Weak Solution of a Singular Semilinear Elliptic Equation in a Bounded Domain

By

Robert Dalmasso[∗]

Abstract

We study the singular semilinear elliptic equation $\Delta u + f(., u) = 0$ in $\mathcal{D}'(\Omega)$, where $\Omega \subset \mathbb{R}^n$ $(n \geq 1)$ is a bounded domain of class $C^{1,1}$. $f : \Omega \times (0,\infty) \to [0,\infty)$ is such that $f(., u) \in L^1(\Omega)$ for $u > 0$ and $u \to f(x, u)$ is continuous and nonincreasing for a.e. x in Ω . We assume that there exists a subset $\Omega' \subset \Omega$ with positive measure such that $f(x, u) > 0$ for $x \in \Omega'$ and $u > 0$ and that $\int_{\Omega} f(x, cd(x, \partial \Omega)) dx < \infty$ for all $c > 0$. Then we show that there exists a unique solution u in $W_0^{1,1}(\Omega)$ such that $\Delta u \in L^1(\Omega)$, $u > 0$ a.e. in Ω .

*§***1. Introduction**

Let Ω be a sufficiently smooth (e.g. of class $C^{1,1}$) bounded domain in \mathbb{R}^n $(n \geq 1)$. We consider the singular boundary value problem

(1.1)
$$
\Delta u + f(.,u) = 0 \text{ in } \mathcal{D}'(\Omega),
$$

(1.2)
$$
u \in W_0^{1,1}(\Omega), f(.,u(.)) \in L^1(\Omega),
$$

where f satisfies the following conditions:

(H1) $f : \Omega \times (0, \infty) \to [0, \infty)$. For all $u > 0$, $x \to f(x, u)$ is in $L^1(\Omega)$, and $u \to f(x, u)$ is continuous and nonincreasing for a.e. x in Ω ;

(H2) There exists $\Omega' \subset \Omega$ with positive measure such that $f(x, u) > 0$ for $x \in \Omega'$ and $u > 0$;

c 2005 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Communicated by H. Okamoto. Received July 12, 2004.

²⁰⁰⁰ Mathematics Subject Classification(s): 35J25, 35J60.

[∗]Laboratoire LMC-IMAG, Equipe EDP, Tour IRMA, BP 53, F-38041 Grenoble Cedex 9, France.

e-mail: Robert.Dalmasso@imag.fr

(H3) For all $c > 0$

$$
\int_{\Omega} f(x, cd(x, \partial \Omega)) dx < +\infty.
$$

This kind of singularity has been considered by several authors, particularly the case where

$$
f(x, u) = p(x)u^{-\lambda},
$$

 $\lambda > 0$ [4, 5, 6, 9, 10, 11, and their references].

Lazer and McKenna [10] for instance established the existence and uniqueness of a positive $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfying

(1.3)
$$
\Delta u + p(x)u^{-\lambda} = 0 \text{ in } \Omega,
$$

$$
(1.4) \t\t u = 0 \t on \t \partial\Omega,
$$

when p is Hölder-continuous and strictly positive in $\overline{\Omega}$.

Del Pino $[6]$ proved that if p is a bounded, nonnegative measurable function which is positive on a set of positive measure, then (1.3) – (1.4) has a unique positive weak solution in the sense that $u \in C^{1,\alpha}(\Omega) \cap C(\overline{\Omega})$ satisfies (1.4), $u > 0$ in Ω and

$$
\int_{\Omega} \nabla u \nabla \varphi = \int_{\Omega} p u^{-\lambda} \varphi
$$

for all $\varphi \in C_c^{\infty}(\Omega)$.

Lair and Shaker [9] considered the case

$$
f(x, u) = p(x)g(u) ,
$$

under the following assumptions:

(A0) $p \in L^2(\Omega)$ is nontrivial and nonnegative;

 $(A1)$ $g'(s) \leq 0;$

(A2)
$$
g(s) > 0
$$
 if $s > 0$;

(A3) $\int_0^{\varepsilon} g(s) ds < \infty$ for some $\varepsilon > 0$.

They established the existence of a unique weak solution in the sense that $u \in H_0^1(\Omega)$ satisfies

$$
\int_{\Omega} (\nabla u \nabla v - p(x)g(u)v) dx = 0 \quad \forall \ v \in H_0^1(\Omega).
$$

Notice that, when $g(u) = u^{-\lambda}$, conditions (A1) and (A3) imply that $0 \le$ $\lambda < 1$.

Finally Mâagli and Zribi [11] treated the general case $f(x, u)$. However their assumptions are different from ours and they lead them to the existence of a weak solution in $C(\overline{\Omega})$.

Our purpose is to give a general existence and uniqueness result under sufficiently weak conditions. We shall prove the following theorem.

Theorem 1. Let $\Omega \subset \mathbb{R}^n$ $(n \geq 1)$ be a bounded domain of class $C^{1,1}$ and let $f : \Omega \times (0, \infty) \to [0, \infty)$ satisfy (H1)–(H3). Then problem (1.1)–(1.2) has a unique solution.

