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Abstract

We study the singular semilinear elliptic equation ∆u + f(., u) = 0 in D′(Ω),
where Ω ⊂ Rn (n ≥ 1) is a bounded domain of class C1,1. f : Ω× (0,∞) → [0,∞) is
such that f(., u) ∈ L1(Ω) for u > 0 and u → f(x, u) is continuous and nonincreasing
for a.e. x in Ω. We assume that there exists a subset Ω′ ⊂ Ω with positive measure
such that f(x, u) > 0 for x ∈ Ω′ and u > 0 and that

∫
Ω

f(x, cd(x, ∂Ω)) dx < ∞ for

all c > 0. Then we show that there exists a unique solution u in W 1,1
0 (Ω) such that

∆u ∈ L1(Ω), u > 0 a.e. in Ω.

§1. Introduction

Let Ω be a sufficiently smooth (e.g. of class C1,1) bounded domain in R
n

(n ≥ 1). We consider the singular boundary value problem

∆u + f(., u) = 0 in D′(Ω) ,(1.1)

u ∈ W 1,1
0 (Ω) , f(., u(.)) ∈ L1(Ω) ,(1.2)

where f satisfies the following conditions:
(H1) f : Ω × (0,∞) → [0,∞). For all u > 0, x → f(x, u) is in L1(Ω), and

u → f(x, u) is continuous and nonincreasing for a.e. x in Ω;
(H2) There exists Ω′ ⊂ Ω with positive measure such that f(x, u) > 0 for

x ∈ Ω′ and u > 0;
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(H3) For all c > 0
∫

Ω

f(x, cd(x, ∂Ω)) dx < +∞ .

This kind of singularity has been considered by several authors, particu-
larly the case where

f(x, u) = p(x)u−λ ,

λ > 0 [4, 5, 6, 9, 10, 11, and their references].
Lazer and McKenna [10] for instance established the existence and unique-

ness of a positive u ∈ C2(Ω) ∩ C(Ω) satisfying

∆u + p(x)u−λ = 0 in Ω ,(1.3)

u = 0 on ∂Ω ,(1.4)

when p is Hölder-continuous and strictly positive in Ω.
Del Pino [6] proved that if p is a bounded, nonnegative measurable function

which is positive on a set of positive measure, then (1.3)–(1.4) has a unique
positive weak solution in the sense that u ∈ C1,α(Ω) ∩ C(Ω) satisfies (1.4),
u > 0 in Ω and ∫

Ω

∇u∇ϕ =
∫

Ω

pu−λϕ

for all ϕ ∈ C∞
c (Ω).

Lair and Shaker [9] considered the case

f(x, u) = p(x)g(u) ,

under the following assumptions:

(A0) p ∈ L2(Ω) is nontrivial and nonnegative;

(A1) g′(s) ≤ 0;

(A2) g(s) > 0 if s > 0;

(A3)
∫ ε

0
g(s) ds < ∞ for some ε > 0.

They established the existence of a unique weak solution in the sense that
u ∈ H1

0 (Ω) satisfies
∫

Ω

(∇u∇v − p(x)g(u)v) dx = 0 ∀ v ∈ H1
0 (Ω) .

Notice that, when g(u) = u−λ, conditions (A1) and (A3) imply that 0 ≤
λ < 1.
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Finally Mâagli and Zribi [11] treated the general case f(x, u). However
their assumptions are different from ours and they lead them to the existence
of a weak solution in C(Ω).

Our purpose is to give a general existence and uniqueness result under
sufficiently weak conditions. We shall prove the following theorem.

Theorem 1. Let Ω ⊂ R
n (n ≥ 1) be a bounded domain of class C1,1

and let f : Ω × (0,∞) → [0,∞) satisfy (H1)–(H3). Then problem (1.1)–(1.2)
has a unique solution.

§2. Proof of Theorem 1

1) Uniqueness of the solution. We shall need the following lemma ([7,
Lemma 3]).

Lemma 1. Let p ∈ C1(R, R)∩L∞(R) be a nondecreasing function sat-
isfying p(0) = 0. For u ∈ W 1,1

0 (Ω) such that ∆u ∈ L1(Ω) we have
∫

∆u.p(u) ≤ 0 .

Let u1, u2 be two solutions of problem (1.1)–(1.2). Let u = u1 − u2. By
(H1) we have u∆u ≥ 0 a.e. in Ω. Now let p ∈ C1(R) ∩ L∞(R) be a strictly
increasing function satisfying p(0) = 0. Then p(u)∆u ≥ 0 a.e. in Ω. Using
Lemma 1 we deduce that p(u)∆u = 0 a.e. in Ω and therefore ∆u = 0 a.e. in
Ω. Since u ∈ W 1,1

0 (Ω), this implies that u = 0 a.e. in Ω.

2) Existence of a solution. We first recall the following result ([1, Lemme 2.8]).

Lemma 2. Let u ∈ W 1,1
0 (Ω) be such that ∆u ≥ 0 in D′(Ω). Then u ≤ 0

a.e. in Ω.

