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Positivity of Eta Products
—a Certain Case of K. Saito’s Conjecture

By

Tomoyoshi Ibukiyama
∗

Abstract

We prove that for any prime p, the Fourier coefficients of η(pτ)p/η(τ) are all
non-negative, where η(τ) is the Dedekind eta function. This is a proof of some parts
of K. Saito’s conjecture on such positivity of eta products associated with regular
systems of weight.

§1. Introduction

Let η(τ ) be the Dedekind eta function defined by

η(τ ) = q1/24
∞∏

n=1

(1 − qn)

where q = e2πiτ and τ ∈ C, Im(τ ) > 0. In his theory of extended affine root
systems and other things, K. Saito treated eta products of the form∏

i

η(iτ)e(i)

where e(i) are integers which might be negative, and considered the condition
that the coefficients of the q-expansion of this function are all non-negative.
For example, in his paper [3], he defined a notion of elliptic eta product and
he proved that an eta product of this kind has only non-negative coefficients if
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684 Tomoyoshi Ibukiyama

and only if this is not a cusp form. There are exactly four such eta products.
These cases are examples of his more general conjecture on the positivity of eta
products defined by “regular systems of weight” ([3], [4]). Apparently irrelevant
to this, he also gave a conjecture in his paper [5] that for any natural number
h the eta product

η(hτ )φ(h)∏
d|h η(dτ )µ(d)

has only non-negative Fourier coefficients, where φ(h) is the Euler function and
µ(d) is the Möbius function. He has proved this conjecture for h = 2, 3, 5, 6,
10. When h is a prime p or a product of two different primes p, q, we can see
that the latter conjecture is contained in the former conjecture. (Put h = p,
a = (p − 1)/2, b = c = 1, or h = pq, a = p, b = q, c = 1 in [4]).

The aim of this paper is to prove that this conjecture is true when h is a
power of any prime p.

Main Theorem
(1) For any prime p, all the Fourier coefficients of

η(pτ )p

η(τ )
= q(p2−1)/12

∞∏
n=1

(1 − qpn)p(1 − qn)−1

are non-negative.
(2) For any prime p and any natural number a, all the Fourier coefficients of

η(paτ )pa−pa−1
η(pτ )

η(τ )

are non-negative.

The assertion (2) is an easy corollary of the assertion (1) as we see in
§4. A key point of the proof of (1) is to express this function as a difference
θL1(τ )− θL2(τ ) of theta functions associated with a lattice L1 and a sublattice
L2 ⊂ L1 up to constant. To find such lattices, the theory of cyclotomic fields
is helpful. After giving a useful characterization of our eta products in §2, we
explain lattices in the p-th cyclotomic fields in §3. In §4, using these lattices,
we prove our Main Theorem. As soon as we discover the lattices, we can define
lattices directly in down to earth fashion without theory of cyclotomic fields.
We also explain this in §5. The case where h has at least two distinct prime
factors is not clear at moment and we shall give a short comment at the end of
this paper. The whole nature of the conjecture seems still conceptually unclear.

I would like to thank K. Saito for his clear talk on his conjectures in the
Second Spring Conference on Modular Forms and Related Topics in 2003 at
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Hamana Lake and useful discussions. The content of his talk was published as
[5]. This mathematical exchange gave me a motivation to do the present work.

§2. Preliminaries

For a sake of simplicity, for any prime p we write

fp(τ ) =
η(pτ )p

η(τ )
.

First we give some characterization of fp(τ ). When p = 2 or 3, it is better
to take f2(8τ ) or f3(3τ ) instead. But since these cases are known already by
Saito (cf. [3], [4]) and a correction we need in these cases is almost trivial, we
assume p ≥ 5 from now on. We put

Γ0(p) =

{
γ =

(
a b

c d

)
∈ SL2(Z); c ≡ 0 mod p

}
.