*§***2. Proof of Theorem 1**

1) Uniqueness of the solution. We shall need the following lemma ([7, Lemma 3]).

Lemma 1. Let $p \in C^1(\mathbb{R}, \mathbb{R}) \cap L^\infty(\mathbb{R})$ be a nondecreasing function satisfying $p(0) = 0$. For $u \in W_0^{1,1}(\Omega)$ such that $\Delta u \in L^1(\Omega)$ we have

$$
\int \Delta u.p(u)\,\leq 0\,.
$$

Let u_1, u_2 be two solutions of problem (1.1)–(1.2). Let $u = u_1 - u_2$. By (H1) we have $u\Delta u \geq 0$ a.e. in Ω . Now let $p \in C^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ be a strictly increasing function satisfying $p(0) = 0$. Then $p(u)\Delta u \geq 0$ a.e. in Ω . Using Lemma 1 we deduce that $p(u)\Delta u = 0$ a.e. in Ω and therefore $\Delta u = 0$ a.e. in Ω . Since $u \in W_0^{1,1}(\Omega)$, this implies that $u = 0$ a.e. in Ω .

2) Existence of a solution. We first recall the following result ([1, Lemme 2.8]).

Lemma 2. Let $u \in W_0^{1,1}(\Omega)$ be such that $\Delta u \geq 0$ in $\mathcal{D}'(\Omega)$. Then $u \leq 0$ a.e. in Ω.

In the sequel \mathbb{N}^* denotes the set of positive integers.

Lemma 3. Let $j \in \mathbb{N}^*$. There exists a unique $u_j \in W_0^{1,1}(\Omega)$ such that $f(.,u_j+\frac{1}{j}) \in L^1(\Omega), u_j \ge 0$ a.e. in Ω and $\Delta u_j + f(.,u_j+\frac{1}{j}) = 0$ in $\mathcal{D}'(\Omega)$.

Proof. Define

$$
\beta_j(x, u) = f\left(x, \frac{1}{j}\right) - f\left(x, u + \frac{1}{j}\right), \quad x \in \Omega, u \ge 0.
$$

and

$$
\beta_j(x, u) = 0, \quad x \in \Omega, u \le 0.
$$

□

Then we have:

- For all $u \in \mathbb{R}$, $x \to \beta_i(x, u)$ is in $L^1(\Omega)$;
- $\mathbb{R} \ni u \to \beta_j(x, u)$ is continuous and nondecreasing for a.e. x in Ω ;
- $-\beta_i(x, 0) = 0$ for a.e. x in Ω .

Since $f(.,\frac{1}{j}) \in L^1(\Omega)$ Theorem 3 in [7] implies the existence of a unique $u_j \in W_0^{1,1}(\Omega)$ satisfying $\beta_j(., u_j) \in L^1(\Omega)$ and

$$
-\Delta u_j + \beta_j(.,u_j) = f\left(.,\frac{1}{j}\right) \text{ in } \mathcal{D}'(\Omega).
$$

Since $\Delta u_j \leq 0$ in $\mathcal{D}'(\Omega)$, Lemma 2 implies that $u_j \geq 0$ a.e. in Ω . Therefore we have $f(., u_j + \frac{1}{j}) \in L^1(\Omega)$ and

$$
\Delta u_j + f\left(., u_j + \frac{1}{j}\right) = 0 \text{ in } \mathcal{D}'(\Omega),
$$

and the lemma is proved.

Lemma 4. For every
$$
j \in \mathbb{N}^*
$$
 there exists $a_j > 0$ such that

$$
u_j(x) \ge a_j d(x, \partial \Omega), \text{ for a.e. } x \in \Omega.
$$

Proof. For $\varepsilon > 0$ we set $\Omega_{\varepsilon} = \{x \in \Omega; d(x, \partial \Omega) > \varepsilon\}$. Clearly (H2) implies that, for every $j \in \mathbb{N}^*$, there exist $\varepsilon_j > 0$ and $M_j > 0$ such that the function f_i defined by

$$
\tilde{f}_j(x) = \min\left(f\left(x, u_j(x) + \frac{1}{j}\right), M_j\right) \mathbf{1}_{\Omega_{\varepsilon_j}}(x), \quad x \in \Omega,
$$

satisfies $\tilde{f}_j \neq 0$. Let v_j be the solution of the following boundary value problem

$$
\Delta v_j + \tilde{f}_j = 0 \text{ in } \Omega, v_j = 0 \text{ on } \partial \Omega.
$$

It is well-known (see [8]) that, for $1 < p < \infty$, $v_j \in C^1(\overline{\Omega}) \cap W^{2,p}(\Omega)$. We have $\Delta(u_j - v_j) \leq 0$ in $\mathcal{D}'(\Omega)$, hence by Lemma 2 $u_j \geq v_j$ a.e. in Ω . Now the boundary point version of the Strong Maximum Principle for weak solutions ([12], Theorem 2) implies that there exists $a_j > 0$ such that $v_j(x) \ge a_j d(x, \partial \Omega)$ for $x \in \Omega$ and the lemma follows. □

Lemma 5. For every $j \in \mathbb{N}^*$ we have $u_j + \frac{1}{j} \ge u_{j+1} + \frac{1}{j+1}$ a.e. in Ω .

