∂ =

∑
i(−1)i∂i). We can define another chain

complex NA∗ called the normalized chain complex of A. It is a subcomplex of
A∗ such that the inclusion is a quasi-isomorphism.

For a chain complex W∗ of abelian groups, we can construct a simplicial
abelian group Γ(W∗). The group of n-th simplexes of Γ(W∗) is the direct sum
of Wn with the subgroup generated by degenerate simplexes, and the canonical
projection

ϕ : Γ(W∗)∗ → W∗

is a homomorphism of chain complexes. The homotopy group of Γ(W∗) is
canonically isomorphic to the homology group of W∗:

πn(Γ(W∗)) � Hn(W∗).

Dold-Kan correspondence [11, Cor. III. 2.3] says that the functors N and Γ are
mutually inverse.

Suppose T = |K|, the topological realization of a pointed simplicial set K.
Let ZK denote the simplicial abelian group spanned by K and ZK∗ denote the
chain complex associated to ZK. We can regard ρ as the homomorphism from
ZK∗:

ρ : ZK∗ � C∗(|K|) → W∗.

Then we have the map of simplicial sets

ρ� : K → ZK = Γ(NZK∗) ↪→ Γ(ZK∗)
Γ(ρ)−→ Γ(W∗).

Lemma 3.7. The map

ZK∗
ρ�
∗−→ Γ(W∗)∗

ϕ−→ W∗

coincides with ρ.

Proof. We have ZK∗ = NZK∗ ⊕ D∗ and Γ(W∗)∗ = W∗ ⊕ D′
∗ where D∗

and D′
∗ are subcomplexes generated by degenerate elements. Since ρ�

∗ comes
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from the map of simplicial sets, it is described as

ZK∗ = NZK∗ ⊕ D∗
ρ⊕ψ−→ W∗ ⊕ D′

∗ = Γ(W∗)∗,

where ψ = ρ�
∗|D∗ .

For x ∈ ZK∗, take the decomposition x = xN + xD, where xN ∈ NZK∗
and xD ∈ D∗. Then ϕρ�

∗(x) = ρ(xN ) = ρ(x) − ρ(xD). Since ρ factors through
C∗(|K|), we have ρ(xD) = 0, hence ϕρ�

∗(x) = ρ(x).

Theorem 3.8. Let Fibρ� denote the homotopy fiber of ρ�. Then for
n ≥ 1 there exists a canonical isomorphism

πn(Fibρ�) � π̂n(|K|, ρ)0

making the following diagram commutative up to multiplication by ±1:

πn+1(K) −−−−−→ πn+1(Γ(W∗)) −−−−−→ πn(Fibρ�) −−−−−→ πn(K) −−−−−→ Hn(W∗)
�id

�
�

�id

�

πn+1(|K|) ρ̃−−−−−→ Hn+1(W∗)
a−−−−−→ π̂n(|K|, ρ)0

ζ−−−−−→ πn(|K|) ρ̃−−−−−→ Hn(W∗).

Proof. Take a Kan complex K ′ with an anodyne extension K → K ′.
Since Γ(W∗) is also a Kan complex by [11, Lem. I. 3.4], there is an extension
ρ′� : K ′ → Γ(W∗) of ρ�. Let ρ′ be the homomorphism of chain complexes given
as follows:

ZK ′
∗

ρ′�
∗−→ Γ(W∗)∗

ϕ−→ W∗.

It is easily shown that the image of any degenerate simplex of K ′ by ρ′ is zero.
Hence ρ′ gives the homomorphism C∗(|K ′|) → W∗. By Lemma 3.7 we have the
commutative diagram

ZK∗

ZK ′
∗

W∗.
�

������

������

ρ

ρ′

Therefore we may assume that K itself is a Kan complex.
Let ∆[1] be the simplicial set represented by [1] and fix {0} ∈ ∆[1]0 =

Hom([0], [1]) as the base point. Let Hom•(∆[1], Γ(W∗)) denote the function
complex from ∆[1] to Γ(W∗) preserving the base point. Define F to be the
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cartesian product of the following diagram:

Hom•(∆[1], Γ(W∗))�i�
1

K
ρ�

−−−−→ Γ(W∗),

where i�1 is the map taking composite with the injection i1 : {1} → ∆[1]. Then
the topological realization of F is homotopy equivalent to Fibρ� .

Let ∆[n] be the simplicial set represented by [n] and ∂∆[n] its boundary.
Note that the topological realization of ∆[n]/∂∆[n] is the n-dimensional sphere
Sn with the usual cellular decomposition into two cells. Since F is a Kan com-
plex, the homotopy group of F is given by the set of all maps from ∆[n]/∂∆[n]
to F modulo simplicial homotopy.

Take a map of pointed simplicial sets f : ∆[n]/∂∆[n] → F . Then we have
two maps:

f1 : ∆[n]/∂∆[n] f−→ F
π1−→ K,

f2 : ∆[n]/∂∆[n]
f−→ F

π2−→ Hom•(∆[1], Γ(W∗)),

where π1 and π2 are the projections. Let

|f1| : Sn = |∆[n]/∂∆[n]| → |K|

be the topological realization of f1 and

f �
2 : (∆[n] × ∆[1])/(∂∆[n] × ∆[1]) ∪ (∆[n] × {0}) → Γ(W∗)

be the map corresponding to f2. Let [∆[n] × ∆[1]] be the fundamental chain
and ωf2 = ϕf �

2∗([∆[n] × ∆[1]]) ∈ Wn+1. Then

∂ωf2 = ϕf �
2∗(∂[∆[n] × ∆[1]])

= (−1)nϕf �
2∗([∆[n] × {1}])

= (−1)nϕρ�f1∗([∆[n]])

= (−1)nρf1∗([∆[n]]).

Hence the pair (|f1|, (−1)n+1ωf2) gives an element of π̂n(|K|, ρ)0.
Let f, g : ∆[n]/∂∆[n] → F be maps of pointed simplicial sets and

H : (∆[n] × ∆[1])/(∂∆[n] × ∆[1]) → F
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a homotopy from f to g. Let

H1 : (∆[n] × ∆[1])/(∂∆[n] × ∆[1]) H−→ F
π1−→ K,

H2 : (∆[n] × ∆[1])/(∂∆[n] × ∆[1]) H−→ F
π2−→ Hom•(∆[1], Γ(W∗)).

The map H1 is a homotopy from f1 to g1. Let

H�
2 : (∆[n]×∆[1]×∆[1])/(∂∆[n]×∆[1]×∆[1])∪ (∆[n]×∆[1]×{0}) → Γ(W∗)

the map corresponding to H2. If we denote ωH2 = ϕH�
2∗([∆[n]×∆[1]×∆[1]]) ∈

Wn+2, then

∂ωH2 = (−1)nϕH�
2∗([∆[n] × {1} × ∆[1]] − [∆[n] × {0} × ∆[1]]

−[∆[n] × ∆[1] × {1}])
= (−1)n(ωg2 − ωf2) + (−1)n+1ρH1∗([∆[n] × ∆[1]]).

Hence
[(|f1|, (−1)n+1ωf2)] = [(|g1|, (−1)n+1ωg2)],

which tells that f �→ [(|f1|, (−1)n+1ωf2)] gives rise to a map

πn(F ) → π̂n(|K|, ρ)0.

Next we show that the above map is a homomorphism of groups. Let
f, g, h : ∆[n]/∂∆[n] → F be maps of pointed simplicial sets and σ : ∆[n+1] →
F a map such that ∂n−1σ = f, ∂n+1σ = g, ∂nσ = h and ∂jσ is the map
collapsing to the base point for j ≤ n − 2. Then [f ] + [g] = [h] in πn(F ) and
any sum in πn(F ) is described in this way. Let

σ1 : ∆[n + 1] σ−→ F
π1−→ K,

σ2 : ∆[n + 1] σ−→ F
π2−→ Hom•(∆[1], Γ(W∗))

and
σ�

2 : (∆[n + 1] × ∆[1])/(∆[n + 1] × {0}) → Γ(W∗)

the map corresponding to σ2. If we denote ωσ2 = ϕσ�
2∗([∆[n + 1] × ∆[1]]) ∈

Wn+2, then

∂ωσ2 = ϕσ�
2∗([∂∆[n + 1] × ∆[1]] + (−1)n+1[∆[n + 1] × {1}])

= (−1)n−1(ωf2 + ωg2 − ωh2) + (−1)n+1ρσ1∗([∆[n + 1]]).

Hence σ1 is a homotopy from f1 · g1 to h1 such that

ρσ1∗([∆[n + 1]]) = ωh2 − ωf2 − ωg2 + (−1)n+1∂ωσ2 .
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Hence

[(|h1|, (−1)n+1ωh2)] = [(|f1|, (−1)n+1ωf2)] + [(|g1|, (−1)n+1ωg2)],

which tells that the map πn(F ) → π̂n(|K|, ρ)0 is a homomorphism of groups.
It is obvious that the diagram

πn(F ) −−−−→ πn(K)� �
π̂n(|K|, ρ)0

ζ−−−−→ πn(|K|)

is commutative. Consider the following diagram:

πn+1(Γ(W∗)) −−−−→ πn(F )� �
Hn+1(W∗)

a−−−−→ π̂n(|K|, ρ)0.

In the above, the upper horizontal arrow is obtained from the map of simplicial
sets

Hom•(∆[1]/∂∆[1], Γ(W∗)) −→ F = K ×
Γ(W∗)

Hom•(∆[1], Γ(W∗))

given by γ �→ (∗, γ̃), where ∗ is the base point of K and γ̃ is the element of
Hom•(∆[1], Γ(W∗)) given by γ. Take a map of pointed simplicial sets

ω : ∆[n]/∂∆[n] → Hom•(∆[1]/∂∆[1], Γ(W∗))

and let
ω� : ∆[n] × ∆[1]/∂(∆[n] × ∆[1]) → Γ(W∗)

be the map corresponding to ω. Then the image of

[ω�] ∈ πn+1(Γ(W∗)) � πn(Hom•(∆[1]/∂∆[1], Γ(W∗)))

by the map
πn+1(Γ(W∗)) → πn(F ) → π̂n(|K|, ρ)0

is [(0, (−1)n+1ϕω�
∗([∆[n]×∆[1]]))]. This shows that the above diagram is com-

mutative up to multiplication by (−1)n+1.
It is obvious from the five lemma that πn(F ) → π̂n(|K|, ρ)0 is an isomor-

phism.
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§3.4. A functoriality of modified homotopy groups

Let T and T ′ be pointed CW-complexes and let W∗ and W ′
∗ be chain

complexes. Let α : T → T ′ be a pointed cellular map and let ρ : C∗(T ) → W∗,
ρ′ : C∗(T ′) → W ′

∗ and β : W∗ → W ′
∗ be homomorphisms of chain complexes

that make the diagram
C∗(T ) α∗−−−−→ C∗(T ′)�ρ

�ρ′

W∗
β−−−−→ W ′

∗

commutative up to a homotopy Φ. In other words, there is a homomorphism
Φ : C∗(T ) → W ′

∗+1 satisfying ρ′α∗ − βρ = ∂Φ + Φ∂.

Proposition 3.9. Under the above notations, we can define a homo-
morphism

(α, β, Φ)∗ : π̂n(T, ρ) → π̂n(T ′, ρ′)

by [(f, ω)] �→ [(αf, β(ω)−Φf∗([Sn]))]. This homomorphism enjoys the following
functorial property: Let α : T → T ′ and α′ : T ′ → T ′′ be pointed cellular
maps and let β : W∗ → W ′

∗ and β′ : W ′
∗ → W ′′

∗ be homomorphisms of chain
complexes. We assume that the squares

C∗(T ) α∗−−−−→ C∗(T ′)
α′

∗−−−−→ C∗(T ′′)�ρ

�ρ′
�ρ′′

W∗
β−−−−→ W ′

∗
β′

−−−−→ W ′′
∗

are commutative up to homotopies Φ and Φ′ respectively. Then

(α′, β′, Φ′)∗(α, β, Φ)∗ = (α′α, β′β, β′Φ + Φ′α∗)∗ : π̂n(T, ρ) → π̂n(T ′′, ρ′′).

Proof. Let f, f ′ : Sn → T be pointed cellular maps and ω, ω′ ∈ W̃n+1. If
H : (Sn × I)/({∗}× I) → T is a cellular homotopy from (f, ω) to (f ′, ω′), then

(−1)n+1ρ′α∗H∗([Sn × I])

= (−1)n+1βρH∗([Sn × I]) + (−1)n+1∂ΦH∗([Sn × I])

+(−1)n+1Φ∂H∗([Sn × I])

≡ (β(ω′) − Φf ′
∗([S

n])) − (β(ω) − Φf∗([Sn]))

modulo Im ∂. This tells that the map αH : (Sn × I)/({∗} × I) → T ′ is
a cellular homotopy from (αf, β(ω) − Φf∗([Sn])) to (αf ′, β(ω′) − Φf ′

∗([S
n])).
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Hence (α, β, Φ)∗ is well-defined. The functorial property can be shown by an
easy calculation.

Proposition 3.10. Under the above notations, we have a commutative
diagram

π̂n(T, ρ)
ρ−−−−→ Wn�(α,β,Φ)∗

�β

π̂n(T ′, ρ′)
ρ′

−−−−→ W ′
n.

Proof. For a pointed cellular map f : Sn → T ,

ρ′α∗f∗([Sn]) − βρf∗([Sn]) = ∂Φf∗([Sn]).

Hence

ρ′(α, β, Φ)∗([(f, ω)]) = ρ′([(αf, β(ω) − Φf∗([Sn]))])

= ρ′α∗f∗([Sn]) + ∂(β(ω) − Φf∗([Sn]))

= β(ρf∗([Sn]) + ∂ω)

= βρ([(f, ω)]).

§4. Definition of Arithmetic K-groups

§4.1. Triviality of the Bott-Chern form of a degenerate element

In this subsection we prove that the Bott-Chern form of a degenerate
element of S∗A vanishes. We begin with the following lemma:

Lemma 4.1. For any E ∈ SnA, we have

Cub(s0E) = s−1
1 Cub(E),

Cub(snE) = s1
n Cub(E)

and if 1 ≤ i ≤ n − 1, then we have

Cub(siE) = τi Cub(siE),

where τi ∈ Sn is the transposition of i and i + 1.
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Proof. In order to prove the lemma, we use [6, Prop. 4.5], in which all
faces of Cub(E) for E ∈ SnA are described. Using this proposition, we can
show that

∂−1
1 Cub(s0E) = 0,

∂0
1 Cub(s0E) = ∂1

1 Cub(s0E) = Cub(E).

Hence Cub(s0E) = s−1
1 Cub(E). The second identity can be shown in a similar

way. The last identity follows from

∂j
i Cub(siE) = ∂j

i+1 Cub(siE)

for 1 ≤ i ≤ n − 1 and −1 ≤ j ≤ 1, which can be shown also by using [6,
Prop. 4.5].

Let Sn denote the n-th symmetric group. For σ ∈ Sn and an exact n-
cube F of a small exact category A, let σF be an exact n-cube defined by
(σF)α1,...,αn

= Fασ(1),ασ(2),...,ασ(n) . Let Sn ⊂ ZCnA be the subgroup generated
by exact n-cubes F such that τiF = F for some integer i with 1 ≤ i ≤ n − 1.
Set

Cubn(A) = ZCnA/(Dn + Sn).

Lemma 4.2. We have ∂Sn ⊂ Sn−1. Hence Cub∗(A) = (Cubn(A), ∂)
becomes a chain complex.

Proof. Let F be an exact n-cube satisfying τiF = F . If k < i, then
∂j

kF = ∂j
kτiF = τi−1∂

j
kF and if k > i + 1, then ∂j

kF = ∂j
kτiF = τi∂

j
kF .

Furthermore, τiF = F implies that ∂j
i F = ∂j

i+1F . Hence

∂F =
∑

k �=i,i+1

1∑
j=−1

(−1)k+j+1∂j
kF ∈ Sn−1.

Lemma 4.3. Let F be an exact hermitian n-cube on a complex algebraic
manifold M . For any σ ∈ Sn, there is a canonical isometry σ(λF) � λ(σF).

Proof. As seen in [6, §3], the emi-n-cube λF is written as λn · · ·λ2λ1F ,
where each λi is an endomorphism of the chain complex Z̃Ĉ∗(M), and it is easy
to see that σ(λiF) = λσ(i)(σF). Hence it is sufficient to show the existence of
a canonical isometry λiλj � λjλi. For simplicity, we prove it only in the case
of n = 2.
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For an exact hermitian 2-cube F = {Ei,j}, λ2λ1F is given as follows:

E−1,−1 ⊕ E1,−1 ⊕ E−1,1 ⊕ E1,1 −−−−−→E−1,0 ⊕ E1,0 ⊕ E′
−1,1 ⊕ E′

1,1 −−−−−→E′
−1,1 ⊕ E′

1,1
�

�
�

E0,−1 ⊕ E′
1,−1 ⊕ E0,1 ⊕ E′

1,1 −−−−−→ E0,0 ⊕ E′
1,0 ⊕ E′

0,1 ⊕ E′
1,1 −−−−−→ E′

0,1 ⊕ E′
1,1

�
�

�

E′
1,−1 ⊕ E′

1,1 −−−−−→ E′
1,0 ⊕ E′

1,1 −−−−−→ E′
1,1,

where E′
i,j is the same vector bundle as Ei,j equipped with the metric induced

from E0,0. On the other hand, λ1λ2F is given as follows:

E−1,−1 ⊕ E−1,1 ⊕ E1,−1 ⊕ E1,1 −−−−−→E−1,0 ⊕ E′
−1,1 ⊕ E1,0 ⊕ E′

1,1 −−−−−→E′
−1,1 ⊕ E′

1,1
�

�
�

E0,−1 ⊕ E0,1 ⊕ E′
1,−1 ⊕ E′

1,1 −−−−−→ E0,0 ⊕ E′
0,1 ⊕ E′

1,0 ⊕ E′
1,1 −−−−−→ E′

0,1 ⊕ E′
1,1

�
�

�

E′
1,−1 ⊕ E′

1,1 −−−−−→ E′
1,0 ⊕ E′

1,1 −−−−−→ E′
1,1.

Hence an isometry λ2λ1F � λ1λ2F is given by appropriate permutations of
direct summands.

Theorem 4.4. The Bott-Chern form of a degenerate element of Ŝn(M)
is zero.

Proof. For an integer i with 1 ≤ i ≤ n − 1, let ti : (P1)n → (P1)n denote
the involution interchanging the i-th and the (i + 1)-th components. Then by
[13, Prop. 2.1] and Lemma 4.3, there is an isometry t∗i trn(λF) � trn(λτiF).
Furthermore, it follows from the definition of Tn that t∗i Tn = −Tn. Hence if
τiF = F , then

chn(F) =
∫

(P1)n

ch0(trn(λF)) ∧ Tn

=
∫

(P1)n

t∗i (ch0(trn(λF)) ∧ Tn) = − chn(F),

therefore chn(F) = 0.
By Lemma 4.1, the cube Cub(E) associated with a degenerate element

E ∈ Ŝn(X) is either a degenerate cube or a cube satisfying τiF = F for some
1 ≤ i ≤ n − 2. Hence we can say that chn−1(E) = 0.
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§4.2. Definition of higher arithmetic K-theory

Let X be a proper arithmetic variety. Let X(C) denote the compact com-
plex manifold consisting of C-valued points on X and F∞ : X(C) → X(C) the
complex conjugation. The real Deligne cohomology of X is the F

∗
∞-invariant

part of that of X(C):

Hn
D(X, R(p)) = Hn

D(X(C), R(p))F
∗
∞=id.

