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Abstract

The spectrum of the Laplace operator in a curved strip of constant width built
along an infinite plane curve, subject to three different types of boundary conditions
(Dirichlet, Neumann and a combination of these ones, respectively), is investigated.
We prove that the essential spectrum as a set is stable under any curvature of the
reference curve which vanishes at infinity and find various sufficient conditions which
guarantee the existence of geometrically induced discrete spectrum. Furthermore, we
derive a lower bound to the distance between the essential spectrum and the spectral
threshold for locally curved strips. The paper is also intended as an overview of some
new and old results on spectral properties of curved quantum waveguides.
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e-mail: jan.kriz@uhk.cz

c© 2005 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



�

�

�

�

�

�

�

�
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§1. Introduction

Let Ω be a region (i.e. open connected set) in R
n, n ≥ 1, with sufficiently

regular boundary ∂Ω, and consider the corresponding Laplacian −∆ on L2(Ω)
with mixed Dirichlet-Neumann boundary conditions. If Ω is bounded, then it
is well known that the spectrum of the Laplacian is purely discrete, and prop-
erties of the eigenvalues have been intensively studied. On the other hand, it is
easy to see that the spectrum is [0,∞), i.e. purely essential, if Ω is unbounded
and sufficiently extended at infinity (namely, it contains arbitrarily large balls).
Although it was shown already by F. Rellich in 1948 [71] that there exist un-
bounded regions whose spectrum contains discrete eigenvalues (or it is even
purely discrete!), the spectral theory for the eigenvalues has attracted much
less attention than in the bounded case.

However, recent advent of mesoscopic physics has given a fresh impetus
to study the (discrete) spectrum of the Laplacian in unbounded regions. For,
let us recall that the quantum Hamiltonian H of a free spin-less particle of
effective mass m∗ constrained to a spatial region Ω, i.e. H = −�

2/(2m∗)∆
on L2(Ω), represents a reasonable mathematical model for the dynamics in vari-
ous semiconductor structures devised and produced in the laboratory nowadays.
Here it is mostly natural to consider the Dirichlet boundary conditions on ∂Ω
corresponding to a large chemical potential barrier, however, other situations
modelling the impenetrable walls of Ω (in the sense that there is no probabil-
ity current through the boundary) may be relevant as well (see e.g. [62, 63])
and can in principle model different types of interphase in a solid. We refer
to [18, 65, 53] for the physical background and references. An important cat-
egory of these systems is represented by so-called quantum waveguides which
are modelled by infinitely stretched tubular regions in R

n with n = 2, 3.
The simplest situation occurs if Ω is an infinite plane strip, i.e. a tubu-

lar neighbourhood of constant width along an infinite curve in R
2. In 1989,
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P. Exner and P. Šeba [42] demonstrated the existence of discrete spectrum for
the Dirichlet Laplacian in curved strips which were asymptotically straight and
sufficiently thin. Numerous subsequent studies improved their result and gen-
eralized it to space tubes [52, 72, 18]. For more information and other spectral
and scattering properties, see the review paper [18] and references therein. An
important improvement was made by J. Goldstone and R. L. Jaffe in 1992 [52];
the authors introduced a variational argument which enables them to demon-
strate the existence of discrete eigenvalues without the restriction on the width
of the strip. The paper [58] deals with a more general situation where the strip is
not constructed in R

2 but in a two-dimensional Riemannian manifold. The evi-
dently more complicated case of layers, i.e. Ω is a tubular neighbourhood about
a complete non-compact surface in R

3, was investigated in [19, 20, 38, 12, 64].
A common property of the Dirichlet systems cited above is that a bending

of a straight strip or layer generates discrete eigenvalues below the essential
spectrum, i.e. geometrically induced quantum bound states, which are known
to disturb the particle transport. The result is also interesting from the semi-
classical point of view because there are no classical closed trajectories in the
tubes in question, apart from a zero measure set of initial conditions in the
phase space. Hence, this is a pure quantum effect of geometrical origin.

On the mathematical side, the results are of interest because the tubu-
lar neighbourhoods represent a class of so-called quasi-cylindrical regions, for
which the existence of discrete spectrum is a non-trivial property. We refer
to the books [51] and [21] for a classification of Euclidean regions and basic
properties of the spectrum of the Dirichlet Laplacian as related to the form of
an unbounded region.

The spectral results become richer if one considers a combination of Dirich-
let and Neumann boundary conditions [16, 17]. Here the problem is interesting
even for straight strips and much less studied in the literature.

Apart from the curved quantum waveguides, the discrete spectrum can be
also generated by a local deformation of the boundary ∂Ω of straight tubes and
layers [9, 8, 47], via introducing an obstacle [23, 14, 2] or impurities modelled
by a Dirac interaction [26, 37, 39, 40], coupling several waveguides by a window
[44, 45, 46, 6], etc. The spectrum of periodically and randomly curved waveg-
uides was investigated in [76, 74] and [55], respectively. Finally, let us mention
systems where Ω = R

n, n = 2, 3, and the quantum waveguide is introduced by
means of a magnetic field [28, 36, 29] or a strong Dirac interaction supported
by an infinite curve or surface [27, 48, 30, 31, 24, 32, 33, 34, 35, 41].
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The present paper is devoted to a study of the interplay between the geom-
etry, boundary conditions (we consider uniform Dirichlet, Neumann or a combi-
nation of these ones) and the spectral properties of the Laplacian in the infinite
planar curved strips. We referred above to the theory of quantum waveguides
as our main physical motivation. Let us conclude this section by mentioning
other fields in physics where this might be a reasonable mathematical model.

Considerable current interest in designing integrated optoelectronic cir-
cuits involves (classical) electromagnetic waveguides as a set of essential compo-
nents. In two-dimensional structures, planar symmetry implies that the waveg-
uide modes can have transversally electric, respectively transversally magnetic
polarizations corresponding to Dirichlet, respectively Neumann boundary con-
ditions, cf [66]. Maxwell’s equations yield the similar spectral problem as
above, the difference is only in the physical meaning of the spectral parameter.

The eigenvalues of the Neumann Laplacian may be also regarded as ve-
locity potentials of an inviscid, irrotational fluid or trapped vibrational modes
of an acoustic waveguide. We refer to [23, 14] for the considerable applied
literature on such problems.

Combinations of Dirichlet and Neumann boundary conditions appear as a
natural generalization of the uniform boundary conditions. A physical system
satisfying such a combination is the Earth-ionosphere waveguide: it is known
that for very low frequencies the electromagnetic wave dynamics between the
Earth and the ionosphere can be approximated as a propagation between the
plates with the perfect electric (the Earth) and perfect magnetic (the iono-
sphere) conductors, see [68] and references therein. Problems of this type arises
naturally in many other areas of physics, most notably in theoretical studies of
superconductivity, photonic crystals, etc.

§2. Scope of the Paper

The main aim of the present paper is to study the geometrically induced
(discrete) spectrum of the operator Hι defined as the Laplacian −∆ on L2(Ω),
where Ω is a (one-sided) tubular neighbourhood of a fixed width d > 0 along an
infinite plane curve Γ of curvature k, see Figure 1. We adopt suitable hypotheses
(cf 〈H〉 below) in order to ensure that the boundary ∂Ω consists of two parallel
connected embedded curves of class C2. The index ι will distinguish three
different types of boundary conditions considered here. Namely, we consider
the recently widely investigated Dirichlet boundary condition (ι := D), the
Neumann boundary condition (ι := N) and the simplest combination of the
both just mentioned (ι := DN): the Dirichlet boundary condition imposed
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Figure 1. Configuration space Ω defined as a strip over an infinite curve Γ
in R

2.

on one connected component of ∂Ω and the Neumann condition on the other
one.

If the reference curve Γ is a straight line, then it is rather a textbook ex-
ercise to analyse the operator Hι by means of a separation of variables and
conclude that its spectrum is purely absolutely continuous and equals the in-
terval [Eι

1,∞), where the non-negative value Eι
1 is determined by the respective

boundary conditions, cf (3.10). However, the spectral problem for Hι becomes
always difficult whenever Γ is curved, and two basic questions arise in this
context:

1. Which geometry preserves the essential spectrum [Eι
1,∞)?

2. Which geometry produces a spectrum below Eι
1?

These questions represent ultimate concern of this paper. We try to make a
survey of known answers and contribute to the problem by our own results.
Furthermore, if the spectrum below Eι

1 exists, we establish various estimates of
the spectral threshold inf σ(Hι). It should be stressed here that the existence of
discrete spectrum, i.e. the issue mentioned in Introduction, is proved whenever
the considered geometry is in accordance with both the above questions (because
then the spectrum below Eι

1 consists of isolated eigenvalues of finite multiplicity
only).

