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Abstract

We determine the harmonic volumes for all the hyperelliptic curves. This gives
a geometric interpretation of a theorem established by A. Tanaka [10].
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§1. Introduction

Let X be a compact Riemann surface of genus g ≥ 3. A harmonic volume
I of X was introduced by B. Harris [5], using Chen’s iterated integrals [3]. The
aim of this paper is to determine the harmonic volumes of all the hyperelliptic
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curves, which are 2-fold branched coverings of CP 1. As was already pointed
out by Harris, some important algebraic cycles in the Jacobian variety J(X)
are related to 2I, which vanishes for all the hyperelliptic curves. The harmonic
volumes of hyperelliptic curves, however, have been still unknown. First of all,
we give the statement of the main theorem of this paper. We denote by H the
first integral homology group of X. Harris defined the harmonic volume I as a
homomorphism (H⊗3)′ → R/Z. Here (H⊗3)′ is a certain subgroup of H⊗3. See
Section 2 for the definition of (H⊗3)′. We denote by C a hyperelliptic curve.

Theorem 4.1. For any hyperelliptic curve C, let {xi, yi}i=1,2,...,g be a
symplectic basis of H = H1(C; Z) in Figure 1, where ι is the hyperelliptic
involution. We denote by zi either xi or yi. Then,

I(zi ⊗ zj ⊗ zk) = 0 for i �= j �= k �= i,

I(xi ⊗ yi ⊗ zk − xk+1 ⊗ yk+1 ⊗ zk)

=

{
1/2 for i < k, k = 2, 3, . . . , g − 1 and zk = yk,

0 for i ≥ k + 2, k = 1, k = g or zk = xk.

The elements zi ⊗ zj ⊗ zk and xi ⊗ yi ⊗ zk − xk+1 ⊗ yk+1 ⊗ zk are the parts of
a basis of (H⊗3)′ whose harmonic volumes depend on the complex structure of
Riemann surfaces.

Figure 1.

By using the harmonic volume of the compact Riemann surface X whose
coefficients are extended over C, Harris [7] studied the problem of character-
izing the condition when the cycles W1 and W−

1 are algebraically equivalent
to each other. Here W1 is the image of the Abel-Jacobi map X → J(X)
and W−

1 is the image of W1 under the involution (−1) of J(X). Harmonic
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volumes or extended ones tell us the non-triviality of W1 − W−
1 in J(X) as

follows. If W1 − W−
1 is trivial as an algebraic cycle, then 2I ≡ 0 modulo

Z. As is well known, if X is hyperelliptic, then W1 − W−
1 is trivial. It is

known that I ≡ 0 or I ≡ 1/2 modulo Z for any hyperelliptic curve C by the
hyperelliptic involution. It has been still unknown which elements in (H⊗3)′

have nontrivial I or not. Our main theorem gives the complete answer for this
problem.

We have two ways to compute the harmonic volumes of all the hyperelliptic
curves in Theorem 4.1. One is an analytic way and the other is a topological.
In the first way, the computation of the harmonic volumes of all the hyperel-
liptic curves can be reduced to that of a single hyperelliptic curve C0, which
is considered as a point of the moduli space of hyperelliptic curves, denoted
by Hg. The harmonic volume I varies continuously on the whole Torelli space
Ig, which is the space consisting of all the compact Riemann surfaces with a
fixed symplectic basis of H. Gunning [4] obtained quadratic periods of hyper-
elliptic curves. The periods are defined by iterated integrals of holomorphic
1-forms along loops. In general, iterated integrals are not homotopy invariant
with fixed endpoints. When we add some correction terms, they are homotopy
invariant. Because of the correction terms, the computation of harmonic vol-
umes is more difficult than that of quadratic periods. In the second way, we use
basic results on the cohomology of the hyperelliptic mapping class group. It is
denoted by ∆g. The following theorem is obtained in the second topological
way.

Theorem 5.9. We have

Hom∆g
((H⊗3)′, Z/2Z) ∼= Z/2Z.

This theorem gives a geometric interpretation of a theorem established
by Tanaka [10]. It is concerning about the first homology group of ∆g with
coefficients in H.

Theorem 5.10 (Tanaka [10], Theorem 1.1). If g ≥ 2, then

H1(∆g; H) = Z/2Z.

We denote by δ a connected homomorphism H0(∆g; ((H⊗3)′)∗) →
H1(∆g; H∗)⊕3 defined in Section 5. We may regard the restriction of δI|H
as the generator of H1(∆g; H).
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§2. Preliminaries

In this section, we define a harmonic volume of a compact Riemann surface
X of genus g ≥ 3. We begin with recalling the definition of an iterated integral
on X. Let γ : [0, 1] → X be a path in X, and A1(X) the 1-forms on X. The
iterated integral of 1-forms ω1, ω2, . . . , ωk ∈ A1(X) along γ is defined by∫

γ

ω1ω2 · · ·ωk =
∫

0≤t1≤t2≤···≤tk≤1

f1(t1)f2(t2) · · · fk(tk)dt1dt2 · · · dtk,

where γ∗(ωi) = fi(t)dt in terms of the coordinate t on the interval [0, 1]. The in-
tegral is not invariant under homotopy with fixed endpoints. But, the following
lemma is well known. See Chen [3] for details.

Lemma 2.1. Let ω1,i, ω2,i, i = 1, 2, . . . , m be closed 1-forms on X and

γ a path in X. Suppose that
m∑

i=1

∫
X

ω1,i ∧ ω2,i = 0. Take a 1-form η on X

satisfying dη =
m∑

i=1

ω1,i ∧ ω2,i. Then the integral

m∑
i=1

∫
γ

ω1,iω2,i −
∫

γ

η

is invariant under homotopy with fixed endpoints.

Using iterated integrals, Harris [5] defined the harmonic volume in the
following way. In order to define it, we have to define a pointed harmonic
volume for (X, x0), where x0 is a point on X. We identify H1(X; Z) with
H1(X; Z) by Poincaré duality and call them H. Let K be the kernel of ( , ) :
H ⊗ H → Z induced by the intersection pairing. On the compact Riemann
surface X, the Hodge star operator ∗ : A1(X) → A1(X) is locally given by
∗(f1(z)dz + f2(z)dz̄) = −

√
−1f1(z)dz +

√
−1f2(z)dz̄ in a local coordinate z

and depends only on the complex structure and not the choice of Hermitian
metric. Let HZ denote the free abelian group of rank 2g spanned by all the
real harmonic 1-forms on X with integral periods. We identify H with HZ by
the Hodge theorem.

