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Abstract

Let s1 ← L+ → s
2 be the KC-versions of the moment maps associated to the

dual pair (U(p, q), U(r, s)) and N (s1) ← N (L+) → N (s2) their restrictions to the
nilpotent varieties. In this paper, we first describe the nilpotent orbit correspondence
via the moment maps explicitly. Second, under the condition min{p, q} ≥ max{r, s},
we show that there are open subvariety L′

+ (resp. (s2)′) of L+ (resp. s2) and locally
closed subvariety (s1)′ of s1 such that the restrictions of the moment maps N ((s1)′) ←
N (L′

+) → N ((s2)′) give bijections of nilpotent orbits. Furthermore, we show that the
bijections preserve the closure relation and the equivalence class of singularities.

§0. Introduction

In [KrP1], H. Kraft and C. Procesi made a comparison of singularities
between closures of nilpotent orbits in gl(n, C) and those in gl(m, C) (n−m >

0), that is:

Theorem ([KrP1, Proposition 3.1]). Let η and σ be Young diagrams
with n boxes which have (non-empty) n − m rows. Let η′ and σ′ be the Young
diagrams with m boxes which we obtain from η and σ by erasing the coincident
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724 Takuya Ohta

first column respectively. We write Cη and Cσ (resp. Cη′ and Cσ′) the nilpotent
orbits in gl(n, C) (resp. gl(m, C)) corresponding to η and σ (resp. η′ and σ′)
respectively. Suppose that Cη ⊃ Cσ. Then Cη′ ⊃ Cσ′ and we have

Sing(Cη, Cσ) = Sing(Cη′ , Cσ′)

(for the definition of smooth equivalence class Sing( , ), see Definition 2.14).

On the singularities of nilpotent orbits, they proved a similar correspon-
dence between o(n, C) and sp(m, C) in [KrP2].

On the other hand, in [O1] and [O2], the author showed that the simi-
lar correspondence of singularities between closures of nilpotent orbits in the
following pairs of complex symmetric pairs:

((gl(n, C), o(n, C)) , (gl(m, C), o(m, C))) [O1],

((gl(2n, C), sp(2n, C)) , (gl(2m, C), sp(2m, C))) [O1],

((gl(p + q, C), gl(p, C) + gl(q, C))) , ((gl(r + s, C), gl(r, C) + gl(s, C))) [O2],

((o(p + q, C), o(p, C) + o(q, C)) , (sp(2n, C), gl(n, C))) [O2],

((sp(p + q, C), sp(p, C) + sp(q, C)) , (o(2n, C), gl(n, C))) [O2].

Recently, we have come to understand that the quotient maps which give these
correspondences, are the moment maps associated to the dual pairs correspond-
ing to the pairs of complex Lie algebras (cases of complex dual pairs) and those
of symmetric pairs (cases of real dual pairs).

For the moment maps g1 ρ← L
π→ g2 associated to the complex dual pairs

(G1, G2) ↪→ Sp(L) ((G1, G2) = (GL(n, C), GL(m, C)), (O(n, C), Sp(m, C)),
(Sp(n, C), O(m, C))), by using the construction of [KrP1] and [KrP2],
A. Daszkiewicz, W. Kraśkiewicz and T. Przebinda ([DKP]) showed that for
any nilpotent G2-orbit O2 in g2 = Lie(G2), ρ(π−1(O2)) is a closure of a single
nilpotent G1-orbit O1.

For certain real dual pairs (G1
R
, G2

R
) in the stable range with G2

R
the smaller

member, K. Nishiyama noticed that an analogue of the above correspondence
O2 �→ O1 is injective (he call this a θ-lifting of nilpotent orbits) and studied
the relation of the structure of the ring of regular functions on O1 and that on
O2 via the moment maps ([N1], [N2]).

It is known that, for some representations of G2
R

corresponding to small
nilpotent orbits, Howe’s correspondence of representations and θ-lifting of nilpo-
tent orbits are compatible via taking associated varieties(cf., [N3], [NOT], [NZ],
[Y]). The relationship of the restriction of a representation to a reductive sub-
group and the projection of the associated variety to the Lie subalgebra, was
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studied earlier by T. Kobayashi in [Ko1] and [Ko2], and the similar results also
had been obtained as a consequence.

Let ( , )LR
be a non-degenerate symplectic form on a real vector space

LR and (G1
R
, G2

R
) = (U(p, q), U(r, s)) (dimR LR = 2(p + q)(r + s)) be a dual

pair contained in the real symplectic group Sp(LR) defined by ( , )LR
. Let

(Gj , Kj)(j = 1, 2) be the complex symmetric pair corresponding to the real
group Gj

R
and Lie(Gj) = gj = kj + sj a complexfied Cartan decomposition

corresponding to Gj
R
. For z ∈ LR, we define a linear form µz ∈ sp(LR)∗ by

µz(x) =
1
2
(xz, z)LR

(x ∈ sp(LR)).

By restricting to g
j
R
, we obtain maps

LR → (gj
R
)∗, z �→ µz|gj

R

(j = 1, 2).

Via the usual identification (gj
R
)∗ � g

j
R
, we obtain maps

g
1
R

ρ← LR

π→ g
2
R,

which we call the moment maps associated to the dual pair (G1
R
, G2

R
) ↪→ Sp(LR).

By the complexification, we obtain complex moment maps

g
1 ρ← L

π→ g
2.

By restricting to a suitable maximally totally isotropic subspace L+, we obtain
K1 × K2-equivariant maps

s
1 ρ← L+

π→ s
2.

For the simplicity, we also call these restrictions ‘‘moment maps’’ associ-
ated to the dual pair (G1

R
, G2

R
) ↪→ Sp(LR). In this paper, we show that these

moment maps are obtained by a Z4-gradation of gl(p + q + r + s, C), and we
consider the nilpotent orbits correspondence among s1, L+, s2 via these maps
and genalalization of the θ-lifting of nilpotent orbits.

In §1, we describe the classification of nilpotent K1 ×K2-orbits in L+ and
their closure relation due to Kempken [Ke].

In §2, we first give the explicit description of the nilpotent orbit correspon-
dence

N (s1)/K1 ← N (L+)/K1 × K2 → N (s2)/K2

induced by ρ and π. The main theorems of this paper are the following:
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Theorem 2.9. Suppose that min{p, q} ≥ max{r, s} and, p − r > 0 or
q − s > 0. There exists an open subvariety L′

+ with the following properties:
(s1)′ := ρ(L′

+) is a locally closed subvariety of s1 and (s2)′ := π(L′
+) is an open

subvariety of s2. Then we have the following:
(i) ρ|N (L′

+) : N (L′
+) → N ((s1)′) is locally trivial in the classical topology with

typical fibre isomorphic to K2.
(ii) π|N (L′

+) : N (L′
+) → N ((s2)′) is smooth and each fibre of π|N (L′

+) is a single
K1-orbit.
(iii) The induced maps

N ((s1)′)/K1 ← N (L′
+)/K1 × K2 → N ((s2)′)/K2

are bijections.
(iv) The bijections in (iii) preserve the closure relation. That is, for Oj ∈
N (L′

+)/K1 × K2 (j = 1, 2) and the corresponding orbits O1
j = ρ(Oj) ∈

N ((s1)′)/K1, O2
j = π(Oj) ∈ N ((s2)′)/K2, we have

O1
1 ⊃ O1

2 ⇐⇒ O1 ⊃ O2 ⇐⇒ O2
1 ⊃ O2

2 .

Theorem 2.14. Under the assumption of Theorem 2.9, (iv), suppose
O1 ⊃ O2. Then we have

Sing(O1
1,O1

2) = Sing(O1,O2) = Sing(O2
1,O2

2).

Thus the correspondence

N ((s1)′)/K1 � N ((s2)′)/K2

obtained by the moment maps is considered as a good duality, which gives the
correspondence of nilpotent orbits of Kraft-Procesi type simultaneously.

If (G1
R
, G2

R
) = (U(p, q), U(r, s)) is in the stable range (i.e. min{p, q} ≥

r + s), we see N ((s2)′) = N (s2). Hence, via the bijection of Theorem 2.9, (iii),
each nilpotent orbit in s2 corresponds to some nilpotent orbit in N ((s1)′) which
coincides with Nishiyama’s θ-lifting. Thus, in our general setting, the bijection
N ((s2)′)/K2 � N ((s1)′)/K1 given by Theorem 2.9, (iii), is considered as a
generalization of Nishiyama’s θ-lifting.

On the other hand, if C2 ∈ [N (s2)\N (s′2)]/K2, ρ(π−1(C2)) is not a closure
of a single K1-orbit in general (cf. Remark 2.15, (iii)) and hence the analogue
of the main result of [DKP] does not holds in our case. N (s′2)/K2 is considered
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as a domain on which a ‘‘good’’ correspondence

N ((s2)′)/K2 � N ((s1)′)/K1, O2 �→ O1 (ρ(π−1(O2)) = O1)

(generalization of θ − lifting)

is defined.
In §3, we explain the reason why the maps s1 ρ← L+

π→ s2 constructed
in §2 can be interpreted as the KC-version of the original real moment maps
g1

R

ρ← LR

π→ g2
R
.