Concerning the first question, we show that the essential spectrum of a
curved strip coincides with the spectrum of the straight one provided the refer-
ence curve Γ is straight asymptotically in the sense that its curvature vanishes
at infinity, cf Theorem 4.1. Although this sufficient condition is very natural
and in perfect accordance with the intuition, it is for the first time in this pa-
per when the essential spectrum is localized without imposing any additional
conditions (e.g., about the decay of the derivatives of curvature at infinity,
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cf [18, 72, 17]). The progress has become possible due to a general characteri-
zation of essential spectrum adopted from a paper by Y. Dermenjian et al. [15]
(cf our Lemma 5.1), which is for our purposes more suitable than the classical
Weyl criterion. On the other hand, periodic strips are discussed as an illustra-
tion of asymptotically non-straight geometry which does change the essential
spectrum.

The answer to the second question depends substantially on the choice of
boundary conditions. First of all, notice that the question does not make sense
for the Neumann strips because EN

1 = 0, cf Theorem 4.2. A characteristic
property of the Dirichlet strips is that any bending of the reference curve Γ
pushes the infimum of the spectrum below the spectral threshold ED

1 > 0 of
the corresponding straight strip, cf Theorem 4.3. This property was shown
first in [42] for sufficiently thin strips and the proof for more general cases was
introduced in [52]. On the other hand, the case of combined Dirichlet-Neumann
boundary conditions was introduced quite recently in [17]. The authors estab-
lished the existence of spectrum below EDN

1 > 0 provided the total bending
angle of Γ (i.e. the integral of curvature, cf (4.1)) has a suitable sign. In
this paper, we generalize this result and add two new sufficient conditions,
cf Theorem 4.4. We also derive an interesting result on the number of discrete
eigenvalues of HDN , cf Proposition 4.1

Finally, when Γ is curved only locally, we derive an upper bound to the
spectral threshold, i.e. inf σ(Hι), for the Dirichlet strip and the one with com-
bined Dirichlet-Neumann boundary condition, cf Theorem 4.5. In particular,
we find important qualitative differences between these two respective results.
Making the curvature small, the leading term in the estimate of the difference
inf σ(HD)−ED

1 is proportional to the fourth power of the total bending angle,
while it is the second power what one obtains for the Dirichlet-Neumann case,
cf Remark 6.3. Another interesting difference appears when we are shrinking
the width of the strip to zero, cf Remark 6.4. These estimates are new in
the theory of curved quantum waveguides. We can only compare them with
the eigenvalue asymptotics for mildly curved, respectively thin, Dirichlet strips
established in [18]. Let us note that a similar estimate for straight, window-
coupled waveguides was given in [45, 46], see also [7].

All our proofs of the statements concerning the existence and properties of
the spectrum below Eι

1 are based on a variational strategy. The corner stone of
them, i.e. the construction of a suitable trial function, follows the idea of [52],
see also [18, 72].
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The paper is organized as follows. Section 3 is devoted to some preliminary
material in order to be able to state precisely the main results of the paper,
i.e. Theorems 4.1–4.5, in the subsequent Section 4. The proofs and discussions
of the Theorems are presented in Sections 5 and 6. We conclude the paper by
Section 7, where some open problems and directions of a future research are
mentioned.

§3. Preliminaries

§3.1. Configuration space

Let Γ be a unit-speed infinite plane curve, i.e. the (image of the) C2-
smooth embedding Γ : R → R

2 :
{
s �→

(
Γ1(s), Γ2(s)

)}
satisfying |Γ̇(s)| = 1 for

all s ∈ R (the arc-length parameter of the curve). The function N := (−Γ̇2, Γ̇1)
defines a unit normal vector field and the couple (Γ̇, N) gives a distinguished
Frenet frame, cf [56, Chap. 1]. The curvature is defined through the Frenet-
Serret formulae by k := det(Γ̇, Γ̈). We note that k is a continuous function
of the arc-length parameter and the sign of k(s) is defined uniquely up to the
re-parameterization s �→ −s. It is also worth to notice that the curve Γ is
fully determined (except for its position and orientation in the plane) by the
curvature function k only, cf [60, Sec. II. 20].

Let d > 0, I := (0, d) and Ω0 := R × I be a straight strip of width d. We
define a curved strip of the same width based on Γ via Ω := L(Ω0), where

(3.1) L : R
2 → R

2 : {(s, u) �→ Γ(s) + u N(s)} .

Through all the paper, we always assume that

〈H〉 Ω is not self-intersecting and k ∈ L∞(R) with d ‖k+‖∞ < 1,

where k± := max{0,±k}. Then s �→ L(s, u) for u ∈ I fixed traces out a parallel
curve at a distance |u| from Γ and u �→ L(s, u) for s ∈ R fixed is a straight line
orthogonal to Γ at s. Furthermore, the mapping L : Ω0 → Ω is a C1-diffeo-
morphism and its inverse determines a system of natural “coordinates” (s, u)
in a neighbourhood of Γ. We remark that under our assumption 〈H〉 the curve
L(R × {u}) is of class C2 for any fixed u ∈ I, in particular, this claim holds
true for both the boundary curves.

Remark 3.1. In this paper, we adopt the standard component notation
of tensor analysis together with the repeated indices convention. The range of
indices is 1, 2 and they are associated with the above mentioned coordinates
via (1, 2) ↔ (s, u). The partial derivatives are marked by a comma with the
index.
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By virtue of the Frenet-Serret formulae, the metric tensor of Ω in these
coordinates, i.e. Gij := L,i · L,j where “·” denotes the scalar product in R

2, has
the following diagonal form

(3.2)
(
Gij(s, u)

)
=

(
(1 − uk(s))2 0

0 1

)
.

Its determinant, G := det(Gij), defines through dΩ := G(s, u)
1
2 dsdu the area

element of the strip. By virtue of the second part of the assumption 〈H〉, it
is clear that the metric (3.2) is uniformly elliptic. In particular, we have the
following useful estimates:

(3.3) ∀(s, u) ∈ Ω0 : C− ≤ 1−uk(s) ≤ C+ with C± := 1±d ‖k∓‖∞.

§3.2. The Laplacian

Our object of interest is the Laplacian −∆ on L2(Ω), subject to various
boundary conditions imposed on ∂Ω. Our basic strategy is to use the diffeo-
morphism L : Ω0 → Ω in order to replace the simple operator −∆ on the
complicated Hilbert space L2(Ω) by a more complicated operator Hι on the
simpler Hilbert space H := L2(Ω0, dΩ). In particular, HD is the operator re-
placing the Laplacian with Dirichlet boundary condition, HN corresponds to
the Neumann boundary condition and HDN has the Dirichlet boundary con-
dition imposed on the reference curve Γ ≡ L(R × {0}) and the Neumann one
imposed on the opposite boundary L(R × {d}). Sometimes, we shall use the
common superscript ι ∈ {D, N, DN} to consider two or all of the three different
situations simultaneously.

More precisely, the operators Hι are introduced as the unique self-adjoint
operators associated on H with the quadratic forms Qι defined by

Qι[ψ] :=
(
ψ,i, G

ijψ,j

)
,(3.4)

Dom QD := W 1,2
0 (Ω0, dΩ),(3.5)

Dom QN := W 1,2(Ω0, dΩ),(3.6)

Dom QDN :=
{
ψ ∈ W 1,2(Ω0, dΩ) | ψ(s, 0) = 0 for a.e. s ∈ R

}
.(3.7)

Here and in what follows, (Gij) stands for the inverse of (Gij), (·, ·) and ‖ · ‖
denotes the scalar product and the norm in H, respectively, and ψ(·, 0) means
the trace of the function ψ on the boundary part L(R × {0}).

Remark 3.2. Since the metric (Gij) is uniformly elliptic due to (3.3), it
is not necessary to take into account the measure dΩ in (3.5), (3.6) and (3.7).
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Remark 3.3 (Operators associated with Qι). We have

(3.8) Hι = −G− 1
2 ∂iG

1
2 Gij∂j ,

which is a general expression for the Laplacian in a manifold equipped with
a metric (Gij). The equality in (3.8) must be understood in the form sense
if the curvature k is not differentiable (which is the case we are particularly
concerned to deal with in this paper). Nevertheless, assuming that the reference
curve Γ is, say, C3-smooth, then the metric is differentiable and, putting (3.2)
into (3.8), we can write

Hι = − 1
(1 − uk(s))2

∂2
s − uk̇(s)

(1 − uk(s))3
∂s − ∂2

u +
k(s)

1 − uk(s)
∂u

as an operator identity on the functions from DomHι. Moreover, the operator
domain DomHι is exactly that subset of the space W 2,2(Ω0) whose elements
satisfy the corresponding boundary conditions on ∂Ω0 in the classical sense,
cf [61].