Definition 2.2 (The pointed harmonic volume [8]). The pointed har-
monic volume for (X, x0) is a linear form on K ⊗H with values in R/Z defined
by

Ix0

(
m∑

k=1

( nk∑
i=1

ai,k ⊗ bi,k

)
⊗ ck

)
=

m∑
k=1

( nk∑
i=1

∫
γk

ai,kbi,k −
∫

γk

ηk

)
mod Z,
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where γk is a loop in X with the base point x0, whose homology class is Poincaré
dual of the cohomology class of ck and ηk is a 1-form on X, which satisfies
dηk =

∑nk

i=1 ai,k ∧ bi,k and
∫

X
ηk ∧ ∗α = 0 for any closed 1-form α on X.

The harmonic volume is given as a restriction of the pointed harmonic
volume. A natural homomorphism p : H⊗3 → H⊕3 is defined by p(a⊗ b⊗ c) =
((a, b)c, (b, c)a, (c, a)b). We denote by (H⊗3)′ the kernel of p. It is a free Z

module and satisfies the following short exact sequence

0 �� (H⊗3)′ �� H⊗3
p �� H⊕3 �� 0 .

The rank of (H⊗3)′ is (2g)3 − 6g and (H⊗3)′ ⊂ K ⊗ H. Harris [5] proved
that the restriction of the pointed harmonic volume on K ⊗ H to (H⊗3)′ is
independent of the choice of the base point.

Definition 2.3 (The harmonic volume [5]). The harmonic volume I for
X is a linear form on (H⊗3)′ with values in R/Z defined by

I
( ∑

i

ai ⊗ bi ⊗ ci

)
= Ix0

( ∑
i

ai ⊗ bi ⊗ ci

)
mod Z.

The map I is a well-defined homomorphism (H⊗3)′ → R/Z. We have
I(

∑
i hσ(1),i ⊗hσ(2),i ⊗hσ(3),i) = sgn(σ)I(

∑
i h1,i ⊗h2,i ⊗h3,i), where

∑
i h1,i ⊗

h2,i ⊗ h3,i ∈ (H⊗3)′ and σ is an element of the third symmetric group S3.
See Harris (Lemma 2.7 in [5]) and Pulte [8] for details. In the sequel, we
regard (H⊗3)′ as an S3-module by this action. We choose a symplectic ba-
sis {xi, yi}i=1,2,...,g of H so that (xi, xj) = (yi, yj) = 0 and (xi, yj) = δij =
−(yj , xi), where δij is Kronecker’s delta. Let zi denote xi or yi. We define the
subset A ⊂ (H⊗3)′ consisting of the following elements,

(1 ) zi ⊗ zj ⊗ zk (i �= j �= k �= i)
(2 ) xi ⊗ yi ⊗ zk − xk+1 ⊗ yk+1 ⊗ zk (i �= k and i �= k + 1)
(3a) xi ⊗ xi ⊗ zk (i �= k)
(3b) yi ⊗ yi ⊗ zk (i �= k)
(4a) xi ⊗ xi ⊗ xi

(4b) yi ⊗ yi ⊗ yi

(5a) xi+1 ⊗ xi ⊗ yi+1 + yi+1 ⊗ xi ⊗ xi+1

(5b) yi+1 ⊗ yi ⊗ xi+1 + xi+1 ⊗ yi ⊗ yi+1

(6a) xi ⊗ xi ⊗ yi − xi ⊗ xi+1 ⊗ yi+1 − xi+1 ⊗ xi ⊗ yi+1

(6b) yi ⊗ yi ⊗ xi − yi ⊗ yi+1 ⊗ xi+1 − yi+1 ⊗ yi ⊗ xi+1.
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Here i, j, k ∈ {1, 2, . . . , g} and all subscripts are read modulo g. Then B =
{σ(a); a ∈ A, σ ∈ S3} is a basis of (H⊗3)′.

By the definition of the harmonic volume, it is obvious that I = 0 mod Z

for the type (3), (4) and (5). Furthermore, I = 1/2 mod Z for the type (6). So
it is enough to consider the type (1) and (2).

§3. The Periods and Iterated Integrals of a Hyperelliptic Curve

In this section, we compute the periods and iterated integrals of a hy-
perelliptic curve of genus g ≥ 3. First of all, we take a symplectic basis of
H.

§3.1. A homology basis of hyperelliptic curves

We define a hyperelliptic curve C as follows. Let p0, p1, . . . , p2g+1 be dis-
tinct points on C. It is the compactification of the plane curve in the (z, w)
plane C2

w2 =
2g+1∏
i=0

(z − pi),

and admits the hyperelliptic involution given by ι : (z, w) �→ (z,−w). Let π

be the 2-sheeted covering C → CP 1, (z, w) �→ z, branched over 2g + 2 branch
points {pi}i=0,1,...,2g+1 and Pi ∈ C a ramification point so that π(Pi) = pi.
On the curve C, we choose endpoints Q0, Q1(= ι(Q0)) as in Figure 2. We

define by Ω the simply-connected domain CP 1 \
g⋃

j=0

p2jp2j+1, where p2jp2j+1 is

a simple arc connecting p2j and p2j+1. Then π−1(Ω) consists of two connected
components. We denote by Ω0, Ω1 the connected components of π−1(Ω) which
contain Q0, Q1 respectively. Let ej , j = 0, 1, . . . , 2g + 1, be a path in C which
is to be followed from Q0 to Pj and go to Q1 along the arcs Q0Pj and PjQ1.
See Figure 2. We write simply ej for π(ej). It is a loop in CP 1 with the base
point π(Q0).

It is obvious that ej1 · ι(ej2) is a loop in C with the base point Q0, where
the product ej1 · ι(ej2) indicates that we traverse ej1 first, then ι(ej2). So we
have the homotopy equivalences relative to the base point Q0

ej · ι(ej) ∼ 1, j = 0, 1, . . . , 2g + 1,

and
e0 · ι(e1) · · · · · e2g · ι(e2g+1) ∼ 1.
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Figure 2.