Finally we mention the generalization of the correspondences

N ((s1)′)/K1 ← N (L′
+)/K1 × K2 → N ((s2)′)/K2.

These correspondences can be extended to the general orbit correspondences

(s1)′/K1 ← L′
+/K1 × K2 → (s2)′/K2

and the analogue of Theorem 2.9 and Theorem 2.14 also hold for these gener-
alizations. Furthermore these results also hold for all reductive dual pairs in
the real symplectic groups. These will be given in forthcoming paper ([O3]).

§1. Nilpotent Orbits of Zm-Graded Lie Algebras

To understand the nilpotent orbits correspondence via the moment maps,
we give a combinatorial description of the classification of nilpotent orbits of Θ-
representations in the spirit of ab-diagrams in [O1, O2]. With this combinatorial
description, we review the results by [Ke] on the closure relation of nilpotent
orbits in §1.

In §2, we shall use these results with m = 4(the order of Θ).

§1.1. Zm-graded Lie algebras

Let G be a complex reductive algebraic group with Lie algebra g and m a
positive integer. Let Θ : G → G be an automorphism of G such that Θm = id

and Θj 
= id (1 ≤ j < m). We write Θ : g → g for the induced automorphism.
We put ζ := e2πi/m,

G1 = {g ∈ G; Θ(g) = g} and gδ := {X ∈ g; Θ(X) = δX} (δ ∈ 〈ζ〉),

where 〈ζ〉 denotes the multiplicative group generated by ζ. Then g is decom-
posed as

g = ⊕δ∈〈ζ〉gδ
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and we obtain a Zm-graded Lie algebra. For each δ ∈ 〈ζ〉, the isotropy group
G1 acts on gδ by the adjoint action. In this paper, we call the group G1 a
Θ-group and the representation (G1 , gζ) of G1 on gζ a Θ-representation.

§1.2. Classification of nilpotent orbits of the Θ-representation
defined by an automorphism of a vector space

Let V be a finite dimensional complex vector space and S : V → V an
automorphism of V such that Sm = id and Sj 
= id (1 ≤ j < m), where
m is a positive integer. Put G = GL(V ) and g = gl(V ). Then S defines
an automorphism Θ : G → G, Θ(g) = SgS−1 (g ∈ G). As before we write
ζ := e2πi/m. Then we obtain a Θ-representation (G1 , gζ). For δ ∈ 〈ζ〉, we
write Vδ := {v ∈ V ; Sv = δv}. Then V decomposed as

V = V1 ⊕ Vζ ⊕ Vζ2 ⊕ · · · ⊕ Vζm−1

and gζ can be written as

gζ = {X ∈ g; XVδ ⊂ Vζδ (δ ∈ 〈ζ〉)}.

We write N (gζ) the set of nilpotent elements of g contained in gζ . To describe
the G1-orbits in N (gζ), we introduce the following notion.

Definition 1.1. (i) For a Young diagram η for which an element of 〈ζ〉
is placed in each box, we say η a 〈ζ〉-signed diagram (called ‘‘word’’ in [Ke], a
generalization of ‘‘ab-diagram’’ in [O1, O2]) if, for each box placed δ ∈ 〈ζ〉, the
right adjacent box is placed ζδ. e.g.

η =
i i2 i3 1 i i2

1 i i2 i3 1 i

i3 1 i i2
in case m = 4.

(ii) For a 〈ζ〉-signed diagram η and δ ∈ 〈ζ〉, we denote by nδ(η) the number
of δ’s which occur in η. We write D(n0, n1, n2, . . . nm−1) the set of 〈ζ〉-signed
diagrams η such that nζj (η) = nj (0 ≤ j ≤ m − 1).

(iii) For a 〈ζ〉-signed diagram η, we write η′ the 〈ζ〉-signed diagram which we
obtain from η by erasing the first column. We define η(j) by η(j) = (η(j−1))′.
e.g. for the 〈i〉-signed diagram η of (i),

η′ =
i2 i3 1 i i2

i i2 i3 1 i

1 i i2
and η(2) =

i3 1 i i2

i2 i3 1 i

i i2
.

Write nj := dimVζj (0 ≤ j ≤ m − 1). Then the G1-orbits in N (gζ) are
classified by D(n0, n1, n2, . . . , nm−1) as follows:
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Proposition 1.2 ([Ke]). (i) For any x ∈ N (gζ), there exists a basis
{vk

j ; 1 ≤ k ≤ p, 0 ≤ j ≤ rk} of V contained in V1 ∪ Vζ ∪ Vζ2 ∪ . . . ∪ Vζm−1 such
that

vk
0

x→ vk
1

x→ vk
2

x→ . . .
x→ vk

rk

x→ 0,

i.e., xvk
j = vk

j+1 (0 ≤ j ≤ rk − 1) and xvk
rk

= 0.

(ii) For 1 ≤ k ≤ p, if vk
0 ∈ Vδk

(δk ∈ 〈ζ〉), we write

ηk := δk ζδk ζ2δk . . . ζrkδk .

Thus we obtain a 〈ζ〉-signed diagram η ∈ D(n0, n1, n2, . . . , nm−1) with p rows,
whose rows are η1, η2, . . . , ηp.

η = η1 + η2 + · · · + ηp =

η1

η2

...
ηp

.

Then η is independent of choice of the basis {vk
j }. We write η = ηx and call

ηx the 〈ζ〉-signed diagram of x.

(iii) The correspondence

N (gζ) → D(n0, n1, n2, . . . , nm−1), x �→ ηx

of (ii) defines a bijection

N (gζ)/G1 � D(n0, n1, n2, . . . nm−1).

For the reader’s convenience, we give a proof (which parallel to [O2]).

Proof of Proposition 1.2. (i) For x ∈ N (gζ) \ {0}, as in the proof of
[[KrP2], Lemma 7.3], we can take h ∈ g1, y ∈ gζ−1 such that (h, x, y) is an
S-triple;

[h, x] = 2x, [h, y] = −2y, [x, y] = h.

Since Sy = ζ−1yS, K := ker(y : V → V ) is decomposed as

K = ⊕δ∈〈ζ〉(K ∩ Vδ).

Since each K ∩ Vδ is h-stable, we can take a basis {vk
0 ; 1 ≤ k ≤ p} of K

consisting of h-weight vectors. Define rk by xrkvk
0 
= 0 and xrk+1vk

0 = 0 and
write vk

j := xjvk
0 (0 ≤ j ≤ rk). We obtain a basis {vk

j ; 1 ≤ k ≤ p, 0 ≤ j ≤ rk}
of (i).
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(ii) Since xqV = C{vk
j ; 1 ≤ k ≤ p, q ≤ j} (q ≥ 0), we have

nδ(η(q)) = �{vk
j ; 1 ≤ k ≤ p, q ≤ j, vk

j ∈ Vδ} = dim(xqV ∩ Vδ)

for δ ∈ 〈ζ〉 and q ≥ 0. Hence η is uniquely determined by x.
(iii) Suppose {vk

j } is a basis of V corresponding to x ∈ N (gζ). We put x′ =
Ad(g)x (g ∈ G1). Then clearly {gvk

j } is a basis of V corresponding to x′ and
hence ηx = ηx′ . Therefore the map N (gζ)/G1 → D(n0, n1, n2, . . . , nm−1) is
defined.

For x, x′ ∈ N (gζ) such that ηx = ηx′ , take a basis {vk
j } (resp. {uk

j } ) of
V corresponding to x (resp. x′) by (i). Here we can assume that vk

0 and uk
0

contained in the same Vδ for each k. Defined g ∈ GL(V ) by gvk
j = uk

j . Since
gVδ = Vδ for each δ ∈ 〈ζ〉, we have g ∈ G1. We easily see that x′ = Ad(g)x
and hence the map N (gζ)/G1 → D(n0, n1, n2, . . . , nm−1) is injective. The
surjectivity of this map is easily shown.

§1.3. On the closure relation

Let us define an ordering of 〈ζ〉-signed diagrams as follows.

Definition 1.3. For 〈ζ〉-signed diagrams η, µ ∈ D(n0, n1, n2, . . . , nm−1),
we write η ≥ µ if nδ(η(j)) ≥ nδ(µ(j)) for all δ ∈ 〈ζ〉 and j ≥ 0.

For the closure relation, we refer to [Ke] for the proof.