§3.3. Straight strips

If the strip is straight in the sense that k ≡ 0, i.e. k is equal to zero
everywhere on R, then the Laplacian coincides with the decoupled operator

(3.9) Hι
0 := −∆R ⊗ Id + Id ⊗(−∆I

ι ) on L2(R) ⊗ L2(I),

where Id denotes the identity operator on appropriate spaces. The operators
on the transverse section, −∆I

ι , are the usual Laplacians on L2(I) with the
Dirichlet boundary conditions if ι = D, the Neumann conditions if ι = N ,
or the Dirichlet condition at 0 and the Neumann one at d if ι = DN . The
eigenvalues of −∆I

ι are given by

(3.10) ED
n := (π/d)2n2, EN

n := (π/d)2(n − 1)2, EDN
n := (π/d)2(n − 1

2 )2,

where n ∈ N \ {0}. The corresponding family of normalized eigenfunctions
{χι

n}∞n=1 can be chosen in the following way:

χι
n(u) :=

√
2
d sin

√
Eι

n u for ι ∈ {D, DN} ;(3.11)

χN
n (u) :=




√
1
d if n = 1,√
2
d cos

√
EN

n u if n ≥ 2.
(3.12)
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In view of (3.9) and [69, Thm. VIII.33], the straight strip has an absolutely con-
tinuous spectrum starting from the first eigenvalue of the transverse Laplacian,
i.e.,

(3.13) σ(Hι
0) = σess(Hι

0) = [Eι
1,∞).

§4. Main Results

As we have seen, the essential spectrum of a straight strip, i.e. k ≡ 0,
is the interval [Eι

1,∞). In Section 5, we prove that the same spectral result
holds for any curved strip which is straight asymptotically in the sense that the
curvature k vanishes at infinity, i.e.,

〈d〉 k(s) −−−−→
|s|→∞

0 .

Theorem 4.1 (Essential spectrum). Suppose 〈H〉. If the strip satis-
fies 〈d〉, then

σess(Hι) = [Eι
1,∞) for ι ∈ {D, N, DN}.

To the best of our knowledge, the spectrum of the Neumann Laplacian HN

has been previously investigated just for strips which were straight and con-
tained an obstacle, [23, 14]. Hence, our Theorem 4.1 represents a quite new
result concerning the spectral theory of curved Neumann strips.

The Dirichlet-Neumann case, i.e. ι = DN , was previously considered just
in the recent letter [17]. It is mentioned there that inf σess(HDN ) = EDN

1

provided k has a compact support. Here we have proved that the whole interval
[EDN

1 ,∞) is in the essential spectrum under much weaker condition 〈d〉.
Although the case of Dirichlet strips, i.e. ι = D, has already been consid-

ered in many works, our Theorem 4.1 represents a new result in this situation
as well, since it is for the first time when the whole essential spectrum has
been localized under a condition which does not contain derivatives of k. Some
decay assumptions about the derivatives of the curvature were even required
in order to localize the threshold inf σess(HD) itself in the previous works,
cf [18, 72]. (An exception is the paper [58] where, however, only a lower bound
on the threshold is given.) Let us mention that the result of Theorem 4.1 was
achieved in the thesis [57] under an additional condition about vanishing of the
first derivative of k.

Since HN is non-negative, it follows immediately from Theorem 4.1 that
there is no discrete spectrum in asymptotically straight Neumann strips.
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Theorem 4.2 (Neumann case). Suppose 〈H〉. Then

inf σ(HN ) = EN
1 ≡ 0.

Consequently, if the strip is asymptotically straight, i.e. 〈d〉, then

σ(HN ) = σess(HN ) = [0,∞),

i.e., σdisc(HN ) = ∅.

Here the fact that the spectral threshold of HN starts exactly at 0 for any
strip can be easily proved by means of a suitable trial function (cf Proposi-
tion 6.1).

An interesting result in the theory of quantum waveguides is that the
curved geometry may produce a non-trivial spectrum below the energy Eι

1 for
ι ∈ {D, DN}. The phenomenon is examined in this paper. Notice that any
result of the type inf σ(Hι) < Eι

1 together with the decay condition 〈d〉 yield
that the spectrum below Eι

1 consists of isolated eigenvalues of finite multiplicity
only, i.e. σdisc(Hι) �= ∅. However, we do not restrict ourselves to the particular
case of asymptotically straight strips, i.e., the geometrically induced spectrum
below Eι

1 may have a non-zero Lebesgue measure, too.
Sufficient conditions for the Laplacians Hι with ι ∈ {D, DN} to have a

non-empty spectrum below Eι
1 are known. In particular, any non-trivial curva-

ture of the reference curve pushes the spectrum of HD down the corresponding
spectral threshold of the straight strip.

Theorem 4.3 (Dirichlet case). Suppose 〈H〉.

If k �≡ 0, then inf σ(HD) < ED
1 .

Consequently, if the strip is not straight but it is straight asymptotically, i.e. 〈d〉,
then HD has at least one eigenvalue of finite multiplicity below its essential
spectrum [ED

1 ,∞), i.e., σdisc(HD) �= ∅.

This property was shown first in [42] for sufficiently thin strips with a
rapidly decaying curvature and since various improvements have been achieved
(see the references mentioned in Introduction, mainly [52]). We find useful to
make a proof of Theorem 4.3 in Section 6.1 since it can be made simultaneously
with the proof of the new result contained in condition (a) of Theorem 4.4
below.

As for the operator HDN , its spectrum was studied for the first time in
the recent letter [17]. It shows that the position of the infimum of spectrum
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essentially depends on the sign of the total bending angle

(4.1) α :=
∫

R

k(s) ds,

which is well defined if we assume that the curvature is integrable. In detail,
the authors of [17] proved that: i) the spectrum of HDN in a non-trivially
curved strip starts below EDN

1 provided α ≤ 0 and the curvature k is non-
positive out of some bounded interval. On the other hand, ii) if k(s) ≥ 0 for all
s ∈ R, then the spectrum below the energy EDN

1 is empty. Our improvement
is two-fold. Firstly, we generalize the first claim in the sense that we skip the
condition on k. Secondly, we find a sufficient condition which guarantees the
existence of spectrum below EDN

1 even for some strips with α > 0. In addition
to these substantial generalizations, we will derive the same result also for
periodic waveguides. Let us summarize the spectral properties of HDN into
the following theorem.

Theorem 4.4 (Dirichlet-Neumann case). Suppose 〈H〉.

(i) If k �≡ 0, then any of the three conditions

(a) k ∈ L1(R) and α ≡
∫

R
k(s) ds ≤ 0

(b) k is periodic

(c) k− �≡ 0 and d is small enough

is sufficient to guarantee that inf σ(HDN ) < EDN
1 .

(ii) If k− �≡ 0, then inf σ(HDN ) ≥ EDN
1 .

Consequently, if the strip is not straight but it is straight asymptotically, i.e. 〈d〉,
then any of the conditions (a) or (c) is sufficient to guarantee that HDN has at
least one eigenvalue of finite multiplicity below its essential spectrum [EDN

1 ,∞),
i.e., σdisc(HDN ) �= ∅. On the other hand, if the strip is asymptotically straight
and k− ≡ 0, then σ(HDN ) = σess(HDN ) = [EDN

1 ,∞), i.e., σdisc(HDN ) = ∅.

Remark 4.1. The signs of k(s) and the corresponding total bending an-
gle α change after the change of arc-length parameter given by s �→ −s. It
has to be stressed here that such a re-parameterization of the reference curve Γ
leads to another strip due to (3.1) and, consequently, there is no ambiguity
in stating the spectral results on HDN in terms of the sign of α and k, see
Figure 2.
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�

� ��( Id)

s

s

u

u

� < 0 � > 0

Figure 2. Inversion of orientation of the reference curve (given by the re-
parameterization s �→ −s). Thick lines denote the Dirichlet boundary condi-
tion, thin lines the Neumann one.

The sufficient conditions (a)–(c) of the first part of Theorem 4.4 are proved
in Section 6.1. We refer to [17] for the original proof of the part (ii) (this proof
is in fact very technical, based on a decomposition of HDN to the transverse
basis (3.11) and the spectral analysis of an associated ordinary differential oper-
ator) and to [49] for a recent, simplified proof. A comparison of the condition (a)
with the assumptions given in [17] is done in Remark 6.1.

Consider now a situation when the discrete spectrum of Hι, ι ∈ {D, DN},
below the energy Eι

1 is not empty.
Although this paper in not intended to investigate the number of eigen-

values of Hι, let us point out the following remarkable property of HDN which
we establish at the end of Section 6.1.

Proposition 4.1 (Number of bound states in the DN case). Suppose
〈H〉 and 〈d〉. If k− �≡ 0 then

∀n ∈ N ∃dn > 0 : d < dn =⇒ N(HDN ) ≥ n ,

where N(HDN ) denotes the number of discrete eigenvalues of HDN , counting
multiplicity.

The number of bound states in thin strips is another property, which
demonstrates a significant influence of the choice of boundary conditions on
the spectrum. To see it, we recall that an upper SKN-type (cf [73, 54, 67])
bound on the number of bound states in thin Dirichlet strips was derived in [18,
Sec. 2.3] and it showed that N(HD) is bounded from above by a finite constant
which does not depend on the strip width d. On the other hand, Proposi-
tion 4.1 shows that N(HDN ) can reach arbitrarily large value by shrinking the
strip width to zero.
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The last objective of this paper is to estimate the distance between the
bottom of the essential spectrum Eι

1 and the spectral threshold inf σ(Hι) (which
will represent the lowest eigenvalue since, for this problem, we restrict ourselves
to the strips with curvature having compact support). We derive the following
upper bounds (to the lowest eigenvalue), which are again qualitatively different
for the Dirichlet and mixed Dirichlet-Neumann situations, respectively.