We define the loops ai, bi, i = 1, 2, . . . , g, in C with the base point Q0 by

ai = e2i−1 · ι(e2i),
bi = e2i−1 · ι(e2i−2) · · · · · e1 · ι(e0).

So a symplectic basis of H1(C; Z) can be given by {[ai], [bi]}i=1,2,...,g, where
[ai] and [bi] are the homology classes of ai and bi respectively. In fact, we have
([ai], [bj ]) = δij = −([bj ], [ai]) and ([ai], [aj ]) = ([bi], [bj ]) = 0. It is clear that
[ai] and [bi] are equal to xi and yi in Figure 1 respectively.

§3.2. The hyperelliptic curve C0

A hyperelliptic curve C0 is defined by the equation w2 = z2g+2 − 1. We
take Qi = (0, (−1)i

√
−1), i = 0, 1, and Pj = (ζj , 0), j = 0, 1, . . . , 2g + 1, where

ζ = e2π
√
−1/(2g+2). We define a path ej : [0, 1] → C0, j = 0, 1, . . . , 2g + 1, by{(

2tζj ,
√
−1

√
1 − (2t)2g+2

)
for 0 ≤ t ≤ 1/2,(

(2 − 2t)ζj ,−
√
−1

√
1 − (2 − 2t)2g+2

)
for 1/2 ≤ t ≤ 1.

We denote ωi = zi−1dz/w, i = 1, 2, . . . , g, which are holomorphic 1-forms
on C0. Then {ωi}i=1,2,...,g is a basis of the space of holomorphic 1-forms on
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C0. Let B(u, v) denote the beta function
∫ 1

0
xu−1(1 − x)v−1dx for u, v > 0. It

is easy to show.

Lemma 3.1. We have∫
ej

ωi = −2
√
−1ζijB(i/(2g + 2), 1/2)/(2g + 2) = −

∫
ι(ej)

ωi.

We denote by ω′
i the holomorphic 1-form

(2g + 2)
√
−1

2B(i/(2g + 2), 1/2)
ωi. The pe-

riods of C0 are obtained by Lemma 3.1.

Lemma 3.2. We have∫
aj

ω′
i = ζi(2j−1)(1 − ζi),∫

bj

ω′
i =

ζ2ij − 1
ζi + 1

,

where i, j ∈ {1, 2, . . . , g}.

Remark 3.3. Since ω′
i is a closed 1-form, the integral

∫
γ

ω′
i depends only

on the homology classes of γ.

In order to prove Lemma 3.5, we start with the following well known
lemma.

Lemma 3.4. Let ω1, ω2 be 1-forms on X and γ1, γ2, . . . , γm paths in X

so that γ1γ2 · · · γm is a path. Then, we have∫
γ1γ2···γm

ω1ω2 =
m∑

i=1

∫
γi

ω1ω2 +
∑
i<j

∫
γi

ω1

∫
γj

ω2.

Since ι is a diffeomorphism of C0 and ι(ek) = e−1
k , we have∫

ek

ω′
iω

′
j =

∫
ι(ek)

ω′
iω

′
j =

∫
e−1

k

ω′
iω

′
j = −

∫
ek

ω′
iω

′
j −

∫
ek

ω′
i

∫
e−1

k

ω′
j .

Then
∫

ek

ω′
iω

′
j =

1
2

∫
ek

ω′
i

∫
ek

ω′
j . This formula, Lemma 3.2 and Lemma 3.4 give

us iterated integrals of ω′
i along ak and bk.
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Lemma 3.5. We have∫
ak

ω′
iω

′
j =

1
2
ζ(i+j)(2k−1)(1 − 2ζj + ζi+j),∫

bk

ω′
iω

′
j =

k∑
l=1

1
2
ζ(i+j)(2l−2)(1 − 2ζi + ζi+j)

+
∑

1≤l<m≤k

(ζi − 1)(ζj − 1)ζi(2m−2)+j(2l−2),

where i, j ∈ {1, 2, . . . , g}.

For the rest of this section, we compute the iterated integrals of real har-
monic 1-forms of C0 with integral periods. Let Ωa and Ωb be the non-singular
matrices 

∫
a1

ω′
1 . . .

∫
ag

ω′
1

...
...∫

a1
ω′

g . . .
∫

ag
ω′

g

 and


∫

b1
ω′

1 . . .
∫

bg
ω′

1

...
...∫

b1
ω′

g . . .
∫

bg
ω′

g

 ,

respectively. It is clear that (ij)-entries of (Ωa)−1 and (Ωb)−1 are given by
1

g + 1
ζj(−1 + ζ−2ij)

1 − ζj
and

1
g + 1

ζ−2ij(1 + ζj) respectively. Then we obtain

the period matrix (Ωa)−1Ωb denoted by Z. In general, it is well known that
Z ∈ GL(g, C) is symmetric and its imaginary part �Z is positive definite. In
particular, Schindler [9] proved the theorem below. We deduce it directly from
Lemma 3.2.

Theorem 3.6 (Schindler [9], Theorem 2). Let Z be the period matrix
on the curve C0 as above. Then its (ij)-entry is given by

1
g + 1

g∑
k=1

ζk(ζ−2ik − 1)(ζ2kj − 1)
1 − ζ2k

.

Furthermore, all the entries are pure imaginary.

Remark 3.7. We need some steps for another presentation of Z by
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Schindler as follows.
g∑

k=1

ζk(ζ−2ik − 1)(ζ2kj − 1)
1 − ζ2k

=
g∑

k=1

ζk(ζ2kj − 1)ζ−2k 1 −
(
ζ−2k

)i

1 − ζ−2k

=
g∑

k=1

ζk(ζ2kj − 1)
i∑

ν=1

ζ−2kν

=
i∑

ν=1

g∑
k=1

((
ζ1−2ν+2j

)k −
(
ζ1−2ν

)k
)

=
i∑

ν=1

(
1 + ζ1−2ν+2j

1 − ζ1−2ν+2j
− 1 + ζ1−2ν

1 − ζ1−2ν

)
.