Theorem 1.4. For two nilpotent orbits Oj ∈ N (gζ)/G1 (j = 1, 2), we
denote by ηj ∈ D(n0, n1, n2, . . . , nm−1) the 〈ζ〉-signed diagrams corresponding
to Oj. Then O2 is contained in the Zariski closure O1 of O1 if and only if
η1 ≥ η2:

O1 ⊃ O2 ⇔ η1 ≥ η2

§2. Geometry of the Moment Maps Associated to the Dual Pairs
(U(p, q), U(r, s))

§2.1. The moment maps

Let V be a finite dimensional complex vector space and sV : V → V a
linear involution. We call such a pair (V, sV ) a vector space with involution.
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Define an involution θV of GL(V ) by θV (g) = sV gsV (g ∈ GL(V )) and put

Va := {v ∈ V ; sV v = v}, Vb := {v ∈ V ; sV v = −v},
na := dim Va, nb := dim Vb,

K(V ) := GL(V )1 = {g ∈ GL(V ); θV (g) = g} � GL(Va) × GL(Vb),

k(V ) := gl(V )1 = {X ∈ gl(V ); θV (X) = X}
s(V ) := gl(V )−1 = {X ∈ gl(V ); θV (X) = −X}.

Thus we obtain a symmetric pair (GL(V ), K(V )) which corresponds to the real
group U(na, nb).

By (1.2), nilpotent K(V )-orbits in s(V ) are classified by 〈−1〉-signed dia-
grams:

N (s(V ))/K(V ) � D(na, nb).

Via the identification a = 1 and b = −1, we consider D(na, nb) as the set of
ab-diagrams with na a’s and nb b’s.

Let (U, sU ) be another vector space with an involution sU . Define θU ,
Ua, Ub, K(U), k(U) and s(U) as above and put ma = dimUa, mb = dimUb.
Then (GL(U), K(U)) is the symmetric pair corresponding to the real group
U(ma, mb).

For (V, sV ) and (U, sU ), we consider the vector space

L := HomC(U, V ) ⊕ HomC(V, U)

on which GL(V ) × GL(U) acts by

(g, h)(P, Q) = (gPh−1, hQg−1) ((g, h) ∈ GL(V ) × GL(U), (P, Q) ∈ L).

We also consider a subspace

L+ := {(P, Q) ∈ L; sV PsU = P, sUQsV = −Q}

on which K(V )×K(U) acts by the above action. We define GL(V )×GL(U)-
equivariant morphisms

gl(V )
ρ← L

π→ gl(U), ρ(P, Q) = PQ, π(P, Q) = QP ((P, Q) ∈ L).

Then the restrictions of ρ and π to L+ defines K(V )×K(U)-equivariant mor-
phisms

s(V )
ρ← L+

π→ s(U).

These morphisms were treated in [[O2], §3] and certain duality between nilpo-
tent orbits in s(V ) and s(U) was shown there. In §3, we explain that these
maps can be interpreted as the moment maps.
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In §3, we will construct the following:

(a) A non-degenerate symplectic form ( , )L on L.

(b) A real vector subspace LR of L such that dimR LR = dimL and ( , )L|LR

is real valued and non-degenerate.

(c) A real form GL(V )R � U(na, nb) (resp. GL(U)R � U(ma, mb)) of GL(V )
(resp. GL(U)) with Cartan involution θV |GL(V )R

(resp. θU |GL(U)R
).

We will show the following:

Proposition 2.1. (i) The commuting actions of GL(V )R and GL(U)R

on L stabilize LR and preserve the symplectic form ( , )L;

(GL(V )R, GL(U)R) ↪→ Sp(LR).

(ii) −iρ(LR) ⊂ gl(V )R = Lie(GL(V )R) and iπ(LR) ⊂ gl(U)R = Lie(GL(U)R).

(iii) By the identification gl(V )R � gl(V )∗
R

= HomR(gl(V )R, R) (resp. gl(U)R �
gl(U)∗

R
) via the trace form on V (resp. U), −iρ|LR

: LR → gl(V )∗
R

(resp.
iπ|LR

: LR → gl(U)∗
R
) coincides with the moment map with respect to the action

of GL(V )R (resp. GL(U)R) on the symplectic manifold (LR, ( , )L|LR
).

(iv) L+ is a maximally totally isotropic subspace of (L, ( , )L).

Then
gl(V )R

−iρ|L
R← LR

iπ|L
R→ gl(U)R

are moment maps and
gl(V )

−iρ← L
iπ→ gl(U)

are the complexification. Since

s(V )
−iρ|L+← L+

iπ|L+→ s(U)

are the restrictions to the maximally totally isotropic subspace L+ of the com-
plexified moment maps, we may call ρ|L+ and π|L+ the moment maps.

§2.2. Geometry of moment maps

Let (V, sV ) and (U, sU ) be as in (2.1). We put W := V ⊕U , G := GL(W ),
g = gl(W ) and define a linear automorphism S : W → W by

S =

(
sV 0
0 −isU

)
.
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S defines an automorphism

Θ : G → G, Θ(g) = SgS−1 (g ∈ G)

of order 4 and we obtain a Θ-representation (G1, gi). Clearly we have

G1 =

{(
g 0
0 h

)
; g ∈ K(V ), h ∈ K(U)

}
� K(V ) × K(U).

Since

Θ

(
A B

C D

)
=

(
sV AsV isV BsU

−isUCsV sUDsU

)
,

we have

gi =

{(
0 P

Q 0

)
; P ∈ HomC(U, V ), Q ∈ HomC(V, U),

sV PsU = P, sUQsV = −Q

}
� L+.

It is easily verified that the isomorphism

L+ � gi, (P, Q) �→
(

0 P

Q 0

)
is G1 = K(V ) × K(U)-equivariant.

Remark 2.2. (i) Since Va = W1, Ub = Wi, Vb = W−1, Ua = W−i and

gi = {X ∈ End(W ); XWδ ⊂ Wiδ (δ ∈ 〈i〉)},

we can see gi as the set of quadruples of linear maps Wδ → Wiδ (δ ∈ 〈i〉);

gi =



Qa

Va → Ub

Pa ↑ ↓ Pb

Ua ← Vb

Qb


.

(ii) For X =

(
0 P

Q 0

)
∈ gi, since

X2 =

(
PQ 0
0 QP

)
=

(
ρ(X) 0

0 π(X)

)
,
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we can see that
ρ(X) = X2|V and π(X) = X2|U .

By (1.2), we have the bijections

N (s(V ))/K(V ) � D(na, nb), Cη ↔ η

N (s(U))/K(U) � D(ma, mb), Cσ ↔ σ

N (gi)/G1 = N (gi)/K(V ) × K(U) � D(na, mb, nb, ma), Oµ ↔ µ,

where we consider D(na, nb) and D(ma, mb) as the sets of ab-diagrams by the
identification a = 1 and b = −1.

It is easy to see that the image ρ(Oµ) (resp. π(Oµ)) of Oµ ∈ N (gi)/K(V )×
K(U) is a nilpotent K(V )-orbit (resp. K(U)-orbit) in s(V ) (resp. s(U)). We
define ab-diagrams ρ(µ) ∈ D(na, nb) and π(µ) ∈ D(ma, mb) by

ρ(Oµ) = Cρ(µ) and π(Oµ) = Cπ(µ).

Then ρ(µ) and π(µ) are given as follows:

Proposition 2.3. For a 〈i〉-signed diagram µ ∈ D(na, mb, nb, ma), ρ(µ)
is the ab-diagram which we obtain from µ by erasing ±i and replacing 1 and
−1 by a and b respectively. On the other hand, π(µ) is the ab-diagram which
we obtain from µ by erasing ±1 and replacing −i and i by a and b respectively.

Example. For

µ =
i −1 −i 1 i −1
1 i −1 −i 1 i

−i 1 i −1
∈ D(4, 5, 4, 3),

ρ(µ) =
b a b

a b a

a b

and π(µ) =
b a b

b a b

a b

.

Now we write da := na − ma and db := nb − mb. To obtain a good
duality between nilpotent orbits in s(V ) and those of s(U) via the moment
maps s(V )

ρ← gi
π→ s(U), from now on, we assume the following:

Assumption 2.4. (i) min{na, nb} ≥ max{ma, mb}, and

(ii) da > 0 or db > 0.
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Then we have the following:

Proposition 2.5 ([[O2], Proposition 3]). (i) π : gi → s(U) is surjective
and

ρ(gi) = {X ∈ s(V ); rk(X|Va
: Va → Vb) ≤ mb, rk(X|Vb

: Vb → Va) ≤ ma}.

(ii) π : gi → s(U) and ρ : gi → s(V ) are quotient maps under K(V ) and K(U)
respectively, that is

π∗(C[s(U)]) = C[gi]K(V ) and ρ∗(C[s(V )]) = C[gi]K(U).

