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Weak Solution of a Singular Semilinear
Elliptic Equation in a Bounded Domain

By

Robert DALMASSO*

Abstract

We study the singular semilinear elliptic equation Au + f(.,u) = 0 in D'(Q),
where Q C R™ (n > 1) is a bounded domain of class C*'. f: Q x (0,00) — [0,00) is
such that f(.,u) € L*(Q) for u > 0 and v — f(x,u) is continuous and nonincreasing
for a.e. x in 2. We assume that there exists a subset Q' C ) with positive measure
such that f(z,u) > 0 for z € Q" and u > 0 and that [, f(z, cd(z,dQ))dx < oo for
all ¢ > 0. Then we show that there exists a unique solution u in Wy"'(2) such that
Au € LYQ), u >0 a.e. in Q.

81. Introduction

Let Q be a sufficiently smooth (e.g. of class C*!) bounded domain in R™
(n >1). We consider the singular boundary value problem

(1.1) Au+ f(,u)=0 in D'(Q),
(1.2) ue Wy (Q), f(,u() e LY(Q),

where f satisfies the following conditions:

(H1) f:Q x (0,00) — [0,00). For all u > 0, z — f(x,u) is in L*(Q), and
u — f(x,u) is continuous and nonincreasing for a.e. = in Q;

(H2) There exists ' C Q with positive measure such that f(z,u) > 0 for
z € Q and u > 0;
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(H3) For all ¢ > 0

/f(x,cd(xﬁﬂ))dx < +00.
Q

This kind of singularity has been considered by several authors, particu-
larly the case where

fl@,u) = ple)u?,

A>0[4,5,6,9,10, 11, and their references].
Lazer and McKenna [10] for instance established the existence and unique-
ness of a positive u € C%(Q) N C(Q) satisfying

Au+p(x)ur=0 inQ,
(1.4) u=0 on 00,

when p is Hélder-continuous and strictly positive in €.

Del Pino [6] proved that if p is a bounded, nonnegative measurable function
which is positive on a set of positive measure, then (1.3)—(1.4) has a unique
positive weak solution in the sense that u € CH*(Q) N C(Q) satisfies (1.4),

w>01in 2 and
/ VuVe = / pu
Q Q
for all ¢ € C(9).

Lair and Shaker [9] considered the case

f(z,u) = p(x)g(u),

under the following assumptions:
(A0) p € L?() is nontrivial and nonnegative;
(A1) ¢'(s) < 0;
(A2) g(s) > 0if s > 0;
(A3) [; g(s)ds < oo for some € > 0.

They established the existence of a unique weak solution in the sense that
u € H}(Q) satisfies

/Q(Vqu —p(x)g(u)v)de =0 Vv e H(Q).

Notice that, when g(u) = u~*, conditions (A1) and (A3) imply that 0 <
A<l
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Finally Maagli and Zribi [11] treated the general case f(x,u). However
their assumptions are different from ours and they lead them to the existence
of a weak solution in C(€).

Our purpose is to give a general existence and uniqueness result under
sufficiently weak conditions. We shall prove the following theorem.

Theorem 1. Let Q C R™ (n > 1) be a bounded domain of class C*!
and let f: Q x (0,00) — [0,00) satisfy (H1)-(H3). Then problem (1.1)—(1.2)

has a unique solution.

§2. Proof of Theorem 1

1) Uniqueness of the solution. We shall need the following lemma ([7,
Lemma 3]).

Lemma 1. Letp € CY(R,R) N L>®(R) be a nondecreasing function sat-
isfying p(0) = 0. For u € Wy''(Q) such that Au € L(Q) we have

/Au.p(u) <0.

Let w1, uz be two solutions of problem (1.1)-(1.2). Let u = u3 — us. By
(H1) we have uAu > 0 a.e. in Q. Now let p € C1(R) N L>°(R) be a strictly
increasing function satisfying p(0) = 0. Then p(u)Au > 0 a.e. in Q. Using
Lemma 1 we deduce that p(u)Au = 0 a.e. in  and therefore Au =0 a.e. in
Q. Since u € Wé’l(Q), this implies that u = 0 a.e. in Q.

2) Euistence of a solution. We first recall the following result ([1, Lemme 2.8]).