We define a character ψ of Γ0(p) by

ψ(γ) =
(

(−1)(p−1)/2p

d

)

where γ =

(
a b

c d

)
∈ Γ0(p) and the right hand side is the Kronecker symbol

associated with the quadratic field Q(
√

(−1)(p−1)/2p). A holomorphic function
f(τ ) on the upper half plane H is called a modular form of weight k of Γ0(p)
with character ψ if

f(γτ ) = ψ(γ)(cτ + d)kf(τ )

for any γ =

(
a b

c d

)
∈ Γ0(p) and besides if f is bounded at each cusp. We

denote by Ak(Γ0(p), ψ) the space of such modular forms. It is known by K.
Saito (cf. [3] Lemma 1) that when p ≥ 5 we have fp(τ ) ∈ A(p−1)/2(Γ0(p), ψ)
and fp(τ ) does not vanish at the cusp 0. Directly from the definition we see
that the order of zero of fp(τ ) at the cusp i∞ is (p2 − 1)/24. The following
lemma is trivial but crucial.

Lemma 2.1. If a non-zero modular form f(τ ) ∈ A(p−1)/2(Γ0(p), ψ) has
a zero at i∞ at least of order (p2 − 1)/24, then fp(τ ) is a constant multiple of
f(τ ).
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Proof. Since fp(τ ) does not vanish on any point of H and at the cusp 0,
the condition of the order of f(τ ) at i∞ implies that f(τ )/fp(τ ) is a holomorphic
function of the compact Riemann surface Γ0(p)\H. Hence this is a constant.

We note that we cannot prove this kind of theorem by usual Riemann Roch
theorem easily since we cannot conclude H1 = 0 automatically.

We shall use theta functions to describe fp(τ ), so we review the theory of
theta functions of lattices. We take a positive definite quadratic form Q(x) on
a vector space V of dimension n over Q. We define the symmetric bilinear form
B(x, y) associated with Q(x) by B(x, y) = (Q(x + y)−Q(x)−Q(y))/2. Let L

be a lattice of V . When L = Zω1 + · · · + Zωn, we define an n × n symmetric
matrix S by S = (B(ωi, ωj)) and det(S) is called the discriminant of L. When
Q(x) ∈ 2Z for all x ∈ L, we say that L or S is even integral. A lattice L is even
if and only if all the components of S are integral and the diagonal components
are even besides. We define a theta function associated with L or S by

θL(τ ) = θS(τ ) =
∑
x∈L

eπiQ(x)τ =
∑

x∈Zn

eπi (txSx)τ .

We define the dual L∗ of L by

L∗ = {y ∈ V ; B(x, y) ∈ Z for all x ∈ L}.

The level of L is the least natural number N such that
√

NL∗ is even integral.
This is also the least natural number such that NS−1 is even integral. The
following proposition is classically well known (e.g. see [2] p. 63).

Proposition 2.2. If L is a positive definite even integral lattice of level
N of dimension 2k with discriminant det(S), then θL(τ ) ∈ Ak(Γ0(N), χ) where

we put χ(γ) =
(

(−1)k det(S)
d

)
for γ =

(
a b

c d

)
∈ Γ0(N).

It is clear that if L2 ⊂ L1 are lattices in the same vector space V , then
Fourier coefficients of θL1(τ )− θL2(τ ) are all non-negative, since the coefficient
of qn are the number of vectors x ∈ L1\L2 such that Q(x) = 2n. In next
section, we find such pair of lattices to express our fp(τ ).

§3. Cyclotomic Fields

To discover the lattices we want, a general theory of cyclotomic field is
helpful. Let p be a prime such that p ≥ 5 and put ζ = e2πi/p. The cyclotomic
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field V = Q(ζ) is an abelian extension of degree p − 1 over Q. The ring O of
algebraic integers in V is given by O = Z[ζ]. The unique prime ideal of O over
p is given by P = (1 − ζ)O and we have Pp−1 = pO. The discriminant of V

over Q is known to be pp−2, and this implies that TrV/Q(xy) ∈ Z for all y ∈ O

if and only if x ∈ P−p+2, where TrV/Q is the usual trace from V to Q. We
regard V as a (p− 1)-dimensional vector space over Q and denote by Q(x) the
positive definite quadratic form on V defined by