Let us consider the following subsets g′i, s(V )′, s(U)′ of gi, s(V ), s(U)
respectively:

g
′
i :=

{(
0 P

Q 0

)
; rk(P ) and rk(Q) attain their maximum

}

=



Qa

Va → Ub

Pa ↑ ↓ Pb

Ua ← Vb

Qb

; Qa, Qb are surjective and Pa, Pb are injective


,

s(V )′ := {X ∈ s(V ); rk(X|Va
: Va → Vb) = mb, rk(X|Vb

: Vb → Va) = ma},
s(U)′ := {Y ∈ s(U); rk(Y |Ua

: Ua → Ub)

≥ mb − da, rk(Y |Ub
: Ub → Ua) ≥ ma − db}.

Then g′i (resp. s(U)′) is an open subvariety of gi (resp. s(U)) and s(V )′ is a
locally closed subvariety of s(V ) which is open in ρ(gi). We have the following:

Proposition 2.6 (cf. [[O2], Lemma 9]). (i) π(g′i) = s(U)′ and ρ(g′i) =
s(V )′.

(ii) The restriction ρ|g′
i

: g′i → s(V )′ is locally trivial in the classical topology
with typical fibre isomorphic to K(U).

(iii) π|g′
i
: g′i → s(U)′ is smooth.

Proof. (i) follows from elementary computation of linear algebra. The
proofs of (ii) and the smoothness of (iii) are similar to that of [[KrP1], Lemma
5.2].
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Remark 2.7. Let f : X → Y be a smooth morphism of complex varieties
of relative dimension r and f(x) = y (x ∈ X). Then some neighbourhoods (in
the classical topology) of x ∈ X and (y, 0) ∈ Y ×Cr are analytically isomorphic
(cf. [[KrP2], 12.2]).

Let us consider an ab-diagram

d =

a ↑
... da

a ↓
b ↑
... db

b ↓

with a single column, and subsets of signed-diagrams:

D(na, mb, nb, ma)′ := {µ ∈ D(na, mb, nb, ma); each row of

µ starts with ± 1 and ends with ± 1}
D(na, nb)′ := {η ∈ D(na, nb); first column of η coincides with d}

D(ma, mb)′ := {σ ∈ D(ma, mb); na(σ1) ≤ db, nb(σ1) ≤ da},

where σ1 denotes the first column of σ. For σ ∈ D(ma, mb), we easily see that
σ ∈ D(ma, mb)′ if and only if there exists η ∈ D(na, nb) such that η′ = σ

and the first column of η coincides with d. We write N (g′i) (resp. N (s(V )′),
N (s(U)′)) the set of nilpotent elements in g′i (resp. s(V )′, s(U)′). Then we
have the following

Lemma 2.8. (i) For a nilpotent orbit Oµ ∈ N (gi)/K(V ) × K(U) (µ ∈
D(na, mb, nb, ma)), Oµ ⊂ g′i if and only if µ ∈ D(na, mb, nb, ma)′;

N (g′i)/K(V ) × K(U) � D(na, mb, nb, ma)′.

(ii) For Cη ∈ N (s(V ))/K(V ) (η ∈ D(na, nb)), Cη ⊂ s(V )′ if and only if
η ∈ D(na, nb)′;

N (s(V )′)/K(V ) � D(na, nb)′.

(iii) For Cσ ∈ N (s(U))/K(U) (σ ∈ D(ma, mb)), Cσ ⊂ s(U)′ if and only if
σ ∈ D(ma, mb)′;

N (s(U)′)/K(U) � D(ma, mb)′.
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Proof. For

(P, Q) =


Qa

Va → Ub

Pa ↑ ↓ Pb

Ua ← Vb

Qb

 ∈ Oµ,

we see
Q is surjective ⇔ each row of µ starts with ± 1

and
P is injective ⇔ each row of µ ends with ± 1.

Hence (i) follows.
For η ∈ D(na, nb), we write η1 the first column of η. Then for X ∈ Cη,

since rk(X|Va
: Va → Vb) = nb(η′) and rk(X|Vb

: Vb → Va) = na(η′), we have

Cη ⊂ s(V )′

⇔ nb(η′) = mb, na(η′) = ma

⇔ na(η1) = na − ma = da, nb(η1) = nb − mb = db ⇔ η1 = d.

Hence (ii) follows.
For Y ∈ Cσ, since rk(Y |Ua

: Ua → Ub) = nb(σ′) and rk(Y |Ub
: Ub → Ua) =

na(σ′), we have na(σ1) = ma − na(σ′) and nb(σ1) = mb − nb(σ′). Then

Cσ ⊂ s(U)′

⇔ nb(σ′) ≥ mb − da and na(σ′) ≥ ma − db

⇔ na(σ1) ≤ db, nb(σ1) ≤ da

Hence (iii) follows.

Theorem 2.9. (i) ρ|N (g′
i)

: N (g′i) → N (s(V )′) is locally trivial in the
classical topology with typical fibre isomorphic to K(U).

(ii) π|N (g′
i)

: N (g′i) → N (s(U)′) is smooth.
(iii) There exists bijections

ρ π

N (s(V )′)/K(V ) ←̃−N (g′i)/K(V ) × K(U) −̃→N (s(U)′)/K(U)
↓ � ρ ↓ � π ↓ �

D(na, nb)′ ←̃− D(na, mb, nb, ma)′ −̃→ D(ma, mb)′

.
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(iv) The bijections in the first row of (iii) preserve the closure relation. That is,

for Oµj
∈ N (g′i)/K(V )×K(U) (j = 1, 2) and the corresponding orbits Cρ(µj) =

ρ(Oµj
) ∈ N (s(V )′)/K(V ), Cπ(µj) = π(Oµj

) ∈ N (s(U)′)/K(U) respectively, we
have

Cρ(µ1) ⊃ Cρ(µ2) ⇐⇒ Oµ1 ⊃ Oµ2 ⇐⇒ Cπ(µ1) ⊃ Cπ(µ2).

Proof. (i) Since ρ|g′
i

: g′i → s(V )′ is locally trivial and (ρ|g′
i
)−1(N (s(V )′)

= N (g′i), (i) follows.
(ii) Since (π|g′

i
)−1(N (s(U)′)) = N (g′i),

N (g′i) ↪→ g′i
π|N (g′

i)
↓ ↓ π|g′

i

N (s(U)′) ↪→ s(U)′

is a fibre product. Since π|g′
i

: g′i → s(U)′ is smooth, so is π|N (g′
i)

: N (g′i) →
N (s(U)′).
(iii) The subjectivities of

D(na, nb)′
ρ← D(na, mb, nb, ma)′ π→ D(ma, mb)′

follow from Proposition 2.6, (i).
For η ∈ D(na, nb)′, since η has da + db rows, we write η as a sum of rows;

η = η1 + η2 + · · · + ηda
+ ηda+1 + · · · + ηda+db

,

where each ηj (1 ≤ j ≤ da) starts with a and each ηj (da + 1 ≤ j ≤ da + db)
starts with b. For each ηj , we define an 〈i〉-signed diagram η̃j with a single row
as follows:

ηj =

2k︷ ︸︸ ︷
ab · · · ab → η̃j =

4k−1︷ ︸︸ ︷
1 i−1 · · · 1 i−1 ,

ηj =

2k+1︷ ︸︸ ︷
ab · · · ba → η̃j =

4k+1︷ ︸︸ ︷
1 i−1 · · · −1−i 1 ,

ηj =

2k︷ ︸︸ ︷
ba · · · ba → η̃j =

4k−1︷ ︸︸ ︷
−1−i 1 · · · −1−i 1 ,

ηj =

2k+1︷ ︸︸ ︷
ba · · · ab → η̃j =

4k+1︷ ︸︸ ︷
−1−i 1 · · · 1 i−1 .

As the sum of η̃j (1 ≤ j ≤ da + db), we obtain an 〈i〉-signed diagram

η̃ = η̃1 + η̃2 + · · · + η̃da
+ η̃da+1 + · · · + η̃da+db

.
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Then it is easy to see that

ni(η̃j) = nb(ηj), n−i(η̃j) = na(ηj) − 1 (1 ≤ j ≤ da),

n−i(η̃j) = na(ηj), ni(η̃j) = nb(ηj) − 1 (da + 1 ≤ j ≤ da + db).

Thus we have

ni(η̃) =
da∑

j=1

ni(η̃j) +
da+db∑

j=da+1

ni(η̃j)

=
da∑

j=1

nb(ηj) +
da+db∑

j=da+1

{nb(ηj) − 1} = nb − db = mb.

Similarly we have n−i(η̃) = ma, and hence η̃ ∈ D(na, mb, nb, ma)′. It is clear
that ρ(η̃) = η. If ρ(µ) = η for µ ∈ D(na, mb, nb, ma), µ must contain η̃ in part
and hence µ = η̃. Therefore ρ : D(na, mb, nb, ma)′ → D(na, nb)′ is injective.