Hence if we set
Dn(X, p) = Dn(X(C), p)F

∗
∞=id,

then we have an isomorphism

Hn(D∗(X, p), dD) � Hn
D(X, R(p)).

By a hermitian vector bundle on X we mean a pair E = (E, h) of a vector
bundle E on X and an F∞-invariant smooth hermitian metric h on E(C). An
exact hermitian n-cube on X is an exact n-cube made of hermitian vector bun-
dles on X. Since the Chern form ch0(E) is contained in ⊕pD

2p(X, p), the Bott-
Chern form of an exact hermitian n-cube on X is contained in ⊕pD

2p−n(X, p).
Let P̂(X) be the category of hermitian vector bundles on X, Ŝ(X) the

S-construction of P̂(X), and Ĉub∗(X) = Cub∗(P̂(X)). If we set Dn(X) =
⊕pD

2p−n(X, p), then by Theorem 4.4 we can obtain a homomorphism of chain
complexes

ch : C∗(|Ŝ(X)|) Cub−→ Ĉub∗(X)[1] ch−→ D∗(X)[1].

Definition 4.5. The n-th arithmetic K-group K̂n(X) of X is the (n +
1)-th homotopy group of |Ŝ(X)| modified by ch:

K̂n(X) = π̂n+1(|Ŝ(X)|, ch).

Applying Theorem 3.3 to the present context, we can obtain the following:

Theorem 4.6. There is an exact sequence

Kn+1(X) → D̃n+1(X) → K̂n(X) → Kn(X) → 0,

where D̃n+1(X) = Dn+1(X)/ Im dD.

As we mentioned in §1, the 0-th arithmetic K-group has already been
defined by Gillet and Soulé in [9]. Let us recall their definition again.
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Consider a pair (E, ω) of a hermitian vector bundle E on X and ω ∈
D̃1(X). Let K̂0(X) be the abelian group generated by all such pairs modulo
the subgroup generated by

(E′, ω′) + (E′′, ω′′) − (E, ω′ + ω′′ − ch1(E))

for all short exact sequences E : 0 → E′ → E → E′′ → 0 and ω′, ω′′ ∈ D̃1(X).
We denote by [(E, ω)] the element of K̂0(X) represented by a pair (E, ω).

Strictly speaking, the group K̂0(X) is different from the one defined by
Gillet and Soulé up to a constant factor. This results from a difference of
Chern-Weil forms. In fact, they think of the Chern-Weil form of E as the
following real form:

Tr
(

exp
(

−KE

2π
√
−1

))
.

Hence the (p, p)-part of the above form is equal to 1
(2π

√
−1)p ch0(E)(p,p). For

ω =
∑

p ωp ∈ ⊕pD
2p−1(X, p) = D1(X), let

Θ(ω) =
∑

p

2
(2π

√
−1)p−1

ωp,

then Θ(ω) is a real form such that −Θ(ch1(E)) modulo Im ∂ +Im ∂ is the Bott-
Chern secondary characteristic class of E. Hence (E, ω) �→ (E, Θ(ω)) gives an
isomorphism from K̂0(X) to Gillet and Soulé’s arithmetic K0-group of X.

Theorem 4.7. There is a canonical isomorphism

α̂ : K̂0(X) � π̂1(|Ŝ(X)|, ch) = K̂0(X).

Proof. Since Ŝ1(X) is the set of all hermitian vector bundles on X and
Ŝ0(X) = {∗}, any hermitian vector bundle E on X gives a pointed simplicial
loop lE : S1 → |Ŝ(X)|. Moreover, any short exact sequence E : 0 → E′ → E →
E′′ → 0 gives a 2-simplex ∆E in Ŝ(X) whose faces are ∂0∆E = E′′, ∂1∆E = E

and ∂2∆E = E′. If we regard ∆E as a cellular homotopy from lE′ · lE′′ to lE ,
then ch1((∆E)∗[S1 × I]) = ch1(E). Hence we have

[(lE′ · lE′′ , 0)] = [(lE , ch1(E))]

in π̂1(|Ŝ(X)|, ch). This tells that (E, ω) �→ (lE ,−ω) gives rise to a homomor-
phism of groups

α̂ : K̂0(X) → π̂1(|Ŝ(X)|, ch) = K̂0(X).
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Consider the following commutative diagram:

K1(X) −−−−→ D̃1(X) a−−−−→ K̂0(X) −−−−→ K0(X) −−−−→ 0�−id

�−id

�α̂

�id

K1(X) −−−−→ D̃1(X) a−−−−→ K̂0(X) −−−−→ K0(X) −−−−→ 0.

The upper sequence is exact by [9, Theorem 6.2] and the lower one is exact by
Theorem 4.6. Hence α̂ is bijective by the five lemma.

Let ϕ : X → Y be a morphism of proper arithmetic varieties. Then we
have a commutative diagram

C∗(|Ŝ(Y )|) ch−−−−→ D∗(Y )[1]�ϕ∗
�ϕ∗

C∗(|Ŝ(X)|) ch−−−−→ D∗(X)[1].

Hence we obtain a pull back homomorphism

ϕ̂∗ : K̂n(Y ) → K̂n(X)

by ϕ̂∗([(f, ω)]) = [(ϕ∗f, ϕ∗ω)].
Let

chn : K̂n(X) → Dn(X)

be the map introduced in §3.2, that is,

chn([(f, ω)]) = chn(f) − dDω,

where chn(f) = ch(f∗([Sn+1])) ∈ Dn(X). We call it the Chern form map.
Applying Corollary 3.5, Corollary 3.6 and Theorem 3.8 to the present situation,
we can obtain the following corollaries:

Corollary 4.8. There is an exact sequence

Kn+1(X)
ρ→ ⊕

p
H2p−n−1

D (X, R(p)) → K̂n(X)

(ζ,chn)−→ Kn(X) ⊕ Ker dD
cl→ ⊕

p
H2p−n

D (X, R(p)) → 0,

where cl(x, ω) = ρ(x) − [ω] and ρ is the Beilinson’s regulator map.
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Corollary 4.9. Let KMn(X) denote the kernel of the Chern form map.
Then there is a long exact sequence

· · · → Kn+1(X)
ρ→ ⊕

p
H2p−n−1

D (X, R(p)) → KMn(X) → Kn(X)
ρ→ · · · .

Moreover, KMn(X) is canonically isomorphic to the (n+1)-th homotopy group
of the homotopy fiber of

ch� : Ŝ(X) → Γ(D∗(X)[1]),

where ch� is the map of pointed simplicial sets constructed from ch in the way
as shown in §3.3.

We conclude this subsection by calculating the higher arithmetic K-theory
of the ring of integers. Let K be an algebraic number field and OK its ring
of integers. Let X = SpecOK . Since X(C) is zero-dimensional, D2n(X) = 0
if n > 0 and D2n+1(X) is the recipient of the regulator map for K2n+1(OK).
Hence the exact sequence of Theorem 4.6 implies

K̂2n+1(OK) � K2n+1(OK)

and

0→Coker

(
ρ : K2n+1(OK) →

(
⊕

σ:K↪→C

R(n)
)F∞=id

)
→ K̂2n(OK) → K2n(OK) → 0,

where K2n(OK) is a finite abelian group and the Borel’s theorem [3] says that
Coker ρ is a quotient of a finite dimensional R-vector space by a lattice.

§4.3. Arakelov K-theory

Let M be a compact algebraic Kähler manifold with a Kähler metric hM .
Let Hn

R
(M) be the space of real harmonic forms on M with respect to hM and

Hp,q(M) the space of harmonic forms of type (p, q). Set

Hn
D(M, p) =


Hn−1

R
(M)(p − 1) ∩ ⊕

p′+q′=n−1

p′<p,q′<p

Hp′,q′
(M), n < 2p,

H
2p
R

(M)(p) ∩ Hp,p(M), n = 2p.

Then the short exact sequence

0 → F pHn−1(M, C) → Hn−1(M, R(p − 1)) → Hn
D(M, R(p)) → 0
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for n < 2p or the short exact sequence

0 → H2p
D (M, R(p)) → F pH2p(M, C) → H2p(M, R(p − 1)) → 0

yields an isomorphism

Hn
D(M, R(p)) � Hn

D(M, p)

for n ≤ 2p.
Let us return to the arithmetic situation. An Arakelov variety is a pair

X = (X, hX) of an arithmetic variety X and an F∞-invariant Kähler metric
hX on X(C). We now assume that X is proper over Z. Let Hn(X) denote the
space of harmonic forms with respect to hX in Dn(X), that is,

Hn(X) = ⊕
p
H

2p−n
D (X(C), p)F

∗
∞=id.

Then there is an isomorphism Hn(D∗(X), dD) � Hn(X), which implies the
following:

Proposition 4.10. There is an orthogonal decomposition

Ker dD = Im dD ⊕ Hn(X)

in Dn(X).

Definition 4.11. The subgroup Kn(X) = (chn)−1 (Hn(X)) of K̂n(X)
is called the n-th Arakelov K-group of X = (X, hX).

Theorem 4.12. There is an exact sequence

Kn+1(X)
ρ→ ⊕pH

2p−n−1
D (X, R(p)) → Kn(X) → Kn(X) → 0.

Proof. This is derived from the fact that [(0, ω)] ∈ Kn(X) if and only if
dDω = 0, which follows from Proposition 4.10.

Künnemann has constructed a section of the inclusion from the Arakelov
Chow group to the arithmetic Chow group in [12]. We adapt his method to
the inclusion Kn(X) ↪→ K̂n(X). Let H : Dn(X) → Hn(X) be the orthogonal
projection with respect to the L2-inner product. Let (f, ω) be a pair of a
pointed cellular map f : Sn+1 → |Ŝ(X)| and ω ∈ D̃n+1(X). Then we can
take ω� ∈ D̃n+1(X) such that chn(f) − dDω� is harmonic and H(ω�) = H(ω).
Existence and uniqueness of ω� follow from Proposition 4.10.
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If (f, ω) is homotopy equivalent to (f ′, ω′), then

chn(f ′) − dD(ω′ − ω� − ω) = chn(f) − dDω�

and H(ω′ − ω� − ω) = H(ω′). Hence ω′
� = ω′ − ω� − ω, therefore (f, ω�) is

homotopy equivalent to (f ′, ω′
�). Hence we can obtain a section

σ : K̂n(X) → Kn(X)

by σ([(f, ω)]) = [(f, ω�)]. The map σ is called the harmonic projection of
K̂n(X).

§5. A Product Formula for Higher Bott-Chern Forms

§5.1. A product formula

We begin this section by recalling the multiplicative structure on Dn(M, p)
for a compact complex algebraic manifold M introduced in [4]. Let

• : Dn(M, p) ⊗ Dm(M, q) → Dm+n(M, p + q)

be a homomorphism given by

x • y = (−1)n(∂x(p−1,n−p) − ∂x(n−p,p−1))∧ y +x∧ (∂y(q−1,m−q) − ∂y(m−q,q−1))

if n < 2p and m < 2q and x • y = x ∧ y if n = 2p or m = 2q. Here x(α,β)

is the (α, β)-part of the differential form x. Then it satisfies dD(x • y) =
dDx • y + (−1)nx • dDy and x • y = (−1)nmy • x. Moreover, it induces the
product in the real Deligne cohomology defined in [1].

The higher Bott-Chern forms are not compatible with products, that is,
chn+m(F ⊗G) is not equal to chn(F) • chm(G) in general. But since the Beilin-
son’s regulator Kn(M) → H2p−n

D (M, R(p)) respects the products, it is quite
natural to expect that the difference chn+m(F ⊗G)− chn(F) • chm(G) is writ-
ten in terms of exact forms.

Let us introduce another operation on Dn(M, p). For integers i and j

satisfying 1 ≤ i ≤ n and 1 ≤ j ≤ m, let

an,m
i,j = 1 − 2

(
n+m

n

)−1
i−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
,

where
(
a
b

)
= (a+b)!

a!b! . When b < 0 or a < b,
(
a
b

)
is assumed to be zero.
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Lemma 5.1. We have an,m
i,j = −an,m

n−i+1,m−j+1 and an,m
i,j = −am,n

j,i .

Proof. Let us recall the following formula on binomial coefficients:
a∑

α=0

(
b

a−α

)(
c
α

)
=
(
b+c
a

)
.

Using this identity, we have

an,m
i,j + an,m

n−i+1,m−j+1 = 2 − 2
(
n+m

n

)−1
i−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
− 2
(
n+m

n

)−1
n−i∑
α=0

(
i+j−1
n−α

)(
n+m−i−j+1

α

)
= 2 − 2

(
n+m

n

)−1
n∑

α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
= 0.

Furthermore,

am,n
j,i = 1 − 2

(
n+m

m

)−1
j−1∑
α=0

(
m+n−j−i+1

m−α

)(
j+i−1

α

)
= −1 + 2

(
n+m

m

)−1
m∑

α=j

(
m+n−j−i+1

m−α

)(
j+i−1

α

)
= −1 + 2

(
n+m

m

)−1
m∑

α=j

(
m+n−j−i+1
n−j−i+1+α

)(
j+i−1

j+i−1−α

)
.

If we put β = i + j − 1 − α, then

am,n
j,i = −1 + 2

(
n+m

n

)−1
i−1∑
β=0

(
m+n−i−j+1

n−β

)(
i+j−1

β

)
= −an,m

i,j .

For x ∈ D2p−n(M, p) and y ∈ D2q−m(M, q) with n, m ≥ 1, we define
another operation x � y as follows:

x � y =
∑

1≤i≤n

1≤j≤m

an,m
i,j x(p−n+i−1,p−i) ∧ y(q−m+j−1,q−j).
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If n = 0 or m = 0, then x � y is defined to be zero. The first claim of Lemma 5.1
implies that x � y ∈ D2(p+q)−n−m−1(M, p + q) and the second claim implies
that x � y = (−1)nm+n+my � x.

Theorem 5.2. Let F (resp. G) be an exact hermitian n-cube (resp. m-
cube) on M , then

chn+m(F ⊗ G) − chn(F) • chm(G) = (−1)n+1dD(chn(F) � chm(G))

+ (−1)n chn−1(∂F) � chm(G) − chn(F) � chm−1(∂G).

§5.2. Proof of Theorem 5.2

Let us first prepare some notations. For differential forms u1, . . . , un on
M , let (u1, . . . , un)(α,β) be the (α, β)-part of du1 ∧ · · · ∧ dun. When ui is a
(pi, pi)-form, let

(u1, . . . , un)(i) =
∑

p

(u1, . . . , un)(p+i,p+n−i)

and

Si
n(u1, . . . , un) = (i − 1)!(n − i)!

n∑
α=1

(−1)α+1uα(u1, . . . , ûα, . . . , un)(i−1).

Then Si
n(u1, . . . , un) ∈ Dn(M) if ui ∈ D1(M). If we take ui as log |zi|2,

Si
n(log |z1|2, . . . , log |zn|2) is nothing but Si

n introduced in §2.4.

Lemma 5.3. If ui is a (pi, pi)-form on M , then

∂Si
n(u1, . . . , un) = i!(n − i)!(u1, . . . , un)(i)

+ (n − i)
n∑

α=1

(−1)α∂∂uαSi
n−1(u1, . . . , ûα, . . . , un)

and

∂Si
n(u1, . . . , un) = (i − 1)!(n − i + 1)!(u1, . . . , un)(i−1)

− (i − 1)
n∑

α=1

(−1)α∂∂uαSi−1
n−1(u1, . . . , ûα, . . . , un).

Proof. We have
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∂Si
n(u1, . . . , un) = (i − 1)!(n − i)!

n∑
α=1

(−1)α+1∂
(
uα(u1, . . . , ûα, . . . , un)(i−1)

)
= (i − 1)!(n − i)!

n∑
α=1

(−1)α+1∂uα(u1, . . . , ûα, . . . , un)(i−1)

+ (i−1)!(n−i)!
n∑

α=1

(−1)α+1uα

×

∑
β<α

(−1)β−1∂∂uβ(u1, . . . , ûβ , . . . , ûα, · · · , un)(i−1)

+
∑
α<β

(−1)β∂∂uβ(u1, . . . , ûα, . . . , ûβ, . . . , un)(i−1)


= i!(n − i)!(u1, . . . , un)(i)

+ (i − 1)!(n − i)!
n∑

β=1

(−1)β∂∂uβ

×

∑
α<β

(−1)α+1uα(u1, . . . , ûα, . . . , ûβ , . . . , un)(i−1)

+
∑
β<α

(−1)αuα(u1, . . . , ûβ, . . . , ûα, . . . , un)(i−1)


= i!(n − i)!(u1, . . . , un)(i) + (n − i)

n∑
β=1

(−1)β∂∂uβSi
n−1(u1, . . . , ûβ , . . . , un).

The second identity can be proved in a similar way.

Lemma 5.4. For (pi, pi)-forms ui and (qj , qj)-forms vj ,

Sk
n+m(u1, . . . , un, v1, . . . , vm)

=
k∑

i=1

(k − 1)!(n + m − k)!
(n − i)!(i − 1)!

Si
n(u1, . . . , un) ∧ (v1, . . . , vm)(k−i)

+ (−1)n
k∑

j=1

(k − 1)!(n + m − k)!
(m − j)!(j − 1)!

(u1, . . . , un)(k−j) ∧ Sj
m(v1, . . . , vm).
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Hence

n+m∑
k=1

(−1)kSk
n+m(u1, . . . , un, v1, . . . , vm)

=
∑

1≤i≤n

0≤j≤m

(−1)i+j (n+m−i−j)!(i+j−1)!
(n−i)!(i−1)!

Si
n(u1, . . . , un) ∧ (v1, . . . , vm)(j)

+
∑

0≤i≤n

1≤j≤m

(−1)n+i+j (n+m−i−j)!(i+j−1)!
(m−j)!(j−1)!

(v1, . . . , vn)(i) ∧ Sj
m(v1, . . . , vm).

Proof. We have

Sk
n+m(u1, . . . , un, v1, . . . , vm)

= (k − 1)!(n + m − k)!
n∑

α=1

(−1)α+1uα(u1, . . . , ûα, . . . , un, v1, . . . , vm)(k−1)

+ (−1)n(k − 1)!(n + m − k)!
n∑

β=1

(−1)β+1vβ

× (u1, . . . , un, v1, . . . , v̂β , . . . , vm)(k−1)

= (k − 1)!(n + m − k)!
n∑

α=1

(−1)α+1uα

×
(

k∑
i=1

(u1, . . . , ûα, . . . , un)(i−1) ∧ (v1, . . . , vm)(k−i)

)

+ (−1)n(k − 1)!(n + m − k)!
n∑

β=1

(−1)β+1vβ

×

 k∑
j=1

(u1, . . . , un)(k−j) ∧ (v1, . . . , v̂β , . . . , vm)(j−1)


=

k∑
i=1

(k−1)!(n+m−k)!
(i−1)!(n−i)! Si

n(u1, . . . , un) ∧ (v1, . . . , vm)(k−i)

+ (−1)n
k∑

j=1

(k−1)!(n+m−k)!
(j−1)!(m−j)! (u1, . . . , un)(k−j) ∧ Sj

m(v1, . . . , vm).
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If we assume that ui and vj are in D1(M), then by Lemma 5.3 we have

d

 n∑
i=1

(−1)iSi
n(u1, . . . , un) �

m∑
j=1

(−1)jSj
m(v1, . . . , vm)


=
∑

1≤i≤n

1≤j≤m

(−1)i+jan,m
i,j dSi

n(u1, . . . , un) ∧ Sj
m(v1, . . . , vm)

+ (−1)n+1
∑

1≤i≤n

1≤j≤m

(−1)i+jan,m
i,j Si

n(u1, . . . , un) ∧ dSj
m(v1, . . . , vm)

=
∑

0≤i≤n
1≤j≤m

(−1)i+ji!(n − i)!(an,m
i,j − an,m

i+1,j)(u1, . . . , un)(i) ∧ Sj
m(v1, . . . , vm)

+
∑

1≤i≤n−1
1≤j≤m

(−1)i+j((n − i)an,m
i,j + ian,m

i+1,j)

×
(

n∑
α=1

(−1)α∂∂uαSi
n−1(u1, . . . , ûα, . . . , un) ∧ Sj

m(v1, . . . , vm)

)
+ (−1)n+1

∑
1≤i≤n

0≤j≤m

(−1)i+jj!(m − j)!(an,m
i,j − an,m

i,j+1)

× Si
n(u1, . . . , un) ∧ (v1, . . . , vm)(j)

+ (−1)n+1
∑

1≤i≤n

1≤j≤m−1

(−1)i+j((m − j)an,m
i,j + jan,m

i,j+1)

×

Si
n(u1, . . . , un) ∧

m∑
β=1

(−1)β∂∂vβSj
m−1(v1, . . . , v̂β , . . . , vm)

 .