Proof. Let $u = (u_{j+1} + \frac{1}{j+1}) - (u_j + \frac{1}{j})$. Using a variant of Kato's inequality (see [3] Lemma A1 in the Appendix) we deduce that

$$
\Delta u^+ \ge 0 \quad \text{in } \mathcal{D}'(\Omega) \, .
$$

 $u^+ \in W_0^{1,1}(\Omega)$ (see [1, Lemme 2.7]). Therefore Lemma 2 implies that $u \leq 0$ a.e. in Ω and the lemma is proved. \Box

Lemma 6. For every $j \in \mathbb{N}^*$ we have $u_j \leq u_{j+1}$ a.e. in Ω .

Proof. Using (H1) and Lemma 5 we get

$$
\Delta(u_{j+1}-u_j)=f\left(.,u_j+\frac{1}{j}\right)-f\left(.,u_{j+1}+\frac{1}{j+1}\right)\leq 0 \quad \text{a.e. in }\Omega\,,
$$

and we conclude with the help of Lemma 2.

Now we define

$$
c_j = \int_{\Omega} f\left(x, u_j(x) + \frac{1}{j}\right) dx, \quad j \in \mathbb{N}^*.
$$

Using Lemma 4 and Lemma 6 we can write

$$
c_j \le \int_{\Omega} f(x, a_1 d(x, \partial \Omega)) dx, \quad \forall j \in \mathbb{N}^*.
$$

Therefore

$$
\sup_{j \in \mathbb{N}^*} c_j < \infty \, .
$$

Now we can prove the existence. By (H1) and Lemma 5 $j \rightarrow f(., u_j + \frac{1}{j})$ is nondecreasing. (3.1) and the Beppo Levi theorem for monotonic sequences imply that there exists $g \in L^1(\Omega)$ such that

$$
f\left(.,u_j+\frac{1}{j}\right)\to g
$$
 in $L^1(\Omega)$ as $j\to\infty$.

We have the following estimate [2, Theorem 8]: for $1 \leq q \leq N/(N-1)$ there exists $M_q > 0$ such that

$$
||u_j||_{W^{1,q}(\Omega)} \leq M_q ||\Delta u_j||_{L^1(\Omega)} \quad \forall \ j \in \mathbb{N}^*.
$$

 \Box

Therefore there exists $u \in W_0^{1,1}(\Omega)$ such that $u_j \to u$ in $W_0^{1,1}(\Omega)$. By Lemma 6 and the Fischer-Riesz theorem $u_j \to u$ a.e. in Ω . Lemma 4 and Lemma 6 imply that $u > 0$ a.e. in Ω . Clearly we have $g = f(., u)$ and $\Delta u + f(., u) = 0$ in $\mathcal{D}'(\Omega)$. The proof is complete.

References

- [1] Benilan, P. and Boulaamayel, B., Sous solutions d'équations elliptiques dans L^1 , Potential Analysis, **10** (1999), 215-241.
- [2] Brezis, H. and Strauss, W. A., Semilinear second order elliptic equations in L^1 , J. Math. Soc. Japan, **25** (1973), 565-590.
- [3] Brezis, H., Semilinear equations in \mathbb{R}^N without condition at infinity, Appl. Math. Optim., **12** (1984), 271-282.
- [4] Crandall, M. G., Rabinowitz, P. H. and Tartar, L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, **2** (1977), 193-222.
- [5] Dalmasso, R., On singular nonlinear elliptic problems of second and fourth orders, Bull. Sc. Math., **116** (1992), 95-110.
- [6] del Pino, M. A., A global estimate for the gradient in a singular elliptic boundary value problem, Proc. R. Soc. Edinburgh Sect. A, **122** (1992), 341-352.
- [7] Gallouet, Th. and Morel, J. M., Resolution of a semilinear equation in L^1 , Proc. R. Soc. Edinburgh Sect. A, **96** (1984), 275-288.
- [8] Gilbarg, D. and Trudinger, N. S., *Elliptic partial differential equations of second order*, 2nd edn, Springer, Berlin, 1983.
- [9] Lair, A. V. and Shaker, A. W., Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl., **211** (1997), 371-385.
- [10] Lazer, A. C. and McKenna, P. J., On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc., **111** (1991), 721-730.
- [11] Mâagli, H. and Zribi, M., Existence and estimates of solutions for singular nonlinear elliptic problems. J. Math. Anal. Appl., **263** (2001), 522-542.
- [12] Vázquez, J. L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., **12** (1984), 191-202.