Lemma 2. Letu € Wy (Q) be such that Au > 0 in D'(). Thenu < 0
a.e. in Q.

In the sequel N* denotes the set of positive integers.

Lemma 3. Let j € N*. There exists a unique u; € Wy (Q) such that
flou; + %) € LY(Q), u; >0 a.e. in Q and Auj + f(.,u; + 1) =0 in D'(Q).

J

Proof. Define

ﬁj(x,u):f<$7l,> —f(m,u+l> , TEQ, u>0.

J J
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and
Bj(z,u) =0, ze€Q,u<0.

Then we have:
- For all u € R, z — B;(z,u) is in L' (2);
- R> u— Bj(z,u) is continuous and nondecreasing for a.e. z in Q;
- Bi(x,0) =0 for a.e. z in Q.

Since f(., %) € L'(Q) Theorem 3 in [7] implies the existence of a unique

uj € Wy (Q) satisfying 3;(.,u;) € L*() and
—AUJ‘ + ﬂj(., Uj) =f (., 1) in D/(Q) .
J

Since Au; <0 in D’(2), Lemma 2 implies that u; > 0 a.e. in Q. Therefore we
have f(.,u; + %) € L'(Q) and

Au]‘ + f <.,Uj + 1> =0 in D/(Q),
J
and the lemma is proved.

Lemma 4.  For every j € N* there exists a; > 0 such that

uj(x) > a;d(z,00), fora.e x €.

Proof. Fore > 0weset Q. = {z €Q; d(z,00) > e}. Clearly (H2) implies
that, for every j € N*, there exist ¢; > 0 and M; > 0 such that the function
f; defined by

(e = min (1 (us(e) 1) 35 ) 10, (), w0,

satisfies fj # 0. Let v; be the solution of the following boundary value problem
Avj + fj =0 in Q,
v;=0 on O09Q.
It is well-known (see [8]) that, for 1 < p < oo, v; € CH(Q) N W2P(2). We
have A(u; —v;) < 0 in D’'(€2), hence by Lemma 2 u; > v; a.e. in 2. Now the
boundary point version of the Strong Maximum Principle for weak solutions

([12], Theorem 2) implies that there exists a; > 0 such that v;(z) > a;d(z, 0Q)
for x € 1 and the lemma follows. O
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Lemma 5.  For every j € N* we have u; + Jl > Ujp1 + ]% a.e. in ).

Proof. Letu = (uj+1+j%)—(uj+%). Using a variant of Kato’s inequality
(see [3] Lemma Al in the Appendix) we deduce that

Aut >0 inD/(Q).

ut € WH(Q) (see [1, Lemme 2.7]). Therefore Lemma 2 implies that u < 0
a.e. in  and the lemma is proved. d

Lemma 6.  For every j € N* we have u; < ujpq a.e. in 2.

Proof. Using (H1) and Lemma 5 we get
A(Uj_;,_l — ’LLj) = f (.,Uj + 1) - f ('auj-‘rl + 1) < 0 a.e.in Q,
J J+1
and we conclude with the help of Lemma 2. O
Now we define
cj = / f (a:,uj(x)—i— E) dx, jeN-.
Q J
Using Lemma 4 and Lemma 6 we can write
¢; < / flz,a1d(z,00Q))dx, VjeN*.
Q
Therefore

(3.1) sup ¢; < 00.
JEN*

Now we can prove the existence. By (H1) and Lemma 5 j — f(.,u; + jl)

is nondecreasing. (3.1) and the Beppo Levi theorem for monotonic sequences
imply that there exists g € L!(Q) such that

f(.,uj—kl_) —g inLY(Q) asj— co.
J

We have the following estimate [2, Theorem 8]: for 1 < ¢ < N/(N — 1) there
exists My > 0 such that

llujllwra@)y < Mgl|Aujl|piq) VJj € N-.
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Therefore there exists u € W' () such that u; — u in W' (). By Lemma 6
and the Fischer-Riesz theorem u; — u a.e. in 2. Lemma 4 and Lemma 6 imply
that w > 0 a.e. in Q. Clearly we have g = f(.,u) and Au—+ f(.,u) = 0in D'(Q).
The proof is complete.

(10]
(11]

(12]
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