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Abstract

H. Lin and the author introduced the notion of approximate conjugacy of dy-
namical systems. In this paper, we will discuss the relationship between approximate
conjugacy and full groups of Cantor minimal systems. An analogue of Glasner-Weiss’s
theorem will be shown. Approximate conjugacy of dynamical systems on the product
of the Cantor set and the circle will also be studied.

§1. Introduction

In [LM1], several versions of approximate conjugacy were introduced for
minimal dynamical systems on compact metrizable spaces. In this paper, we
will restrict our attention on dynamical systems on zero or one dimensional
compact spaces and discuss approximate conjugacy.

Let X be the Cantor set. A homeomorphism α ∈ Homeo(X) is said to
be minimal when it has no nontrivial closed invariant sets. We call (X, α) a
Cantor minimal system. Giordano, Putnam and Skau introduced the notion
of strong orbit equivalence for Cantor minimal systems in [GPS1], and showed
that two systems are strong orbit equivalent if and only if the associated K0-
groups are isomorphic. We will show that this theorem can be regarded as an
approximate version of Boyle-Tomiyama’s theorem ([GPS1, Theorem 2.4] or
[BT, Theorem 3.2]). Moreover, it will be also pointed out that two systems
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696 Hiroki Matui

are strong orbit equivalent if and only if the closures of the topological full
groups are isomorphic. This is an approximate analogue of [GPS2, Corollary
4.4], in which it was proved that two systems are flip conjugate if and only if
the topological full groups are isomorphic.

In [GW], Glasner and Weiss proved that two Cantor minimal systems
(X, α) and (Y, β) are weakly orbit equivalent if and only if the associated K0-
groups are weakly isomorphic modulo infinitesimal subgroups. We will discuss
relation of this result to approximate conjugacy. More precisely, it will be shown
that there exists γ ∈ [α] which is conjugate to β and whose associated orbit
cocycle has at most one point of discontinuity if and only if there are σn ∈ [[α]]
such that σnασ−1

n → β. Furthermore, this is also shown to be equivalent to
the existence of a unital order surjection from K0(Y, β) to K0(X, α).

In the last section, dynamical systems on the product space of the Cantor
set X and the circle T are studied. H. Lin and the author investigated approxi-
mate conjugacy of minimal dynamical systems on the Cantor set or the circle in
[LM1]. In the present paper, we will consider approximate conjugacy on their
product space X × T. In the orientation preserving case, we will show that
two systems are weakly approximately conjugate if and only if their periodic
spectrum coincide. In the non-orientation preserving case, however, it is not
enough to assume the same periodic spectrum to obtain weakly approximate
conjugacy. A necessary and sufficient condition involving a Z2-extension of a
Cantor minimal system will be given. We will continue to study such kind
of dynamical systems and related crossed product C∗-algebras in [LM2]. Note
that, however, our method is valid only for a skew product extension associated
with a cocycle taking its values in Isom(T). In general, every minimal homeo-
morphism on the product space of the Cantor set X and the circle T is of the
form α × ϕ, where α ∈ Homeo(X) is minimal and ϕ : X → Homeo(T) is a
(continuous) cocycle. We do not know when these kinds of dynamical systems
are weakly approximately conjugate at present.

§2. Preliminaries

Let X be a compact metrizable space. Equip Homeo(X) with the topol-
ogy of pointwise convergence in norm on C(X). Thus a sequence {αn}n∈N in
Homeo(X) converges to α, if

lim
n→∞

sup
x∈X

|f(α−1
n (x)) − f(α−1(x))| = 0
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for every complex valued continuous function f ∈ C(X). This is equivalent to
say that

sup
x∈X

d(αn(x), α(x))

tends to zero as n → ∞, where d(·, ·) is a metric inducing the topology of X.
When X is the Cantor set, this is also equivalent to say that, for any clopen
subset U ⊂ X, there exists N ∈ N such that αn(U) = α(U) for all n ≥ N .

Definition 2.1 ([LM1, Definition 3.1]). Let (X, α) and (Y, β) be dy-
namical systems on compact metrizable spaces X and Y . We say that (X, α)
and (Y, β) are weakly approximately conjugate, if there exist homeomorphisms
σn : X → Y and τn : Y → X such that σnασ−1

n converges to β in Homeo(Y )
and τnβτ−1

n converges to α in Homeo(X).

Let us recall the definition of the K0-group of a Cantor minimal system.

Definition 2.2. Let (X, α) be a Cantor minimal system. We call

Bα = {f − fα−1 : f ∈ C(X, Z)}

the coboundary subgroup and define the K0-group of (X, α) by

K0(X, α) = C(X, Z)/Bα.

We write the equivalence class of f ∈ C(X, Z) in K0(X, α) by [f ], or [f ]α if we
need to specify the minimal homeomorphism.

The K0-group is a unital ordered group equipped with the positive cone
K0(X, α)+ and the order unit [1X ].

Definition 2.3. Let (X, α) be a Cantor minimal system. We define

Inf(K0(X, α)) = {[f ] ∈ K0(X, α) : µ(f) = 0 for every α-invariant

probability measure µ}

and call it the infinitesimal subgroup. The quotient group K0(X, α)/ Inf
(K0(X, α)) is denoted by K0(X, α)/ Inf for short.

Two Cantor minimal systems (X, α) and (Y, β) are called orbit equivalent,
if there exists a homeomorphism F : X → Y such that

F ({αn(x) : n ∈ Z}) = {βn(F (x)) : n ∈ Z}
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holds for every x ∈ X. In this situation, there exist functions n : X → Z and
m : Y → Z such that F (α(x)) = βn(x)(F (x)) and F−1(β(y)) = αm(y)(F−1(y))
for all x ∈ X and y ∈ Y . We call n and m the orbit cocycles associated with
F . In general we cannot expect that these functions n and m are continuous.
When there exists F : X → Y such that the associated orbit cocycles each have
at most one point of discontinuity, we say that (X, α) and (Y, β) are strong orbit
equivalent.