Then we have

1
g + 1

g∑
k=1

ζk(ζ−2ik − 1)(ζ2kj − 1)
1 − ζ2k

=
√
−1

g + 1

(
i∑

ν=1

1 + cos 2ν−1
g+1 π

sin 2ν−1
g+1 π

+
1 + cos 2(j−ν)+1

g+1 π

sin 2(j−ν)+1
g+1 π

)
.

We define real harmonic 1-forms αi, βi, i = 1, 2, . . . , g, byα1

...
αg

 = (�Z)−1�

(Ωa)−1

ω′
1
...

ω′
g


 and

β1

...
βg

 = −�

(Ωa)−1

ω′
1
...

ω′
g


 .

Using Theorem 3.6, we have �Z = −
√
−1(Ωa)−1Ωb. Thenα1

...
αg

 = �

(Ωb)−1

ω′
1
...

ω′
g


 .

It is clear that
∫

aj
αi =

∫
bj

βi = 0 and
∫

bj
αi = δij = −

∫
aj

βi by Lemma 3.2. Let
PD denote the Poincaré dual H1(C0; Z) → H1(C0; Z). We have PD([ai]) = αi

and PD([bi]) = βi for i = 1, 2, . . . , g. Hence, {αi, βi}i=1,2,...,g ⊂ H1(C0; Z) is a
symplectic basis.

Let tu be a complex number
g∑

p=1

ζup for any integer u. It is obvious that

tu =


g for u ∈ (2g + 2)Z,

−1 for u �∈ (2g + 2)Z and u : even,
1 + ζu

1 − ζu
for u : odd.
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Moreover, tu is pure imaginary and t−u = −tu when u is odd.
Using Lemma 3.5, we can calculate iterated integrals by means of tu as

follows.

Lemma 3.8. On the curve C0, we have the equations

(1)
∫

ak

βiβj =
1

2(g + 1)2

{
(t2k−2j − t2k)

i∑
u=1

t2k−2u

+(t2k − t2k−2i)
j∑

u=1

t2k−2u+2

}
,

(2)
∫

bk

βiβj = 0,

(3)
∫

ak

αiαj = 0,

(4)
∫

bk

αiαj =
1

2(g + 1)2

{ k∑
u=1

(t2u−2jt2u−2i − 2t2u−2j−2t2u−2i

+t2u−2j−2t2u−2i−2)

+
k∑

v=2

2(t2v−2i − t2v−2i−2)(t2v−2j−2 − t(−2j))
}

.

Here i, j, k ∈ {1, 2, . . . , g}.

Remark 3.9. For k = 1,
∑k

v=2 2(t2v−2i−t2v−2i−2)(t2v−2j−2−t(−2j)) = 0.

Proof. We compute
∫

ak
βiβj in the following way. Let Ai,j be the (i, j)-

entry of (Ωa)−1. By the definition of βi, we have βi = −�
( ∑g

l=1 Ai,lω
′
l

)
. Using

this,
∫

ak
βiβj can be given by

∫
ak

�
( g∑

l=1

Ai,lω
′
l

)
�

( g∑
m=1

Aj,mω′
m

)

=
1
4

∫
ak

g∑
l,m=1

(
Ai,lAj,mω′

lω
′
m + Ai,lAj,mω′

lω
′
m

+Ai,lAj,mω′
lω

′
m + Ai,lAj,mω′

lω
′
m

)
=

1
2
�

{
g∑

l,m=1

(
Ai,lAj,m

∫
ak

ω′
lω

′
m + Ai,lAj,m

∫
ak

ω′
lω

′
m

)}
.
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Lemma 3.5 gives us

(g + 1)2
g∑

l,m=1

Ai,lAj,m

∫
ak

ω′
lω

′
m

=
g∑

l,m=1

ζl(−1 + ζ−2il)
1 − ζl

ζm(−1 + ζ−2jm)
1 − ζm

1
2
ζ(l+m)(2k−1)(1 − 2ζm + ζl+m)

=
1
2

g∑
m=1

1 − ζ2jm

1 − ζm
ζm(2k−2j)

g∑
l=1

1 − ζ2il

1 − ζl
ζl(2k−2i)(1 − 2ζm + ζl+m)

=
1
2

g∑
m=1

2k−1∑
v=2k−2j

ζmv

g∑
l=1

2k−1∑
u=2k−2i

ζlu(1 − 2ζm + ζl+m)

=
1
2

g∑
m=1

2k−1∑
v=2k−2j

ζmv

{ 2k−1∑
u=2k−2i

(
tu(1 − 2ζm) + tu+1ζ

m
)}

=
1
2

g∑
m=1

2k−1∑
v=2k−2j

ζmv

{ 2k−1∑
u=2k−2i

tu(1 − ζm) + (t2k − t2k−2i)ζm

}

=
1
2

2k−1∑
v=2k−2j

g∑
m=1

{
2k−1∑

u=2k−2i

tuζmv(1 − ζm) + (t2k − t2k−2i)ζm(v+1)

}

=
1
2

2k−1∑
v=2k−2j

{
2k−1∑

u=2k−2i

tu(tv − tv+1) + (t2k − t2k−2i)tv+1

}
.

So we obtain

(g + 1)2
g∑

l,m=1

Ai,lAj,m

∫
ak

ω′
lω

′
m

=
1
2

{
(t2k−2j − t2k)

2k−1∑
u=2k−2i

tu + (t2k − t2k−2i)
2k∑

v=2k−2j+1

tv

}
.

Using
∫

ak
ω′

iω
′
j = 1

2ζ(i−j)(2k−1)(1 − 2ζ−j + ζi−j), the value (g + 1)2
∑g

l,m=1

Ai,lAj,m

∫
ak

ω′
lω

′
m can be computed by

1
2

{
(t−(2k−2j) − t−(2k))

2k−1∑
u=2k−2i

tu + (t2k − t2k−2i)
2k∑

v=2k−2j+1

t−v

}
.

Since tu = t−u for u ∈ 2Z and tu is pure imaginary for u ∈ 2Z+1, we have (1).
The values

∫
bk

βiβj ,
∫

ak
αiαj and

∫
bk

αiαj are calculated similarly.
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§4. The Harmonic Volumes of Hyperelliptic Curves

In this section, we consider the harmonic volumes of hyperelliptic curves.
They can be reduced to the computation for the hyperelliptic curve C0.