In the sequel N
� denotes the set of positive integers.

Lemma 3. Let j ∈ N
�. There exists a unique uj ∈ W 1,1

0 (Ω) such that
f(., uj + 1

j ) ∈ L1(Ω), uj ≥ 0 a.e. in Ω and ∆uj + f(., uj + 1
j ) = 0 in D′(Ω).

Proof. Define

βj(x, u) = f

(
x,

1

j

)
− f

(
x, u +

1

j

)
, x ∈ Ω , u ≥ 0 .
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and
βj(x, u) = 0 , x ∈ Ω , u ≤ 0 .

Then we have:

- For all u ∈ R, x → βj(x, u) is in L1(Ω);

- R 
 u → βj(x, u) is continuous and nondecreasing for a.e. x in Ω;

- βj(x, 0) = 0 for a.e. x in Ω.

Since f(., 1
j ) ∈ L1(Ω) Theorem 3 in [7] implies the existence of a unique

uj ∈ W 1,1
0 (Ω) satisfying βj(., uj) ∈ L1(Ω) and

−∆uj + βj(., uj) = f

(
.,

1

j

)
in D′(Ω) .

Since ∆uj ≤ 0 in D′(Ω), Lemma 2 implies that uj ≥ 0 a.e. in Ω. Therefore we
have f(., uj + 1

j ) ∈ L1(Ω) and

∆uj + f

(
., uj +

1

j

)
= 0 in D′(Ω) ,

and the lemma is proved.

Lemma 4. For every j ∈ N
� there exists aj > 0 such that

uj(x) ≥ ajd(x, ∂Ω) , for a.e. x ∈ Ω .

Proof. For ε > 0 we set Ωε = {x ∈ Ω; d(x, ∂Ω) > ε}. Clearly (H2) implies
that, for every j ∈ N

�, there exist εj > 0 and Mj > 0 such that the function
f̃j defined by

f̃j(x) = min
(

f

(
x, uj(x) +

1

j

)
, Mj

)
1Ωεj

(x), x ∈ Ω ,

satisfies f̃j �≡ 0. Let vj be the solution of the following boundary value problem

∆vj + f̃j = 0 in Ω ,

vj = 0 on ∂Ω .

It is well-known (see [8]) that, for 1 < p < ∞, vj ∈ C1(Ω) ∩ W 2,p(Ω). We
have ∆(uj − vj) ≤ 0 in D′(Ω), hence by Lemma 2 uj ≥ vj a.e. in Ω. Now the
boundary point version of the Strong Maximum Principle for weak solutions
([12], Theorem 2) implies that there exists aj > 0 such that vj(x) ≥ ajd(x, ∂Ω)
for x ∈ Ω and the lemma follows.
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Lemma 5. For every j ∈ N
� we have uj + 1

j ≥ uj+1 + 1
j+1 a.e. in Ω.

Proof. Let u = (uj+1+ 1
j+1 )−(uj+ 1

j ). Using a variant of Kato’s inequality
(see [3] Lemma A1 in the Appendix) we deduce that

∆u+ ≥ 0 in D′(Ω) .

u+ ∈ W 1,1
0 (Ω) (see [1, Lemme 2.7]). Therefore Lemma 2 implies that u ≤ 0

a.e. in Ω and the lemma is proved.

Lemma 6. For every j ∈ N
� we have uj ≤ uj+1 a.e. in Ω.

Proof. Using (H1) and Lemma 5 we get

∆(uj+1 − uj) = f

(
., uj +

1

j

)
− f

(
., uj+1 +

1

j+1

)
≤ 0 a.e. in Ω ,

and we conclude with the help of Lemma 2.

Now we define

cj =
∫

Ω

f

(
x, uj(x) +

1

j

)
dx , j ∈ N

�.

Using Lemma 4 and Lemma 6 we can write

cj ≤
∫

Ω

f(x, a1d(x, ∂Ω)) dx , ∀ j ∈ N
�.

Therefore

sup
j∈N�

cj < ∞ .(3.1)

Now we can prove the existence. By (H1) and Lemma 5 j → f(., uj + 1
j )

is nondecreasing. (3.1) and the Beppo Levi theorem for monotonic sequences
imply that there exists g ∈ L1(Ω) such that

f

(
., uj +

1
j

)
→ g in L1(Ω) as j → ∞ .

We have the following estimate [2, Theorem 8]: for 1 ≤ q < N/(N − 1) there
exists Mq > 0 such that

||uj ||W 1,q(Ω) ≤ Mq||∆uj ||L1(Ω) ∀ j ∈ N
� .
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Therefore there exists u ∈ W 1,1
0 (Ω) such that uj → u in W 1,1

0 (Ω). By Lemma 6
and the Fischer-Riesz theorem uj → u a.e. in Ω. Lemma 4 and Lemma 6 imply
that u > 0 a.e. in Ω. Clearly we have g = f(., u) and ∆u+f(., u) = 0 in D′(Ω).
The proof is complete.
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