Theorem 4.5 (Estimates of the spectral threshold). Suppose 〈H〉 and
assume that k has a compact support in an interval of width 2s0.

(i) If α ≤ 0, then inf σ(HDN ) ≤ EDN
1 − CDN (s0, d, α)2 α2 , where

CDN (s0, d, α) :=
√

EDN
1

√
3/π

1 +
√

1 − 3
2

αs0
d + 3

4α2
(

1
2 + 2

π2

) .

(ii) inf σ(HD) ≤ ED
1 − CD(s0, d, α)2 α4 , where

CD(s0, d, α) :=
24

33

√
3/π2

d
(

s0
d − α

4 + 2
3 π

) 1

1 +
√

1 +
(

4 α
3 π

)2 4s0−α d
4s0−α d+ 8d

3 π

.

These estimates are new in the theory of quantum waveguides and we de-
rive them in Section 6. One can immediately see that for small total bending
angles, the leading term in the estimate (i) is proportional to the second power
of α, while it is the fourth power of α in the estimate (ii). Another essential
difference in our estimates appears in the limit case of thin strips. We dis-
cuss these interesting disparities in Remarks 6.3 and 6.4. We also compare
there the result (ii) with the exact eigenvalue asymptotics obtained in [18] by
perturbation methods applied to mildly curved or thin strips, respectively.

§5. Essential Spectrum

This section is devoted to the proof of Theorem 4.1. It is achieved in two
steps. Firstly, in Lemma 5.2, we employ a Neumann bracketing argument in
order to show that the threshold of the essential spectrum does not descend be-
low the energy Eι

1. Secondly, in Lemma 5.3, we prove that all energies above Eι
1

belong to the spectrum by means of the following general characterization of
essential spectrum which we have adopted from [15].

Lemma 5.1. Let H be a non-negative self-adjoint operator in a complex
Hilbert space H and Q be the associated quadratic form. Then η ∈ σess(H) if
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and only if

∃{ψn}∞n=1 ⊂ Dom Q :




(i) ∀n ∈ N \ {0} : ‖ψn‖ = 1,

(ii) ψn
w−−−→

n→∞
0 in H,

(iii) (H − η)ψn −−−→
n→∞

0 in (DomQ)∗ .

Here (Dom Q)∗ denotes the dual of the space DomQ. We note that H + 1 :
Dom Q → (Dom Q)∗ is an isomorphism and

(5.1) ‖ψ‖−1 := ‖ψ‖(Dom Q)∗ = sup
φ∈Dom Q\{0}

|(φ, ψ)|
‖φ‖1

with
‖φ‖1 :=

√
Q[φ] + ‖φ‖2 .

Lemma 5.1 is proved in a quite similar fashion as the Weyl criterion, [75,
Thm. 7.24]. The advantage of the present characterization is that it requires to
find a sequence from the form domain of H only, and not from DomH as it is
required by the Weyl criterion. Moreover, in order to check the limit from (iii),
it is still sufficient to consider the operator H in the form sense, i.e. we will not
need to assume that (Gij) is differentiable in our case.

We start by an estimate on the threshold of the essential spectrum.

Lemma 5.2. If 〈d〉 holds true, then inf σess(Hι) ≥ Eι
1.

Proof. Since the curvature vanishes at infinity, for any fixed ε > 0, there
exists sε such that

(5.2) ∀(s, u) ∈ Ωext : (1 − dε) ≤ 1 − u k(s) ≤ (1 + dε),

where Ωext := Ω0 \ Ωint with Ωint := (−sε, sε) × I. Denote by Hι
N the op-

erator Hι with a supplementary Neumann boundary condition imposed on
the two segments {±sε} × I, that is, the operator associated with the form
Qι

N := Qι,int
N ⊕ Qι,ext

N , where

Qι,ω
N [ψ] :=

(
ψ,i, G

ijψ,j

)
L2(Ωω,dΩ)

,

Dom QD,ω
N :=

{
ψ ∈ W 1,2(Ωω, dΩ) |ψ(s, 0) = ψ(s, d) = 0 for a.e. s ∈ R ∩ Ωω

}
,

Dom QN,ω
N := W 1,2(Ωω, dΩ),

Dom QDN,ω
N :=

{
ψ ∈ W 1,2(Ωω, dΩ) |ψ(s, 0) = 0 for a.e. s ∈ R ∩ Ωω

}
,
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for ω ∈ {int, ext}. Since Hι ≥ Hι
N and the spectrum of the operator associated

with Qι,int
N is purely discrete, cf [13, Chap. 7], the minimax principle gives the

estimate

inf σess(Hι) ≥ inf σess(H
ι,ext
N ) ≥ inf σ(Hι,ext

N ),

where Hι,ext
N denotes the operator associated with Qι,ext

N . Neglecting the non-
negative “longitudinal” part of the Laplacian in (3.8) (i.e. the term where one
sums over i = j = 1) and using the estimates (5.2), we arrive easily at the
following lower bound

Hι,ext
N ≥ 1 − dε

1 + dε
Eι

1 in L2(Ωext, dΩ),

which holds in the form sense (see also proof of Theorem 4.1 in [20]). The claim
then follows by the fact that ε can be chosen arbitrarily small.

Remark 5.1 (Neumann case). Since EN
1 = 0 and HN is a non-negative

operator, the statement of Lemma 5.2 holds trivially true for the Neumann
boundary conditions, i.e., ι = N , even without the assumption 〈d〉.

Example 5.1 (Periodic waveguides). The periodic strip (i.e. assump-
tion 〈d〉 is not obeyed) is the simplest example for which

inf σess(Hι) < Eι
1 , ι ∈ {D, DN}.

Let k �≡ 0 be a periodic function of a period L > 0, i.e., ∀s ∈ R : k(s+L) = k(s),
and such that the hypothesis 〈H〉 holds true for some d > 0. Then the operator
Hι is invariant with respect to the transformation s �→ s + jL for every j ∈ Z,
which implies that there is no discrete eigenvalue in its spectrum, i.e. σ(Hι) =
σess(Hι). However, Theorems 4.3 and 4.4 state that inf σ(Hι) < Eι

1.

According to a common belief, second order elliptic differential operators
with sufficiently regular periodic coefficients should not have degenerate bands
in their spectra, or, in other words, their spectra should be purely absolutely
continuous (see [74] and references therein). An elegant rigorous proof of this
fact for Dirichlet and Neumann periodic waveguides was given by E. Shargorod-
sky and A. Sobolev in [74] (cf also [4] for thin Dirichlet tubes).

The precedent Lemma 5.2 together with the following one establish The-
orem 4.1.

Lemma 5.3. If 〈d〉 holds true, then σess(Hι) ⊇ [Eι
1,∞).
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Proof. Let n ∈ N \ {0}. We shall construct a sequence {ψι
n} satisfying

(i)–(iii) of Lemma 5.1 with ηι := λ2 + Eι
1 for all λ ∈ R. We start with the

following family of functions

ψ̂ι
n(s, u) := ϕn(s) χι

1(u) eiλs ,

where χι
1 is the lowest transverse-mode function (3.11) if ι ∈ {D, DN}, or (3.12)

if ι = N , respectively, and ϕn(s) := ϕ(n−1s− n) with ϕ being a non-zero C∞-
smooth function with a compact support in (−1, 1). Note that supp ϕn ⊂
(n2 − n, n2 + n) and, consequently, the sequence {ϕn} is “localized at +∞”
for large n. It is clear that ψ̂ι

n belongs to the form domain of Hι. Since it
is not normalized in H, we introduce ψι

n := ψ̂ι
n/‖ψ̂ι

n‖. Hereafter we shall use
the equivalence of the norms ‖ · ‖ and ‖ · ‖L2(Ω0), which follows by (3.3). In
particular, one has

(5.3) C−‖ϕn‖2
L2(R) ≤

∥∥ψ̂ι
n

∥∥2 ≤ C+‖ϕn‖2
L2(R)

due to the normalization of χι
1.

The point (ii) of Lemma 5.1 requires that (φ, ψι
n) → 0 as n → ∞ for

all φ ∈ H. Since {ψι
n} is bounded in H, it is enough to show the limit for

all φ ∈ C∞
0 (Ω0), a dense subset of H. However, the latter follows at once

because φ and ψι
n will have disjoint supports for n large enough.

Hence, it remains to check that ‖(Hι − ηι)ψn‖−1 → 0 as n → ∞. Em-
ploying the diagonal form (3.2) of the metric tensor, we can split the Hamil-
tonian (3.8) into a sum of two parts, Hι = Hι

1 + Hι
2, where Hι

i , i ∈ {1, 2},
corresponds to the term with Gii in (3.8). This decomposition leads to the
trivial bound

(5.4)
∥∥(

Hι − ηι
)
ψι

n

∥∥
−1

≤
∥∥(

Hι
1 − λ2

)
ψι

n

∥∥
−1

+
∥∥(

Hι
2 − Eι

1

)
ψι

n

∥∥
−1

.