Theorem 4.1. For any hyperelliptic curve C, let {xi, yi}i=1,2,...,g be a
symplectic basis of H = H1(C; Z) in Figure 1, where ι is the hyperelliptic
involution. We denote by zi either xi or yi. Then,

I(zi ⊗ zj ⊗ zk) = 0 for i �= j �= k �= i,

I(xi ⊗ yi ⊗ zk − xk+1 ⊗ yk+1 ⊗ zk)

=

{
1/2 for i < k, k = 2, 3, . . . , g − 1 and zk = yk,

0 for i ≥ k, k = 1, k = g or zk = xk.

In order to prove Theorem 4.1, we need the following two lemmas. Let HZ

be all the real harmonic 1-forms on C0 with integral periods.

Lemma 4.2. On the curve C0, let η be a 1-form on C0 satisfying the
conditions 

dη =
∑

k

h1,k ∧ h2,k,∫
X

η ∧ ∗α = 0 for any closed 1-form α on X,

ι∗η = η,

where ι is the hyperelliptic involution of C0 and h1,k, h2,k ∈ HZ such that∑
k(h1,k, h2,k) =

∑
k

∫
C0

h1,k ∧ h2,k = 0.
Then for any j ∫

ej

η = 0.

Proof. We will have η explicitly. For any
∑

k

h1,k ∧ h2,k, there exist

a1
i,j , a

2
i,j ∈ C such that

∑
k

h1,k ∧ h2,k =
∑
i,j

a1
i,jωi ∧ ωj + a2

i,jωi ∧ ωj , where

i, j ∈ {1, 2, . . . , g}. The (1, 1)-form ωi ∧ ωj is
λi−1λ

j−1

µµ
dλ ∧ dλ in a coordinate

λ satisfying µ2 = λ2g+2−1. Take a polynomial f(λ, λ) of degree at most 2g−2

which belongs to C[λ, λ] so that
f(λ)
µµ

dλ ∧ dλ =
∑

k

h1,k ∧ h2,k. It is clear

that
f(λ)
µµ

dλ ∧ dλ is invariant under the action of the hyperelliptic involution
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ι : (λ, µ) �→ (λ,−µ), since µµ = |µ2| = |λ2g+2 − 1| = |(−µ)2|. So we regard
f(λ)
µµ

dλ ∧ dλ as a 1-form on CP 1. On the curve C0, Harris ([5] in Section 5, 6

and [6]) gave η in the following explicit forms.

η =
−1
2π

∫
λ∈CP 1

�
(

dz

z − λ

)
f(λ)

|λ2g+2 − 1|dλ ∧ dλ

=
−1
2π

1
2
√
−1

(
dz

∫
1

z − λ

f(λ)
|λ2g+2 − 1|dλ ∧ dλ

−dz

∫ (
1

z − λ

)
f(λ)

|λ2g+2 − 1|dλ ∧ dλ

)
,

in a coordinate z satisfying w2 = z2g+2 − 1. It satisfies

ι∗η = η.

This equation allows us to have

∫
ek

η =
∫

ι(ek)−1
η = −

∫
ι(ek)

η = −
∫

ek

ι∗η = −
∫

ek

η.

Then we obtain
∫

ej
η = 0.

Lemma 4.3. On the curve C0,

I(zi ⊗ zj ⊗ zk) = 0 for i �= j �= k �= i,

I(xi ⊗ yi ⊗ zk − xk+1 ⊗ yk+1 ⊗ zk)

=

{
1/2 for i < k, k = 2, 3, . . . , g − 1 and zk = yk,

0 for i ≥ k + 2, k = 1, k = g or zk = xk.

Proof. It is enough to consider the iterated integral part of the harmonic
volume by Lemma 4.2.

Type (1)
Lemma 3.8 gives us I(zi ⊗ zj ⊗ zk) ≡ 0 for i �= j �= k �= i.

Type (2)
We compute I(xi ⊗ yi ⊗ zk − xk+1 ⊗ yk+1 ⊗ zk) for i �= k and i �= k + 1. When
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i < k, k = 2, 3, . . . , g − 1 and zk = yk,

I (xi ⊗ yi ⊗ yk − xk+1 ⊗ yk+1 ⊗ yk)

=
∫

ai

βiβk −
∫

ak+1

βk+1βk

=
1

2(g + 1)2

{
−(g + 1)

k∑
u=1

t2i−2u+2

}
− 1

2(g + 1)2

{
−(g + 1)

k∑
u=1

t2(k+1)−2u+2

}
=

1
2(g + 1)2

{−(g + 1)(g − k + 1)} − 1
2(g + 1)2

{−(g + 1)(−k)}

=−1/2

= 1/2 mod Z.

It is similarly shown that I(xi ⊗ yi ⊗ zk − xk+1 ⊗ yk+1 ⊗ zk) = 0 for i ≥ k + 2,
k = 1, k = g or zk = xk.

Before the proof of Theorem 4.1, we recall some results about the moduli
space of compact Riemann surfaces. Let Σg be a closed oriented surface of
genus g. Its mapping class group, denoted here by Γg, is the group of isotopy
classes of orientation preserving diffeomorphisms of Σg. This group acts on the
Teichmüller space Tg of Σg and the quotient space Mg is the moduli space of
Riemann surfaces of genus g. The group Γg acts naturally on the first homology
group H1(Σg; Z) of Σg. Let Ig be the subgroup of Γg, which acts trivially on
H1(Σg; Z) and we call it the Torelli group. Its action on Tg is free and the
quotient Ig = Ig\Tg, called the Torelli space, is the moduli space of compact
Riemann surfaces with a fixed symplectic basis of H1(Σg; Z). There is a natural
projection pT : Ig → Mg.

Let Hg ⊂ Mg be the moduli space of hyperelliptic curves of genus g. The
hyperelliptic mapping class group ∆g is the subgroup of Γg defined by

{ϕ ∈ Γg; ϕι = ιϕ},

where ι is the hyperelliptic involution of Σg. We choose H̃g a connected com-
ponent of p−1

T (Hg) with the symplectic basis in Figure 1. H̃g is a complex
submanifold of dimension 2g − 1 of Ig. Let I H

g denote the group Ig ∩ ∆g.
The moduli space Hg is known to be connected and has a natural structure of
a quasi-projective orbifold. Hence we have Hg = pT (H̃g). The group ∆g can
be considered as its orbifold fundamental group and I H

g is the fundamental
group of H̃g.