Let us compute the coefficients of the above expression. Since
(
n+m−i−j+1

n−α

)
=(

n+m−i−j
n−α

)
+
(
n+m−i−j

n−1−α

)
and

(
i+j
α

)
=
(
i+j−1

α

)
+
(
i+j−1
α−1

)
,

an,m
i,j − an,m

i+1,j = 1 − 2
(
n+m

n

)−1
i−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
− 1 + 2

(
n+m

n

)−1
i∑

α=0

(
n+m−i−j

n−α

)(
i+j
α

)
= 2
(
n+m

n

)−1(n+m−i−j
n−i

)(
i+j−1

i

)
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for 1 ≤ i ≤ n − 1 and

an,m
i,j − an,m

i,j+1 = 1 − 2
(
n+m

n

)−1
i−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
− 1 + 2

(
n+m

n

)−1
i−1∑
α=0

(
n+m−i−j

n−α

)(
i+j
α

)
= −2

(
n+m

n

)−1(n+m−i−j
n−i

)(
i+j−1

i−1

)
= −2

(
n+m

n

)−1(n+m−i−j
m−j

)(
i+j−1

j

)
for 1 ≤ j ≤ m − 1. It follows from the definition of an,m

i,j and Lemma 5.1 that

an,m
1,j = 1 − 2

(
n+m

n

)−1(n+m−j
n

)
,

an,m
n,j = −1 + 2

(
n+m

n

)−1(n+j−1
n

)
,

an,m
i,1 = −1 + 2

(
n+m

m

)−1(n+m−i
m

)
,

an,m
i,m = 1 − 2

(
n+m

m

)−1(m+i−1
m

)
.

Moreover, by Lemma A.1 we have

(n − i)an,m
i,j + ian,m

i+1,j

= n − 2
(
n+m

n

)−1

(
(n − i)

i−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
+ i

i∑
α=0

(
n+m−i−j

n−α

)(
i+j
α

))

= n − 2n
(
n+m−1

n−1

)−1
i−1∑
α=0

(
n+m−i−j

n−1−α

)(
i+j−1

α

)
= nan−1,m

i,j

and

(m − j)an,m
i,j + jan,m

i,j+1

=m − 2
(
n+m

n

)−1

(
(m−j)

i−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
+j

i−1∑
α=0

(
n+m−i−j

n−α

)(
i+j
α

))

= m − 2m
(
n+m−1

n

)−1
i−1∑
α=0

(
n+m−i−j

n−α

)(
i+j−1

α

)
= man,m−1

i,j .
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These computations imply that

d

 n∑
i=1

(−1)iSi
n(u1, . . . , un) �

n∑
j=1

(−1)jSj
m(v1, . . . , vm)


= 2
(
n+m

n

)−1 ∑
0≤i≤n

1≤j≤m

(−1)i+ji!(n − i)!
(
n+m−i−j

n−i

)(
i+j−1

i

)
× (u1, . . . , un)(i) ∧ Sj

m(v1, . . . , vm)

+ n
∑

1≤i≤n−1
1≤j≤m

(−1)i+jan−1,m
i,j

n∑
α=1

(−1)α∂∂uα

× Si
n−1(u1, . . . , ûα, . . . , un) ∧ Sj

m(v1, . . . , vm)

+ 2(−1)n
(
n+m

n

)−1 ∑
1≤i≤n
0≤j≤m

(−1)i+jj!(m − j)!
(
n+m−i−j

m−j

)(
i+j−1

j

)
× Si

n(u1, . . . , un) ∧ (v1, . . . , vm)(j)

+ (−1)n+1m
∑

1≤i≤n
1≤j≤m−1

(−1)i+jan,m−1
i,j Si

n(u1, . . . , un)

∧
m∑

β=1

(−1)β∂∂vβSj
m−1(v1, . . . , v̂β, . . . , vm)

−
∑

1≤j≤m

(−1)jn!(u1, . . . , un)(0) ∧ Sj
m(v1, . . . , vm)

−
∑

1≤j≤m

(−1)n+jn!(u1, . . . , un)(n) ∧ Sj
m(v1, . . . , vm)

−
∑

1≤i≤n

(−1)n+im!Si
n(u1, . . . , un) ∧ (v1, . . . , vm)(0)

−
∑

1≤i≤n

(−1)n+m+im!Si
n(u1, . . . , un) ∧ (v1, . . . , vm)(m)

= 2
(
n+m

n

)−1 ∑
0≤i≤n
1≤j≤m

(−1)i+j (n+m−i−j)!(i+j−1)!
(m−j)!(j−1)!

× (u1, . . . , un)(i) ∧ Sj
m(v1, . . . , vm)

+ n
∑

1≤i≤n−1

1≤j≤m

(−1)i+jan−1,m
i,j

n∑
α=1

(−1)α∂∂uα
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× Si
n−1(u1, . . . , ûα, . . . , un) ∧ Sj

m(v1, . . . , vm)

+ 2(−1)n
(
n+m

n

)−1 ∑
1≤i≤n
0≤j≤m

(−1)i+j (n+m−i−j)!(i+j−1)!
(n−i)!(i−1)!

× Si
n(u1, . . . , un) ∧ (v1, . . . , vm)(j)

+ (−1)n+1m
∑

1≤i≤n
1≤j≤m−1

(−1)i+jan,m−1
i,j Si

n(u1, . . . , un)

∧
m∑

β=1

(−1)β∂∂vβSj
m−1(v1, . . . , v̂β , . . . , vm)

−
∑

1≤j≤m

(−1)j
(
∂S1

n(u1, . . . , un)+(−1)n∂Sn
n(u1, . . . , un)

)
∧ Sj

m(v1, . . . , vm)

−
∑

1≤i≤n

(−1)n+iSi
n(u1, . . . , un)∧

(
∂S1

m(v1, . . . , vm)+(−1)m∂Sm
m(v1, . . . , vm)

)
.

Applying Lemma 5.4 to the above, we can obtain the following:

Proposition 5.5. For ui ∈ D1(M) and vj ∈ D1(M), we have

d

 n∑
i=1

(−1)iSi
n(u1, . . . , un) �

m∑
j=1

(−1)jSj
m(v1, . . . , vm)


= 2(−1)n

(
n+m

n

)−1
n+m∑
k=1

(−1)kSk
n+m(u1, . . . , un, v1, . . . , vm)

+ n
∑

1≤i≤n−1
1≤j≤m

(−1)i+jan−1,m
i,j

n∑
α=1

(−1)α∂∂uα

× Si
n−1(u1, . . . , ûα, . . . , un) ∧ Sj

m(v1, . . . , vm)

+ (−1)n+1m
∑

1≤i≤n

1≤j≤m−1

(−1)i+jan,m−1
i,j Si

n(u1, . . . , un)

∧
m∑

β=1

(−1)β∂∂vβSj
m−1(v1, . . . , v̂β , . . . , vm)

+ (−1)n+1

(
n∑

i=1

(−1)iSi
n(u1, . . . , un)

)
•

 m∑
j=1

(−1)jSj
m(v1, . . . , vm)

 .

Let us return to the proof of Theorem 5.2. We may assume that F and
G are emi-cubes. For s < t, let π1 : (P1)t → (P1)s denote the projection
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given by (x1, . . . , xt) �→ (x1, . . . , xs) and let π2 : (P1)t → (P1)s denote the
projection given by (x1, . . . , xt) �→ (xt−s+1, . . . , xt). Let ui = log |zi|2 for i =
1, . . . , n and vj = log |zn+j |2 for j = 1, . . . , m. If we regard ∂∂ log |zi|2 as
−2π

√
−1(δ{zi=0} − δ{zi=∞}), then the above identity is still valid as currents

on (P1)n. Hence we have

dD(chn(F) � chm(G)) = −d(chn(F) � chm(G))

= (−1)n+m+1

4n!m!(2π
√
−1)n+m

∫
(P1)n+m

π∗
1 ch0(trn F) ∧ π∗

2 ch0(trm G)

∧ d

( n∑
i=1

(−1)iπ∗
1Si

n

)
�

 m∑
j=1

(−1)jπ∗
2Sj

m


= (−1)m+1

2(n+m)!(2π
√
−1)n+m

∫
(P1)n+m

ch0(trn+m(F ⊗ G)) ∧
n+m∑
k=1

(−1)kSk
n+m

+ (−1)n+m+1

4(n−1)!m!(2π
√
−1)n+m−1

∫
(P1)n+m−1

ch0(trn+m−1(∂F ⊗ G))

∧
∑

1≤i≤n−1
1≤j≤m

(−1)i+jan−1,m
i,j π∗

1Si
n−1 ∧ π∗

2Sj
m

+ (−1)m

4n!(m−1)!(2π
√
−1)n+m−1

∫
(P1)n+m−1

ch0(trn+m−1(F ⊗ ∂G))

∧
∑

1≤i≤n
1≤j≤m−1

(−1)i+jan,m−1
i,j π∗

1Si
n ∧ π∗

2Sj
m−1

+ (−1)m

4n!m!(2π
√
−1)n+m

∫
(P1)n+m

ch0(trn+m(F ⊗ G))

∧

( n∑
i=1

(−1)iπ∗
1Si

n

)
•

 m∑
j=1

(−1)jπ∗
2Sj

m


= (−1)n+1 chn+m(F ⊗ G) + chn−1(∂F) � chm(G)

+ (−1)n+1 chn(F) � chm(∂G) + (−1)n chn(F) • chm(G).

§6. Product

§6.1. Notations on bisimplicial sets

A bisimplicial set is a contravariant functor from the category of pairs of
finite ordered sets to the category of sets. The product S × T and the reduced
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product S ∧T of two simplicial sets S, T are examples of bisimplicial sets. The
topological realization |S| of a bisimplicial set S is defined in a similar way to
that of a simplicial set.

For a bisimplicial set S, let ∆(S) denote the simplicial set given by [n] �→
S([n], [n]). Then its topological realization |∆(S)| is a subdivision of |S|. Hence
the identity map |S| → |∆(S)| is cellular, although the inverse is not.

§6.2. Product in higher K-theory

In this subsection we review the product in higher algebraic K-theory by
means of the S-construction [15]. For a small exact category A, let SnSmA be
the set of functors

E : Ar[n] × Ar[m] → A, (i ≤ j, α ≤ β) �→ E(i,j)×(α,β)

satisfying the following conditions:

(1) E(i,i)×(α,β) = 0 and E(i,j)×(α,α) = 0.
(2) For any i ≤ j ≤ k and α ≤ β, E(i,j)×(α,β) → E(i,k)×(α,β) → E(j,k)×(α,β)

is a short exact sequence of A.
(3) For any i ≤ j and α ≤ β ≤ γ, E(i,j)×(α,β) → E(i,j)×(α,γ) → E(i,j)×(β,γ) is

a short exact sequence of A.

Then ([n], [m]) �→ SnSmA is a bisimplicial set. Let us denote it by S(2)A. The
natural identification S1SmA = SmA yields a map of bisimplicial sets

S1 ∧ SA → S(2)
A,

and its adjoint map |SA| → Ω|S(2)A| is proved to be a homotopy equiva-
lence.

When A is equipped with tensor product, we can define a map of bisim-
plicial sets

m : SA ∧ SA → S(2)
A

by m(E, F )(i,j)×(α,β) = Ei,j ⊗ Fα,β . This induces a pairing

m∗ : πn+1(|SA|) × πm+1(|SA|) → πn+m+2(|S(2)
A|).

Combining this with the isomorphisms Kn(A) � πn+1(|SA|) � πn+2(|S(2)A|)
yields the product in higher algebraic K-theory K∗(A).
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§6.3. G-construction

In [8], Gillet and Grayson have constructed a simplicial set GA associated
with a small exact category A that is homotopy equivalent to the loop space of
the S-construction SA. In this subsection we recall their construction.

Let GnA be the set of pairs (E+, E−) of E+, E− ∈ Sn+1A with ∂0E
+ =

∂0E
−. Then [n] �→ GnA becomes a simplicial set by ∂k(E+, E−) = (∂k+1E

+,

∂k+1E
−) and sk(E+, E−) = (sk+1E

+, sk+1E
−). We fix 0 = (0, 0) ∈ G0A as

the base point of GA.
Let ∆[1] be the simplicial set represented by [1]. Let ιk denote the element

of ∆[1]n given by

ιk(i) =

{
0, i < k,

1, i ≥ k.

Then ∆[1]n = {ι0, ι1, . . . , ιn+1}. Let

χ±
n : ∆[1]n × GnA → SnA

be the maps given by

χ±
n (ιk, (E+, E−)) =

{
∂0E

±, k = 0,

(s0)k−1(∂1)kE±, k ≥ 1.

Then χ± = {χ±
n } : ∆(∆[1] × GA) → SA are maps of simplicial sets such that

χ±({0} × GA) = ∗ and χ+|{1}×GA = χ−|{1}×GA.
Let T 1 be the simplicial set given by the following cocartesian square:

{0} ∪ {1}
∆[1]

∆[1]

T 1.����

���	

���	

����

We fix 0 as the base point of T 1. The topological realization of T 1 is the
barycentric subdivision of the circle S1 = I/∂I. Gluing the maps χ±, we
obtain a map of simplicial sets

χ : ∆(T 1 ∧ GA) → SA.

It is the main theorem of [8] that the adjoint map |GA| → Ω|SA| to |χ| is
a homotopy equivalence . Therefore we have an isomorphism πi(|GA|, 0) �
Ki(A).
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We next introduce a description of the product in K-theory by means of
G-construction. Let

GnGmA = {(E++, E+−, E−+, E−−); E±± ∈ Sn+1Sm+1A,

∂0E
+± = ∂0E

−±, ∂′
0E

±+ = ∂′
0E

±−},

where ∂0 is the boundary map on the first factor of the bisimplicial set S(2)A

and ∂′
0 is the boundary map on the second factor. Then ([n], [m]) �→ GnGmA

becomes a bisimplicial set. Let us denote it by G(2)A. Let R : GnA → G0GnA

be the map given by R(E+, E−) = (E+, E−, 0, 0). Then it is shown in [8] that
R induces a homotopy equivalence R : GA → G(2)A.

Let us define a map of bisimplicial sets

mG : GA ∧ GA → G(2)
A

by mG(E, F )±± = E± ⊗ F± for E = (E+, E−) ∈ GnA and F = (F+, F−) ∈
GmA. Then the pairing

mG
∗ : πn(|GA|, 0) × πm(|GA|, 0) → πn+m(|G(2)

A|, 0)

induces the product in K∗(A).
Finally, let us define an exact cube associated with an element of GA or

G(2)A. The map χ yields a homomorphism of chain complexes

Cub : C∗(|GA|) χ∗−→ C∗(|SA|)[−1] Cub−→ Cub∗(A).

Let us define Cub(E) ∈ Cubn(A) associated with E = (E+, E−) ∈ GnA as
the image of [E] ∈ C∗(|GA|) by the above map. In other words, Cub(E) =
Cub(E+) − Cub(E−). Similarly, we define an exact (n + m)-cube associated
with E = (E±±) ∈ GnGmA by

Cub(E) = Cub(E++) − Cub(E+−) − Cub(E−+) + Cub(E−−),

where Cub(E±±) is the image of the element of E±± ∈ Sn+1Sm+1A by the
homomorphism

Sn+1Sm+1A → Cubn(Sm+1A) → Cubn(Cubm(A)) = Cubn+m(A).

When E = (E±±) is degenerate, the associated cube Cub(E) is zero in Cub∗(A)
by Lemma 4.1. Hence E = (E±±) �→ Cub(E) induces a homomorphism

Cub : C∗(|G(2)
A|) → Cub∗(A).
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Proposition 6.1. The following diagram is commutative:

C∗(|GA|) ⊗ C∗(|GA|)

C∗(|G(2)A|)

C∗(|GA|)

Cub∗(A) ⊗ Cub∗(A)

Cub∗(A)

Cub∗(A).

�




�




�

�

�

Cub⊗Cub

Cub

Cub

mG
∗ ⊗

R∗ id

§6.4. Pairing K̂0 × K̂n → K̂n

For a proper arithmetic variety X, let Ĝ(X) = G(P̂(X)), the G-con-
struction of the category of hermitian vector bundles on X. Then there is
a homomorphism of chain complexes

ch : C∗(|Ĝ(X)|) Cub−→ Ĉub∗(X) ch−→ D∗(X).

Proposition 6.2. The map χ : ∆(T 1 ∧ Ĝ(X)) → Ŝ(X) yields an iso-
morphism

χ̂∗ : π̂n(|Ĝ(X)|, ch) � π̂n+1(|Ŝ(X)|, ch)

by [(f, ω)] �→ [(χ(1∧f),−ω)]. Hence for n ≥ 1 there is a canonical isomorphism

K̂n(X) � π̂n(|Ĝ(X)|, ch).

Proof. It is obvious that the map (f, ω) �→ (χ(1 ∧ f),−ω) gives rise to
a homomorphism of the modified homotopy groups. Consider the following
commutative diagram:

πn+1(|Ĝ(X)|) ρ−−−−−→D̃n+1(X)−−−−−→ π̂n(|Ĝ(X)|, ch) −−−−−→ πn(|Ĝ(X)|) −−−−−→0
�−χ∗

�−id

�χ̂∗

�χ∗

πn+2(|Ŝ(X)|) ρ−−−−−→D̃n+1(X)−−−−−→π̂n+1(|Ŝ(X)|, ch)−−−−−→πn+1(|Ŝ(X)|)−−−−−→0,

where the upper and lower sequences are exact by Theorem 3.3. Hence the
proposition follows from the five lemma.

If we set Ĝ(2)(X) = G(2)(P̂(X)), then we have

ch : C∗(|Ĝ(2)(X)|) Cub−→ Ĉub∗(X) ch−→ D∗(X)
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and the following square is commutative by Proposition 6.1:

C∗(|Ĝ(X)|) ch−−−−→ D∗(X)�R∗

�id

C∗(|Ĝ(2)(X)|) ch−−−−→ D∗(X).

Hence R induces an isomorphism

R̂∗ : π̂n(|Ĝ(X)|, ch) � π̂n(|Ĝ(2)(X)|, ch).

The product K̂0(X) × K̂0(X) → K̂0(X) given in [9] is written as follows:

[(E, ω)] × [(F , τ )] = [(E ⊗ F , ch0(E) • τ + ω • ch0(F ) + ω • dDτ )],

and it makes K̂0(X) a commutative associative algebra. To construct product
in higher arithmetic K-theory, we will use the G-construction. However, since
we have not had any expression of K̂0(X) by means of the G-construction, we
have to distinguish the cases including K̂0(X) from the general case.