We will show that the norms at the r.h.s. of this inequality tends to zero
as n → ∞ separately. Denote ‖f‖∞,n := sup {|f(s, u)| | (s, u) ∈ supp ϕn × I } .

An explicit calculation using (3.3) and the fact that χι
1 is an eigenfunction

of −∆I
ι corresponding to the energy Eι

1 yields

(5.5)
∣∣∣(φ,

(
Hι

2 − Eι
1

)
ψ̂ι

n

)∣∣∣ =
∣∣∣(φ, k ψ̂ι

n,2

)
L2(Ω0)

∣∣∣ ≤ C−1
−

√
Eι

1 ‖k‖∞,n ‖φ‖ ‖ψ̂ι
n‖

for all φ ∈ Dom Qι. Consequently, the second term at the r.h.s. of (5.4) goes
to zero as n → ∞ by the assumption 〈d〉.
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A little more toilsome but still direct calculation yields(
φ,

(
Hι

1 − λ2
)
ψ̂ι

n

)
= λ2

(
φ,

(
1 − G

1
2
)
ψ̂ι

n

)
L2(Ω0)

+
(
φ,1,

(
G

1
2 G11 − 1

)
(ϕ̇n + iλϕn) χι

1e
iλs

)
L2(Ω0)

−
(
φ, (ϕ̈n + 2iλϕ̇n) χι

1e
iλs

)
L2(Ω0)

for all φ ∈ Dom Qι. Estimating all the terms at the r.h.s. of this equality in
the same way as in (5.5), it is enough to show that the following sequences

∥∥1 − G
1
2
∥∥
∞,n

,
∥∥G

1
2 G11 − 1

∥∥
∞,n

,
‖ϕ̇n‖L2(R)

‖ϕn‖L2(R)
,

‖ϕ̈n‖L2(R)

‖ϕn‖L2(R)
,

has the zero limit as n → ∞. However, this is evident for the first and second
ones by virtue of (3.2) and 〈d〉, while for the rest it follows by the definition of
the sequence {ϕn}.

If the strip is asymptotically straight, i.e. 〈d〉, then σ(HN ) = [0,∞) by
Theorem 4.1, (3.10) and non-negativity of HN ; see also Theorem 4.2. We con-
clude this section by proving the following result about the spectral threshold
of the operators HD and HDN .

Proposition 5.1. Suppose 〈H〉. If the strip obeys 〈d〉, then

inf σ(Hι) > 0 for ι ∈ {D, DN}.

Proof. We have Hι ≥ 0 and Eι
1 > 0. By virtue of Theorem 4.1, it is

enough to prove that 0 �∈ σp(Hι). Assume that there exists ψ ∈ Dom Hι

such that Hιψ = 0. Then ψ ∈ Dom Qι and 0 = (ψ, Hιψ) = Qι[ψ] ≡∫
Ω0

ψ,iG
ijψ,j dΩ with (Gij) being a strictly positive definite matrix, hence

ψ = 0 a.e.

Actually, stronger lower bounds to inf σ(HD) were derived in [1, 25].

§6. Curvature-induced Spectrum

Now we will be interested in the proofs concerning the existence and prop-
erties of the spectrum of Hι below the energy Eι

1. Since HN is a non-negative
operator and EN

1 = 0, only the situations ι ∈ {D, DN} are relevant here, how-
ever, we do not exclude the Neumann case from the preliminary considerations
here in order to establish a minor result contained in Proposition 6.1 below.
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All the proofs of the following subsections are based on the variational
strategy of finding a trial function ψι from the form domain of Hι such that

(6.1) Qι
1[ψ

ι] := Qι[ψι] − Eι
1 ‖ψι‖2 < 0.

We construct such a trial function by modifying the generalized eigenfunc-
tion (3.11) of energy Eι

1 for the straight strip. This idea goes back to J. Gold-
stone and R. L. Jaffe, [52]; see also [18, 20, 17, 58].

As a preliminary, let us express the form (6.1) in the situation where the
variables are separated in the following way:

(6.2) ψι(s, u) := ϕ(s) χι
1(u),

where χι
1 is the first transverse mode (3.11) or (3.12) and ϕ is a suitable function

from W 1,2(R). In view of (3.3), it is clear that ψι belongs to Dom Qι, given
by (3.5), (3.6) or (3.7), respectively. An explicit calculation yields

(6.3) Qι
1[ψ

ι] =
(
ϕ̇, 〈G− 1

2 〉ι ϕ̇
)

L2(R)
+ 1

2

[
χι

1(d)2 − χι
1(0)2

]
(ϕ, k ϕ)L2(R) ,

where 〈·〉ι denotes the expectation with respect to χι
1, i.e.

〈f〉ι :=
∫

I

f(·, u)χι
1(u)2du

with f ∈ L∞(Ω0). It is clear from (3.11) and (3.12) that the second term at the
r.h.s. of (6.3) is absent for ι ∈ {D, N}, while χDN

1 (d) =
√

2/d and χDN
1 (0) = 0.

§6.1. The existence

Proof of Theorem 4.3 and Theorem 4.4, condition (a). We set

(6.4) ψι
n(s, u) := ϕ(s; n) χι

1(u),

where ϕ : R × (0,∞) → [0, 1] is supposed to satisfy:

(i) ∀n ∈ (0,∞) : ϕ(·; n) ∈ W 1,2(R),

(ii) ϕ(s; n) −−−→
n→∞

1 for a.e. s ∈ R,

(iii) ‖ϕ,1(·; n)‖L2(R) −−−→
n→∞

0,

that is, ϕ is a suitable mollifier of 1 (for an example of such a function, see (6.12)
below). Substituting this trial function to (6.3), we get

(6.5) QD
1 [ψn] −−−→

n→∞
0 , QN

1 [ψn] −−−→
n→∞

0 , QDN
1 [ψn] −−−→

n→∞

α

d
,
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where α is the total bending angle (4.1). The limits hold true by virtue of the
required properties of ϕ, the fact that 〈G− 1

2 〉ι are bounded functions and, in
the case ι = DN , also by the dominated convergence theorem. That is why we
need to assume in addition that k is integrable for ι = DN . Consequently, if α

is strictly negative, then there exists a finite n0 > 0 such that QDN
1 [ψn0 ] < 0

and the proof for ι = DN is finished in this case.
To obtain the result for ι = DN in the limit case α = 0, and for any

Dirichlet strip, we modify the function ψι
n, in a curved part of the waveguide.

We define

(6.6) ψι
n,ε(s, u) := ψι

n(s, u) + ε φ(s) υι(u) χι
1(u), ι ∈ {D, DN}

where ε ∈ R, φ ∈ W 1,2(R) is a real, non-negative, non-zero function with
compact support contained in a bounded interval in R where k is not zero
and does not change sign (such an interval surely exists because k �≡ 0 and is
continuous), and υD(u) := −2u/d and υDN (u) := 1. The family {ψι

n,ε} is a
subset of DomQι and we can write

(6.7) Qι
1[ψ

ι
n,ε] = Qι

1[ψ
ι
n] + 2εQι

1(φυιχι
1, ψ

ι
n) + ε2 Qι

1[φυιχι
1].

The last term at the r.h.s. of (6.7) does not depend on n, while the first one
tends to zero as n → ∞ by (6.5). An explicit calculation of the central term
gives (cf (6.3) for ι = DN)

Qι
1(φυιχι

1, ψn) =
(
φ̇, 〈υιG− 1

2 〉ι , ϕ̇n

)
L2(R)

+ 1
d (φ, k ϕn)L2(R) ,

where we have denoted ϕn := ϕ(·; n) and ϕ̇n := ϕ,1(·; n). Using then the
properties of the function ϕ together with the dominated convergence theorem
(notice that φ k ∈ L1(R)), we have

(6.8) Qι
1[ψ

ι
n,ε] −−−→

n→∞
2
d ε (φ, k)L2(R) + ε2 Qι

1[φυιχι
1].

Since the integral (φ, k)L2(R) is non-zero by the construction of φ, we can take ε

sufficiently small and of an appropriate sign so that the sum of the last two
terms at the r.h.s. of (6.8) is negative, and then choose n sufficiently large so
that Qι

1[ψι
n,ε] < 0.

The intermediate results (6.5) of the precedent proof give the following
upper bounds to the spectral threshold of Hι:

Proposition 6.1. Suppose 〈H〉. One has

(i) inf σ(Hι) ≤ Eι
1 for ι ∈ {D, N};
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(ii) inf σ
(
HDN − k(s)

d(1−uk(s))

)
≤ EDN

1 provided k ∈ L1(R).

Actually, in view of Theorem 4.3, a stronger result than (i) holds for any
Dirichlet strip. The assertion (i) for the Neumann case, together with the fact
that HN is non-negative, establishes the first claim of Theorem 4.2.