For σ ∈ D(ma, mb)′, as before we write

σ = σ1 + σ2 + · · · + σda
+ σda+1 + · · · + σda+db

as a sum of rows such that each σj (1 ≤ j ≤ da) is empty or starts with b and
each σj (da +1 ≤ j ≤ da +db) is empty or starts with a. For each σj , we define
an 〈i〉-signed diagram σ̃j with a single row as follows:

σj =

2k︷ ︸︸ ︷
ba · · · ba (1 ≤ j ≤ da, k ≥ 0) → σ̃j =

4k+1︷ ︸︸ ︷
1 i−1−i · · · i−1−i 1 ,

σj =

2k+1︷ ︸︸ ︷
ba · · · bab (1 ≤ j ≤ da, k ≥ 0) → σ̃j =

4k+3︷ ︸︸ ︷
1 i−1−i · · · −i 1 i−1 ,

σj =

2k︷ ︸︸ ︷
ab · · · ab (da + 1 ≤ j ≤ da + db, k ≥ 0) → σ̃j =

4k+1︷ ︸︸ ︷
−1−i 1 i · · · −i 1 i−1 ,

σj =

2k+1︷ ︸︸ ︷
ab · · · ba (da + 1 ≤ j ≤ da + db, k ≥ 0) → σ̃j =

4k+3︷ ︸︸ ︷
−1−i 1 i · · · i−1−i 1 .

As the sum of σ̃j (1 ≤ j ≤ da + db), we obtain an 〈i〉-signed diagram

σ̃ = σ̃1 + σ̃2 + · · · + σ̃da
+ σ̃da+1 + · · · + σ̃da+db

.

Then it is easy to see that

n1(σ̃j) = na(σj) + 1, n−1(σ̃j) = nb(σj) (1 ≤ j ≤ da),

n−1(σ̃j) = nb(σj) + 1, n1(σ̃j) = na(σj) (da + 1 ≤ j ≤ da + db).
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Thus we have

n1(σ̃) =
da∑

j=1

{na(σj) + 1} +
da+db∑

j=da+1

na(σj)

=
da+db∑
j=1

na(σj) + da = ma + da = na,

n−1(σ̃) =
da∑

j=1

nb(σj) +
da+db∑

j=da+1

{nb(σj) + 1}

=
da+db∑
j=1

nb(σj) + db = mb + db = nb.

Hence σ̃ ∈ D(na, mb, nb, ma)′ and π(σ̃) = σ. It is easy to see that σ̃ is the
unique element of D(na, mb, nb, ma)′ which maps onto σ via π. Therefore
π : D(na, mb, nb, ma)′ → D(ma, mb)′ is injective.
(iv) Since ρ is quotient map under K(U), ρ(Oµ1) is closed ([MF, Chap. 1, §2])
and hence

ρ(Oµ1) = ρ(Oµ1) = Cρ(µ1).

Therefore, if Oµ1 ⊃ Oµ2 , we have

Cρ(µ1) = ρ(Oµ1) ⊃ ρ(Oµ2) = Cρ(µ2).

Conversely, suppose that Cρ(µ1) ⊃ Cρ(µ2). Take z ∈ Oµ2 and put z1 :=
ρ(z) ∈ Cρ(µ2). Since ρ|N (g′

i)
: N (g′i) → N (s(V )′) is smooth of relative dimen-

sion r := dimK(U), there exist neighborhoods (in the classical topology) Nz of
z in N (g′i), Nz1 of z1 in N (s(V )′), NO of O in Cr and an analytic isomorphism
ι : Nz → Nz1 × NO such that the diagram

ι

Nz →Nz1 × NO

ρ ↓ ↙ p1

Nz1

is commutative, where p1 is the projection to the first factor (cf. Remark 2.7).
Then we easily see the implication z1 ∈ Cρ(µ1) ⇒ z ∈ Oµ1 . Therefore we obtain

Cρ(µ1) ⊃ Cρ(µ2) ⇔ Oµ1 ⊃ Oµ2 .

Similarly we have
Oµ1 ⊃ Oµ2 ⇔ Cπ(µ1) ⊃ Cπ(µ2).
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Remark 2.10. By the definitions of D(na, nb)′ and D(ma, mb)′, the cor-
respondence η �→ η′ defines a bijection

D(na, nb)′→̃D(ma, mb)′.

By the proof of Theorem 2.9, (iii), the bijection D(na, nb)′→̃D(ma, mb)′ defined
in the second row of (iii) coincides with the above bijection:

π((ρ|D(na,mb,nb,ma)′)−1(η)) = η′ (η ∈ D(na, nb)′).

Proposition 2.11. For an ab-diagram η ∈ D(na, nb)′, denote by η̃ ∈
D(na, mb, nb, ma)′ and η′ ∈ D(ma, mb)′ the diagrams which correspond to η by
the bijections of Theorem 2.9, (iii) respectively. We write Cη ∈ N (s(V )′)/K(V ),
Oη̃ ∈ N (g′i)/K(V )×K(U) and Cη′ ∈ N (s(U)′)/K(U) the corresponding nilpo-
tent orbits respectively. Then we have

(i) ρ−1(Cη) = Oη̃

(ii) π(ρ−1(Cη)) = Cη′

(iii) ρ(π−1(Cη′)) = Cη

(iv) π−1(Cη′) = Oη̃. In particular, π−1(Cη′) is irreducible.

Proof. The proofs of (i), (ii) and (iii) are essentially the same as those of
[O2, Lemma 10], hence we omit them.
(iv) Let O ⊂ Oη̃ be a K(V ) × K(U) orbit. Since π is a quotient map and Oη̃

is a K(V )-invariant closed subset, we have

π(O) ⊂ π(Oη̃) = π(Oη̃) = Cπ(η̃) = Cη′ .

Hence O ⊂ π−1(Cη′) and we have Oη̃ ⊂ π−1(Cη′).
Next suppose that Oµ ⊂ π−1(Cη′) is a K(V ) × K(U) orbit corresponding

to a diagram µ ∈ D(na, mb, nb, ma). Put σ := π(µ). Then we have σ = π(µ) ≤
π(η̃) = η′. Take x ∈ Oη̃ and y ∈ Oµ. Write X := π(x) = x2|U ∈ Cη′ and
Y := π(y) = y2|U ∈ Cσ. To show that µ ≤ η̃, it is sufficient to show that

nδ(η̃(k)) = rk(Wi−kδ
xk

→ Wδ) ≥ nδ(µ(k)) = rk(Wi−kδ
yk

→ Wδ)

for any δ ∈ 〈i〉 and k ≥ 1.
If k = 2
 is even, we have

ni(η̃(2�)) = rk(Wi−2�i
x2�

→ Wi) = rk(W(−1)�i
x2�

→ Ub)

= rk(W(−1)�i
X�

→ Ub) = nb((η′)(�)).

ni(µ(2�)) = rk(Wi−2�i
y2�

→ Wi) = rk(W(−1)�i
y2�

→ Ub)

= rk(W(−1)�i
Y �

→ Ub) = nb(σ(�)).
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Since η′ ≥ σ, we have

ni(η̃(2�)) = nb((η′)(�)) ≥ nb(σ(�)) = ni(µ(2�)).

Similarly we have n−i(η̃(2�)) ≥ n−i(µ(2�)).

We also have

n1(η̃(2�)) = rk(Wi−2�
x2�

→ W1) = rk(W(−1)�
x→ W(−1)�i

x2(�−1)

→ Ua
x
↪→ Va)

= rk(W(−1)�i
x2(�−1)

→ Ua) = rk(W(−1)�i
X�−1

→ Ua) = na((η′)(�−1)),

n1(µ(2�)) = rk(W(−1)�
y→ W(−1)�i

y2(�−1)

→ Ua
y→ Va)

≤ rk(W(−1)�i
Y �−1

→ Ua) = na(σ(�−1)).

Since η′ ≥ σ, we have

n1(η̃(2�)) = na((η′)(�−1)) ≥ na(σ(�−1)) ≥ n1(µ(2�)).

Similarly we have n−1(η̃(2�)) ≥ n−1(µ(2�)).
Suppose that k = 2
+1 is odd. Then by the similar computation as above,

we have

n1(η̃(2�+1)) = na((η′)(�)) ≥ na(σ(�)) ≥ n1(µ(2�+1)),

n−1(η̃(2�+1)) = nb((η′)(�)) ≥ nb(σ(�)) ≥ n−1(µ(2�+1)),

ni(η̃(2�+1)) = nb((η′)(�)) ≥ nb(σ(�)) ≥ ni(µ(2�+1)),

n−i(η̃(2�+1)) = na((η′)(�)) ≥ na(σ(�)) ≥ n−i(µ(2�+1)).

Therefore we have η̃ ≥ µ and hence Oµ ⊂ Oη̃ by Theorem 1.4. Thus we have
π−1(Cη′) ⊂ Oη̃.