Proof. (Theorem 4.1) One of the key points of this proof is that the
harmonic volume of C belongs to Hom∆g

((H⊗3)′, Z/2Z) = HomZ((H⊗3)′,
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Z/2Z)∆g . Let E → Hg be a flat vector bundle with a fiber HomZ((H⊗3)′, Z/2Z)
and (pT |H̃g

)∗E the pullback of the flat vector bundle E. Harris [5] proved that
I varies in Ig continuously. For any hyperelliptic curves, I ≡ 0 or I ≡ 1/2 mod-
ulo Z. Hence the flat vector bundle (pT |H̃g

)∗E has a locally constant section Ĩ

associated to I. Moreover, H̃g is arcwise connected and the monodromy repre-
sentation I H

g → Aut(HomZ((H⊗3)′, Z/2Z)) is trivial. Therefore Ĩ is constant
on H̃g. Since Hg = pT (H̃g), the harmonic volumes of hyperelliptic curves can
be reduced to the calculation of C0. The result follows from Lemma 4.3.

§5. The Harmonic Volumes of Hyperelliptic Curves
from a Topological Viewpoint

In this section, we study Hom∆g
((H⊗3)′, Z2) which contains the harmonic

volume I. Let Z2 denote the field Z/2Z.
Birman and Hilden proved the following theorem.

Theorem 5.1 ([2], Theorem 8). The hyperelliptic mapping class group
∆g admits the following presentation;

• generators: σ1, σ2, . . . , σ2g+1

• relations:

(1) σnσm = σmσn, |n − m| ≥ 2,

(2) σnσn+1σn = σn+1σnσn+1, 1 ≤ n ≤ 2g,

(3) θ2g+2 = 1,

(4) (θκ)2 = 1,

(5) σ1(θκ) = (θκ)σ1,

where θ = σ1σ2 · · ·σ2g+1 and κ = σ2g+1σ2g · · ·σ1.

Remark 5.2. The generator σi, 1 ≤ i ≤ 2g + 1, is equal to the Dehn
twist along the simple closed curve li in C in Figure 3.

Let HZ2 denote H1(C; Z2). A homomorphism ρ : ∆g → Sp(2g; Z2) is given
by the action on the homology group HZ2 . So HZ2 is a Z2∆g-module, where
Z2∆g is the group ring of ∆g. We consider ei, aj and bj for 0 ≤ i ≤ 2g + 1
and 1 ≤ j ≤ g in Section 3.1. The first homology classes of aj and bj are
denoted by xj and yj ∈ HZ2 respectively. Let B denote the branch locus
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Figure 3.

{pi}i=0,1,...,2g+1. We deform ei, denoted by e′i, to avoid Pi in a sufficiently
small neighborhood of Pi so that π(e′i) surrounds pi and {π(e′i)}i=0,1,...,2g+1 is
a generator of H1(CP 1 −B; Z2). Since the coefficients are in Z2, the homology
class of e′i is independent of the choice of e′i. See Figure 4.

π(Q0) = π(Q1) pi

π(e′i)

CP 1

Figure 4.

Arnol’d [1] proved the following. A linear map ν : HZ2 → H1(CP 1−B; Z2)
defined by ν(xi) = π(e′2i−1) + π(e′2i), ν(yi) = π(e′0) + π(e′1) + · · · + π(e′2i−1) is
injective. This map gives the short exact sequence

0 �� HZ2

ν �� H1(CP 1 − B; Z2) �� Z2
�� 0.

Here the map H1(CP 1 −B; Z2) → Z2 is the augmentation map π(e′i) �→ 1. Let
fi denote π(e′0) + π(e′i) for i = 1, 2, . . . , 2g + 1. Using ν, we identify HZ2 with
the subgroup of H1(CP 1 − B; Z2) generated by f1, f2, . . . , f2g+1. It is clear
that f1 + f2 + · · · + f2g+1 = 0. A surjective homomorphism µ : ∆g → S2g+2

is defined by µ(σj) = (j − 1, j). Let ρ′ : S2g+2 → Sp(2g; Z2) be the homo-
morphism induced by the action on H1(CP 1 − B; Z2) given by the permuting
π(e′0), π(e′1), . . . , π(e′2g+1). Arnol’d [1] obtained the commutative diagram

HZ2

ρ(σj) ��

ν

��

HZ2

ν

��
H1(CP 1 − B; Z2)

ρ′(j−1,j) �� H1(CP 1 − B; Z2).
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We identify the actions of σ1, σ2, . . . , σ2g and σ2g+1 on HZ2 with those of the
transpositions (0, 1), (1, 2), . . . , (2g−1, 2g) and (2g, 2g+1) on H1(CP 1−B; Z2)
respectively.

We denote by ∆′
g = {σ ∈ ∆g; σ(P0) = P0} and ∆′′

g = {σ ∈ ∆g; σ(P0) =
P0 and σ(P1) = P1}. We have µ(∆′

g) = S2g+1 and µ(∆′′
g ) = S2g, where

S2g+1 = {σ ∈ S2g+2; σ(π(e′0)) = π(e′0)} and S2g = {σ ∈ S2g+2; σ(π(e′0)) =
π(e′0) and σ(π(e′1)) = π(e′1)}. As in the proof of Theorem 4.1, the pointed
harmonic volume IP0 is an element of Hom∆′

g
(K ⊗ H, Z2). For a Z∆′

g-module
M , we denote M∗ = HomZ(M, Z2), which is naturally regarded as a Z2∆′

g-
module. Clearly we have H∗ = H∗

Z2
.

The homomorphism of short exact sequences

0 �� K ⊗ H �� H⊗3
( , )⊗id �� H �� 0

0 �� (H⊗3)′ ��

��

H⊗3
p ��

��

H⊕3 ��

��

0,

induces the homomorphism of long exact sequences,

(5.1)
H0(S2g+1; H∗)−−−−→ H0(S2g+1; (H⊗3)∗)−→ H0(S2g+1; (K ⊗ H)∗)−−→ H1(S2g+1;H∗)

�




�




�




�




H0(S2g+1; (H⊕3)∗)−→ H0(S2g+1; (H⊗3)∗)−→ H0(S2g+1; ((H⊗3)′)∗)−→H1(S2g+1; (H⊕3)∗).