Remark 6.1 (Condition (a) of Theorem 4.4 vs the assumptions in [17]).
The non-positivity of the total bending angle, i.e. α ≤ 0, is a nice sufficient
condition which guarantees the existence of geometrically induced spectrum
for HDN . This was established already in [17] under the additional hypothesis
that “k is non-positive everywhere outside of some bounded interval”. Since
the latter is not assumed in this paper, we extend significantly the class of ad-
missible geometries. Nevertheless, in order to justify the use of the dominated
convergence theorem, we need to assume that “k is integrable” instead; cf the
condition (a) of Theorem 4.4. Hence, a natural question is to ask whether
the assumptions in [17] may after all present an alternative criterion which is
not contained in our condition (a). The answer is negative due to the follow-
ing (purely geometrical) result, which can be easily shown using the so-called
“Umlaufsatz”, [56, Thm. 2.2.1]:

Lemma 6.1. Let Γ be an infinite plane C2-smooth curve of bounded
curvature k. If there exists a compact Γc ⊂ Γ such that

∣∣ ∫
Γa

k
∣∣ > 2π for any

compact Γa obeying Γc ⊆ Γa ⊂ Γ, then any tubular neighbourhood of Γ overlaps.

That is, any reference curve satisfying the assumptions of [17] but having a
non-integrable curvature leads to a violation of the basic hypothesis 〈H〉 (which
is assumed in [17] as well).

Proof of Theorem 4.4, condition (b). Let L > 0 be the period
of k, i.e., ∀s ∈ R : k(s + L) = k(s). We take the trial function of the form

ψDN
n,ε (s, u) := ϕn(s) (1 + ε φ(s)) χDN

1 (u) ,

cf (6.6), where the functions ϕn and φ are defined as follows. Let ϕ1 ∈ C∞
0 (R)

be a real function with the support inside the interval (−L, 2L) which is equal
to 1 on the period cell (0, L). We set, for any n ∈ N \ {0},

ϕn(s) :=




ϕ1(s) if s ∈ (−∞, L),

1 if s ∈ [L, nL],

ϕ1 (s − (n − 1)L) if s ∈ (nL, +∞) .
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Let φ ∈ C∞(R) be non-negative, L-periodic, and such that supp φ�(0, L) is
contained in an interval where k is not zero and does not change sign. Then
(φ, k)L2((0,L)) �= 0. Finally, let ε ∈ R be chosen in such a way that (cf (6.8))

(6.9)

A :=
(
ψDN

1,ε ,
(
HDN − EDN

1

)
ψDN

1,ε

)
L2((0,L)×I,dΩ)

= 2
d ε (φ, k)L2((0,L)) + ε2

(
φχDN

1 ,
(
HDN − EDN

1

)
φχDN

1

)
L2((0,L)×I,dΩ)

is negative. By virtue of the definition of ϕ1 and the fact that
∫ L

0
k(s)ds = 0

(cf Lemma 6.1), it is clear that

QDN
1 [ψDN

1,ε ] = A + B,

where B is defined as the integral at the first line of (6.9), however, with the
range of integration being the set ((−L, 0)∪ (L, 2L))× I. Using the periodicity
of the coefficients of HDN together with the definition of ϕn, we continue by
induction and arrive at the identity

∀n ∈ N \ {0} : QDN
1 [ψDN

n,ε ] = nA + B,

which becomes negative for n sufficiently large.

Remark 6.2 (Integrability of k). If k �≡ 0 is periodic, then the curvature
is not integrable. However, one has for every n ∈ N,

∫ nL

−nL
k(s) ds = 0 due to

the periodicity (cf Lemma 6.1). This indicates that the requirement k ∈ L1(R)
in the condition (a) of Theorem 4.4 may be rather a technical hypothesis.

Proof of Theorem 4.4, condition (c). We take the trial func-
tion ψDN of the form (6.2). Since k is continuous and k− �≡ 0, there exists
an interval J ⊂ R, such that k(s) < 0 for all s ∈ J . Choosing ϕ ∈ W 1,2(R)
such that suppϕ ⊆ J and substituting it to (6.3), obvious estimates yield

(6.10) QDN
1 [ψDN ] ≤ ‖ϕ̇‖2

L2(J) +
1
d

∫
J

|ϕ(s)|2 k(s) ds.

The second term at the r.h.s. of the last inequality is obviously negative, while
the first one does not depend on d. Hence for all d sufficiently small their sum
is negative.

Proof of Proposition 4.1. The claim is trivial for n = 0. Let us
fix an integer n ∈ N \ {0}. We shall find a critical width dn such that for
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all d < dn, there are at least n discrete eigenvalues in the spectrum of HDN ,
counting multiplicity. As in the proof of Theorem 4.4, condition (c), let J ⊂ R

be a bounded interval such that k(s) < 0 for all s ∈ J . We set s0 := inf J and
sj := s0 + j |J |/n for every j ∈ {1, . . . , n}. Let ϕ0 be a non-zero function from
W 1,2(R) such that supp ϕ0 ⊂ (s0, s1). We define for every j ∈ {1, . . . , n} and
s ∈ R,

N−2
j :=

∫ sj

sj−1

|ϕ0(s0 + s − sj−1)|2 〈G 1
2 〉DN(s) ds ,

ϕj(s) := Nj ϕ0(s0 + s − sj−1) .

Putting ψDN
j (s, u) := ϕj(s)χDN

1 (u) for every j ∈ {1, . . . , n}, cf (6.2), we get an
orthonormal basis of a subspace of DomQDN . Moreover, QDN (ψDN

j , ψDN
	 ) = 0

whenever j �= � because ϕj and ϕ	 have disjoint supports. Therefore, it follows
by [13, Lemma 4.5.4] and Theorem 4.1 that a sufficient condition for HDN to
have at least n discrete eigenvalue is QDN [ψDN

j ] < EDN
1 , i.e. QDN

1 [ψDN
j ] < 0,

for every j ∈ {1, . . . , n}. However, according to (6.10),

QDN
1

[
ψDN

j

]
≤ N2

j ‖ϕ̇0‖2
L2(R) +

N2
j

d

∫ sj

sj−1

|ϕ0(s0 + s − sj−1)|2 k(s) ds .

The r.h.s. of the last inequality is obviously negative for all j ∈ {1, . . . , n}
provided that d < dn with

dn := min
j∈{1,...,n}

1
‖ϕ̇0‖2

L2(R)

∫ s1

s0

|ϕ0(s)|2 |k(s − s0 + sj−1)| ds .

§6.2. The estimates on the spectral threshold

Throughout this subsection, we consider only ι ∈ {D, DN}. Obviously,

(6.11) inf σ(Hι) − Eι
1 = inf

ψ∈Dom Qι

Qι
1[ψ]

‖ψ‖2
≤ inf

ψ∈T ι

Qι
1[ψ]

‖ψ‖2
,

where T ι is an arbitrary subset of DomQι. Our strategy will be to choose a
suitable T ι and then explicitly find the infimum of the quotient at the r.h.s.
of (6.11).

In Theorem 4.5, the curvature is supposed to have a compact support
contained in an interval of width 2s0; without loss of generality we may assume
that the reference curve is parameterized in such a way that supp k ⊆ [−s0, s0].
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Proof of Theorem 4.5, part (i). Let ψn,c(s, u) := ϕc(s; n) χDN
1 (u)

be the trial function from the beginning of the proof of the condition (a) of
Theorem 4.4 in Section 6.1 with the mollifier ϕc(·; n) given explicitly by

(6.12) ϕc(s; n) :=




1 if |s| ∈ [0, n),

(c n − |s|)/ ((c − 1) n) if |s| ∈ [n, cn),

0 if |s| ∈ [cn,∞),

c > 1.

We set TDN := {ψn,c |n ≥ s0 , c > 1}. An easy calculation yields

QDN
1 [ψn,c] =

2
(c − 1) n

+
α

d
, ‖ψn,c‖2 =

2
3

(c + 2) n − α 〈u〉 ,

where

〈u〉 :=
∫

I

u χDN
1 (u)2 du = d

(
1
2

+
2
π2

)
.

Hence, denoting by f(n, c) the quotient at the r.h.s. of (6.11), we have

(6.13) f(n, c) =
2

c−1 + α
d n

2
3 (c + 2) n2 − α 〈u〉n

.

Now we shall seek the infimum of the continuous function f in the region
[s0,∞) × (1,∞); the result establishes the bound from Theorem 4.5.

One can directly check that there is no local minimum of the function f

in the interior of its domain, i.e. for every point (n, c) ∈ (s0,∞) × (1,∞),
f,1(n, c) �= 0 or f,2(n, c) �= 0. Thus the problem reduces to the study of the
behaviour of f on the boundary set {s0} × (1,∞) and its limits as n → ∞,
c → 1 and c → ∞, respectively. The function f(s0, ·) reaches its (negative)
local minimum

(6.14) f (s0, c+) =
−3 α2/d2

4
(
1 +

√
1 − 3

2α s0/d + 3
4α2〈u〉/d

)2

for

(6.15) c+ := − 2d

α s0
+ 1 − d

α s0

√
−6

α s0

d
+ 4 + 3

α2 〈u〉
d

.

