Weak Solution of a Singular Semilinear Elliptic Equation in a Bounded Domain

By

Robert DALMASSO*

Abstract

We study the singular semilinear elliptic equation $\Delta u + f(., u) = 0$ in $\mathcal{D}'(\Omega)$, where $\Omega \subset \mathbb{R}^n$ $(n \ge 1)$ is a bounded domain of class $C^{1,1}$. $f: \Omega \times (0, \infty) \to [0, \infty)$ is such that $f(., u) \in L^1(\Omega)$ for u > 0 and $u \to f(x, u)$ is continuous and nonincreasing for a.e. x in Ω . We assume that there exists a subset $\Omega' \subset \Omega$ with positive measure such that f(x, u) > 0 for $x \in \Omega'$ and u > 0 and that $\int_{\Omega} f(x, cd(x, \partial\Omega)) dx < \infty$ for all c > 0. Then we show that there exists a unique solution u in $W_0^{1,1}(\Omega)$ such that $\Delta u \in L^1(\Omega), u > 0$ a.e. in Ω .

§1. Introduction

Let Ω be a sufficiently smooth (e.g. of class $C^{1,1}$) bounded domain in \mathbb{R}^n $(n \geq 1)$. We consider the singular boundary value problem

(1.1)
$$\Delta u + f(., u) = 0 \quad \text{in} \quad \mathcal{D}'(\Omega).$$

(1.2)
$$u \in W_0^{1,1}(\Omega), f(.,u(.)) \in L^1(\Omega),$$

where f satisfies the following conditions:

(H1) $f: \Omega \times (0, \infty) \to [0, \infty)$. For all $u > 0, x \to f(x, u)$ is in $L^1(\Omega)$, and $u \to f(x, u)$ is continuous and nonincreasing for a.e. x in Ω ;

(H2) There exists $\Omega' \subset \Omega$ with positive measure such that f(x, u) > 0 for $x \in \Omega'$ and u > 0;

Communicated by H. Okamoto. Received July 12, 2004.

²⁰⁰⁰ Mathematics Subject Classification(s): 35J25, 35J60.

^{*}Laboratoire LMC-IMAG, Equipe EDP, Tour IRMA, BP 53, F-38041 Grenoble Cedex 9, France.

e-mail: Robert.Dalmasso@imag.fr

^{© 2005} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

(H3) For all c > 0

$$\int_{\Omega} f(x, cd(x, \partial \Omega)) \, dx \, < \, +\infty \, .$$

This kind of singularity has been considered by several authors, particularly the case where

$$f(x,u) = p(x)u^{-\lambda},$$

 $\lambda > 0$ [4, 5, 6, 9, 10, 11, and their references].

Lazer and McKenna [10] for instance established the existence and uniqueness of a positive $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfying

(1.3)
$$\Delta u + p(x)u^{-\lambda} = 0 \quad \text{in } \Omega,$$

(1.4)
$$u = 0 \quad \text{on } \partial\Omega$$
,

when p is Hölder-continuous and strictly positive in $\overline{\Omega}$.

Del Pino [6] proved that if p is a bounded, nonnegative measurable function which is positive on a set of positive measure, then (1.3)-(1.4) has a unique positive weak solution in the sense that $u \in C^{1,\alpha}(\Omega) \cap C(\overline{\Omega})$ satisfies (1.4), u > 0 in Ω and

$$\int_{\Omega} \nabla u \nabla \varphi = \int_{\Omega} p u^{-\lambda} \varphi$$

for all $\varphi \in C_c^{\infty}(\Omega)$.

Lair and Shaker [9] considered the case

$$f(x,u) = p(x)g(u) \,,$$

under the following assumptions:

(A0) $p \in L^2(\Omega)$ is nontrivial and nonnegative;

(A1) $g'(s) \le 0;$

(A2)
$$g(s) > 0$$
 if $s > 0$;

(A3) $\int_0^{\varepsilon} g(s) \, ds < \infty$ for some $\varepsilon > 0$.

They established the existence of a unique weak solution in the sense that $u \in H_0^1(\Omega)$ satisfies

$$\int_{\Omega} (\nabla u \nabla v - p(x)g(u)v) \, dx = 0 \quad \forall \ v \in H_0^1(\Omega) \, .$$

Notice that, when $g(u) = u^{-\lambda}$, conditions (A1) and (A3) imply that $0 \le \lambda < 1$.

794

Finally Mâagli and Zribi [11] treated the general case f(x, u). However their assumptions are different from ours and they lead them to the existence of a weak solution in $C(\overline{\Omega})$.

Our purpose is to give a general existence and uniqueness result under sufficiently weak conditions. We shall prove the following theorem.

Theorem 1. Let $\Omega \subset \mathbb{R}^n$ $(n \geq 1)$ be a bounded domain of class $C^{1,1}$ and let $f : \Omega \times (0, \infty) \to [0, \infty)$ satisfy (H1)–(H3). Then problem (1.1)–(1.2) has a unique solution.