Q(x) =
1
p
TrV/Q(xx)

for any x ∈ V . If we regard O as a lattice in V , then since the usual discriminant
of V is pp−2, the discriminant of O with respect to Q(x) is pp−2/pp−1 = p−1.
Since #(O/Pk) = pk, the discriminant of Pk is p−1(pk)2 = p2k−1. It is easy to
see that the prime ideal P is an even lattice with respect to Q which is nothing
but the root lattice Ap−1 of rank p−1 as shown in [1]. For any natural number
k, we have P ⊃ Pk, so the lattice of the ideal Pk is even. The dual of Pk with
respect to Q(x) is pP−p+2−k = P−k+1 and

√
pP−k+1 is even integral if and only

if (p−1)/2+(1−k) ≥ 1 namely k ≤ (p−1)/2. Hence, if we put L1 = P(p−3)/2

and L2 = P(p−1)/2, then the level of L1 or L2 is p and the discriminant is pp−4

or pp−2. This means that θL1(τ ), θL2(τ ) ∈ A(p−1)/2(Γ0(p), ψ). The Fourier
coefficients of θL1(τ )− θL2(τ ) are of course all non-negative. Now by virtue of
Lemma 2.1, all we should show is that this has zero at i∞ of order (p2−1)/24.

§4. Order of Zero at Infinity

We shall show that for any n < (p2−1)/12 we have {x ∈ L1; Q(x) = 2n} =
{x ∈ L2; Q(x) = 2n}. We take a suitable Z basis of L1 and L2 and write down
the quadratic form Q(x) more explicitly. Since the element 1−ζk is a generator
of P for any integer k with p � k, we have L2 = P(p−1)/2 =

∏(p−1)/2
t=1 (1− ζt)O,

and we can take ωk = ζk
∏(p−1)/2

t=1 (1 − ζt) (1 ≤ k ≤ p − 1) as a Z-basis of L2.
We have

∏(p−1)/2
t=1 (1 − ζt)(1 − ζ−t) = p and

Tr(ζk) =

{
−1 if p � k

p − 1 if p | k.

So B(ωk, ωj) = −1+δkjp where δkj is Kronecker’s delta. For x =
∑p−1

k=1 xkωk ∈
L2 (xk ∈ Z), we see

Q(x) =
p−1∑
k=1

(p − 1)x2
k − 2

∑
1≤j<k≤p−1

xjxk =
p−1∑
k=1

x2
k +

∑
1≤j<k≤p−1

(xk − xj)2.
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It is easily observed that Q(x) ≥ p−1 for all x ∈ L2\{0}, though we do not need
this later. Next, we describe elements in L1. Since L1 =

∏(p−1)/2
t=2 (1 − ζt)O =

(1 − ζ)−1L2 and O/P is represented by a = 0, 1, . . . , p − 1, any element y in
L1 is written as

y = (a + (1 − ζ)x)
(p−1)/2∏

t=2

(1 − ζt)

where a ∈ Z and x =
∑p−1

k=1 xkζk ∈ O with xk ∈ Z. Since

1
1 − ζ

= −1
p

p−1∑
k=1

kζk

we have

y =

(
p−1∑
k=1

(xk − ak

p
)ζk

)
(p−1)/2∏

t=1

(1 − ζt).

This implies that

Q(y) =
p−1∑
k=1

(
xk − ak

p

)2

+
∑

1≤j<k≤p−1

(
xk − ak

p
− xj +

aj

p

)2

.

For a ∈ Z and x ∈ O, we have a + (1− ζ)x ∈ P if and only if a ∈ pZ. Hence if
y ∈ L1 and y /∈ L2, we see a 	≡ 0 mod p. In other words, if y ∈ L1 and y /∈ L2,
then by taking yk = pxk − ak, we see that there are yk ∈ Z with 1 ≤ k ≤ p− 1
which satisfy the following two conditions (1) and (2).
(1) {y1, . . . , yp−1} is a complete set of representatives of non-zero elements of
Z/pZ.
(2) We have

p2Q(y) =
p−1∑
k=1

y2
k +

∑
1≤j<k≤p−1

(yk − yj)2.

The following lemma is a key to our result.