Using the estimate f(n, c) ≥ α/(2dn), we obtain

lim inf
n→∞

f(n, c) ≥ 0

uniformly in c. Hence, there exists a (finite) n0 > s0 such that for every n > n0

holds true f(n, c) ≥ f(s0, c+) (recall that f(s0, c+) < 0, cf (6.14)) uniformly
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in c. Therefore since we seek the infimum of f we can consider only n ∈ [s0, n0]
in the rest of the proof. However, for those values of n we have

(6.16) f(n, c) ≥ 6
(c − 1) (2(c + 2)n2

0 − 3α〈u〉n0)
+

3α/d

2(c + 2)n − 3α〈u〉

and since

lim
c→1

6
(c − 1) (2(c + 2)n2

0 − 3α〈u〉n0)
= ∞ ,

∣∣∣∣limc→1

3α/d

2(c + 2)n − 3α〈u〉

∣∣∣∣ <
1

d〈u〉 ,

we obtain
lim
c→1

f(n, c) = ∞

uniformly in n. Finally,

lim
c→∞

6
(c − 1) (2(c + 2)n2

0 − 3α〈u〉n0)
= 0 ,

lim
c→∞

3α/d

2(c + 2)n − 3α〈u〉 ≥ α

dn
lim

c→∞

3
2(c + 2)

= 0

because n �→ α/(dn) is bounded on [s0, n0]; hence, in view of (6.16),

lim inf
c→∞

f(n, c) ≥ 0

uniformly in n. Since the infimum of f should be negative, we infer from the
above results that

inf
(n,c)∈[s0,∞)×(1,∞)

f(n, c) = inf
c∈(1,∞)

f(s0, c) = f (s0, c+) ,

where f(s0, c+) < 0 given by (6.14) provides an upper bound on the r.h.s.
of (6.11) for the case ι = DN .

Proof of Theorem 4.5, part (ii). In the Dirichlet case, we use the
mollifier (6.12) with the fixed n = s0 for the construction of the functions from
TD. We set for any c1, c2 > 1 and ε ∈ R,

(6.17) ψc1,c2,ε(s, u) := ϕc1(s; s0) χD
1 (u) + εϕc2(s; s0) χD

2 (u)

and TD := {ψc1,c2,ε | c1, c2 > 1 , ε ∈ R}. Easy explicit calculations give

QD
1 [ψc1,c2,ε] =

π2

d

(
h(c1) +

16
3π2

αε + ε2(2g(c2) + h(c2))
)

,

‖ψc1,c2,ε‖2 =
2d

3

(
g(c1) +

16
3π2

αε + ε2g(c2)
)

,
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where
h(c) :=

2
π2

d

s0

1
c − 1

, g(c) :=
s0

d
(c + 2) − 3

4
α .

Thus, the quotient at the r.h.s. of (6.11) can be written as

(6.18) f̃(c1, c2, ε) :=
3π2

2d2

h(c1) + 16
3π2 αε + ε2(2g(c2) + h(c2))

g(c1) + 16
3π2 αε + ε2g(c2)

.

Clearly, f̃ is a continuous function of the three variables defined in the region
(1,∞)2×R (the denominator is positive since it is the squared norm of a nonzero
function) and one could look for its infimum. However, from the technical point
of view, it seems to be a rather complicated task and that is why we make first
the following simplification.

We start by verifying that the infimum of f̃ is negative, i.e., ψc1,c2,ε is an
admissible trial function to estimate inf(HD)−ED

1 < 0, cf Theorem 4.3. Obvi-
ously, h(c) > 0 for any c ∈ (1,∞). Using the definition of α, the assumption 〈H〉
and obvious estimates, we check that the same holds true for g:

(6.19) g(c) > 3
(s0

d
− α

4

)
> 3

(
s0

d
− 1

2
s0‖k+‖∞

)
>

3
2

s0

d
.

Hence, the only term in the numerator of f̃ which can attain negative values
is the term linear in ε. However, for any given c2 > 0, there exists ε ∈ R

of such a sign that α ε < 0 and with a sufficiently small absolute value so
that the negative term linear in ε dominates over the quadratic one. Then
we can find c1 large enough to make the numerator of the r.h.s. of (6.18)
negative. Recalling that the denominator is positive, we can restrict ourselves
to those values of the triple (c1, c2, ε), for which f̃(c1, c2, ε) < 0; let us denote
N := {(c1, c2, ε) ∈ (1,∞)2×R | f̃(c1, c2, ε) < 0}. Setting for any (c1, c2, ε) ∈ N ,

(6.20) f(c1, c2, ε) :=
3π2

2d2

h(c1) + 16
3π2 αε + ε2(2g(c2) + h(c2))

g(c1)
,

we arrive easily at the inequality f̃(c1, c2, ε) ≤ f(c1, c2, ε), because the (posi-
tive) denominator in (6.18) is bounded from above by g(c1) due to the above
considerations. Consequently,

(6.21) inf σ(HD) − ED
1 ≤ inf

(c1,c2,ε)∈N
f(c1, c2, ε).
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Calculating the partial derivatives of f , it is straightforward to see that
the system of equations f,i = 0, i = 1, 2, 3, can be cast into the following form:

s0

d
A(c2, ε) (c1 − 1)2 +

4
π2

(c1 − 1) +
6
π2

d

s0

(s0

d
− α

4

)
= 0 ,

(c2 − 1)2 −
(

d

πs0

)2

= 0 ,

ε +
8α

3π2

1
h(c2) + 2g(c2)

= 0 ,

respectively, where, for any (c1, c2, ε) ∈ N ,

A(c2, ε) :=
16
3π2

αε + ε2(2g(c2) + h(c2)) < 0.

From the second equation we can immediately express c2; of course, we choose
that root c2+ which is greater than 1. Substituting c2+ to the third equation
of our system, we obtain the root ε0 (notice that really α ε0 < 0). Finally,
putting c2+ and ε0 to the first equation, we choose that root c1+ which is
greater than 1. A tedious but straightforward calculation yields

f(c1+, c2+, ε0) = −3π4

4d2

A(c2+, ε0)2(
1 +

√
1 − 3

2A(c2+, ε0)π2
(

s0
d − α

4

))2

with

A(c2+, ε0) = −32α2

9π4

1
2
π + 3( s0

d − α
4 )

.

(Recall that s0
d − α

4 > 0, so the square root in the first formula is well defined
in R.) Hence really (c1+, c2+, ε0) ∈ N . Moreover, one can check that the
matrix of second derivatives of f is in the point (c1+, c2+, ε0) diagonal with
all positive elements, that is, the function f reaches its local minimum in that
point.

To see that it is the global minimum too, we study the behaviour of the
limits of f as ci → 1,∞, i ∈ {1, 2} and ε → ±∞. We restrict ourselves
to that cases, where the limit is reached by negative values of f ; the rest
of the “boundary” of the set N consists of those triples (c̃1, c̃2, ε̃), for which
f(c̃1, c̃2, ε̃) = 0, that is, f(c̃1, c̃2, ε̃) > f(c1+ , c2+ , ε0). Since (6.19) gives

(6.22) g(c) >
3 |α|

4
,

we obtain

f(c1, c2, ε) >
3 π2

2 d2

16
3 π2 α ε + 3 |α|

2 ε2

g(c1)



�

�

�

�

�

�

�

�

784 David Krejčiř́ık and Jan Kř́ıž

and the condition f(c1, c2, ε) < 0 yields

(6.23) |ε| <
32

9 π2
.

Hence we do not study the limits as ε → ±∞ and we may assume in the
following that ε is bounded. Using (6.22) in the denominator of (6.20), ne-
glecting h(c1) and minimizing the remaining polynomial in ε in the numerator
of (6.20), we arrive at the lower bound

f(c1, c2, ε) > − 128
9 π2 d2

|α|
h(c2) + 2 g(c2)

for any c2 ∈ (1,∞). Thus

lim inf
c2→∞

f(c1, c2, ε) ≥ 0 , lim inf
c2→1

f(c1, c2, ε) ≥ 0

uniformly in c1 and ε. Finally, using (6.23) we can see that

f(c1, c2, ε) >
3 π2

2 d2

h(c1)
g(c1)

− 256 |α|
9 π2 d2

1
g(c1)

and therefore

lim inf
c1→∞

f(c1, c2, ε) ≥ 0 , lim
c1→1

f(c1, c2, ε) = ∞

uniformly in c2 and ε. Summing up the considerations, we conclude that
f(c1+ , c2+ , ε0) is the global minimum and the claim (ii) of Theorem 4.5 then
follows from (6.21).