§2. Proof of Theorem 1

1) Uniqueness of the solution. We shall need the following lemma ([7, Lemma 3]).

Lemma 1. Let $p \in C^1(\mathbb{R}, \mathbb{R}) \cap L^{\infty}(\mathbb{R})$ be a nondecreasing function satisfying p(0) = 0. For $u \in W_0^{1,1}(\Omega)$ such that $\Delta u \in L^1(\Omega)$ we have

$$\int \Delta u.p(u) \, \le 0 \, .$$

Let u_1 , u_2 be two solutions of problem (1.1)–(1.2). Let $u = u_1 - u_2$. By (H1) we have $u\Delta u \ge 0$ a.e. in Ω . Now let $p \in C^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ be a strictly increasing function satisfying p(0) = 0. Then $p(u)\Delta u \ge 0$ a.e. in Ω . Using Lemma 1 we deduce that $p(u)\Delta u = 0$ a.e. in Ω and therefore $\Delta u = 0$ a.e. in Ω . Since $u \in W_0^{1,1}(\Omega)$, this implies that u = 0 a.e. in Ω .

2) Existence of a solution. We first recall the following result ([1, Lemme 2.8]).

Lemma 2. Let $u \in W_0^{1,1}(\Omega)$ be such that $\Delta u \ge 0$ in $\mathcal{D}'(\Omega)$. Then $u \le 0$ a.e. in Ω .

In the sequel \mathbb{N}^* denotes the set of positive integers.

Lemma 3. Let $j \in \mathbb{N}^*$. There exists a unique $u_j \in W_0^{1,1}(\Omega)$ such that $f(., u_j + \frac{1}{j}) \in L^1(\Omega), u_j \geq 0$ a.e. in Ω and $\Delta u_j + f(., u_j + \frac{1}{j}) = 0$ in $\mathcal{D}'(\Omega)$.

Proof. Define

$$\beta_j(x,u) = f\left(x,\frac{1}{j}\right) - f\left(x,u+\frac{1}{j}\right), \quad x \in \Omega, \ u \ge 0.$$

and

$$\beta_j(x,u) = 0, \quad x \in \Omega, \ u \le 0$$

Then we have:

- For all $u \in \mathbb{R}$, $x \to \beta_j(x, u)$ is in $L^1(\Omega)$;
- $\mathbb{R} \ni u \to \beta_j(x, u)$ is continuous and nondecreasing for a.e. x in Ω ;
- $\beta_j(x,0) = 0$ for a.e. x in Ω .

Since $f(., \frac{1}{j}) \in L^1(\Omega)$ Theorem 3 in [7] implies the existence of a unique $u_j \in W_0^{1,1}(\Omega)$ satisfying $\beta_j(., u_j) \in L^1(\Omega)$ and

$$-\Delta u_j + \beta_j(., u_j) = f\left(., \frac{1}{j}\right)$$
 in $\mathcal{D}'(\Omega)$

Since $\Delta u_j \leq 0$ in $\mathcal{D}'(\Omega)$, Lemma 2 implies that $u_j \geq 0$ a.e. in Ω . Therefore we have $f(., u_j + \frac{1}{i}) \in L^1(\Omega)$ and

$$\Delta u_j + f\left(., u_j + \frac{1}{j}\right) = 0 \text{ in } \mathcal{D}'(\Omega),$$

and the lemma is proved.

Lemma 4. For every
$$j \in \mathbb{N}^*$$
 there exists $a_j > 0$ such that
 $u_j(x) \ge a_j d(x, \partial \Omega)$, for a.e. $x \in \Omega$.

Proof. For $\varepsilon > 0$ we set $\Omega_{\varepsilon} = \{x \in \Omega; d(x, \partial \Omega) > \varepsilon\}$. Clearly (H2) implies that, for every $j \in \mathbb{N}^*$, there exist $\varepsilon_j > 0$ and $M_j > 0$ such that the function \tilde{f}_j defined by

$$\widetilde{f}_j(x) = \min\left(f\left(x, u_j(x) + \frac{1}{j}\right), M_j\right) \mathbf{1}_{\Omega_{\varepsilon_j}}(x), \quad x \in \Omega,$$

satisfies $\tilde{f}_j \neq 0$. Let v_j be the solution of the following boundary value problem

$$\Delta v_j + \tilde{f}_j = 0 \quad \text{in} \quad \Omega ,$$
$$v_j = 0 \quad \text{on} \quad \partial \Omega .$$

It is well-known (see [8]) that, for $1 , <math>v_j \in C^1(\overline{\Omega}) \cap W^{2,p}(\Omega)$. We have $\Delta(u_j - v_j) \leq 0$ in $\mathcal{D}'(\Omega)$, hence by Lemma 2 $u_j \geq v_j$ a.e. in Ω . Now the boundary point version of the Strong Maximum Principle for weak solutions ([12], Theorem 2) implies that there exists $a_j > 0$ such that $v_j(x) \geq a_j d(x, \partial\Omega)$ for $x \in \Omega$ and the lemma follows.