Lemma 4.1. For any integers yk (1 ≤ k ≤ p − 1), put

P (y) =
p−1∑
k=1

y2
k +

∑
1≤j<k≤p−1

(yj − yk)2.

If p � yk for any k and yj 	≡ yk mod p for any j 	= k, then we have

P (y) ≥ p2(p2 − 1)
12

.
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Proof. To prove this in a smart way, we consider the quadratic form Q∗

of p variables zk (1 ≤ k ≤ p) defined by

Q∗(z1, . . . , zp−1, zp) =
∑

1≤j<k≤p

(zk − zj)2.

We assume that zk (1 ≤ k ≤ p) are integers and that {z1, . . . , zp} is a complete
set of representatives of Z/pZ. Renumbering if necessary, we may assume that
z1 ≤ · · · ≤ zp. Since zj 	= zk for any k 	= j, we have zk + 1 ≤ zk+1 for
1 ≤ k ≤ p − 1 and hence for j < k we have 0 < k − j ≤ zk − zj . This implies

Q∗(z1, . . . , zp)≥
∑

1≤j<k≤p

(k − j)2

=
1
2

p∑
j,k=1

(k2 + j2 − 2kj)

=
p2(p + 1)(2p + 1)

6
−

(
p(p + 1)

2

)2

=
p2(p2 − 1)

12
.

Now, let yk be as in the lemma. Then {y1, . . . , yp−1, 0} is a complete set of
representatives of Z/pZ and

P (y) = Q∗(y1, . . . , yp−1, 0) ≥ p2(p2 − 1)
12

.

Thus we prove the lemma. By the way, in the above proof, we did not use the
assumption that p is a prime.

By this lemma, we see that

fp(τ ) =
1

p(p − 1)
(θL1(τ ) − θL2(τ ))

which has only non-negative Fourier coefficients. So we prove (1) of our main
theorem. (The coefficient 1/p(p− 1) comes from p− 1 numbers of a 	≡ 0 mod p

and the p numbers of choice of a continuous sequence of p numbers including
0.)

Now we show (2) of Main Theorem. Namely we show that for any natural
number a, the modular form

η(paτ )φ(pa)η(pτ )
η(τ )

=
η(paτ )pa−pa−1

η(pτ )
η(τ )
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has only non-negative Fourier coefficients. We prove this by induction on a. If
a = 1 then the above modular form is η(pτ )p/η(τ ), so the claim was already
proved. We assume a ≥ 2 and suppose that the claim is true for a − 1. The
above modular form is equal to

(
η(paτ )p

η(pa−1τ )

)φ(pa−1)

× η(pa−1τ )φ(pa−1)η(pτ )
η(τ )

.

Here η(paτ )p/η(pa−1τ ) = fp(pa−1τ ) has of course only non-negative Fourier
coefficients. So does the second function by inductive assumption. Hence in-
ductively we see that the Fourier coefficients are non-negative.

§5. Direct Approach

It would be more convincing if we give lattices more directly. We explain
this in this section. We assume that p is any natural number with p ≥ 2
not necessarily a prime. We consider the following quadratic form P (x) of
x = (x1, . . . , xp−1) ∈ Qp−1.

P (x) =
p−1∑
k=1

x2
k +

∑
1≤j<k≤p−1

(xk − xj)2.

We consider two lattices M1 and M2 defined by

M1 = the lattice generated by p−1(1, 2, . . . , p − 1) ∈ Qp−1

and ei with 2 ≤ i ≤ p − 1,

M2 = Zp−1,

where ei is the vector in Qp−1 such that the i-th component is one and the
other components are zero. Then the (p − 1) × (p − 1) symmetric matrix S2

associated with M2 with respect to P is given by

S2 =




p − 1 −1 −1 · · · −1
−1 p − 1 −1 . . . −1
... −1

. . .
...

...
...

...
...

. . .
...

−1 −1 . . . . . . p − 1




.
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Then it is obvious that the symmetric matrix S1 associated with M1 is given
by RS2

tR where we put

R =




p−1 2p−1 3p−1 · · · (p − 1)p−1

0 1 0 · · · 0
... 0 1 · · ·

...
...