Lemma 5.3. We have

H0(S2g+1; H∗) = 0.

Proof. We take ϕ ∈ H0(S2g+1; H∗). Since ϕ is S2g+1-equivariant, ϕ(f1) =
ϕ(f2) = · · · = ϕ(f2g+1). Using f1 + f2 + · · · + f2g+1 = 0, we have 0 =
ϕ(f1+f2+· · ·+f2g+1) = (2g+1)ϕ(f1) = ϕ(f1). From ϕ(fi) = 0, 1 ≤ i ≤ 2g+1,
H0(S2g+1; H∗) = 0 follows.

We recall the notion of induced and co-induced modules. Let IndS2g+1
S2g

Z2

denote the induced module Z2S2g+1⊗Z2S2g
Z2 and CoindS2g+1

S2g
Z2 the co-induced

module HomS2g
(Z2S2g+1, Z2). They are (2g + 1)-dimensional vector spaces

over Z2. We denote by ri = (i, 1) ⊗ 1 ∈ IndS2g+1
S2g

Z2 for i = 1, 2, . . . , 2g + 1.

Then {ri}i=1,2,...,2g+1 is a basis of IndS2g+1
S2g

Z2. Since [S2g+1 : S2g] < ∞,

we have a natural isomorphism λ : CoindS2g+1
S2g

Z2 → IndS2g+1
S2g

Z2 given by

λ(s) =
∑i=2g+1

i=1 (i, 1) ⊗ s((i, 1)) for s ∈ CoindS2g+1
S2g

Z2. Let si be the element of
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CoindS2g+1
S2g

Z2 such that λ(si) = ri. We have a natural exact sequence

(5.2) 0 �� HZ2

φ �� CoindS2g+1
S2g

Z2
χ �� Z2

�� 0 ,

where φ(n2f2 +n3f3 + · · ·+n2g+1f2g+1) = n2s1 +n3s2 + · · ·+n2g+1s2g +(n2 +
n3 + · · · + n2g+1)s2g+1 and χ is the augmentation map.

A transfer map is defined as follows. The canonical surjection τ of S2g+1-
modules IndS2g+1

S2g
Z2 → Z2 is defined by τ (σ⊗a) = σa = a. By Shapiro’s lemma,

we obtain Hi(S2g+1; CoindS2g+1
S2g

Z2) = Hi(S2g; Z2) for any i. A transfer map

corS2g+1
S2g

: Hi(S2g; Z2) → Hi(S2g+1; Z2) is induced by Shapiro’s lemma and the
following composite mapping

CoindS2g+1
S2g

Z2
λ �� IndS2g+1

S2g
Z2

τ �� Z2.

It immediately follows that χ is equal to τ ◦ λ.

Lemma 5.4. We have

H1(S2g+1; H∗) = 0.

Proof. The exact sequence (5.2) induces the exact sequence

0 �� H0(S2g+1; HZ2)
φ∗

�� H0(S2g+1; CoindS2g+1
S2g

Z2)
χ∗

�� H0(S2g+1; Z2)

�� H1(S2g+1; HZ2)
φ∗

�� H1(S2g+1; CoindS2g+1
S2g

Z2)
χ∗

�� H1(S2g+1; Z2).

By Shapiro’s lemma, we obtain Hi(S2g+1; CoindS2g+1
S2g

Z2) = Hi(S2g; Z2) for
i = 0, 1. We have H0(S2g+1; Z2) = Z2 and H0(S2g; Z2) = Z2, since the actions
of S2g+1 and S2g on Z2 are trivial. Let signi be the signature map Si → Z2 for
i = 2g, 2g + 1. Since 2g, 2g + 1 ≥ 6 > 5, we obtain H1(Si; Z2) = Z2 and signi

generates H1(Si; Z2) for i = 2g, 2g + 1. In order to prove H1(S2g+1; H∗) =
H1(S2g+1; HZ2) = 0, it is enough to prove that χ∗ is an isomorphism. Let 1i

denote the nontrivial element of H0(Si; Z2) for i = 2g, 2g + 1. Since χ = τ ◦ λ,
we have χ∗ = corS2g+1

S2g
: H0(S2g; Z2) → H0(S2g+1; Z2). Lemma 5.3 gives

H0(S2g+1; HZ2) = H0(S2g+1; H∗) = 0. Then we obtain corS2g+1
S2g

(12g) = 12g+1

and the isomorphism χ∗ : H0(S2g; Z2) → H0(S2g+1; Z2). We apply the transfer
formula

corS2g+1
S2g

(resS2g+1
S2g

(sign2g) ∪ 12g) = sign2g ∪ corS2g+1
S2g

(12g)
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to sign2g and 12g. So corS2g+1
S2g

resS2g+1
S2g

(sign2g) = sign2g. Since χ∗ is surjective,

we have the isomorphism χ∗ = corS2g+1
S2g

: H1(S2g; Z2) → H1(S2g+1; Z2). Then
H1(S2g+1; H∗) = H1(S2g+1; HZ2) = 0.

Using the diagram (5.1), Lemma 5.3 and Lemma 5.4, we get the homo-
morphism of the commutative diagram

H0(S2g+1; (H⊗3)∗) �� H0(S2g+1; (K ⊗ H)∗)

H0(S2g+1; (H⊗3)∗) ��

��

H0(S2g+1; ((H⊗3)′)∗)).

��

The two horizontal and one left-hand vertical homomorphisms are isomor-
phisms. Then the other right-hand vertical homomorphism is an isomorphism.
We have H0(S2g+1; (H⊗3)∗) = H0(S2g+1; ((H⊗3)′)∗)) = H0(S2g+1; (K ⊗H)∗).

Lemma 5.5.
H0(S2g+1; (H⊗3)∗) = Z2.

Moreover, the unique nontrivial element ψ ∈ H0(S2g+1; (H⊗3)∗) is an S2g+1-
homomorphism H⊗3 → Z2 defined by

ψ(fi ⊗ fj ⊗ fk) =


0 for i �= j �= k �= i,

0 for i = j = k,

1 otherwise.