796

Lemma 5. For every $j \in \mathbb{N}^*$ we have $u_j + \frac{1}{j} \ge u_{j+1} + \frac{1}{j+1}$ a.e. in Ω .

Proof. Let $u = (u_{j+1} + \frac{1}{j+1}) - (u_j + \frac{1}{j})$. Using a variant of Kato's inequality (see [3] Lemma A1 in the Appendix) we deduce that

$$\Delta u^+ \ge 0$$
 in $\mathcal{D}'(\Omega)$.

 $u^+ \in W_0^{1,1}(\Omega)$ (see [1, Lemme 2.7]). Therefore Lemma 2 implies that $u \leq 0$ a.e. in Ω and the lemma is proved.

Lemma 6. For every $j \in \mathbb{N}^*$ we have $u_j \leq u_{j+1}$ a.e. in Ω .

Proof. Using (H1) and Lemma 5 we get

$$\Delta(u_{j+1} - u_j) = f\left(., u_j + \frac{1}{j}\right) - f\left(., u_{j+1} + \frac{1}{j+1}\right) \le 0 \quad \text{a.e. in } \Omega,$$

and we conclude with the help of Lemma 2.

Now we define

$$c_j = \int_{\Omega} f\left(x, u_j(x) + \frac{1}{j}\right) dx, \quad j \in \mathbb{N}^{\star}.$$

Using Lemma 4 and Lemma 6 we can write

$$c_j \leq \int_{\Omega} f(x, a_1 d(x, \partial \Omega)) \, dx \,, \quad \forall \ j \in \mathbb{N}^{\star}.$$

Therefore

(3.1)
$$\sup_{j\in\mathbb{N}^{\star}}c_{j}<\infty.$$

Now we can prove the existence. By (H1) and Lemma 5 $j \to f(., u_j + \frac{1}{j})$ is nondecreasing. (3.1) and the Beppo Levi theorem for monotonic sequences imply that there exists $g \in L^1(\Omega)$ such that

$$f\left(., u_j + \frac{1}{j}\right) \to g \text{ in } L^1(\Omega) \text{ as } j \to \infty.$$

We have the following estimate [2, Theorem 8]: for $1 \le q < N/(N-1)$ there exists $M_q > 0$ such that

$$||u_j||_{W^{1,q}(\Omega)} \leq M_q ||\Delta u_j||_{L^1(\Omega)} \quad \forall \ j \in \mathbb{N}^\star.$$

Therefore there exists $u \in W_0^{1,1}(\Omega)$ such that $u_j \to u$ in $W_0^{1,1}(\Omega)$. By Lemma 6 and the Fischer-Riesz theorem $u_j \to u$ a.e. in Ω . Lemma 4 and Lemma 6 imply that u > 0 a.e. in Ω . Clearly we have g = f(., u) and $\Delta u + f(., u) = 0$ in $\mathcal{D}'(\Omega)$. The proof is complete.

References

- Benilan, P. and Boulaamayel, B., Sous solutions d'équations elliptiques dans L¹, Potential Analysis, 10 (1999), 215-241.
- [2] Brezis, H. and Strauss, W. A., Semilinear second order elliptic equations in L¹, J. Math. Soc. Japan, 25 (1973), 565-590.
- [3] Brezis, H., Semilinear equations in \mathbb{R}^N without condition at infinity, *Appl. Math. Optim.*, **12** (1984), 271-282.
- [4] Crandall, M. G., Rabinowitz, P. H. and Tartar, L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193-222.
- [5] Dalmasso, R., On singular nonlinear elliptic problems of second and fourth orders, Bull. Sc. Math., 116 (1992), 95-110.
- [6] del Pino, M. A., A global estimate for the gradient in a singular elliptic boundary value problem, Proc. R. Soc. Edinburgh Sect. A, 122 (1992), 341-352.
- [7] Gallouet, Th. and Morel, J. M., Resolution of a semilinear equation in L¹, Proc. R. Soc. Edinburgh Sect. A, 96 (1984), 275-288.
- [8] Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order, 2nd edn, Springer, Berlin, 1983.
- [9] Lair, A. V. and Shaker, A. W., Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl., 211 (1997), 371-385.
- [10] Lazer, A. C. and McKenna, P. J., On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730.
- [11] Mâagli, H. and Zribi, M., Existence and estimates of solutions for singular nonlinear elliptic problems. J. Math. Anal. Appl., 263 (2001), 522-542.
- [12] Vázquez, J. L., A strong maximum principle for some quasilinear elliptic equations, *Appl. Math. Optim.*, **12** (1984), 191-202.