Remark 2.12. In the setting of Proposition 2.11,

(i) π−1(Cη′) is not a single K(V ) × K(U)-orbit in general.

(ii) It holds π(ρ−1(Cη)) ⊃ Cη′ but the equality does not holds in general.

Example. Let us consider the case when na = 5, nb = 3, ma = mb = 2.
Thus da = 5 − 2 = 3 and db = 3 − 2 = 1. For

η =

a b a

a b

b a

a

∈ D(5, 3),
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since the number of a’s (resp. b’s) in the first column of η is 3 = da (resp.
1 = db), η ∈ D(5, 3)′. Then

η̃ =

1 i −1 −i 1
1 i −1
−1 −i 1
1

∈ D(5, 2, 3, 2)′

is the unique element µ ∈ D(5, 2, 3, 2) such that ρ(µ) = η. Hence ρ−1(Cη) =
Oη̃. Clearly

π(η̃) = η′ =
b a

b

a

∈ D(2, 2)′

is the ab-diagram which we obtain from η by erasing first column. We see that

η̃,

i −1 −i

1 i −1
−1 −i 1
1
1
1

∈ π−1(η′)

and hence π−1(Cη′) is not a single K(V ) × K(U)-orbit. Take

σ =

a b a

a

a

a

b

b

∈ D(5, 3) \ D(5, 3)′.

We easily see σ ≤ η (⇔ Cσ ⊂ Cη). Since

µ :=

−i 1 i −1 −i 1 i

1
1
1
−1
−1

∈ ρ−1(σ)

and π(µ) = abab ∈ D(2, 2), we have

π(ρ−1(Cη)) ⊃ Cπ(µ) 
⊂ Cη′ .
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Thus π(ρ−1(Cη)) 
= Cη′ .

Definition 2.13 ([KrP2]). Consider two varieties X, Y and x ∈ X,
y ∈ Y . The singularity of X at x is said to be smoothly equivalent to that of Y

at y if there exists a variety Z, a point z ∈ Z and two morphisms Y
ψ← Z

ϕ→ X

such that ϕ(z) = x, ψ(z) = y and ϕ, ψ are smooth at z. This clearly defines an
equivalence relation among pointed varieties (X, x). We denote by Sing(X, x)
the equivalence class to which (X, x) belongs.

Suppose that an algebraic group G acts on a variety X. For a G-orbit O
of X, the equivalence class Sing(X, x) is independent of the choice of x ∈ O.
We denote this equivalence class by Sing(X,O).

Theorem 2.14. For two 〈i〉-signed diagrams η̃, σ̃ ∈ D(na, mb, nb, ma)′,
let η = ρ(η̃), σ = ρ(σ̃) ∈ D(na, nb)′ and η′ = π(η̃), σ′ = π(σ̃) ∈ D(ma, mb)′ the
corresponding ab-diagrams by the bijections of Theorem 2.9, (iii). Suppose that
Oσ̃ ⊂ Oη̃. Hence Cσ ⊂ Cη and Cσ′ ⊂ Cη′ by Theorem 2.9. Then we have

Sing(Cη, Cσ) = Sing(Oη̃,Oσ̃) = Sing(Cη′ , Cσ′).

Proof. Since π and ρ are quotient maps and Oη̃ is a K(V ) × K(U)-
invariant closed subset of gi, we have

π(Oη̃) = π(Oη̃) = Cη′ , ρ(Oη̃) = ρ(Oη̃) = Cη

and we obtain morphisms
Cη

ρ← Oη̃
π→ Cη′ .

Since ρ(Oσ̃) = Cσ and π(Oσ̃) = Cσ′ , it is sufficient to show that ρ|Oη̃
and π|Oη̃

are smooth at a point Y ∈ Cσ̃. Since π|g′
i
: g′i → s(U)′ is smooth and

g′i ∩ π−1(Cη′ ∩ s(U)′) ↪→ g′i
π ↓ ↓ π

Cη′ ∩ s(U)′ ↪→ s(U)′

is a fibre product,

g
′
i ∩ π−1(Cη′ ∩ s(U)′) π→ Cη′ ∩ s(U)′

is also smooth. By Theorem 2.9, (iii) and (iv), we have

g
′
i ∩ π−1(Cη′ ∩ s(U)′) = Oη̃ ∩ g

′
i,
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and hence
Oη̃ ∩ g

′
i

π→ Cη′ ∩ s(U)′

is smooth. Since Y ∈ Oσ̃ ⊂ Oη̃ ∩ g′i, π|Oη̃
is smooth at Y . Similarly, we can

show that ρ|Oη̃
is smooth at Y ∈ Oσ̃.

Remark 2.15. (i) Let us consider the condition s(U) = s(U)′, that is,
s(U) coincides with the image of the smooth morphism π|g′

i
: g′i → s(U)′.

Then we have

s(U) = s(U)′

⇔ mb − da ≤ 0, ma − db ≤ 0
⇔ ma + mb ≤ min{na, nb}
⇔ The dual pair (U(na, nb), U(ma, mb)) is in the stable range.

(ii) When the dual pair (U(na, nb), U(ma, mb)) is in the stable range, K.
Nishiyama showed that for C2 ∈ N (s(U))/K(U) (s(U) = s(U)′), there exists
C1 ∈ N (s(V ))/K(V ) such that

ρ(π−1(C2)) = C1

and called the correspondence C2 �→ C1 the θ-lifting. By Proposition 2.11, (iii),
this correspondence coincides with the bijection

N (s(U)′)/K(U)−̃→N (s(V )′)/K(V )

given by Theorem 2.9, (iii) (the inverse of the map of Remark 2.10). Thus,
in our general setting (Assumption 2.4), the above bijection is considered as a
generalization of Nishiyama’s θ-lifting.

(iii) Under Assumption 2.4, for any C2 ∈ N (s(U)′)/K(U), π−1(C2) is a closure
of a single K(V )×K(U)-orbit in N (g′i) (Proposition 2.11, (iv)) and ρ(π−1(C2))
is also a closure of a single K(V )-orbit C1 in N (s(V )). But if C2 ∈ [N (s(U)) \
N (s(U)′)]/K(U), π−1(C2) is not a closure of a single K(V ) × K(U)-orbit and
ρ(π−1(C2)) is not a closure of a single K(V )-orbit in general (see the following
example) and hence the analogue of the main result of [DKP] does not hold in
our case. Thus N (s(U)′)/K(U) is considered as a domain on which a ‘‘good’’
correspondence

C2 �→ C1 (generalization of θ − lifting)

is defined.
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Example. Let us consider the case when na = 2, nb = 1, ma =
mb = 1. For a diagram η in D(2, 1), D(2, 1, 1, 1) or D(1, 1), let us denote
also by η the corresponding orbit in N (s(V ))/K(V ), N (gi)/K(V ) × K(U) or
N (s(U))/K(U). We have the following:

(1) N (s(V )′)/K(V ) = {a b a}, N (g′i)/K(V ) × K(U) = {1 i −1 −i 1},
N (s(U)′)/K(U) = {b a}.
The correspondence of Theorem 2.9 is given by

a b a ← 1 i −1 −i 1 → b a.

By Proposition 2.11, we have

π−1
(

b a
)

= 1 i −1 −i 1 , ρ(π−1
(

b a
)
) = a b a.

(2) [N (s(U)) \ N (s(U)′)]/K(U) = {a b,
a

b
}.

By Proposition 2.3 and Theorem 1.4, we have

π−1
(

a b
)

=
−1 −i 1 i

1
∪ −i 1 i −1

1
, ρ

(
π−1

(
a b

))
=

b a

a
∪ a b

a
,

π−1

(
a

b

)
=

−1 −i 1
1 i

∪ 1 i −1
−i 1

, ρ

(
π−1

(
a

b

))
=

b a

a
∪ a b

a
.

§3. Relation Between s(V )
ρ|L+← L+

π|L+→ s(U) and the Moment Maps
of the Dual Pair (U(na, nb), U(ma, mb))

In this section, we give the reason why the maps s(V )
ρ|L+← L+

π|L+→ s(U)
constructed in §2 can be interpreted as the KC-versions of the original real
moment maps u(na, nb) ← LR → u(ma, mb).

§3.1 Let V be a finite dimensional vector space and ( , )V a non-degenerate
hermitian form on V ;

(u, αv)V = α(u, v)V , (u, v)V = (v, u)V (u, v ∈ V, α ∈ C).

Then we can take complex vector subspaces Va and Vb of V such that

(a) V = Va ⊕ Vb

(b) (Va, Vb)V = {0}
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(c) ( , )V |Va
is positive definite and ( , )V |Vb

is negative definite.

We define a linear involution sV of V by sV |Va
= idVa

and sV |Vb
= −idVb

. For
A ∈ EndV , we define the adjoint A∗ ∈ EndV of A by

(Av1, v2)V = (v1, A
∗v2)V (v1, v2 ∈ V ).