Let (E, η) be a pair of a hermitian vector bundle E on X and η ∈ D̃1(X)
and let (f, ω) be a pair of a pointed cellular map f : Sn → |Ĝ(X)| and ω ∈
D̃n+1(X). Let us define a product of these pairs by

(E, η) × (f, ω) = (E ⊗ f, ch0(E) • ω + η • chn(f) + η • dDω),

where E ⊗ f : Sn f→ |Ĝ(X)| E⊗−→ |Ĝ(X)|.

Theorem 6.3. The above product gives rise to a pairing

× : K̂0(X) × K̂n(X) → K̂n(X).

Proof. To prove the theorem, we have to show that (E, η) × (f, ω) is
compatible with the equivalence relations for K̂0(X) and K̂n(X). Let us first
show the compatibility with the relation for K̂n(X).

Let H : (Sn×I)/({∗}×I) → |Ĝ(X)| be a cellular homotopy from (f, ω) to
(f ′, ω′). We write chn+1(H) for ch ◦H∗([Sn × I]) ∈ Dn+1(X). Then ω′ − ω =
(−1)n+1 chn+1(H) and the map

E ⊗ H : (Sn × I)/({∗} × I) H→ |Ĝ(X)| E⊗−→ |Ĝ(X)|

is a cellular homotopy from E ⊗ f to E ⊗ f ′. Furthermore, by Proposition 5.2
we have

chn+1(E ⊗ H) = ch0(E) • chn+1(H) = (−1)n+1 ch0(E) • (ω′ − ω).
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This tells that E ⊗ H is a cellular homotopy from (E, η) × (f, ω) to (E, η) ×
(f ′, ω′).

Next we show the compatibility with the relation for K̂0(X). Let E : 0 →
E → F → G → 0 be a short exact sequence of hermitian vector bundles on X.
Consider the following 1-dimensional subcomplex of |Ĝ(X)|:

��
(E⊕G,0) (F⊕G,G) (F,0),

e1 e2� � �

where

e1 =


�

�

E ⊕ G F ⊕ G

G

�

�

0 G

G

 ,

e2 =


�

�

F F ⊕ G

G

�

�

0 G

G

 .

We denote by ιE : I → |Ĝ(X)| a cellular map such that ιE(I) = e1e
−1
2 .

For a pointed cellular map f : Sn → |Ĝ(X)|, let

H : (Sn×I)/({∗}×I) T→ (I×Sn)/(I×{∗}) ιE∧f−→ |Ĝ(X)|∧|Ĝ(X)| mG

−→ |Ĝ(2)(X)|,

where T (s, t) = (t, s) for t ∈ Sn and s ∈ I. If H0(s) = H(s, 0), then H0 is
written as

Sn f→ |Ĝ(X)|
ιE⊕G∧id
−→ |Ĝ(X)| ∧ |Ĝ(X)| mG

−→ |Ĝ(2)(X)|,

where ιE⊕G : S0 → |Ĝ(X)| is the pointed map determined by (E ⊕ G, 0) ∈
Ĝ0(X). Since the diagram

|Ĝ(X)|
ιE⊕G∧id
−−−−−−→ |Ĝ(X)| ∧ |Ĝ(X)|�(E⊕G)⊗

�mG

|Ĝ(X)| R−−−−→ |Ĝ(2)(X)|

is commutative, we have H0 = R((E⊕G)⊗f). If H1(s) = H(s, 1), then we can
show that H1 = R(F ⊗ f) in the same way. Moreover, Proposition 5.2 implies
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that

chn+1(H) = (−1)n chn+1(mG
∗ (ιE ∧ f)∗([I × Sn]))

≡ (−1)n ch1(ιE) • chn(f)

= (−1)n ch1(E) • chn(f)

modulo Im dD. Hence H is a cellular homotopy from (R((E⊕G)⊗ f), ch1(E) •
chn(f)) to (R(F ⊗ f), 0). Since R̂∗ : π̂n(|Ĝ(X)|, ch) → π̂n(|Ĝ(2)(X)|, ch) is
bijective,

[((E ⊕ G) ⊗ f, ch1(E) • chn(f))] = [(F ⊗ f, 0)]

in π̂n(|Ĝ(X)|, ch).
The short exact sequence E gives the relation

[(E, 0)] + [(G, 0)] = [(F,− ch1(E))]

in K̂0(X). We have

[(E, 0) × (f, ω)] · [(G, 0) × (f, ω)] = [((E ⊗ f) · (G⊗ f), (ch0(E) + ch0(G)) • ω)]

and

[(F, − ch1(E)) × (f, ω)]

= [(F ⊗ f, ch0(F ) • ω − ch1(E) • chn(f) − dD ch1(E) • ω)]

= [((E ⊕ G) ⊗ f, (ch0(E) + ch0(G)) • ω)]

in π̂n(|Ĝ(X)|, ch). Hence Theorem 6.3 follows from Lemma 6.4 and Lemma 6.5
below.

Lemma 6.4. For a pointed cellular map f : Sn → |Ĝ(X)| and two
hermitian vector bundles E, G on X,

[((E ⊗ f) ⊕ (G ⊗ f), 0)] = [((E ⊗ f) · (G ⊗ f), 0)]

in π̂n(|Ĝ(X)|, ch).

Proof. Let us first describe the map (E ⊗ f) ⊕ (G ⊗ f) explicitly. Since
f is a pointed cellular map, the map

Sn ∆
↪→ Sn × Sn (E⊗f)×(G⊗f)−→ |∆(Ĝ(X) × Ĝ(X))|

is also a pointed cellular map. Moreover, the direct sum of hermitian vector
bundles induces a map of simplicial sets ⊕ : ∆(Ĝ(X)× Ĝ(X)) → Ĝ(X). Then
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the map (E⊗f)⊕ (G⊗f) is expressed as the composition of these two cellular
maps, that is,

(E ⊗ f)⊕ (G⊗ f) : Sn ∆
↪→ Sn × Sn (E⊗f)×(G⊗f)−→ |∆(Ĝ(X)× Ĝ(X))| ⊕→ |Ĝ(X)|.

Consider the homomorphism of chain complexes

ch⊕ ch : C∗(|∆(Ĝ(X) × Ĝ(X))|) → D∗(X) ⊕ D∗(X)

given by (E, F ) �→ (chn(E), chn(F )) for E, F ∈ Ĝn(X) and the inclusion

in1 (resp. in2) : Ĝ(X) → ∆(Ĝ(X) × Ĝ(X))

given by in1(t) = (t, ∗) (resp. in2(t) = (∗, t)). Then we have the following
commutative diagram:

C∗(|Ĝ(X)|) ch−−−−→ D∗(X)�in1∗ (resp. in2∗)

�in1 (resp. in2)

C∗(|∆(Ĝ(X) × Ĝ(X))|) ch⊕ ch−−−−→ D∗(X) ⊕ D∗(X),

where the right vertical arrow is in1(ω) = (ω, 0) (resp. in2(ω) = (0, ω)). On
the other hand, the projection

pr1 (resp. pr2) : ∆(Ĝ(X) × Ĝ(X)) → Ĝ(X)

given by pr1(x, y) = x (resp. pr2(x, y) = y) is also a map of simplicial sets and
we have the following commutative diagram:

C∗(|∆(Ĝ(X) × Ĝ(X))|) ch⊕ ch−−−−→ D∗(X) ⊕ D∗(X)�pr1∗ (resp. pr2∗)

�pr1 (resp. pr2)

C∗(|Ĝ(X)|) ch−−−−→ D∗(X),

where the right vertical arrow is pr1(ω, τ ) = ω (resp. pr2(ω, τ ) = τ ). Hence we
have four homomorphisms between the modified homotopy groups

π̂n(|∆(Ĝ(X) × Ĝ(X))|, ch⊕ ch) π̂n(|Ĝ(X)|, ch)� �p̂rj∗

înj∗

that induce an isomorphism

π̂n(|Ĝ(X)|, ch) ⊕ π̂n(|Ĝ(X)|, ch) � π̂n(|∆(Ĝ(X) × Ĝ(X))|, ch⊕ ch)
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by (x, y) �→ în1∗(x) · în2∗(y). The inverse of it is p̂r1∗ ⊕ p̂r2∗. Since

p̂r1∗([(((E ⊗ f) × (G ⊗ f))∆, 0)]) = [(E ⊗ f, 0)],

p̂r2∗([(((E ⊗ f) × (G ⊗ f))∆, 0)]) = [(G ⊗ f, 0)],

we have

[(((E ⊗ f) × (G ⊗ f))∆, 0)] = în1∗([(E ⊗ f, 0)]) · în2∗([(G ⊗ f, 0)])

in π̂∗(|∆(Ĝ(X) × Ĝ(X))|, ch⊕ ch).
The commutative diagram

C∗(|∆(Ĝ(X) × Ĝ(X))|) ch⊕ ch−−−−→ D∗(X) ⊕ D∗(X)�⊕∗

�+

C∗(|Ĝ(X)|) ch−−−−→ D∗(X)

implies a homomorphism

⊕̂∗ : π̂n(|∆(Ĝ(X) × Ĝ(X))|, ch⊕ ch) → π̂n(|Ĝ(X)|, ch).

Since ⊕̂∗ înj∗ is the identity homomorphism, we have

[((E ⊗ f) ⊕ (G ⊗ f), 0)] = ⊕̂∗
(
[(((E ⊗ f) × (G ⊗ f))∆, 0)]

)
= [(E ⊗ f, 0)] · [(G ⊗ f, 0)]

= [((E ⊗ f) · (G ⊗ f), 0)].

Lemma 6.5. In the same notations as in Lemma 6.4, we have

[((E ⊕ G) ⊗ f, 0)] = [((E ⊗ f) ⊕ (G ⊗ f), 0)]

in π̂n(|Ĝ(X)|, ch).

Proof. Consider the following diagram:

∆(Ĝ(X) × Ĝ(X))
(E⊗)×(G⊗)−−−−−−−−→ ∆(Ĝ(X) × Ĝ(X))$∆

�⊕

Ĝ(X)
(E⊕G)⊗−−−−−−→ Ĝ(X) R−−−−→ Ĝ(2)(X).
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Let α0 : Ĝ(X) → Ĝ(2)(X) be the upper map of the diagram and α1 the lower
map. Then for P = (P±) ∈ Ĝn(X), α0(P ) and α1(P ) are elements of Ĝ0Ĝn(X)
written as follows:

α0(P ) = ((E ⊗ P+) ⊕ (G ⊗ P+), (E ⊗ P−) ⊕ (G ⊗ P−), 0, 0),

α1(P ) = ((E ⊕ G) ⊗ P+, (E ⊕ G) ⊗ P−, 0, 0).

The canonical isometries (E⊗P±)⊕(G⊗P±) � (E⊕G)⊗P± give an element
of Ĝ1Ĝn(X) whose Bott-Chern form is zero. Collecting these elements for all
P = (P±) provides a map of bisimplicial sets Ψ : ∆[1]× Ĝ(X) → Ĝ(2)(X) such
that Ψ(0, s) = α0(s) and Ψ(1, s) = α1(s). Therefore for any pointed cellular
map f : Sn → |Ĝ(X)|,

H : (Sn × I)/({∗} × I) T→ (I × Sn)/(I × {∗}) id×f−→ (I × |Ĝ(X)|)/(I × {∗})
|Ψ|−→ |Ĝ(2)(X)|

is a cellular homotopy from R((E ⊗ f)⊕ (G⊗ f)) to R((E ⊕G)⊗ f) such that
chn+1(H) = 0. Since R̂∗ : π̂n(|Ĝ(X)|, ch) → π̂n(|Ĝ(2)(X)|, ch) is bijective, we
have

[((E ⊗ f) ⊕ (G ⊗ f), 0)] = [((E ⊕ G) ⊗ f, 0)].

We can define a pairing K̂n(X) × K̂0(X) → K̂n(X) by

[(f, ω)] × [(E, η)] = [(f ⊗ E, (−1)n chn(f) • η + ω • ch0(E) + ω • dDη)],

where f ⊗ E : Sn f→ |Ĝ(X)| ⊗E−→ |Ĝ(X)|. Combining these pairings with the
isomorphism α̂ : K̂0(X) � K̂0(X), we can obtain a pairing

× : K̂n(X) × K̂m(X) → K̂n+m(X)

when n = 0 or m = 0.

§6.5. Pairing of higher arithmetic K-theory

In this subsection we define a pairing K̂n(X) × K̂m(X) → K̂n+m(X) in
the case of n, m ≥ 1. For two pointed cellular maps f : Sn → |Ĝ(X)| and
g : Sm → |Ĝ(X)|, let

f × g : Sn+m = Sn ∧ Sm f∧g−→ |Ĝ(X)| ∧ |Ĝ(X)| mG

−→ |Ĝ(2)(X)|.
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For ω ∈ D̃n+1(X) and τ ∈ D̃m+1(X), a product of pairs (f, ω) and (g, τ ) is
defined by

(f, ω) × (g, τ )

= (f × g, (−1)n chn(f) • τ + ω • chm(g) + ω • dDτ + (−1)n chn(f) � chm(g)).

Proposition 6.6. The above product gives rise to a pairing

m̂G
∗ : π̂n(|Ĝ(X)|, ch) × π̂m(|Ĝ(X)|, ch) → π̂n+m(|Ĝ(2)(X)|, ch).

Proof. For a cellular homotopy H from (f, ω) to (f ′, ω′), let H̃ be a
cellular map given by

H̃ : (Sn+m × I)/({∗} × I) −→ |Ĝ(X)| ∧ |Ĝ(X)| mG

−→ |Ĝ(2)(X)|,

where the first map is (s1, s2, t) �→ (H(s1, t), g(s2)) for s1 ∈ Sn, s2 ∈ Sm

and t ∈ I. Then H̃ is a homotopy from f × g to f ′ × g. Theorem 5.2 and
Proposition 6.1 imply that

chn+m+1(H̃)

= (−1)m chn+m+1(mG
∗ (H × g)∗([Sn × I × Sm]))

≡ (−1)m chn+1(H) • chm(g) + (−1)n+m+1 chn(∂H∗([Sn × I])) � chm(g)

= (−1)n+m+1(ω′ − ω) • chm(g) + (−1)m+1(chn(f ′) − chn(f)) � chm(g)

= (−1)n+m+1(ω′ • chm(g) + (−1)n chn(f ′) � chm(g))

− (−1)n+m+1(ω • chm(g) + (−1)n chn(f) � chm(g))

modulo Im dD. This tells that the map H̃ is a cellular homotopy from (f, ω)×
(g, τ ) to (f ′, ω′) × (g, τ ).

If H ′ is a cellular homotopy from (g, τ ) to (g′, τ ′), we can show in the same
way that the map

(Sn+m × I)/({∗} × I)
f∧H′

−→ |Ĝ(X)| ∧ |Ĝ(X)| mG

−→ |Ĝ(2)(X)|

is a cellular homotopy from (f, ω) × (g, τ ) to (f, ω) × (g′, τ ′).

Definition 6.7. For n, m ≥ 1, we define a product in higher arithmetic
K-theory

× : K̂n(X) × K̂m(X) → K̂n+m(X)

by the following homomorphism:

π̂n(|Ĝ(X)|, ch) × π̂m(|Ĝ(X)|, ch)
m̂G

∗−→ π̂n+m(|Ĝ(2)(X)|, ch)
R̂−1

∗−→ π̂n+m(|Ĝ(X)|, ch).
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Proposition 6.8. The Chern form map respects the products, that is,
we have

chn+m(x × y) = chn(x) • chm(y)

for x ∈ K̂n(X) and y ∈ K̂m(X).

Proof. Assume n, m ≥ 1. Define the Chern form map on π̂n+m(|Ĝ(2)(X)|,
ch) by

chn+m([(f, ω)]) = chn+m(f∗([Sn+m])) + dDω ∈ Dn+m(X).

Then chn+m(R̂∗(x)) = chn+m(x) for any x ∈ π̂n+m(|Ĝ(X)|, ch). Hence it is
sufficient to show that chn+m(m̂G

∗ (x, y)) = chn(x) • chm(y).
For x = [(f, ω)] and y = [(g, τ )], Theorem 5.2 implies that

chn+m(m̂G
∗ (x, y)) = chn+m(f × g) + dD ((−1)n chn(f) • τ + ω • chm(g)

+ω • dDτ + (−1)n chn(f) � chm(g))

= (chn(f) + dDω) • (chm(g) + dDτ )

= chn(x) • chm(y).

The case where n = 0 or m = 0 is trivial.

Remark 1. The map Cub : Ŝn+1Ŝm+1(X) → Ĉubn+m(X) gives rise to
a map

Cub : C∗(|Ŝ(2)(X)|)[−2] → Ĉub∗(X)

and the tensor product of hermitian vector bundles induces a map

C∗(|Ŝ(X)|)[−1] ⊗ C∗(|Ŝ(X)|)[−1] → C∗(|Ŝ(2)(X)|)[−2].

But both of them are not compatible with the differentials. So it seems impos-
sible to the author to define a product in K̂∗(X) by using the S-construction.

Remark 2. In [6], another complex H∗
TW (X, p) computing real Deligne

cohomology and higher Bott-Chern form with values in this complex are intro-
duced. In the same argument as in §4.1, we can prove that this Bott-Chern
form of any degenerate element of Ŝ(X) is zero. Hence we have

chTW : C∗(|Ŝ(X)|) → ⊕
p
H

2p−∗
TW (X, p),

and we can define a new version of higher arithmetic K-theory:

K̂TW
n (X) = π̂n+1(|Ŝ(X)|, chTW ).
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The complex H∗
TW (X, p) is much bigger than D∗(X, p), therefore K̂TW

n (X) is
not isomorphic to K̂n(X) even in the case of n = 0.

The advantage of working with H∗
TW (X, p) rather than D∗(X, p) is the

multiplicative property of chTW . In fact, it is proved in [6, §6] that H∗
TW (X, p)

is equipped with graded commutative and associative product and chTW re-
spects the product structures on the both sides. Hence in this case we do not
need to deal with the operation � which compensates for the lack of compatibil-
ity of Bott-Chern forms with products, and we can define product in K̂TW

∗ (X)
in a simpler form. Moreover, it can be proved that the product in K̂TW

∗ (X)
satisfies the associative law.

§6.6. The commutativity of the product

In this subsection we discuss the commutativity of the product in K̂∗(X).
When n = 0 or m = 0, it is easy to prove that the product K̂n(X)× K̂m(X) →
K̂n+m(X) is commutative. So we concentrate to the case of n, m ≥ 1.

For a small exact category A, let L : GnA → GnG0A be the map given
by L(E+, E−) = (E+, 0, E−, 0). Then it induces a homotopy equivalence L :
GA → G(2)A and it is homotopy equivalent to the map R. Similarly to the
case of the map R, we can obtain an isomorphism

L̂∗ : π̂n(|Ĝ(X)|, ch) � π̂n(|Ĝ(2)(X)|, ch).

Definition 6.9. For n, m ≥ 1, we define a new product

×
L

: K̂n(X) × K̂m(X) → K̂n+m(X)

by

π̂n(|Ĝ(X)|, ch) × π̂m(|Ĝ(X)|, ch)
m̂G

∗→ π̂m(|Ĝ(2)(X)|, ch)
L̂−1

∗→ π̂m(|Ĝ(X)|, ch).