Proof. Let ψ be an element of H0(S2g+1; (H⊗3)∗). Since ψ is S2g+1-
equivariant, there exist a, b1, b2, b3 and c ∈ Z2 such that ψ(fi ⊗ fi ⊗ fi) = a,
ψ(fj ⊗ fi ⊗ fi) = b1, ψ(fi ⊗ fj ⊗ fi) = b2, ψ(fi ⊗ fi ⊗ fj) = b3 for i �= j

and ψ(fi ⊗ fj ⊗ fk) = c for i �= j �= k �= i. The dimension of Z2-vector space
H0(S2g+1; (H⊗3)∗) is not greater than 1. Since I(xi⊗xi⊗yi−xi⊗xi+1⊗yi+1−
xi+1⊗xi⊗yi+1) ≡ 1/2, IP0 ∈ H0(∆′

g; ((H⊗3)′)∗)) = H0(S2g+1; ((H⊗3)∗) is not
0. We obtain H0(S2g+1; ((H⊗3)′)∗)) �= 0. Hence we have H0(S2g+1; (H⊗3)∗) =
Z2. It is clear that the generator of H0(S2g+1; (H⊗3)∗) is ψ as above.

Corollary 5.6.
H0(S2g+2; (H⊗3)∗) = 0.

Proof. Take ψ ∈ H0(S2g+1; (H⊗3)∗) in the proof of Lemma 5.5. Let b

denote b1 = b2 = b3. Using ρ(σ1)(fi) = f1 + fi for i = 2, 3, . . . , 2g + 1, we
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have 0 = ψ(f2 ⊗ f3 ⊗ f4) = ψ(ρ(σ1)(f2 ⊗ f3 ⊗ f4)) = 3b = b. The equation
a = b1 = b2 = b3 = c = 0 gives H0(S2g+2; (H⊗3)∗) = 0.

Using the diagram (5.1), Lemma 5.3, Lemma 5.4 and Lemma 5.5, we have

Proposition 5.7.

H0(∆′
g; (K ⊗ H)∗) = H0(∆′

g; ((H
⊗3)′)∗) = Z2.

This gives us the following theorem.

Theorem 5.8.
H0(∆g; ((H⊗3)′)∗) = Z2.

Proof. We have a natural injection H0(∆g; ((H⊗3)′)∗) ↪→ H0(∆′
g;

((H⊗3)′)∗). Using Proposition 5.7, the dimension of Z2-vector space H0(∆g;
((H⊗3)′)∗) is not greater than 1. As in the proof of Lemma 5.5, the harmonic
volume I ∈ H0(∆g; ((H⊗3)′)∗) is not 0. Hence H0(∆g; ((H⊗3)′)∗) = Z2.

Proof (The second proof of Theorem 4.1). Using Theorem 5.8, Propo-
sition 5.7 and Lemma 5.5, we identify H0(S2g+1; (H⊗3)∗) with H0(∆g;
((H⊗3)′)∗), whose generator is regarded as ψ in Lemma 5.5. We substitute{

xi = f2i−1 + f2i,

yi = f1 + f2 + · · · + f2i−1,

for elements of the type (1) and (2) in Section 2. Then the direct computation
of ψ gives us Theorem 4.1.

The harmonic volume I gives a geometric interpretation of a theorem es-
tablished by Tanaka.

Theorem 5.9 (Tanaka [10], Theorem 1.1). If g ≥ 2, then

H1(∆g; H) = Z2.

Tanaka obtained the generator of H1(∆g; H), using the relations of ∆g

in Theorem 5.1. Since ∆g acts transitively on H, H0(∆g, H) = 0. By the
universal coefficient theorem,

H1(∆g; H∗) = HomZ(H1(∆g; H); Z2) = Z2.

We have H1(∆g; H∗) = Z2.
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By Corollary 5.6, it is clear that H0(∆g; (H⊗3)∗) = 0. The short exact
sequence

0 �� (H⊗3)′ �� H⊗3
p �� H⊕3 �� 0

gives us a connected homomorphism δ : H0(∆g; ((H⊗3)′)∗) → H1(∆g; (H⊕3)∗)
and it is injective. Since I is S3-invariant, we may consider δI = (δI|H , δI|H ,

δI|H) ∈ H1(∆g; H∗)⊕3. Here δI|H is the restriction H0(∆g; ((H⊗3)′)∗) →
H1(∆g; H∗).

Proposition 5.10. The generator of H1(∆g; H∗) is δI|H .

Proof. If δI|H is not the generator of H1(∆g; H∗), we have δI = 0 ∈
H1(∆g; (H⊕3)∗). This contradicts that δ is injective.
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[2] Birman, Joan, S., Hilden, Hugh, M., On the mapping class groups of closed surfaces as
covering spaces, Advances in the theory of Riemann surfaces (Proc. Conf., Stony Brook,
N.Y., 1969), pp. 81-115. Ann. of Math. Stud., No. 66.

[3] Chen, Kuo Tsai, Algebras of iterated path integrals and fundamental groups, Trans.
Amer. Math. Soc., 156 (1971), 359-379.

[4] Gunning, R. C., Quadratic periods of hyperelliptic abelian integrals, Problems in anal-
ysis (Papers dedicated to Salomon Bochner, 1969), pp. 239-247. Princeton Univ. Press,
Princeton, N. J., 1970.

[5] Harris, Bruno, Harmonic volumes, Acta Math., 150 (1983), 91-123.
[6] , A triple product for automorphic forms, Quart. J. Math. Oxford Ser., (2) 34

(1983), 67-75.
[7] , Homological versus algebraic equivalence in a Jacobian, Proc. Natl. Acad. Sci.

U.S.A., 80 (1983), 1157-1158.
[8] Pulte, Michael, J., The fundamental group of a Riemann surface: mixed Hodge struc-

tures and algebraic cycles, Duke Math. J., 57 (1988), 721-760.
[9] Schindler, Bernhard, Period matrices of hyperelliptic curves, Manuscripta Math., 78

(1993), 369-380.
[10] Tanaka, A., The first homology group of the hyperelliptic mapping class group with

twisted coefficients, Topology Appl., 115 (2001), 19-42.