Then we easily see the following:

Remark 3.1. (1) (sV v1, v2)V = (v1, sV v2)V (v1, v2 ∈ V ).

(2) (sV AsV )∗ = sV A∗sV (A ∈ EndV ).

For the vector space (V, sV ) with involution, we use the notations K(V ), k(V ),
s(V ) of (2.1). We define a real group GL(V )R and its Lie algebra gl(V )R by

GL(V )R = {g ∈ GL(V ); g∗ = g−1}, gl(V )R = {X ∈ gl(V ); X∗ = −X}.

Then GL(V )R � U(dim Va, dimVb) the indefinite unitary group. Clearly the
restriction θV |GL(V )R

of θV : GL(V ) → GL(V ) (θV (g) = sV gsV ) to GL(V )R is
a Cartan involution of GL(V )R.

§3.2 Let V and U be two vector spaces with non-degenerate hermitian forms
( , )V and ( , )U respectively. Then((

v1

u1

)
,

(
v2

u2

))
V ⊕U

:= (v1, v2)V + (u1, u2)U (vj ∈ V, uj ∈ U)

is also a hermitian form on V ⊕ U . We put na = dimVa, nb = dimVb, ma =
dimUa, mb = dimUb.

For A ∈ Hom(U, V ) (resp. A ∈ Hom(V, U)), we define the adjoint A∗ ∈
Hom(V, U) (resp.A∗ ∈ Hom(U, V )) by

(Au, v)V = (u, A∗v)U (resp. (Av, u)U = (v, A∗u)V ) for u ∈ U and v ∈ V .

Remark 3.2. For X =

(
A B

C D

)
∈ End(V ⊕ U) ( A ∈ End(V ), B ∈

Hom(U, V ), C ∈ Hom(V, U), D ∈ End(U)), the adjoint X∗ of X with respect
to the hermitian form ( , )V ⊕U is given by(

A B

C D

)∗

=

(
A∗ C∗

B∗ D∗

)
.
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We define a complex conjugation τ : GL(V ⊕U) → GL(V ⊕U) by τ (g) = (g∗)−1

(g ∈ GL(V ⊕U)). We also denote by τ : gl(V ⊕U) → gl(V ⊕U) the differential
of τ . Then τ defines a real form

GL(V ⊕ U)R = {g ∈ GL(V ⊕ U)R; τ (g) = g} � U(na + ma, nb + mb)

and its Lie algebra

gl(V ⊕ U)R = {X ∈ gl(V ⊕ U); τ (X) = X}.

As in (2.2), let us consider a linear automorphism S : V ⊕ U → V ⊕ U by

S =

(
sV 0
0 −isU

)
. Now we define a bilinear from ( , )L on

L := HomC(U, V ) ⊕ HomC(V, U)

=

{(
0 A

B 0

)
; A ∈ HomC(U, V ), B ∈ HomC(V, U)

}
= {X ∈ gl(V ⊕ U); Ad(S2)X = −X}

by ((
0 A1

B1 0

)
,

(
0 A2

B2 0

))
L

:= i{trU (B1A2) − trV (A1B2)}

= i{trV (A2B1) − trV (A1B2)}.

Since τ stabilizes L, we can consider the real subspace

LR := {X ∈ L; τ (X) = X} =

{(
0 A

−A∗ 0

)
; A ∈ HomC(U, V )

}
of L whose dimension is dimR LR = dimC L. Then we have the following:

Lemma 3.3. (i) For z ∈ L, τ (Ad(S)z) = Ad(S)(τ (z)).

(ii) ( , )L is a GL(V ) × GL(U)-invariant symplectic form on L.

(iii) (τ (z1), τ (z2))L = (z1, z2)L (z1, z2 ∈ L).
In particular, ( , )L is real valued on LR.

(iv) (Ad(S)z1, Ad(S)z2)L = (z1, z2)L (z1, z2 ∈ L).

(v) For z ∈ LR, we have
(Ad(S)z, z)L ≤ 0

and it holds (Ad(S)z, z)L = 0 if and only if z = 0. In particular, ( , )L|LR
is

non-degenerate and so is ( , )L.
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Proof. (i) For z =

(
0 A

B 0

)
,

τ (Ad(S)z) = τ

(
0 isV AsU

−isUBsV 0

)
= −

(
0 (−isUBsV )∗

(isV AsU )∗ 0

)

=−
(

0 isV B∗sU

−isUAsV 0

)
= −Ad(S)

(
0 B∗

A∗ 0

)
= Ad(S)(τ (z)).

(ii) For zj =

(
0 Aj

Bj 0

)
∈ L (j = 1, 2), since

((
0 A1

B1 0

)
,

(
0 A2

B2 0

))
L

= i{trV (A2B1) − trV (A1B2)},

( , )L is symplectic. It is clearly GL(V ) × GL(U)-invariant.
(iii) For the above zj , we have

(τ (z1), τ (z2))L =

(
−

(
0 B∗

1

A∗
1 0

)
,−

(
0 B∗

2

A∗
2 0

))
L

= i{trV (B∗
2A∗

1) − trV (B∗
1A∗

2)}
= i{trV ((A1B2)∗) − trV ((A2B1)∗)}
= i{trV (A1B2) − trV (A2B1)}
=−i{trV (A1B2) − trV (A2B1)}
= (z1, z2)L

(iv) (Ad(S)z1, Ad(S)z2)L

=

((
0 isV A1sU

−isUB1sV 0

)
,

(
0 isV A2sU

−isUB2sV 0

))
L

= i{trV ((isV A2sU )(−isUB1sV )) − trV ((isV A1sU )(−isUB2sV ))}
= i{trV (A2B1) − trV (A1B2)} = (z1, z2)L.

(v) Let vj (1 ≤ j ≤ na + nb) (resp. uj (1 ≤ j ≤ ma + mb)) be an orthogonal
basis of V (resp. U) such that

(vj , vj) =

{
1 (0 ≤ j ≤ na)
−1 (na + 1 ≤ j ≤ na + nb)(
resp. (uj , uj) =

{
1 (0 ≤ j ≤ ma)
−1 (ma + 1 ≤ j ≤ ma + mb)

)
.
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Then, by the obvious identification V = Cna+nb (resp. U = Cma+mb) via this
basis, we see

(v, v′) = tv̄

(
1na

0
0 −1nb

)
v′ (v, v′ ∈ V = C

na+nb) and sV =

(
1na

0
0 −1nb

)
(

resp. (u, u′) = tū

(
1ma

0
0 −1mb

)
u′(u, u′ ∈ U = C

ma+mb)

and sU =

(
1ma

0
0 −1mb

))
,

where v̄ denotes the ordinary complex conjugation of v. The adjoint A∗ ∈
Hom(V, U) of A ∈ Hom(U, V ) can be written as

A∗ =

(
1ma

0
0 −1mb

)
tĀ

(
1na

0
0 −1nb

)
.

Then for z =

(
0 A

B 0

)
∈ LR (B = −A∗), we compute (Ad(S)z, z)L as follows:

(Ad(S)z, z)L =

((
sV 0
0 −isU

) (
0 A

B 0

)(
sV 0
0 isU

)
,

(
0 A

B 0

))
L

=

((
0 isV AsU

−isUBsV 0

)
,

(
0 A

B 0

))
L

= i{−itrU (sUBsV A) − itrV (sV AsUB)}
= 2trU (sUBsV A) = −2trU (sUA∗sV A)

=−2trU (sU (sU
tĀsV )sV A)

=−2trU (tĀA).

Thus (v) easily follows from this.

Since ( , )L is a non-degenerate symplectic form on L and τ : L → L is an
antilinear involution such that (τ (z1), τ (z2))L = (z1, z2)L (z1, z2 ∈ L), ( , )L

and τ define the symplectic group

Sp(L) = {g ∈ GL(L); (gz1, gz2)L = (z1, z2)L (z1, z2 ∈ L)}

and a real form

Sp(LR) = {g ∈ GL(LR); (gz1, gz2)L = (z1, z2)L (z1, z2 ∈ LR)}
= {g ∈ Sp(L); τ ◦ g ◦ τ−1 = g}
� Sp(dimR LR, R) = Sp(2(na + nb)(ma + mb), R).
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As in (2.1), GL(V ) × GL(U) acts on L.

Lemma 3.4. The real subspace LR of L is stable under the action of
GL(V )R × GL(U)R.

Proof. Let us consider the involution

σ := Ad(S2) : GL(V ⊕ U) → GL(V ⊕ U).

We easily see that σ ◦ τ = τ ◦σ and hence (GL(V ⊕U)R, σ) is a real symmetric
pair. Furthermore, we see

GL(V ⊕ U)σ
R = {g ∈ GL(V ⊕ U)R; σ(g) = g} = GL(V )R × GL(U)R

and
gl(V ⊕ U)−σ

R
= {X ∈ gl(V ⊕ U)R; σ(X) = −X} = LR.