Let us compare this new product with the one given in the previous sec-
tion. Let T : ŜnŜm(X) → ŜmŜn(X) be the switching map T (E)(i,j)×(α,β) =
E(α,β)×(i,j). Then the map∐

n,m

ĜnĜm(X) × ∆n × ∆m →
∐
n,m

ĜmĜn(X) × ∆m × ∆n

given by (E±±, t1, t2) �→ (T (E±±), t2, t1) induces an involution T on |Ĝ(2)(X)|.
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Lemma 6.10. The diagram

C∗(|Ĝ(2)(X)|) ch−−−−→ D∗(X)�T∗

�id

C∗(|Ĝ(2)(X)|) ch−−−−→ D∗(X)

is commutative. Hence we can obtain an isomorphism

T̂∗ : π̂n(|Ĝ(2)(X)|, ch) � π̂n(|Ĝ(2)(X)|, ch)

by [(f, ω)] �→ [(Tf, ω)].

Proof. If we denote by [E] the element of C∗(|Ĝ(2)(X)|) determined by
E ∈ ĜnĜm(X), then T∗([E]) = (−1)nm[T (E)]. Hence we have

chn+m(T∗([E])) = (−1)nm chn+m(Cub(T (E)))

= (−1)nm chn+m(Tn,m(Cub(E))),

where Tn,m(F) for an exact hermitian (n + m)-cube F is given by Tn,m

(F)α1,...,αn+m
= Fαn+1,...,αn+m,α1,...,αn

. Then it is easy to see that chn+m

(Tn,m(F)) = (−1)nm chn+m(F). Hence we can say that chn+m(T∗([E])) =
chn+m(E).

Proposition 6.11. Let x ∈ K̂n(X) and y ∈ K̂m(X) with n, m ≥ 1.
Then we have

x × y = (−1)nmy ×
L

x.

Proof. For two pointed CW-complexes S1 and S2, let T : S1∧S2 → S2∧S1

denote the map given by T (s1, s2) = (s2, s1). For two pointed cellular maps
f : Sn → |Ĝ(X)| and g : Sm → |Ĝ(X)|, we consider the following diagram:

Sn ∧ Sm f∧g−−−−→ |Ĝ(X)| ∧ |Ĝ(X)| mG

−−−−→ |Ĝ(2)(X)|�T

�T

�T

Sm ∧ Sn g∧f−−−−→ |Ĝ(X)| ∧ |Ĝ(X)| mG

−−−−→ |Ĝ(2)(X)|.

The left square is obviously commutative, but the right one is not. In fact, for
E ∈ Ĝn(X) and F ∈ Ĝm(X) we have TmG(E, F )(i,j)×(α,β) = Eα,β ⊗ Fi,j and
mGT (E, F )(i,j)×(α,β) = Fi,j ⊗ Eα,β . Hence a homotopy from TmG to mGT is
given by means of the canonical isometry P ⊗Q � Q⊗P . Hence we can show
that [(T(f ×g), 0)] = [((g×f)T, 0)] in the same way as the proof of Lemma 6.5.



�

�

�

�

�

�

�

�

Higher Arithmetic K-Theory 649

If x = [(f, ω)] and y = [(g, τ )], then we have

T̂∗m̂
G
∗ ([(f, ω)], [(g, τ )])

= [(T(f × g), (−1)n chn(f) • τ + ω • chm(g) + ω • dDτ

+ (−1)n chn(f) � chm(g))]

= [((g × f)T, (−1)nmτ • chn(f) + (−1)(n+1)m chm(g) • ω

+ (−1)nmτ • dDω + (−1)(n+1)m chm(g) � chn(f))].

Since T : Sn+m → Sn+m is homotopic to (−1)nm idSn+m , we have

T̂∗m̂
G
∗ ([(f, ω)], [(g, τ )]) = (−1)nmm̂G

∗ ([(g, τ )], [(f, ω)])

in π̂n+m(|Ĝ(2)(X)|, ch). Hence

(−1)nmL̂∗([(g, τ )] ×
L

[(f, ω)]) = (−1)nmm̂G
∗ ([(g, τ )], [(f, ω)])

= T̂∗m̂
G
∗ ([(f, ω)], [(g, τ )])

= T̂∗R̂∗([(f, ω)] × [(g, τ )])

= L̂∗([(f, ω)] × [(g, τ )]).

Since L̂∗ is bijective, we have completed the proof.

Proposition 6.12. For x ∈ π̂n(|Ĝ(X)|, ch), R̂∗(x)− L̂∗(x) is contained
in Im(D̃n+1(X) → π̂n(|Ĝ(2)(X)|, ch)) and 2(R̂∗(x)− L̂∗(x)) = 0. In particular,
for x ∈ K̂n(X) and y ∈ K̂m(X) with n, m ≥ 1, x × y − x ×

L
y is contained in

Im(D̃n+m+1(X) → K̂n+m(X)) and 2(x × y − x ×
L

y) = 0.

Proof. Since R is homotopy equivalent to L, R̂∗(x) − L̂∗(x) is contained
in Im(D̃n+1(X) → π̂n(|Ĝ(2)(X)|, ch)). If f : Sn → |Ĝ(X)| is a pointed cellular
map, then there is a pointed cellular map

H : (Sn × I)/({∗} × I) → |Ĝ(2)(X)|

such that H(s, 0) = Rf(s) and H(s, 1) = Lf(s). Let

H ′ = TH : (Sn × I)/({∗} × I) → |Ĝ(2)(X)|,

then we have H ′(s, 0) = Lf(s) and H ′(s, 1) = Rf(s). The commutative square
in Lemma 6.10 implies that chn+1(H ′) = chn+1(H). Gluing the maps H and
H ′ on the boundaries, we obtain a cellular map

H ∪ H ′ : (Sn × T 1)/({∗} × T 1) → |Ĝ(2)(X)|,

where T 1 is the barycentric subdivision of S1.
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Lemma 6.13. If n ≥ 1, there is a surjection

p : Sn+1 → (Sn × S1)/({∗} × S1)

such that p−1((Sn − {∗}) × S1) → (Sn − {∗}) × S1 is a homeomorphism.

Proof. We describe the space Sn+1 as follows:

Sn+1 =
{
(z, t1, . . . , tn) ∈ C × Rn; |z|2 + t21 + · · · + t2n = 1

}
.

Let Sn−1 = {(0, t1, . . . , tn) ∈ Sn+1}. Then the map Sn+1 \ Sn−1 → Bn × S1

given by

(z, t1, . . . , tn) �→
(

(t1, . . . , tn),
z√

1 − t21 − · · · − t2n

)
is a homeomorphism, where Bn = {(t1, . . . , tn) ∈ Rn; t21 + · · · + t2n < 1}. Since
(Sn ×S1)/({∗}×S1) is the one-point compactification of Bn ×S1, this homeo-
morphism can be extended to the map p : Sn+1 → (Sn ×S1)/({∗}×S1) which
satisfies the above condition.

Let us return to the proof of Proposition 6.12. Since T 1 is the barycentric
subdivision of S1, the Bott-Chern form of the map

F : Sn+1 p→ (Sn × T 1)/({∗} × T 1) H∪H′
−→ |Ĝ(2)(X)|

is 2 chn+1(H) up to sign. Therefore 2 chn+1(H) is contained in the image of
πn+1(|Ĝ(2)(X)|) → D̃n+1(X). Hence 2[(0, chn+1(H))] = 0 in π̂n(|Ĝ(2)(X)|, ch)
by Theorem 3.3. For x = [(f, ω)] ∈ π̂n(|Ĝ(X)|, ch),

R̂∗(x) − L̂∗(x) = [(Rf, 0)] − [(Lf, 0)]

= (−1)n+1[(0, chn+1(H))],

therefore 2(R̂∗(x) − L̂∗(x)) = 0.

Combining Proposition 6.11 with Proposition 6.12 yields the following:

Theorem 6.14. Let x ∈ K̂n(X) and y ∈ K̂m(X). Then x × y −
(−1)nmy×x is a 2-torsion element contained in Im(D̃n+m+1(X) → K̂n+m(X)).
Hence the product in K̂∗(X) is graded commutative up to 2-torsion.
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§6.7. The lack of the associativity

In this subsection we discuss the associativity of the product in K̂∗(X).
Let Ĝ(3)(X) be the trisimplicial set given by taking Ĝ three times. Then the
tensor product of hermitian vector bundles gives the following maps:

mG : Ĝ(2)(X) ∧ Ĝ(X) → Ĝ(3)(X),

mG : Ĝ(X) ∧ Ĝ(2)(X) → Ĝ(3)(X).

Let R : Ĝ(X) → Ĝ(3)(X) be a homotopy equivalent map given by R(E)++± =
E± and R(E)+−± = R(E)−+± = R(E)−−± = 0 for E = (E+, E−) ∈ Ĝn(X).
Under the above notations, the following diagram

Ĝ(X) ∧ Ĝ(X) ∧ Ĝ(X) mG∧1−−−−→ Ĝ(2)(X) ∧ Ĝ(X)�1∧mG

�mG

Ĝ(X) ∧ Ĝ(2)(X) mG

−−−−→ Ĝ(3)(X)

is commutative up to a homotopy arising from the natural isometry (E ⊗F )⊗
G � E ⊗ (F ⊗ G). This commutative diagram implies the associativity of the
product in usual algebraic K-theory K∗(X).

For two pointed cellular maps f : Sn → |Ĝ(2)(X)| and g : Sm → |Ĝ(X)|,
let

f × g : Sn+m f∧g−→ |Ĝ(2)(X)| ∧ |Ĝ(X)| m̂G

−→ |Ĝ(3)(X)|.

We define a pairing

m̂G
∗ : π̂n(|Ĝ(2)(X)|, ch) × π̂m(|Ĝ(X)|, ch) → π̂n+m(|Ĝ(3)(X)|, ch)

by

([(f, ω)], [(g, τ )]) �→
[(f×g, (−1)n chn(f) • τ+ω • chm(g) + ω • dDτ + (−1)n chn(f) � chm(g))].

The well-definedness of the pairing can be verified in the same way as the proof
of Proposition 6.6. We can also define a pairing

m̂G
∗ : π̂n(|Ĝ(X)|, ch) × π̂m(|Ĝ(2)(X)|, ch) → π̂n+m(|Ĝ(3)(X)|, ch)

by the same expression as above. Then the associativity of the product in
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K̂∗(X) is equivalent to the commutativity of the following diagram:

π̂n(|Ĝ(X)|,ch)×π̂m(|Ĝ(X)|,ch)×π̂l(|Ĝ(X)|,ch)

π̂n+m(|Ĝ(2)(X)|,ch)×π̂l(|Ĝ(X)|,ch) π̂n(|Ĝ(X)|,ch)×π̂m+l(|Ĝ(2)(X)|,ch)

π̂n+m+l(|Ĝ(3)(X)|,ch).










�

�
�

�
���

����������	

�����������

m̂G
∗ ×id id×m̂G

∗

m̂G
∗ m̂G

∗

However, the diagram is not commutative. Take [(f, ω)] ∈ π̂n(|Ĝ(X)|, ch),
[(g, τ )] ∈ π̂m(|Ĝ(X)|, ch) and [(h, η)] ∈ π̂l(|Ĝ(X)|, ch). Then in the same way
as the proof of Lemma 6.5, we can prove the identity

[((f × g) × h, 0)] = [(f × (g × h), 0)]

in π̂n+m+l(|Ĝ(3)(X)|, ch). Hence an easy calculation implies the following:

Proposition 6.15. We have

m̂G
∗
(
m̂G

∗ ([(f, ω)], [(g, τ )]), [(h, η)]
)
− m̂G

∗
(
[(f, ω)], m̂G

∗ ([(g, τ )], [(h, η)])
)

= [(0, r(f, g, h, ω, τ, η))]

in π̂n+m+l(|Ĝ(3)(X)|, ch), where

r(f, g, h, ω, τ, η)

= (−1)n((chn(f) + dDω) • τ ) • (chl(h) + dDη)

− (−1)n(chn(f) + dDω) • (τ • (chl(h) + dDη))

+ (−1)n+m chn+m(f × g) • η + (−1)n(chn(f) � chm(g)) • dDη

− (−1)n+m chn(f) • (chm(g) • η)

+ (ω • chm(g)) • chl(h) − (−1)n+mdDω • (chm(g) � chl(h))

− ω • chm+l(g × h) + (ω • chm(g)) • dDη − (−1)n+mdDω • (chm(g) • η)

+ (−1)n(chn(f) � chm(g)) • chl(h) + (−1)n+m chn+m(f × g) � chl(h)

− (−1)n+m chn(f) • (chm(g) � chl(h)) − (−1)n chn(f) � chm+l(g × h).
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Lemma 6.16. Assume nml ≥ 1 and let α ∈ Dn(X), β ∈ Dm(X) and
γ ∈ Dl(X).
1) We have

(α • β) • γ − α • (β • γ)

= (−1)n+m(∂α(−1,−n) + ∂α(−n,−1)) ∧ (∂β(−1,−m) + ∂β(−m,−1)) ∧ γ

− α ∧ (∂β(−1,−m) + ∂β(−m,−1)) ∧ (∂γ(−1,−l) + ∂γ(−l,−1)).

2) If dDα = dDβ = 0, then

(α • β) • γ − α • (β • γ) ≡
{
−α ∧ dβ ∧ dDγ, l ≥ 2,

0, l = 1

modulo Im dD.
3) If dDβ = dDγ = 0, then

(α • β) • γ − α • (β • γ) ≡
{

(−1)n+mdDα ∧ dβ ∧ γ, n ≥ 2,

0, n = 1

modulo Im dD.
4) If dDα = dDγ = 0, then

(α • β) • γ − α • (β • γ) ≡
{

(−1)mα ∧ ddDβ ∧ γ, m ≥ 2,

0, m = 1

modulo Im dD.

Proof. The identity in 1) follows from an easy calculation. If l ≥ 2 and
dDα = dDβ = 0, then

(α • β) • γ − α • (β • γ)

= (−1)n+mdα ∧ dβ ∧ γ − α ∧ dβ ∧ (dγ + dDγ)

= (−1)n+md(α ∧ dβ ∧ γ) − α ∧ dβ ∧ dDγ.

The form α ∧ dβ ∧ γ is contained in D2(p+q+r)−n−m−l−1(X, p + q + r) and
dD(α ∧ dβ ∧ γ) = −d(α ∧ dβ ∧ γ). Hence we have

(α • β) • γ − α • (β • γ) ≡ −α ∧ dβ ∧ dDγ

modulo Im dD. When l = 1, we have

(α • β) • γ − α • (β • γ) = (−1)n+m+1dD(α ∧ dβ ∧ γ).
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Hence 2) holds. The identities in 3) and 4) can be proved in the same way.

Let us calculate r(f, g, h, ω, τ, η) by using Lemma 6.16. If nml ≥ 1, then

(−1)n((chn(f) + dDω) • τ ) • (chl(h) + dDη)

− (−1)n(chn(f) + dDω) • (τ • (chl(h) + dDη))

≡ (−1)n+m+1(chn(f) + dDω) ∧ ddDτ ∧ (chl(h) + dDη)

and

(ω • chm(g)) • dDη − (−1)n+mdDω • (chm(g) • η)

≡ (−1)n+m+1dDω ∧ d chm(g) ∧ dDη

modulo Im dD. Since

chn+m(f × g) = chn(f) • chm(g) + (−1)n+1dD(chn(f) � chm(g))

by Theorem 5.2, we have

(−1)n+m chn+m(f × g) • η + (−1)n(chn(f) � chm(g)) • dDη

− (−1)n+m chn(f) • (chm(g) • η)

≡(−1)n+m(chn(f) • chm(g)) • η − (−1)n+m chn(f) • (chm(g) • η)

≡(−1)n+m+1 chn(f) ∧ d chm(g) ∧ dDη

modulo Im dD. In the same way we have

(ω • chm(g)) • chl(h) − ω • chm+l(g × h) − (−1)n+mdDω • (chm(g) � chl(h))

≡ (−1)n+m+1dDω ∧ d chm(g) ∧ chl(h)

modulo Im dD. As for the last four terms, we have the following:

Proposition 6.17. If nml ≥ 1, then we have

(−1)n(chn(f) � chm(g)) • chl(h) − (−1)n+m chn(f) • (chm(g) � chl(h))

+ (−1)n+m chn+m(f × g) � chl(h) − (−1)n chn(f) � chm+l(g × h)

≡ (−1)n+m+1 chn(f) ∧ d chm(g) ∧ chl(h)

modulo Im dD.

We will prove this proposition in §6.9. Substituting these identities into
that in Proposition 6.15 yields that

r(f, g, h, ω, τ, η) ≡ (−1)n+m+1(chn(f)+dDω)∧d(chm(g)+dDτ )∧(chl(h)+dDη)

modulo Im dD.
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Theorem 6.18. The product in higher arithmetic K-theory does not
satisfy the associative law. In fact, if x ∈ K̂n(X), y ∈ K̂m(X) and z ∈ K̂l(X)
for nml ≥ 1, we have

(x × y) × z − x × (y × z) = [(0, (−1)n+m+1 chn(x) ∧ d chm(y) ∧ chl(z))]

in K̂n+m+l(X). Hence (x × y) × z = x × (y × z) holds when nml = 0 or
y ∈ Km(X) or x = y = z.

Proof. When nml ≥ 1, we have already proved this identity. The identity
(x × y) × z = x × (y × z) in the case of nml = 0 follows from the definition of
the product and Lemma 6.16.

§6.8. Product in Arakelov K-theory

For a proper Arakelov variety X = (X, hX), let us define a pairing

Kn(X) × Km(X) → Kn+m(X)

by (x, y) �→ σ(x × y), where σ is the harmonic projection defined in §4.3.

Theorem 6.19. The above pairing makes K∗(X) a graded associative
algebra. That is to say, it follows that

σ(σ(x × y) × z) = σ(x × σ(y × z))

for x, y, z ∈ K∗(X).

Proof. This identity is obvious when nml = 0, so we may assume that
nml ≥ 1. We first prove the identity

σ(σ(x × y) × z) = σ((x × y) × z)

for x ∈ Kn(X), y ∈ Km(X) and z ∈ Kl(X). It follows from the definition of σ

that σ(x × y) = x × y + [(0, α)] where α ∈ Dn+m+1(X) with H(α) = 0. Then
we have

σ(x × y) × z = (x × y) × z + [(0, α • chl(z))],

therefore

σ(σ(x × y) × z) = (x × y) × z + [(0, α • chl(z) + β)]
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where β ∈ Dn+m+l+1(X) with H(β) = 0. Let α′ be the sum of (p−1, p−n−m)-
part of α and α′′ the sum of (p−n−m, p−1)-part of α. Since chl(z) is harmonic,

α • chl(z) = (−1)n+m+1(∂α′ − ∂α′′) ∧ chl(z).

Since ∂α′∧chl(z) is ∂-exact and ∂α′′∧chl(z) is ∂-exact, we have H(α•chl(z)) =
0, so H(α • chl(z) + β) = 0. Therefore σ(σ(x × y) × z) = σ((x × y) × z). In
the same way, we can show that σ(x × σ(y × z)) = σ(x × (y × z)). Hence by
Thm. 6.18 we can obtain the desired identity.

§6.9. Proof of Proposition 6.17

For ω ∈ Dn(X) and for an integer i with 1 ≤ i ≤ n, set

ω(−i,−n+i−1) =
∑

p

ω(p−i,p−n+i−1),

where ω(p−i,p−n+i−1) is the (p− i, p−n+ i−1)-part of ω. Then for ω ∈ Dn(X)
and τ ∈ Dm(X), we can write ω � τ as follows:

ω � τ =
∑

an,m
i,j ω(−i,−n+i−1) ∧ τ (−j,−m+j−1).