Remark 6.3 (Mildly curved strips). Let us compare our estimate (ii) of
Theorem 4.5 with the exact ground-state eigenvalue asymptotics derived in [18,
Thm. 4.1] for mildly curved Dirichlet strips by the Birman-Schwinger perturba-
tion technique. We consider families of generating curves Γβ characterized by
the curvature kβ(s) := β k(s), where k is a fixed curvature function and β > 0
is a small parameter. Since αβ :=

∫
R

kβ(s)ds = β α, we see that β controls the
total bending of the strip, too. The result of [18] can be written as

inf(HD) = ED
1 − C(d, k)2 β4 + O(β5) ,

where C(d, k) is a positive constant depending only on the fixed width d and
(integrals of) k, while our estimate (ii) yields

inf(HD) ≤ ED
1 − CD(s0, d, 0)2 α4 β4 + O(β5) .
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Hence we observe the same dependence of the leading terms on the perturbation
parameter β. Let us quantitatively compare the actual gap-width asymptotic
given by C(d, k)2 with our estimate CD(s0, d, 0)2α4. Since C(d, k) has rather
a complicated structure, we restrict ourselves to small values of the width d

when

(6.24) C(d, k) =
1
8
‖k‖2

L2(R) + O(d2) .

We have CD(s0, d, 0) = 8/(9
√

3π2s0) + O(d). Since α2 ≤ 2s0‖k‖2
L2(R) by the

Schwarz inequality, we see that

CD(s0, 0, 0) α2

C(0, k)
≤ 128

9
√

3π2
≈ 0.83 .

As for the mixed Dirichlet-Neumann case, our estimate (i) of Theorem 4.5
leads to

inf(HDN ) ≤ EDN
1 − 3 α2

8 d2
β2 + O(β3)

and we observe that the leading term is proportional to the second power of β

now. In particular, it is much greater than the leading term in the identical
mildly curved strip with the pure Dirichlet boundary condition. Unfortunately,
no exact asymptotics are known for inf σ(HDN ), so we cannot perform any
comparison in this case.

Remark 6.4 (Thin strips). Another natural perturbation parameter is
the strip width d. Calculating the asymptotic expansions with respect to d of
the constants Cι(s0, d, α) from our Theorem 4.5, we arrive at

EDN
1 − inf(HDN )≥− α

2 s0 d
+ O(d−

1
2 ) ,

ED
1 − inf(HD)≥ 28 α4

35 π4 s2
0

(
1 +

√
1 +

(
4α
3π

)2
)2 + O(d).

Again, we observe qualitatively different behaviour of our estimates with respect
to the perturbation parameter.

In particular, the leading term in our lower estimate of the gap between the
essential spectrum threshold and the lowest Dirichlet eigenvalue is independent
of the strip width. This is in accordance with the perturbation expansion of
the ground-state eigenvalue derived in [18, Thm. 5.1]:

ED
1 − inf(HD) = −λ(k) + O(d) .
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Here λ(k) denotes the first (negative) eigenvalue of the one-dimensional Schrö-
dinger operator l := −∆− 1

4 k2 on L2(R) with Dom l := W 2,2(R), which is
naturally associated with the problem and reflects the geometry of Γ only.
(We remark that, under our assumptions, the operator l has always a negative
eigenvalue, cf [70, Thm. XIII.11].)

The leading term in the Dirichlet-Neumann estimate tends to +∞ as
d → 0 (notice, however, that this fact does not conflict with anything be-
cause EDN

1 = O(d−2)). That is, we again observe the effect of stronger
binding of the particle in the case when a Dirichlet boundary curve of the
strip is replaced by the Neumann one. A similar asymptotic estimate can
be also deduced directly from the crude bound (ii) of Proposition 6.1. Since
no perturbation expansion with respect to d for the lowest eigenvalue in the
Dirichlet-Neumann case is known yet, we cannot compare our estimate with
exact asymptotics.

§7. Conclusions

Motivated by the theory of curved quantum waveguides, we were inter-
ested in spectral properties of the Laplace operator in a strip built over an
infinite planar curve, see Figure 1, subject to three different types of boundary
conditions (Dirichlet, Neumann or a combination of these ones, respectively).
We localized the essential spectrum as a set under a very natural and weak
condition about vanishing of curvature at infinity only, cf Theorem 4.1. We
stress that no condition about the decay of derivatives of the curvature was
required throughout this paper (the derivatives may not even exist because
the reference curve is supposed to be C2-smooth only). Then we were in-
terested in the geometrically induced spectrum, i.e. the spectrum below the
spectral threshold of the corresponding straight strip; we made a survey of
known results and established new ones, cf Theorems 4.2–4.4. Here the most
important progress was achieved in the case of combined Dirichlet-Neumann
boundary conditions where we generalized the only one known result of [17]
and established two new sufficient conditions which guaranteed the existence
of geometrically induced spectrum, cf Theorem 4.4. We recall that the ge-
ometrically induced spectrum consists of discrete eigenvalues only whenever
the above asymptotic behaviour of curvature holds true. Finally, we estab-
lished two upper bounds to the spectral threshold in a situation when the
geometrically induced spectrum is present, cf Theorem 4.5. These estimates
are new in the theory of curved quantum waveguides and their remarkable be-
haviour in the limit of mild curvature or small width of the strip was discussed,
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cf Remarks 6.3 and 6.4. Summing up briefly the main contribution of the
paper, we gave answers to the two questions formulated in Section 2.

Let us now mention some directions in which the above mentioned results
could be strengthened or extended.

In Theorem 4.1, we succeeded to localize the essential spectrum as a set,
however, an open problem is to examine its nature. Here a particularly interest-
ing question is whether the curved geometry may produce a singular continuous
spectrum. In the Dirichlet case, this problem was analysed quite recently in [59]
by means of the Mourre theory.

Theorem 4.3 concerning the existence of geometrically induced spectrum
in Dirichlet strips is optimal in the sense that no better result can be achieved
without violating the basic hypothesis 〈H〉. One is of course tempted to ask
which more general regions (than the curved asymptotically straight strips)
still possess a non-trivial discrete spectrum. For instance, it is easy to see that
the existence result does not change if the boundary of the strip is deformed
locally and in such a way that the resulting deformed region lies in the exterior
of the strip, cf [72], however, more complicated deformations of the boundary
represent a difficult problem even in the straight case [9, 8]. In this context, it is
worth to recall that the existence of discrete spectrum in V-shaped waveguides
was demonstrated in [43, 3, 11] (the computed bound-state energy has been
verified experimentally in a flat electromagnetic waveguide in [10]).

The Neumann case is trivial from the point of view of the existence of
discrete spectrum in asymptotically straight strips, cf Theorem 4.2. As for the
Dirichlet-Neumann strip, while our Theorem 4.4 covers various wide classes
of geometries for which the geometrically induced spectrum exists, it does not
represent an ultimate result. For instance, it remains to be clarified whether one
can include also some thick strips with a positive total bending angle. Another
open question concerning the strips with combined boundary condition is the
study of the behaviour of eigenvalues in mildly curved, respectively thin, strips,
cf Remarks 6.3 and 6.4.

The upper bounds on the spectral threshold we presented in Theorem 4.5
can be surely improved. First of all, one should include the situations when
the total bending angle is equal to zero and/or the strip is curved globally.

As we have already mentioned in Introduction, the Dirichlet Laplacian
in the curved strip represents a reasonable model for a quantum Hamiltonian
of a particle restricted to move in a strip-like nanostructure. Assuming that
the boundary is sufficiently regular, to impose the Dirichlet boundary condi-
tions means to require the vanishing of wavefunctions, however, as pointed out
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in [50], this may be in general too restrictive and one should rather require
the vanishing of the probability current only. The latter leads in our case to a
general boundary condition of the type

a0ψ(·, 0) + b0ψ,2(·, 0) = 0 , adψ(·, d) + bdψ,2(·, d) = 0 ,

where ψ ∈ H denotes the wavefunction and (a0, ad), (b0, bd) ∈ R
2 \ {(0, 0)}.

However, at least from the mathematical point of view, it would be interesting
to examine the influence of the choice of particular boundary conditions on the
spectral properties of the Hamiltonian. Finally, it would be also possible to let
the coefficients a0, ad, b0, bd depend on the longitudinal variable s.

Other obvious extensions are to consider the Laplacian in tubular neigh-
bourhoods of non-compact submanifolds of general Riemannian manifolds.
Here the spectral problem was studied only for Dirichlet tubes in R

3 [52, 18],
Dirichlet layers in R

3 [20, 12] or more generally in R
n [64], and strips in two-

dimensional manifolds [58]; more general boundary conditions and other higher-
dimensional generalizations are still missing.

A long-standing open problem in the theory of quantum waveguides is the
question whether the geometrically discrete spectrum in curved asymptotically
straight Dirichlet strips will “survive” a strong homogeneous magnetic field. In
this context, let us mention the very recent work [22] (cf also [5]), where it is
shown actually that this is not the case for mildly curved strips if an appropriate
compactly supported magnetic field is added.
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[25] Exner, P., Freitas, P. and Krejčǐŕık, D., A lower bound to the spectral threshold in curved
tubes, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 460 (2004), 3457-3467.
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