Thus GL(V )R × GL(U)R stabilizes LR.

Since the symplectic form ( , )L is GL(V ) × GL(U)-invariant and the
actions of GL(V ) and GL(U) on L are clearly faithful, we obtain embeddings
GL(V ) ↪→ Sp(L) and GL(U) ↪→ Sp(L). Clearly the actions of GL(V ) and
GL(U) on L commute. Since LR is stable under the action of GL(V )R×GL(U)R

and

(U(na, nb), U(ma, mb))� (GL(V )R, GL(U)R) ↪→ Sp(LR)

� Sp(2(na + nb)(ma + mb), R),

we obtain a dual pair

(GL(V )R, GL(U)R) ↪→ Sp(LR).

As in §2, we consider the automorphism Θ : gl(V ⊕ U) → gl(V ⊕ U), Θ(X) =
Ad(S)X. Then sL := −iAd(S)|L defines a linear involution sL : L → L and
we have

gi = {z ∈ L; sL(z) = z} and g−i = {z ∈ L; sL(z) = −z},

so that L = gi⊕g−i. Later we will show that g±i are maximally totally isotropic
subspaces of L and hence L = gi ⊕ g−i is a polar decomposition of L.

Clearly we have the following:

Lemma 3.5. (i) τ ◦ sL(z) = −sL ◦ τ (z) (z ∈ L). In particular τ (g±i) =
g∓i.
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(ii) (sLz1, sLz2)L = −(z1, z2)L (z1, z2 ∈ L).

For g ∈ Sp(L), we see θL(g) := sLgsL ∈ Sp(L) by Lemma 3.5, (ii) and
hence obtain an involution

θL : Sp(L) → Sp(L).

By Lemma 3.5, (i), θL commutes with τ : Sp(L) → Sp(L). Furthermore, we can
verify that θL|Sp(LR) is a Cartan involution of Sp(LR). By the emmbedding
(GL(V ), GL(U)) ↪→ Sp(L), we see

(K(V ), K(U)) ↪→ Sp(L)θL := {g ∈ Sp(L); θL(g) = g},
(s(V ), s(U)) ↪→ sp(L)−θL := {X ∈ sp(L); θL(X) = −X}.

§3.3 Recall the GL(V ) × GL(U)-equivariant morphisms

gl(V )
ρ← L

π→ gl(U), ρ

(
0 A

B 0

)
= AB, π

(
0 A

B 0

)
= BA

of (2.1). Let us consider the GL(V ) × GL(U)-equivariant morphisms gl(V )
ρ′

←
L

π′
→ gl(U),

ρ′

(
0 A

B 0

)
= −iρ

(
0 A

B 0

)
= −iAB, π′

(
0 A

B 0

)
= iπ

(
0 A

B 0

)
= iBA

instead of ρ and π. Then we have the following:

Lemma 3.6. We have ρ′(LR) ⊂ gl(V )R and π′(LR) ⊂ gl(U)R. Thus we
obtain GL(V )R × GL(U)R-equivariant maps

gl(V )R

ρ′|L
R← LR

π′|L
R→ gl(U)R.

Proof. For X =

(
0 A

B 0

)
∈ LR, since

τ (X) = −X∗ = −
(

0 B∗

A∗ 0

)
= X,

we have B = −A∗. Then ρ′(X) = iAA∗ and

ρ′(X)∗ = (iAA∗)∗ = −i(A∗)∗A∗ = −iAA∗ = −ρ′(X).
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Hence ρ′(X) ∈ gl(V )R.
Similarly we have π′(X) ∈ gl(U)R.

For z ∈ L, we define a linear form µz ∈ sp(L)∗ by

µz(x) =
1
2
(xz, z)L (x ∈ sp(L)).

Then we obtain a map

µ : L → sp(L)∗, z �→ µz.

Since ( , )L is real valued on LR, we see µz ∈ sp(LR)∗ = HomR(sp(LR), R) for
z ∈ LR. Hence we obtain a map

µ|LR
: LR → sp(LR)∗, z �→ µz.

It is known that µ|LR
is the moment map with respect to the action of Sp(LR)

on the symplectic manifold (LR, ( , )L|LR
) (see for example [[CG], Proposition

1.4.6]).
Via the embeddings

gl(V ) ↪→ sp(L), gl(U) ↪→ sp(L),

we can define linear forms ρ∗z ∈ gl(V )∗, π∗
z ∈ gl(U)∗ by

ρ∗z := µz|gl(V ), π∗
z := µz|gl(U)

and we obtain

ρ∗ : L → gl(V )∗ (z �→ ρ∗z), π∗ : L → gl(U)∗ (z �→ π∗
z).

If z ∈ LR, we easily see ρ∗z ∈ gl(V )∗
R

= HomR(gl(V )R, R) and π∗
z ∈ gl(U)∗

R
=

HomR(gl(U)R, R). Thus

ρ∗|LR
: LR → gl(V )∗R (resp. π∗|LR

: LR → gl(U)∗R)

is the moment map with respect to the action of GL(V )R (resp. GL(U)R) on
the symplectic manifold (LR, ( , )L|LR

).
Now let us show that ρ′ : L → gl(V ) (resp. π′ : L → gl(U) ) coincides with

ρ∗ : L → gl(V )∗ (resp. π∗ : L → gl(U)∗ ) via the trace form on V (resp. U).

Proposition 3.7. For X ∈ L, we have

trV (ρ′(X)x) = ρ∗X(x) (x ∈ gl(V )) and trU (π′(X)y) = π∗
X(y) (y ∈ gl(U)).
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Proof. For X =

(
0 A

B 0

)
∈ L (A ∈ Hom(U, V ), B ∈ Hom(V, U)) and

x =

(
x 0
0 0

)
∈ gl(V ), we compute

ρ∗X(x) = µX(x) =
1
2
((adx)X, X)L =

1
2

([(
x 0
0 0

)
,

(
0 A

B 0

)]
,

(
0 A

B 0

))
L

=
1
2

((
0 xA

−Bx 0

)
,

(
0 A

B 0

))
L

=
i

2
{trU (−BxA) − trV (xAB)}

=− i

2
{trV (xAB) + trV (xAB)}

=−itrV (xAB) = trV ((−iAB)x) = trV (ρ′(X)x).

For y =

(
0 0
0 y

)
∈ gl(U), similarly we have

π∗
X(y) = µX(y) =

1
2
((ady)X, X)L =

1
2

([(
0 0
0 y

)
,

(
0 A

B 0

)]
,

(
0 A

B 0

))
L

=
1
2

((
0 −Ay

yB 0

)
,

(
0 A

B 0

))
L

=
i

2
{trU (yBA) − trV ((−Ay)B)}

=
i

2
{trU (yBA) + trU (yBA)} = trU (y(iBA))

= trU (yπ′(X)) = trU (π′(X)y).

By Proposition 3.7, ρ′|LR
: LR → gl(V )R (resp. π′|LR

: LR → gl(U)R) coincides
with the moment map ρ∗|LR

: LR → gl(V )∗
R

(resp. π∗|LR
: LR → gl(U)∗

R
) via the

above identification. Thus we can see that ρ′ and π′ are the complexification
of the moment maps.

Finally we show that

L+ = gi = {X ∈ gl(V ⊕ U); Θ(X) = iX}

is a maximally totally isotropic subspace of (L, ( , )L).

Lemma 3.8. L+ is a maximally totally isotropic subspace of (L, ( , )L).

Proof. If z1, z2 ∈ L+ = gi, we have

(z1, z2)L = (Ad(S)z1, Ad(S)z2)L = (iz1, iz2)L = −(z1, z2)L
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by Lemma 3.3, (iv). Hence (z1, z2)L = 0. Thus gi is totally isotropic in L.
Similarly g−i is also totally isotropic in L. Notice that L = gi ⊕ g−i and
τ (g±i) = g∓i. Therefore dim gi = dim g−i and we have dim gi = dimL/2.
Therefore gi is maximally totally isotropic in L.

In such a way, our maps

s(V )
ρ′|L+← L+

π′|L+→ s(U)

are the restrictions to the maximally totally isotropic subspace L+, of the
complexified moment maps

gl(V )
ρ′

← L
π′
→ gl(U).

Remark 3.9. For the map µ : L → sp(L)∗, if z ∈ L+ = gi and x ∈
sp(L)θL , we have µz(x) =

1
2
(xz, z)L = 0, since xz ∈ L+ and L+ is totally

isotropic. Thus the restriction of µ to L+ defines a map

µ|L+ : L+ → (sp(L)−θL)∗.

Then our maps

s(V )
ρ′|L+← L+

π′|L+→ s(U)

are obtained by the restrictions of the above maps to s(V ) and s(U) respectively
via the embedding (s(V ), s(U)) ↪→ sp(L)−θL .
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