Set

Φ =(−1)n(chn(f) � chm(g)) • chl(h) − (−1)n+m chn(f) • (chm(g) � chl(h))

+ (−1)n+m chn+m(f × g) � chl(h) − (−1)n chn(f) � chm+l(g × h),

and let Φ(f) (resp. Φ(g) and Φ(h)) be the part of Φ including the derivatives
of chn(f) (resp. chm(g) and chl(h)). In other words, Φ = Φ(f) + Φ(g) + Φ(h)
such that

Φ(f) = (−1)m+1(∂ chn(f)(−1,−n) − ∂ chn(f)(−n,−1)) ∧ (chm(g) � chl(h))

+ (−1)m
(
(∂ chn(f)(−1,−n) − ∂ chn(f)(−n,−1)) ∧ chm(g)

)
� chl(h)

+ (−1)m

 ∑
1≤i≤n

1≤j≤m

an,m
i,j d chn(f)(−n+i−1,−i) ∧ chm(g)(−m+j−1,−j)

 � chl(h),

Φ(g) = (−1)n+m(chn(f) ∧ (∂ chm(g)(−1,−m) − ∂ chm(g)(−m,−1))) � chl(h)

+ (−1)n+m+1

 ∑
1≤i≤n

1≤j≤m

an,m
i,j chn(f)(−n+i−1,−i) ∧ d chm(g)(−m+j−1,−j)


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� chl(h)

+ (−1)n+m+1 chn(f) �((∂ chm(g)(−1,−m) − ∂ chm(g)(−m,−1)) ∧ chl(h))

+ (−1)n+m+1 chn(f) �

∑
1≤j≤m

1≤k≤l

am,l
j,k d chm(g)(−m+j−1,−j)∧chl(h)(−l+k−1,−k)


and

Φ(h) = (−1)n(chn(f) � chm(g)) ∧ (∂ chl(h)(−1,−l) − ∂ chl(h)(−l,−1))

+ (−1)n+1 chn(f) �
(
chm(g) ∧ (∂ chl(h)(−1,−l) − ∂ chl(h)(−l,−1))

)

+ (−1)n chn(f) �

 ∑
1≤j≤m

1≤k≤l

am,l
j,k chm(g)(−m+j−1,−j) ∧ d chl(h)(−l+k−1,−k)

 .

Let us first calculate Φ(f). It follows from dD(chn(f)) = 0 that ∂ chn

(f)(−n+i−1,−i) = −∂ chn(f)(−n+i,−i−1) for 1 ≤ i ≤ n − 1. Then Φ(f) is ex-
pressed as follows:

Φ(f) = bn,m,l
0,j,k

∑
1≤j≤m

1≤k≤l

∂ chn(f)(−n,−1) ∧ chm(g)(−m+j−1,−j) ∧ chl(h)(−l+k−1,−k)

+
∑

1≤i≤n
1≤j≤m

1≤k≤l

bn,m,l
i,j,k ∂ chn(f)(−n+i−1,−i) ∧ chm(g)(−m+j−1,−j) ∧ chl(h)(−l+k−1,−k)

where

bn,m,l
0,j,k = (−1)mam,l

j,k + (−1)m+1an+m,l
j,k + (−1)man+m,l

j,k × an,m
1,j

= (−1)mam,l
j,k + 2(−1)m+1

(
n+m

n

)−1(n+m−j
n

)
an+m,l

j,k ,

bn,m,l
n,m,k = (−1)m+1am,l

j,k + (−1)man+m,l
n+j,k + (−1)man+m,l

n+j,k × an,m
n,j

= (−1)m+1am,l
j,k + 2(−1)m

(
n+m

n

)−1(n−j+1
n

)
an+m,l

n+j,k ,

and

bn,m,l
i,j,k = (−1)m+1an+m,l

i+j,k × an,m
i+1,j + (−1)man+m,l

i+j,k × an,m
i,j

= 2(−1)m
(
n+m

n

)−1(n+m−i−j
n−i

)(
i+j−1

i

)
an+m,l

i+j,k

for 1 ≤ i ≤ n − 1.



�

�

�

�

�

�

�

�

658 Yuichiro Takeda

Lemma 6.20. If 1 ≤ j ≤ m and 1 ≤ k ≤ l, then

(
n+m

n

)−1
n∑

i=0

(
n+m−i−j

n−i

)(
i+j−1

i

)
an+m,l

i+j,k = am,l
j,k .

Proof. By Lemma A.2 and Lemma A.3, we have

(
n+m

n

)−1
n∑

i=0

(
n+m−i−j

n−i

)(
i+j−1

i

)
an+m,l

i+j,k

=
(
n+m

n

)−1
n∑

i=0

(
n+m−i−j

n−i

)(
i+j−1

i

)
− 2
(
n+m

n

)−1(n+m+l
n+m

)−1
n∑

i=0

(
n+m−i−j

n−i

)(
i+j−1

i

)
×

i+j−1∑
α=0

(
n+m+l−i−j−k+1

n+m−α

)(
i+j+k−1

α

)
= 1 − 2

(
m+l
m

)−1
j−1∑
α=0

(
m+l−j−k+1

m−α

)(
j+k−1

α

)
= am,l

j,k .

Let

cn,m,l
i,j,k = (−1)mam,l

j,k − 2(−1)m
(
n+m

n

)−1
i−1∑
α=0

(
n+m−α−j

n−α

)(
α+j−1

α

)
an+m,l

α+j,k .

Then we have

cn,m,l
1,j,k = bn,m,l

0,j,k ,

cn,m,l
i,j,k − cn,m,l

i+1,j,k = bn,m,l
i,j,k

for 1 ≤ i ≤ n − 1 and by Lemma 6.20,

cn,m,l
n,j,k = bn,m,l

n,j,k .

Let Ψ be a differential form given by

Ψ =
∑

1≤i≤n

1≤j≤m

1≤k≤l

cn,m,l
i,j,k chn(f)(−n+i−1,−i) ∧ chm(g)(−m+j−1,−j) ∧ chl(h)(−l+k−1,−k).
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Lemma 6.21. It follows that cn,m,l
n−i+1,m−j+1,l−k+1 = cn,m,l

i,j,k . Hence Ψ is
contained in Dn+m+l+2(X).

Proof. We have

cn,m,l
n−i+1,m−j+1,l−k+1

= (−1)mam,l
m−j+1,l−k+1

− 2(−1)m
(
n+m

n

)−1
n−i∑
α=0

(
n−α+j−1

n−α

)(
α+m−j

α

)
an+m,l

α+m−j+1,l−k+1

= (−1)m+1am,l
j,k + 2(−1)m

(
n+m

n

)−1
n−i∑
α=0

(
n−α+j−1

n−α

)(
α+m−j

α

)
an+m,l

n−α+j,k

= (−1)m+1am,l
j,k + 2(−1)m

(
n+m

n

)−1
n∑

β=i

(
β+j−1

β

)(
n−β+m−j

n−β

)
an+m,l

β+j,k .

Hence Lemma 6.20 implies that

cn,m,l
n−i+1,m−j+1,l−k+1

= (−1)m+1am,l
j,k + 2(−1)m

×

am,l
j,k −

(
n+m

n

)−1
i−1∑
β=0

(
β+j−1

β

)(
n−β+m−j

n−β

)
an+m,l

β+j,k


= (−1)mam,l

j,k − 2(−1)m
(
n+m

n

)−1
i−1∑
β=0

(
n+m−β−j

n−β

)(
β+j−1

β

)
an+m,l

β+j,k

= cn,m,l
i,j,k .

Let us denote the parts of dΨ including the derivatives of chn(f), chm(g)
and chl(h) by Ψ(f), Ψ(g) and Ψ(h) respectively. Then dΨ = Ψ(f)+Ψ(g)+Ψ(h)
and

Ψ(f) =
∑

1≤i≤n
1≤j≤m

1≤k≤l

cn,m,l
i,j,k d chn(f)(−n+i−1,−i)

∧ chm(g)(−m+j−1,−j) ∧ chl(h)(−l+k−1,−k)
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=
∑

1≤j≤m

1≤k≤l

cn,m,l
1,j,k ∂ chn(f)(−n,−1) ∧ chm(g)(−m+j−1,−j) ∧ chl(h)(−l+k−1,−k)

+
∑

1≤i≤n−1
1≤j≤m

1≤k≤l

(cn,m,l
i,j,k − cn,m,l

i+1,j,k)∂ chn(f)(−n+i−1,−i)

∧ chm(g)(−m+j−1,−j) ∧ chl(h)(−l+k−1,−k)

+
∑

1≤j≤m

1≤k≤l

cn,m,l
n,j,k ∂ chn(f)(−1,−n) ∧ chm(g)(−m+j−1,−j) ∧ chl(h)(−l+k−1,−k)

= Φ(f).

Let us express Φ(h) − Ψ(h) as follows:

Φ(h) − Ψ(h)

= dn,m,l
i,j,0

∑
1≤i≤n

1≤j≤m

chn(f)(−n+i−1,−i) ∧ chm(g)(−m+j−1,−j) ∧ ∂ chl(h)(−l,−1)

+
∑

1≤i≤n
1≤j≤m

1≤k≤l

dn,m,l
i,j,k chn(f)(−n+i−1,−i) ∧ chm(g)(−m+j−1,−j) ∧ ∂ chl(h)(−l+k−1,−k).

Lemma 6.22. It follows that dn,m,l
i,j,k = 0, therefore Φ(h) − Ψ(h) = 0.

Proof. When 1 ≤ k ≤ l − 1,

dn,m,l
i,j,k = (−1)nan,m+l

i,j+k × (am,l
j,k − am,l

j,k+1) − (−1)n+m(cn,m,l
i,j,k − cn,m,l

i,j,k+1)

= (−1)n+1(1 − an,m+l
i,j+k )(am,l

j,k − am,l
j,k+1)

+ 2(−1)n
(
n+m

n

)−1
i−1∑
α=0

(
n+m−α−j

n−α

)(
α+j−1

α

)
(an+m,l

α+j,k − an+m,l
α+j,k+1)

= 4(−1)n
(
n+m+l

n

)−1(m+l
l

)−1(m+l−j−k
m−j

)(
j+k−1

j−1

)
×

i−1∑
α=0

(
n+m+l−i−j−k+1

n−α

)(
i+j+k−1

α

)
− 4(−1)n

(
n+m+l

l

)−1(n+m
n

)−1

×
i−1∑
α=0

(
n+m+l−α−j−k

n+m−α−j

)(
α+j+k−1

α+j−1

)(
n+m−α−j

n−α

)(
α+j−1

α

)
.
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Since (
n+m+l

l

)(
n+m

n

)
=
(
n+m+l

n

)(
m+l

l

)
,(

n+m+l−α−j−k
n+m−α−j

)(
n+m−α−j

n−α

)
=
(
n+m+l−α−j−k

m+l−j−k

)(
m+l−j−k

m−j

)
,(

α+j+k−1
α+j−1

)(
α+j−1

α

)
=
(
α+j+k−1

α

)(
j+k−1

j−1

)
,

we have

dn,m,l
i,j,k = 4(−1)n

(
n+m+l

n

)−1(m+l
l

)−1(m+l−j−k
m−j

)(
j+k−1

j−1

)
×
(

i−1∑
α=0

(
n+m+l−i−j−k+1

n−α

)(
i+j+k−1

α

)
−

i−1∑
α=0

(
n+m+l−α−j−k

n−α

)(
α+j+k−1

α

))
= 0

by Lemma A.3. When k = 0,

dn,m,l
i,j,0 = (−1)n+1an,m

i,j + (−1)nan,m+l
i,j × (1 + am,l

j,1 ) − (−1)n+mcn,m,l
i,j,1

= (−1)n+1

(
(1 − 2

(
n+m

n

)−1
i−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

))
+ 2(−1)n

(
m+l
m

)−1(m+l−j
l

)
×
(

1 − 2
(
n+m+l

n

)−1
i−1∑
α=0

(
n+m+l−i−j+1

n−α

)(
i+j−1

α

))
− (−1)n

(
−1 + 2

(
m+l

l

)−1(m+l−j
l

))
+ 2(−1)n

(
n+m

n

)−1
i−1∑
α=0

(
n+m−α−j

n−α

)(
α+j−1

α

)
×
(
−1 + 2

(
n+m+l

l

)−1(n+m+l−α−j
l

))
.

Since (
n+m+l−α−j

l

)(
n+m−α−j

n−α

)
=
(
n+m+l−α−j

n−α

)(
m+l−j

l

)
,

we have

dn,m,l
i,j,0 = 2(−1)n

(
n+m

n

)−1

×
(

i−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
−

i−1∑
α=0

(
n+m−α−j

n−α

)(
α+j−1

α

))
+ 4(−1)n+1

(
n+m+l

n

)−1(m+l
l

)−1(m+l−j
l

)
×
(

i−1∑
α=0

(
n+m+l−i−j+1

n−α

)(
i+j−1

α

)
−

i−1∑
α=0

(
n+m+l−α−j

n−α

)(
α+j−1

α

))
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= 0

by Lemma A.3. We can prove that dn,m,l
i,j,l = 0 in the same way.

We finally calculate Φ(g) − Ψ(g). Let us express it as follows:

Φ(g) − Ψ(g)

= en,m,l
i,0,k

∑
1≤i≤n

1≤k≤l

chn(f)(−n+i−1,−i) ∧ ∂ chm(g)(−m,−1) ∧ chl(h)(−l+k−1,−k)

+
∑

1≤i≤n

1≤j≤m

1≤k≤l

en,m,l
i,j,k chn(f)(−n+i−1,−i) ∧ ∂ chm(g)(−m+j−1,−j)

∧ chl(h)(−l+k−1,−k).

Lemma 6.23. When 1 ≤ j ≤ m − 1, en,m,l
i,j,k = 0 and en,m,l

i,0,k = en,m,l
i,m,k =

(−1)n+m+1.

Proof. When 1 ≤ j ≤ m − 1,

en,m,l
i,j,k = (−1)n+m+1an+m,l

i+j,k × (an,m
i,j − an,m

i,j+1)

+ (−1)n+m+1an,m+l
i,j+k × (am,l

j,k − am,l
j+1,k)

+ (−1)n(cn,m,l
i,j,k − cn,m,l

i,j+1,k)

= (−1)n+m+1an+m,l
i+j,k × (an,m

i,j − an,m
i,j+1)

+ (−1)n+m+1(an,m+l
i,j+k − 1) × (am,l

j,k − am,l
j+1,k)

+ 2(−1)n+m+1
(
n+m

n

)−1
i−1∑
α=0

(
n+m−α−j

n−α

)(
α+j−1

α

)
an+m,l

α+j,k

− 2(−1)n+m+1
(
n+m

n

)−1
i−1∑
α=0

(
n+m−α−j−1

n−α

)(
α+j

α

)
an+m,l

α+j+1,k.

Hence we have

en,m,l
i+1,j,k − en,m,l

i,j,k

= (−1)n+m+1an+m,l
i+j+1,k × (an,m

i+1,j − an,m
i+1,j+1)

− (−1)n+m+1an+m,l
i+j,k × (an,m

i,j − an,m
i,j+1)

+ (−1)n+m+1(an,m+l
i+1,j+k − an,m+l

i,j+k )(am,l
j,k − am,l

j+1,k)

+ 2(−1)n+m+1
(
n+m

n

)−1
((

n+m−i−j
n−i

)(
i+j−1

i

)
an+m,l

i+j,k
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−
(
n+m−i−j−1

n−i

)(
i+j

i

)
an+m,l

i+j+1,k

)
= 2(−1)n+m

(
n+m

n

)−1(n+m−i−j−1
n−i−1

)(
i+j

i

)
an+m,l

i+j+1,k

− 2(−1)n+m
(
n+m

n

)−1(n+m−i−j
n−i

)(
i+j−1

i−1

)
an+m,l

i+j,k

+ (−1)n+m+1(an,m+l
i+1,j+k − an,m+l

i,j+k )(am,l
j,k − am,l

j+1,k)

+ 2(−1)n+m+1
(
n+m

n

)−1
((

n+m−i−j
n−i

)(
i+j−1

i

)
an+m,l

i+j,k

−
(
n+m−i−j−1

n−i

)(
i+j

i

)
an+m,l

i+j+1,k

)
= 2(−1)n+m

(
n+m

n

)−1(n+m−i−j
n−i

)(
i+j

i

)
(an+m,l

i+j+1,k − an+m,l
i+j,k )

+ (−1)n+m+1(an,m+l
i+1,j+k − an,m+l

i,j+k )(am,l
j,k − am,l

j+1,k)

=− 4(−1)n+m
(
n+m

n

)−1(n+m−i−j
n−i

)(
i+j

i

)(
n+m+l
n+m

)−1(n+m+l−i−j−k
n+m−i−j

)(
i+j+k−1

i+j

)
+4(−1)n+m

(
n+m+l

n

)−1(n+m+l−i−j−k
n−i

)(
i+j+k−1

i

)(
m+l
m

)−1(m+l−j−k
m−j

)(
j+k−1

j

)
= 0

and

en,m,l
1,j,k = (−1)n+m+1an+m,l

j+1,k × (an,m
1,j − an,m

1,j+1)

+ (−1)n+m+1(an,m+l
1,j+k − 1)(am,l

j,k − am,l
j+1,k)

+ 2(−1)n+m+1
(
n+m

n

)−1
((

n+m−j
n

)
an+m,l

j,k −
(
n+m−j−1

n

)
an+m,l

j+1,k

)
= (−1)n+m+1(an,m+l

1,j+k − 1)(am,l
j,k − am,l

j+1,k)

− 2(−1)n+m
(
n+m

n

)−1(n+m−j
n

)
(an+m,l

j,k − an+m,l
j+1,k )

= 4(−1)n+m
(
n+m+l

n

)−1(n+m+l−j−k
n

)(
m+l
m

)−1(m+l−j−k
m−j

)(
j+k−1

j

)
− 4(−1)n+m

(
n+m

n

)−1(n+m−j
n

)(
n+m+l
n+m

)−1(n+m+l−j−k
n+m−j

)(
j+k−1

j

)
= 0.

Hence en,m,l
i,j,k = 0 if 1 ≤ j ≤ m − 1. On the other hand, when j = 0,

en,m,l
i,0,k = (−1)n+m+1an+m,l

i,k × (1 + an,m
i,1 ) + (−1)n+man,m+l

i,k

× (1 − am,l
1,k ) − (−1)n+1cn,m,l

i,1,k

= 2(−1)n+m+1
(
n+m

n

)−1(n+m−i
m

)
an+m,l

i,k

+ 2(−1)n+m
(
m+l
m

)−1(m+l−k
m

)
an,m+l

i,k

+ (−1)n+mam,l
1,k − 2(−1)n+m

(
n+m

n

)−1
i−1∑
α=0

(
n+m−α−1

n−α

)
an+m,l

α+1,k .
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Hence we have

en,m,l
i+1,0,k − en,m,l

i,0,k

= −2(−1)n+m
(
n+m

n

)−1(n+m−i−1
m

)
an+m,l

i+1,k

+ 2(−1)n+m
(
n+m

n

)−1(n+m−i
m

)
an+m,l

i,k

+ 2(−1)n+m
(
m+l
m

)−1(m+l−k
m

)
(an,m+l

i+1,k − an,m+l
i,k )

− 2(−1)n+m
(
n+m

n

)−1(n+m−i−1
n−i

)
an+m,l

i+1,k

= 2(−1)n+m+1
(
n+m

n

)−1(n+m−i
m

)
(an+m,l

i+1,k − an+m,l
i,k )

+ 2(−1)n+m
(
m+l
m

)−1(m+l−k
m

)
(an,m+l

i+1,k − an,m+l
i,k )

= 4(−1)n+m
(
n+m

n

)−1(n+m−i
m

)(
n+m+l
n+m

)−1(n+m+l−i−k
n+m−i

)(
i+k−1

i

)
− 4(−1)n+m

(
m+l
m

)−1(m+l−k
m

)(
n+m+l

n

)−1(n+m+l−i−k
n−i

)(
i+k−1

i

)
= 0

and

en,m,l
1,0,k = 2(−1)n+m+1

(
n+m

n

)−1(n+m−1
m

)
an+m,l
1,k

+ 2(−1)n+m
(
m+l
m

)−1(m+l−k
m

)
an,m+l
1,k

+ (−1)n+mam,l
1,k − 2(−1)n+m

(
n+m

n

)−1(n+m−1
n

)
an+m,l
1,k

= 2(−1)n+m+1
(
1 − 2

(
n+m+l
n+m

)−1(n+m+l−k
n+m

))
+ (−1)n+m

(
1 − 2

(
m+l
m

)−1(m+l−k
m

))
+ 2(−1)n+m

(
m+l
m

)−1(m+l−k
m

) (
1 − 2

(
n+m+l

n

)−1(n+m+l−k
n

))
= (−1)n+m+1 + 4(−1)n+m

(
n+m+l
n+m

)−1(n+m+l−k
n+m

)
− 4(−1)n+m

(
m+l
m

)−1(m+l−k
m

)(
n+m+l

n

)−1(n+m+l−k
n

)
= (−1)n+m+1.