...
...

. . .
...

0 0 0 · · · 1




.

Since

S1 = RS2
tR =




(p2 − 1)/12 2 − (p − 1)/2 3 − (p − 1)/2 . . . (p − 1)/2
2 − (p − 1)/2 p − 1 −1 . . . −1
3 − (p − 1)/2 −1 p − 1 . . . −1

...
...

...
. . .

...
(p − 1)/2 −1 . . . . . . p − 1




we see that S1 is also even integral if p2 ≡ 1 mod 24, namely if p is odd and
3 � p. We see directly that

pS−1
2 =




2 1 1 . . . 1
1 2 1 . . . 1
1 1 2 . . . 1
...

...
...

. . .
...

1 1 1 . . . 2




Hence S2 is of level p. By calculating pS−1
1 = tR−1(pS−1

2 )R−1 we see that
the level of S1 is also p. Besides, we have det(S2) = pp−2 and det(S1) = pp−4.
Indeed we can prove it by induction on p. We write S2 = S2(p) to make its
dependence on p clearer. We have det S2(2) = 1 so the claim is true for p = 2.
Assume that detS2(p − 1) = (p − 1)p−3. If we put

T =

(
1 0

(p − 1)−1b 1p−2

)

where b = t(1, 1, . . . , 1) ∈ Zp−2, then we have

TS2(p) tT =

(
p − 1 0

0 p
p−1S2(p − 1)

)
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Hence det(S2(p)) = (p − 1) × pp−2(p − 1)−p+2 det(S2(p − 1)) = pp−2. Since
det(R) = p−1 we get det(S1) = pp−4. As a conclusion, M1 and M2 are pos-
itive definite even integral lattices of level p having odd power of p as their
discriminants if p2 ≡ 1 mod 24. So the result in the last section is now written
as

η(pτ )p

η(τ )
=

1
p(p − 1)

(θS2(τ ) − θS1(τ ))

for any prime p ≥ 5.
Since Lemma 4.1 is valid for any natural number p, we get the following

non trivial claim by the same argument. Let N be a positive odd number such
that N2 ≡ 1 mod 24 (namely 3 � N), and ψ be a character of Γ0(N) defined by
ψ(γ) =

(
(−1)(N−1)/2N

d

)
. Then there is a modular form f ∈ A(N−1)/2(Γ0(N), ψ)

such that all the Fourier coefficients of the q-expansion of f at i∞ is non-
negative and the order of zero of f at i∞ is at least (N2 − 1)/24.

§6. Concluding Remarks

K. Saito’s general conjecture claims that for a positive integer h ≥ 2, the
eta product

η(hτ )φ(h)∏
d|h η(dτ )µ(d)

has only non-negative Fourier coefficients.
When h is a prime or a power of prime, we have already proved this

conjecture. The simplest case where h has two distinct prime factors is the
case h = 6 which has already been proved by K. Saito by using Euler factors.
We can give an alternative proof for this case by using lattices as follows.
Consider the quadratic form on Q2 defined by 2(x2 + y2). Define four lattices
by

L1 = {(x, y) ∈ Z2; x + y ≡ 0 mod 3}
L2 = {(x, y) ∈ L1; x ≡ y ≡ 0 mod 3}
L3 = {(x, y) ∈ L1; x + y ≡ 0 mod 2}
L4 = L2 ∩ L3.

Then we have

4 × η(72τ )η(36τ )η(24τ )
η(12τ )

= θL1(τ ) − θL2(τ ) − θL3(τ ) + θL4(τ ).

The positivity is proved easily since the coefficient of qn of the right hand side
appears as the number of vectors x ∈ L1 not in L2 ∪ L3 of length 2n. This
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is essentially the same description by the root lattice G2 given by V. Kac (cf.
[5]). We do not know at moment if we can expect the same kind of expression
for more general case.
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Birkhäuser Verlag, Basel, Stuttgart, 1963.

[3] Saito, K., Extended affine root systems V. Elliptic eta-products and their Dirichlet
series, Proceedings on Moonshine and related topics (Montréal, QC, 1999), 185-222,
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