Hence en,m,l
i,0,k = (−1)n+m+1. We can prove that en,m,l

i,m,k = (−1)n+m+1 in the
same way.

Let us return to the proof of Proposition 6.17. By the above calculations,
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we have

Φ − dΨ

= (−1)n+m+1
∑

1≤i≤n

1≤k≤l

chn(f)(−n+i−1,−i)

∧
(
∂ chm(g)(−m,−1) + ∂ chm(g)(−1,−m)

)
∧ chl(h)(−l+k−1,−k)

= (−1)n+m+1 chn(f) ∧ d chm(g) ∧ chl(h).

Since Ψ ∈ Dn+m+l+2(X) and dDΨ = −dΨ, we have completed the proof.

§7. Direct Images

§7.1. Higher analytic torsion forms

We start this section by recalling the higher analytic torsion forms defined
by Bismut and Köhler [2]. We fix some notations.

Let ϕ : M → N be a smooth projective morphism of compact complex
algebraic manifolds. Let Tϕ be the relative tangent bundle of ϕ and we fix a
smooth hermitian metric hϕ on Tϕ that induces a Kähler metric on each fiber
ϕ−1(y) for y ∈ N . The pair (ϕ, hϕ) is called a Kähler fibration. A real closed
(1, 1)-form Ω on M is called a Kähler form with respect to hϕ if the restriction
of Ω to ϕ−1(y) is an associated Kähler form. Let us write Tϕ = (Tϕ, hϕ) and
denote by Td(Tϕ) the Todd polynomial for Tϕ.

Let E be a ϕ-acyclic hermitian vector bundle on M , that is, E is a hermi-
tian vector bundle on M such that the higher direct image Riϕ∗E is trivial for
i > 0. Then the direct image ϕ∗E becomes a vector bundle and is equipped
with the L2-hermitian metric. The Grothendieck-Riemann-Roch theorem says
that the two closed forms

1
(2π

√
−1)dim(M/N)

∫
M/N

Td(Tϕ) ch0(E) and ch0(ϕ∗E)

give the same cohomology class. The higher analytic torsion form T (E, ϕ, Ω) ∈
D1(N) is a homotopy between these forms, namely,

dDT (E, ϕ, Ω) = ch0(ϕ∗E) − 1
(2π

√
−1)dim(M/N)

∫
M/N

Td(Tϕ) ch0(E).

Dependence of T (E, ϕ, Ω) on a Kähler form has been discussed in [2].
Following their argument, for two Kähler forms Ω and Ω′ giving the same
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hermitian metric on Tϕ, we can obtain µ(E, Ω, Ω′) ∈ D2(N) such that

dDµ(E, Ω, Ω′) = T (E, ϕ, Ω) − T (E, ϕ, Ω′).

Finally let us discuss the compatibility of T (E, ϕ, Ω) and µ(E, Ω, Ω′) with
the pull back for a closed immersion. Consider the following cartesian square:

M ′ j−−−−→ M�ϕ′
�ϕ

N ′ i−−−−→ N,

where i and j are closed immersions and ϕ is a Kähler fibration with respect to a
smooth hermitian metric hϕ on Tϕ. Then it follows that Tϕ′ � j∗Tϕ, therefore
a hermitian metric hϕ′ on Tϕ′ with which ϕ′ becomes a Kähler fibration is
induced from hϕ. If Ω is a Kähler form with respect to hϕ, then j∗Ω is a
Kähler form with respect to hϕ′ .

Take a ϕ-acyclic hermitian vector bundle E on M . Then it is obvious
that the ingredients of the definitions of T (E, ϕ, Ω) and µ(E, Ω, Ω′) such as the
Bismut superconnection and the number operator are compatible with the pull
back for the immersions i and j. Hence we have

i∗T (E, ϕ, Ω) = T (j∗E, ϕ′, j∗Ω),

i∗µ(E, Ω, Ω′) = µ(j∗E, j∗Ω, j∗Ω′).

§7.2. Higher analytic torsion forms for cubes

In this subsection we introduce the higher analytic torsion form of an exact
hermitian n-cube defined by Roessler [13].

Let ϕ : M → N, Tϕ and hϕ be as in the previous subsection. Let F be
an exact hermitian n-cube made of ϕ-acyclic vector bundles on M . Then λF
is also made of ϕ-acyclic vector bundles and there is a canonical isomorphism
ϕ∗(trn λF) � λ trn ϕ∗F . When we put the L2-metrics on the both sides, how-
ever, this isomorphism does not preserve the metrics. In [13, §3.1], Roessler
has constructed a hermitian vector bundle connecting these metrics. Namely,
he has defined a hermitian vector bundle h(F) on N × (P1)n+1 satisfying the
following conditions:

h(F)|X×{0}×(P1)n = ϕ∗(trn λF),

h(F)|X×{∞}×(P1)n = λ trn ϕ∗F
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and

h(F)|X×(P1)i×{0}×(P1)n−i = h(∂0
i F),

h(F)|X×(P1)i×{∞}×(P1)n−i = h(∂−1
i F) ⊕ h(∂1

i F)

for 1 ≤ i ≤ n. Let us write

T1(F , ϕ)

=
(−1)n

2(2π
√
−1)n+1(n + 1)!

∫
(P1)n+1

ch0(h(F))
n+1∑
i=1

(−1)iSi
n+1 ∈ Dn+1(N).

Take a Kähler form Ω with respect to hϕ and

T2(F , ϕ, Ω) =
(−1)n+1

(2π
√
−1)n(n + 1)!

∫
(P1)n

n+1∑
i=1

(−1)iSi
n+1(F) ∈ Dn+1(N)

where
Si

n+1(F) = Si
n+1(T (trn λF , ϕ, Ω), log |z1|2, . . . , log |zn|2).

Theorem 7.1 ([13, Thm. 3.6]). We have

dDT1(F , ϕ) + T1(∂F , ϕ)

= chn(ϕ∗F) − (−1)n

2(2π
√
−1)nn!

∫
(P1)n

ch0(ϕ∗ trn λF)
n∑

i=1

(−1)iSi
n

and

dDT2(F , ϕ, Ω) + T2(∂F , ϕ, Ω)

=
(−1)n

2(2π
√
−1)nn!

∫
(P1)n

ch0(ϕ∗ trn λF)
n∑

i=1

(−1)iSi
n

− 1
(2π

√
−1)dim(M/N)

∫
M/N

Td(Tϕ) chn(F).

Hence if we write T (F , ϕ, Ω) = T1(F , ϕ) + T2(F , ϕ, Ω), then

dDT (F , ϕ, Ω) + T (∂F , ϕ, Ω)

= chn(ϕ∗F) − 1
(2π

√
−1)dim(M/N)

∫
M/N

Td(Tϕ) chn(F).

Let us discuss dependence of T (F , ϕ, Ω) on a Kähler form Ω. For ui ∈
D1(M), let

Cn(u1, . . . , un) =
1
2n

∑
σ∈Sn

(−1)sgn σuσ(1) •
(
uσ(2) •

(
· · ·uσ(k) · · ·

))
.
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Then it is easy to show that

Cn(u1, . . . , un) =
(−1)n

2

n∑
i=1

(−1)iSi
n(u1, . . . , un).

Lemma 7.2. For u1 ∈ D2(M) and ui ∈ D1(M) with 2 ≤ i ≤ n, let

Cn(u1, . . . , un) =
1
2n

n∑
j=1

(−1)j+1
∑

σ∈Sn

σ(j)=1

(−1)sgn σuσ(1) • (uσ(2) • (· · ·uσ(j) · · · )).

Then we have

dDCn(u1, u2, . . . , un)

= Cn(dDu1, u2, . . . , un)+
n

2

n∑
k=2

(−1)k(dDuk) • Cn−1(u1, u2, . . . , ûk, · · · , un).

Proof. Since dD(u • v) = dDu • v + (−1)deg uu • dDv, we have

dDCn(u1, u2, . . . , un)

=
1
2n

n∑
j=1

∑
σ∈Sn

σ(j)=1

(−1)sgn σ
∑
i<j

(−1)i+jdDuσ(i)(uσ(1) • (· · · ûσ(i) · · ·uσ(j) · · · ))

+
1
2n

n∑
j=1

∑
σ∈Sn

σ(j)=1

(−1)sgn σuσ(1) • (· · · dDuσ(j) · · · )

+
1
2n

n∑
j=1

∑
σ∈Sn

σ(j)=1

(−1)sgn σ
∑
j<i

(−1)i+j+1dDuσ(i)(uσ(1) • (· · ·uσ(j) · · · ûσ(i) · · · ))

=
1
2n

n∑
j=1

∑
σ∈Sn

σ(j)=1

(−1)sgn σuσ(1) • (· · · dDuσ(j) · · · )

+
1
2n

n∑
k=2

∑
i<j

∑
σ∈Sn

σ(j)=1

σ(i)=k

(−1)sgn σ(−1)i+jdDuk(uσ(1) • (· · · ûσ(i) · · ·uσ(j) · · · ))

+
1
2n

n∑
k=2

∑
j<i

∑
σ∈Sn

σ(j)=1

σ(i)=k

(−1)sgn σ(−1)i+j+1dDuk(uσ(1) • (· · ·uσ(j) · · · ûσ(i) · · · ))
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= Cn(dDu1, u2, . . . , un) +
n

2

n∑
k=2

(−1)k(dDuk)Cn−1(u1, . . . , ûk, . . . , un).

Proposition 7.3. Let Ω and Ω′ be Kähler forms with respect to a
smooth hermitian metric hϕ on Tϕ. For an exact hermitian n-cube F made
of ϕ-acyclic vector bundles on M , let us write µ(F) for µ(trn λF , Ω, Ω′) ∈
D2(N × (P1)n). Then we have

T (F , ϕ, Ω) − T (F , ϕ, Ω′)

≡ −2
(2π

√
−1)n−1n!

∫
(P1)n−1

Cn(µ(∂F), log |z1|2, . . . , log |zn−1|2)

modulo Im dD.

Proof. It follows from the definition that

T2(F , ϕ, Ω)

=
2

(2π
√
−1)n(n + 1)!

∫
(P1)n

Cn+1(T (trn λF , ϕ, Ω), log |z1|2, . . . , log |zn|2).

Then by Lemma 7.2 we have

T (F , ϕ, Ω) − T (F , ϕ, Ω′) = T2(F , ϕ, Ω) − T2(F , ϕ, Ω′)

=
2

(2π
√
−1)n(n + 1)!∫

(P1)n

Cn+1(T (trn λF , ϕ, Ω) − T (trn λF , ϕ, Ω′), log |z1|2, . . . , log |zn|2)

=
2

(2π
√
−1)n(n + 1)!

∫
(P1)n

Cn+1(dDµ(F), log |z1|2, · · · , log |zn|2)

=
2

(2π
√
−1)n(n + 1)!

∫
(P1)n

dDCn+1(µ(F), log |z1|2, . . . , log |zn|2)

− 1
(2π

√
−1)nn!

n∑
k=1

(−1)k−1

∫
(P1)n

dD log |zk|2Cn(µ(F), log |z1|2, . . . , ̂log |zk|2, . . . , log |zn|2)

=
2

(2π
√
−1)n(n + 1)!

dD

(∫
(P1)n

Cn+1(µ(F), log |z1|2, . . . , log |zn|2)
)

− 2
(2π

√
−1)n−1n!

∫
(P1)n−1

Cn(µ(∂F), log |z1|2, . . . , log |zn−1|2).
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§7.3. Definition of direct image homomorphism

In this subsection, we apply the results obtained so far to an arithmetic
situation and define a direct image homomorphism in higher arithmetic K-
theory. Let ϕ : X → Y be a smooth projective morphism of proper arithmetic
varieties. We fix an F∞-invariant smooth hermitian metric hϕ on Tϕ(C) such
that (ϕ(C), hϕ) is a Kähler fibration, and take an anti-F∞-invariant Kähler
form Ω on X(C) with respect to hϕ. Let Ŝ(ϕ-ac) denote the S-construction
of the category of ϕ-acyclic hermitian vector bundles on X. Then the natural
inclusion Ŝ(ϕ-ac) → Ŝ(X) is a homotopy equivalence, and the direct image of a
ϕ-acyclic hermitian vector bundle with the L2-metric gives a map of simplicial
sets ϕ∗ : Ŝ(ϕ-ac) → Ŝ(Y ).

Proposition 7.4. If E is a degenerate element of Ŝn+1(ϕ-ac), then
T (Cub(E), ϕ, Ω) = 0.

The proof is similar to that of Theorem 4.4, so we omit it. By virtue of
this proposition, taking higher analytic torsion forms yields a homomorphism

T ( ϕ, Ω) : C∗(|Ŝ(ϕ-ac)|) → D∗(Y ).

In particular, the higher analytic torsion form of a pointed cellular map f :
Sn+1 → |Ŝ(ϕ-ac)| is defined by T (f, ϕ, Ω) = T (f∗([Sn+1]), ϕ, Ω). We abbrevi-
ate T (f, ϕ, Ω) to T (f) if the morphism ϕ and the Kähler form Ω are fixed.

Let ϕ! : D∗(X) → D∗(Y ) be the map given by

ϕ!ω =
1

(2π
√
−1)dim(X/Y )

∫
X(C)/Y (C)

Td(Tϕ)ω.

Then by Theorem 7.1 the diagram

C∗(|Ŝ(ϕ-ac)|) ϕ∗−−−−→ C∗(|Ŝ(Y )|)�ch

�ch

D∗(X)[1]
ϕ!−−−−→ D∗(Y )[1]

is commutative up to the homotopy −T ( , ϕ, Ω). Hence by Proposition 3.9 we
can obtain a homomorphism

ϕ̂(Ω)∗ : π̂n+1(|Ŝ(ϕ-ac)|, ch) → π̂n+1(|Ŝ(Y )|, ch)

by [(f, ω)] �→ [(ϕ∗f, ϕ!ω + T (f, ϕ, Ω))].
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If Ω′ is another anti-F∞-invariant Kähler form with respect to hϕ, then it
follows from Proposition 7.3 that T (f, ϕ, Ω) ≡ T (f, ϕ, Ω′) modulo Im dD for any
pointed cellular map f : Sn+1 → |Ŝ(ϕ-ac)|. Hence the homomorphism ϕ̂(Ω)∗
depends only on the hermitian metric hϕ and does not concern the Kähler form
Ω.

Summing up the arguments in this subsection leads to the following:

Theorem 7.5. Let ϕ : X → Y be a smooth projective morphism of
proper arithmetic varieties. We fix an F∞-invariant metric hϕ on Tϕ such
that (ϕ(C), hϕ) is a Kähler fibration. Then we can define a direct image homo-
morphism ϕ̂(hϕ)∗ : K̂n(X) → K̂n(Y ) by

π̂n+1(|Ŝ(X)|, ch) � π̂n+1(|Ŝ(ϕ-ac)|, ch)
ϕ̂(Ω)∗−→ π̂n+1(|Ŝ(Y )|, ch),

where Ω is an anti-F∞-invariant Kähler from on X(C) with respect to hϕ.

When n = 0, the isomorphism α̂ : K̂0(X) → K̂0(X) gives an identification
between the direct image homomorphism defined above and ϕ! : K̂0(X) →
K̂0(Y ) in [10].

Proposition 3.10 implies that the diagram

K̂n(X) chn−−−−→ D∗(X)�ϕ̂(hϕ)∗

�ϕ!

K̂n(Y ) chn−−−−→ D∗(Y )

is commutative. In particular, we can obtain a direct image homomorphism in
KM -groups

ϕ̂(hϕ)∗ : KMn(X) → KMn(Y ).

Finally, we give a description of the direct image homomorphism by means
of the G-construction. Given a pointed cellular map f : Sn → |Ĝ(X)| for n ≥ 1,
let T (f, ϕ, Ω) = T (χ∗f∗([Sn]), ϕ, Ω). Then we can obtain a homomorphism
ϕ̂(Ω)∗ : π̂n(|Ĝ(ϕ-ac)|, ch) → π̂n(|Ĝ(Y )|, ch) by

ϕ̂(Ω)∗([(f, ω)]) = [(ϕ∗f, ϕ!ω − T (f, ϕ, Ω))],

and it satisfies the following commutative diagram:

π̂n(|Ĝ(ϕ-ac)|, ch)
ϕ̂(Ω)∗−−−−→ π̂n(|Ĝ(Y )|, ch)�χ̂∗

�χ̂∗

π̂n+1(|Ŝ(ϕ-ac)|, ch)
ϕ̂(Ω)∗−−−−→ π̂n+1(|Ŝ(Y )|, ch).
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Hence the direct image homomorphism in K̂∗(X) can also be given as follows:

π̂n(|Ĝ(X)|, ch) � π̂n(|Ĝ(ϕ-ac)|, ch)
ϕ̂(Ω)∗−→ π̂n(|Ĝ(Y )|, ch).

§7.4. The projection formula

In this subsection we prove the projection formula in higher arithmetic
K-theory. We first consider the case of K̂0-groups. Let ϕ : X → Y , hϕ and
Ω be as in the last subsection. Let E be a hermitian vector bundle on Y and
F a ϕ-acyclic hermitian vector bundle on X. Then the canonical isomorphism
ϕ∗(ϕ∗E ⊗ F ) � E ⊗ ϕ∗F preserves the metrics.

Let ϕ! denote the direct image homomorphism in K̂0 given in [10]. For
ω ∈ D̃1(Y ) and τ ∈ D̃1(X), we have

ϕ!(ϕ̂∗(E, ω) × (F, τ ))

= ϕ!((ϕ∗E) ⊗ F , ϕ∗ω ∧ ch0(F ) + ϕ∗ ch0(E) ∧ τ + ϕ∗dDω ∧ τ )

= (ϕ∗(ϕ∗E ⊗ F ), η),

where

η =
1

(2π
√
−1)dim(X/Y )

∫
X(C)/Y (C)

Td(Tϕ) ∧
(
ϕ∗ω ∧ ch0(F )

+ϕ∗ ch0(E) ∧ τ + ϕ∗dDω ∧ τ
)

− T (ϕ∗E ⊗ F )

=
1

(2π
√
−1)dim(X/Y )

(ch0(E) + dDω) ∧
∫

X(C)/Y (C)

Td(Tϕ) ∧ τ

+ ω ∧ (ch0(ϕ∗F ) − dDT (F )) − T (ϕ∗E ⊗ F ).

On the other hand, we have

(E, ω) × ϕ!(F , τ ) = (E, ω) ⊗ (ϕ∗F , ϕ!τ − T (F ))

= (E ⊗ ϕ∗F , η′),

where

η′ =
1

(2π
√
−1)dim(X/Y )

(ch0(E) + dDω) ∧
∫

X(C)/Y (C)

Td(Tϕ) ∧ τ

+ ω ∧ ch0(ϕ∗F ) − (ch0(E) + dDω) ∧ T (F ).

Comparing these identities, we have

η − η′ = −T (ϕ∗E ⊗ F ) + ch0(E) ∧ T (F ) + dD(ω ∧ T (F )).
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Hence the projection formula in K̂0-groups is reduced to the following propo-
sition:

Proposition 7.6. Under the above notations, we have

T (ϕ∗E ⊗ F ) = ch0(E) ∧ T (F ).

Proof. Let E be the infinite dimensional vector bundle on N consisting
of smooth sections of Λ∗T ∗(1,0)ϕ ⊗ F . Let Bu and Nu denote the Bismut
superconnection and the number operator on E respectively. Let E′ be the
infinite dimensional vector bundle consisting of smooth sections of Λ∗T ∗(1,0)ϕ⊗
(ϕ∗E⊗F ). Let B′

u and N ′
u denote the Bismut superconnection and the number

operator on E′ respectively. Then we have a canonical isometry E′ � E⊗E and
under this identification, we have B′

u = 1 ⊗ Bu + ∇E ⊗ 1 and N ′
u = 1 ⊗ Nu.

Substituting these into the definition of T (ϕ∗E ⊗ F ) in [2] yields the desired
identity.

Let us move on to the higher case. We assume that n, m ≥ 1. Consider
the following diagram:

Ĝ(Y ) ∧ Ĝ(ϕ-ac)
mG(ϕ∗∧1)−−−−−−−→ Ĝ(2)(ϕ-ac)�1∧ϕ∗

�ϕ∗

Ĝ(Y ) ∧ Ĝ(Y ) mG

−−−−→ Ĝ(2)(Y ).

This diagram is commutative up to a homotopy arising from the isometry
ϕ∗(ϕ∗E⊗F ) � E⊗ϕ∗F . Hence for two pointed cellular maps f : Sn → |Ĝ(Y )|
and g : Sm → |Ĝ(ϕ-ac)|, [(ϕ∗(ϕ∗f × g), 0)] = [(f × ϕ∗g, 0)]. For ω ∈ D̃n+1(Y )
and τ ∈ D̃m+1(X),

ϕ(Ω)∗(ϕ∗(f, ω) × (g, τ )) = ϕ(Ω)∗(ϕ∗f × g, (−1)nϕ∗ chn(f) • τ + ϕ∗ω • chm(g)

+ (−1)ndDϕ∗ω • τ + (−1)nϕ∗ chn(f) � chm(g))

= (ϕ∗(ϕ∗f × g), η),

where

η =
(−1)n

(2π
√
−1)dim(X/Y )

(chn(f) + dDω) •
∫

X(C)/Y (C)

Td(Tϕ) ∧ τ

+ ω • (chm(ϕ∗g) − dDT (g))

+ (−1)n chn(f) � (chm(ϕ∗g) − dDT (g)) − T (ϕ∗f × g).
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On the other hand, we have

(f, ω) × ϕ(hϕ)∗(g, τ ) = (f, ω) × (ϕ∗g, ϕ!τ − T (g))

= (f × ϕ∗g, η′),

where

η′ =
(−1)n

(2π
√
−1)dim(X/Y )

(chn(f) + dDω) •
∫

X(C)/Y (C)

Td(Tϕ) ∧ τ

− (−1)n(chn(f) + dDω) • T (g)

+ ω • chn(ϕ∗g) + (−1)n chn(f) � chm(ϕ∗g).

Hence we have

η − η′ ≡ (−1)n+1 chn(f) � dDT (g) − T (ϕ∗f × g) + (−1)n chn(f) • T (g)

modulo Im dD. Thus the projection formula in higher arithmetic K-theory is
reduced to the following proposition:

Proposition 7.7. For an exact hermitian n-cube F on Y and an exact
hermitian m-cube G made of ϕ-acyclic vector bundles on X, we have

dD(chn(F) � T (G)) = − T (ϕ∗F ⊗ G) + (−1)n chn(F) • T (G)

+ chn+1(∂F) � T (G) + (−1)n−1 chn(F) � dDT (G).

Proof. We will prove the following identities:

dD(chn(F) � T1(G)) = − T1(ϕ∗F × G) + (−1)n chn(F) • T1(G)

+ chn−1(∂F) � T1(G) + (−1)n+1 chn(F) � dDT1(G),

dD(chn(F) � T2(G)) = − T2(ϕ∗F × G) + (−1)n chn(F) • T2(G)

+ chn−1(∂F) � T2(G) + (−1)n+1 chn(F) � dDT2(G).

These identities can be proved in the same way, so we will prove only the latter
one.

For t < s, let π1 : (P1)s → (P1)t denote the projection π1(x1, . . . , xs) =
(x1, . . . , xt) and π2 : (P1)s → (P1)t denote the projection π2(x1, . . . , xs) =
(xs−t+1, . . . , xs). Then Proposition 5.5 implies that

d(chn(F) � T2(G))

= (−1)n+m+1

(2π
√
−1)n+m−1n!(m+1)!

∫
(P1)n+m

π∗
1 ch0(trn λF)
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∧ d

 ∑
1≤i≤n

1≤j≤m+1

(−1)i+jπ∗
1Si

n � π∗
2Sj

m+1(G)


= (−1)n+m+1

(2π
√
−1)n+m(n+m+1)!

∫
(P1)n+m

π∗
1 ch0(trn λF)

n+m+1∑
k=1

(−1)k

Sk
n+m+1(π

∗
2T (trm λG), log |t1|2, . . . , log |tn+m|2)

+ (−1)n+m+1

2(2π
√
−1)n+m−1(n−1)!(m+1)!

∫
(P1)n+m−1

π∗
1 ch0(trn−1 λ∂F)

∧
∑

1≤i≤n−1
1≤j≤m+1

(−1)i+jan−1,m+1
i,j π∗

1Si
n−1 ∧ π∗

2Sj
m+1(G)

+ (−1)m+1

2(2π
√
−1)n+mn!m!

∫
(P1)n+m

π∗
1 ch0(trn λF)

∧
∑

1≤i≤n
1≤j≤m

(−1)i+jan,m
i,j π∗

1Si
n ∧ π∗

2

(
∂∂T (trm λG) ∧ Sj

m

)

+ (−1)m+1

2(2π
√
−1)n+m−1n!m!

∫
(P1)n+m−1

π∗
1 ch0(trn λF)

∧
∑

1≤i≤n
1≤j≤m

(−1)i+jan,m
i,j π∗

1Si
n ∧ π∗

2Sj
m(∂G)

+ (−1)m

2(2π
√
−1)n+mn!(m+1)!

∫
(P1)n+m

π∗
1 ch0(trn λF)

∧
∑

1≤i≤n
1≤j≤m+1

(−1)i+jπ∗
1Si

n • π∗
2Sj

m+1(G).

By Proposition 7.6, we have

π∗
1 ch0(trn λF)Sk

n+m+1(π
∗
2T (trm λG), log |t1|2, . . . , log |tn+m|2)

= Sk
n+m+1(π

∗
1 ch0(trn λF) ∧ π∗

2T (trm λG), log |t1|2, . . . , log |tn+m|2)
= Sk

n+m+1(T (trn+m λ(ϕ∗F ⊗ G), log |t1|2, . . . , log |tn+m|2)
= Sk

n+m+1(ϕ
∗F ⊗ G).

Moreover,

dDT2(G) = (−1)m+1

(2π
√
−1)m(m+1)!

∫
(P1)m

m∑
j=1

(−1)j+1(∂Sj
m+1(G) − ∂Sj+1

m+1(G))
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= (−1)m+1

(2π
√
−1)mm!

∫
(P1)m

∂∂T (trm λG) ∧

 m∑
j=1

(−1)jSj
m


+ (−1)m+1

(2π
√
−1)m−1m!

∫
(P1)m−1

m∑
j=1

(−1)jSj
m(∂G).

Hence

dD(chn(F) � T2(G)) = −d(chn(F) � T2(G))

= (−1)n+m

(2π
√
−1)n+m(n+m+1)!

∫
(P1)n+m

n+m+1∑
k=1

(−1)kSk
n+m+1(ϕ

∗F ⊗ G)

+ (−1)n+m

2(2π
√
−1)n+m−1(n−1)!(m+1)!∫

(P1)n+m−1

∑
1≤i≤n−1
1≤j≤m+1

(−1)i+jan−1,m+1
i,j π∗

1(ch0(trn−1 λ∂F)Si
n−1) ∧ π∗

2Sj
m+1(G)

− (−1)m

2(2π
√
−1)nn!

∑
1≤i≤n

1≤j≤m

(−1)i+jan,m
i,j

(∫
(P1)n

ch0(trn λF)Si
n

)

∧
(
− 1

(2π
√
−1)mm!

∫
(P1)m

∂∂T (trm λG)Sj
m − 1

(2π
√
−1)m−1m!

∫
(P1)m−1

Sj
m(∂G)

)
+ (−1)m+1

2(2π
√
−1)n+mn!(m+1)!∫

(P1)n+m

∑
1≤i≤n

1≤j≤m+1

(−1)i+jπ∗
1(ch0(trn λF)Si

n) • π∗
2Sj

m+1(G)

= −T2(ϕ∗F ⊗ G) + chn−1(∂F) � T2(G)

+ (−1)n+1 chn(F) � dDT2(G) + (−1)n chn(F) • T2(G).

Let us consider the case of n = 0 and m > 0. Let (E, ω) be a pair of a
hermitian vector bundle E on Y and ω ∈ D̃1(Y ) and let (g, τ ) be a pair of a
pointed cellular map g : Sm → |Ĝ(ϕ-ac)| and τ ∈ D̃m+1(X). Then we have

ϕ̂(Ω)∗(ϕ̂∗(E, ω) × (g, τ ))

= (ϕ∗(ϕ∗E ⊗ g), ϕ!(ϕ∗ω • (chm(g) + dDτ )) + ϕ!(ϕ∗ ch0(E) • τ )

− T (ϕ∗E ⊗ g)

= (ϕ∗(ϕ∗E ⊗ g), ω • ϕ!(chm(g) + dDτ )) + ch0(E) • (ϕ!τ − T (g)).
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On the other hand, we have

(E, ω) × ϕ̂(Ω)∗(g, τ )

= (E ⊗ ϕ∗g, ch0(E) • (ϕ!τ − T (g)) + ω • chm(ϕ∗g) + ω • (ϕ!τ − T (g))

= (E ⊗ ϕ∗g, ch0(E) • (ϕ!τ − T (g)) + ω • dDϕ!τ + ω • ϕ! chm(g)).

Hence we have

ϕ̂(Ω)∗(ϕ̂∗([(E, ω)]) × [(g, τ )]) = [(E, ω)] × ϕ̂(Ω)∗([(g, τ )]).

In the case of n > 0 and m = 0, we can prove the projection formula for
the pairing K̂n × K̂0 → K̂n in the same way. Hence we have the following
theorem:

Theorem 7.8. Let ϕ : X → Y be a projective smooth morphism of
proper arithmetic varieties. Let hϕ be an F∞-invariant smooth hermitian met-
ric on Tϕ(C) such that (ϕ(C), hϕ) is a Kähler fibration. Then for y ∈ K̂n(Y )
and x ∈ K̂m(X),

ϕ̂(hϕ)∗(ϕ̂∗y × x) = y × ϕ̂(hϕ)∗(x).

Appendix A. Some Identities Satisfied by Binomial Coefficients

Lemma A.1. (1) For 0 ≤ k ≤ i, we have

(n − i)
k−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
+ i

k∑
α=0

(
n+m−i−j

n−α

)(
i+j
α

)
= (n + m)

k−1∑
α=0

(
n+m−i−j

n−1−α

)(
i+j−1

α

)
+ (i − k)

(
n+m−i−j

n−k

)(
i+j−1

k

)
.

In particular, we have

(n − i)
i−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
+ i

i∑
α=0

(
n+m−i−j

n−α

)(
i+j
α

)
= (n + m)

i−1∑
α=0

(
n+m−i−j

n−1−α

)(
i+j−1

α

)
.

(2) For 0 ≤ k ≤ i, we have

(m − j)
i−1∑
α=k

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
+ j

i−1∑
α=k

(
n+m−i−j

n−α

)(
i+j
α

)
= (n + m)

i−1∑
α=k

(
n+m−i−j

n−α

)(
i+j−1

α

)
− (i − k)

(
n+m−i−j

n−k

)(
i+j−1
k−1

)
.
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In particular, we have

(m − j)
i−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
+ j

i−1∑
α=0

(
n+m−i−j

n−α

)(
i+j
α

)
= (n + m)

i−1∑
α=0

(
n+m−i−j

n−α

)(
i+j−1

α

)
.

Proof. We will prove them by induction on k. When k = 0, the claim (1)
is trivial. If the claim (1) holds for k − 1, then

(n − i)
k−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
+ i

k∑
α=0

(
n+m−i−j

n−α

)(
i+j
α

)
= (n + m)

k−2∑
α=0

(
n+m−i−j

n−1−α

)(
i+j−1

α

)
+ (i − k + 1)

(
n+m−i−j

n−k+1

)(
i+j−1
k−1

)
+ (n − i)

(
n+m−i−j+1

n−k+1

)(
i+j−1
k−1

)
+ i
(
n+m−i−j

n−k

)(
i+j
k

)
= (n + m)

k−2∑
α=0

(
n+m−i−j

n−1−α

)(
i+j−1

α

)
+ (n − k + 1)

(
n+m−i−j

n−k+1

)(
i+j−1
k−1

)
+ n
(
n+m−i−j

n−k

)(
i+j−1
k−1

)
+ i
(
n+m−i−j

n−k

)(
i+j−1

k

)
= (n + m)

k−1∑
α=0

(
n+m−i−j

n−1−α

)(
i+j−1

α

)
− (i + j − k)

(
n+m−i−j

n−k

)(
i+j−1
k−1

)
+ i
(
n+m−i−j

n−k

)(
i+j−1

k

)
= (n + m)

k−1∑
α=0

(
n+m−i−j

n−1−α

)(
i+j−1

α

)
+ (i − k)

(
n+m−i−j

n−k

)(
i+j−1

k

)
.

Hence the claim (1) holds for k.
The claim (2) for k = i is trivial. If (2) holds for k + 1, then

(m − j)
i−1∑
α=k

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
+ j

i−1∑
α=k

(
n+m−i−j

n−α

)(
i+j
α

)
= (n + m)

i−1∑
α=k+1

(
n+m−i−j

n−α

)(
i+j−1

α

)
− (i − k − 1)

(
n+m−i−j

n−k−1

)(
i+j−1

k

)
+ (m − j)

(
n+m−i−j+1

n−k

)(
i+j−1

k

)
+ j
(
n+m−i−j

n−k

)(
i+j
k

)
= (n + m)

i−1∑
α=k+1

(
n+m−i−j

n−α

)(
i+j−1

α

)
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+ (m − j − i + k + 1)
(
n+m−i−j

n−k−1

)(
i+j−1

k

)
+ m

(
n+m−i−j

n−k

)(
i+j−1

k

)
+ j
(
n+m−i−j

n−k

)(
i+j−1
k−1

)
= (n + m)

i−1∑
α=k+1

(
n+m−i−j

n−α

)(
i+j−1

α

)
+ (n + m − k)

(
n+m−i−j

n−k

)(
i+j−1

k

)
+ j
(
n+m−i−j

n−k

)(
i+j−1
k−1

)
= (n + m)

i−1∑
α=k

(
n+m−i−j

n−α

)(
i+j−1

α

)
− (i − k)

(
n+m−i−j

n−k

)(
i+j−1
k−1

)
,

hence the claim (2) holds for k.

Lemma A.2. We have

(
n+m+l

n

)−1
n∑

i=0

(
n+m−i−j

n−i

)(
i+j−1

i

) i+j−1∑
α=0

(
n+m+l−i−j−k+1

n+m−α

)(
i+j+k−1

α

)
=

j−1∑
α=0

(
m+l−j−k+1

m−α

)(
j+k−1

α

)
.

Proof. Let Fn denote the left hand side of the above. Then we have

Fn =
(
n+m+l

n

)−1

×
n∑

i=1

((
1 − i − 1

n

)(
n+m−i−j+1

n−i+1

)(
i+j−2

i−1

)i+j−2∑
α=0

(
n+m+l−i−j−k+2

n+m−α

)(
i+j+k−2

α

)
+

i

n

(
n+m−i−j

n−i

)(
i+j−1

i

) i+j−1∑
α=0

(
n+m+l−i−j−k+1

n+m−α

)(
i+j+k−1

α

))

=
1
n

(
n+m+l

n

)−1
n∑

i=1

(
n+m−i−j

n−i

)(
i+j−2

i−1

)
×
(

(n + m − i − j + 1)
i+j−2∑
α=0

(
n+m+l−i−j−k+2

n+m−α

)(
i+j+k−2

α

)
+(i + j − 1)

i+j−1∑
α=0

(
n+m+l−i−j−k+1

n+m−α

)(
i+j+k−1

α

))
.

By Lemma A.1, we have

Fn =
n + m + l

n

(
n+m+l

n

)−1
n∑

i=1

(
n+m−i−j

n−i

)(
i+j−2

i−1

)
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×
i+j−2∑
α=0

(
n+m+l−i−j−k+1

n+m−1−α

)(
i+j+k−1

α

)
=
(
n+m+l−1

n−1

)−1
n−1∑
i=0

(
n+m−i−j−1

n−i−1

)(
i+j−1

i

) i+j−1∑
α=0

(
n+m+l−i−j−k

n+m−1−α

)(
i+j+k

α

)
= Fn−1.

Hence Fn = F0, that is,

Fn =
j−1∑
α=0

(
m+l−j−k+1

m−α

)(
j+k−1

α

)
.

Lemma A.3. If 0 ≤ i ≤ n and 1 ≤ j ≤ m, we have

i∑
α=0

(
n+m−α−j

n−α

)(
α+j−1

α

)
=

i∑
α=0

(
n+m−i−j

n−α

)(
i+j
α

)
.

In particular, we have
n∑

α=0

(
n+m−α−j

n−α

)(
α+j−1

α

)
=

n∑
α=0

(
m−j
n−α

)(
n+j

α

)
=
(
n+m

n

)
.

Proof. We prove the lemma by induction on i. When i = 0, the statement
of the lemma is clear. If the identity holds for i − 1, then

i∑
α=0

(
n+m−α−j

n−α

)(
α+j−1

α

)
=

i−1∑
α=0

(
n+m−i−j+1

n−α

)(
i+j−1

α

)
+
(
n+m−i−j

n−i

)(
i+j−1

i

)
=

i−1∑
α=0

(
n+m−i−j

n−α

)(
i+j−1

α

)
+

i−1∑
α=0

(
n+m−i−j

n−1−α

)(
i+j−1

α

)
+
(
n+m−i−j

n−i

)(
i+j−1

i

)
=

i∑
α=0

(
n+m−i−j

n−α

)(
i+j−1

α

)
+

i∑
α=1

(
n+m−i−j

n−α

)(
i+j−1
α−1

)
=

i∑
α=0

(
n+m−i−j

n−α

)(
i+j
α

)
.
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Basel, 1999.
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