In [GPS1], it was proved that K0(X, α) is a complete invariant for strong
orbit equivalence and that K0(X, α)/ Inf is a complete invariant for orbit equiv-
alence.

We need to recall the idea of Kakutani-Rohlin partitions and Bratteli-
Vershik models for Cantor minimal systems. The reader may refer to [HPS] for
the details. Let α ∈ Homeo(X) be a minimal homeomorphism on the Cantor
set X. A family of non-empty clopen subsets

P = {X(v, k) : v ∈ V, 1 ≤ k ≤ h(v)}

indexed by a finite set V and natural numbers k = 1, 2, . . . , h(v) is called a
Kakutani-Rohlin partition, if the following conditions are satisfied:

• P is a partition of X.

• For all v ∈ V and k = 1, 2, . . . , h(v)− 1, we have α(X(v, k)) = X(v, k + 1).

Let R(P) denote the clopen set
⋃

v∈V X(v, h(v)) and call it the roof set of P.
For each v ∈ V , the family of clopen sets X(v, 1), X(v, 2), . . . , X(v, h(v)) is
called a tower, and h(v) is called the height of the tower. We may identify the
label v with the corresponding tower. One can divide a tower into a number of
towers with the same height in order to obtain a finer partition. For example,
if one needs to divide E(v, 1) into two clopen sets O1 and O2 = E(v, 1) \ O1,
then one can put E(v1, k) = αk−1(O1) and E(v2, k) = αk−1(O2) for every
k = 1, 2, . . . , h(v). We shall refer to this procedure as a division of a tower.

Let {Pn}n∈N be a sequence of Kakutani-Rohlin partitions. We denote
the set of towers in Pn by Vn and clopen sets belonging to Pn by E(n, v, k)
(v ∈ Vn, k = 1, 2, . . . , h(v)). We say that {Pn}n∈N gives a Bratteli-Vershik
model for α, if the following are satisfied:

• The roof sets R(Pn) =
⋃

v∈Vn
E(n, v, h(v)) form a decreasing sequence of

clopen sets, which shrinks to a single point.

• Pn+1 is finer than Pn for all n ∈ N as partitions, and
⋃

n Pn generates the
topology of X.
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Note that, by taking a subsequence of {Pn}n∈N, we may further assume the
following:

• R(Pn+1) is contained in some E(n, v, h(v)) for all n ∈ N.

Therefore, when we put

P̃n = {E(n, v, k) : v ∈ Vn, 1 ≤ k < h(v)} ∪ {R(Pn)},

it is easily verified that P̃n’s (n = 1, 2, . . . ) also generate the topology.

Let us recall the definition of (topological) full groups of Cantor minimal
systems.

Definition 2.4 ([GPS2]). Let (X, α) be a Cantor minimal system.

(1) The full group [α] of (X, α) is the subgroup of all homeomorphisms γ ∈
Homeo(X) that preserves every orbit of α. To any γ ∈ [α] is associated a
map n : X → Z, defined by γ(x) = αn(x)(x) for x ∈ X.

(2) The topological full group [[α]] of (X, α) is the subgroup of all homeomor-
phisms γ ∈ [α], whose associated map n : X → Z is continuous.

In [GPS2], it was proved that [α] is a complete invariant for orbit equiva-
lence and that [[α]] is a complete invariant for flip conjugacy.

The following is a consequence of the Bratteli-Vershik model for (X, α)
(see [HPS]).

Lemma 2.5. Let (X, α) be a Cantor minimal system. Let U and V be
clopen subsets.

(1) [1U ] = [1V ] in K0(X, α) if and only if there exists γ ∈ [[α]] such that
γ(U) = V .

(2) [1U ] ≤ [1V ] in K0(X, α) if and only if there exists γ ∈ [[α]] such that
γ(U) ⊂ V .

We need the notion of the periodic spectrum of dynamical systems.

Definition 2.6. Let X be a compact metrizable space and let α be a
homeomorphism on X. By the periodic spectrum of (X, α) or α, we mean the
set of natural numbers p for which there are disjoint clopen sets U, α(U), . . . ,
αp−1(U) whose union is X. We denote the periodic spectrum of α by PS(α).
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When (X, α) is a Cantor minimal system, it is well-known that p ∈ PS(α)
if and only if [1X ] is divisible by p in K0(X, α). In fact, if U, α(U), . . . , αp−1(U)
are disjoint clopen sets whose union is X, then p[1U ] = [1X ]. Conversely, if
an integer valued continuous function f satisfies p[f ] = [1X ], then there exists
g ∈ C(X, Z) such that pf −1X = g−gα−1, and the clopen subset U = g−1(pZ)
does the work.

§3. Approximate Conjugacy for Cantor Minimal Systems

We would like to discuss approximate conjugacy between Cantor minimal
systems in this section. The following was shown in [LM1, Theorem 4.13].
But we would like to present another proof which does not use any C∗-algebra
theory. This theorem and its proof will be extended to dynamical systems on
the product of the Cantor set and the circle in the next section.

Theorem 3.1. Let (X, α) and (Y, β) be Cantor minimal systems. Then
the following are equivalent.

(1) There exists a sequence of homeomorphisms σn : X → Y such that σnασ−1
n

converges to β in Homeo(Y ).

(2) The periodic spectrum PS(β) of β is contained in the periodic spectrum
PS(α) of α.

Proof. (1)⇒(2). Suppose σnασ−1
n → β. When p belongs to PS(β), there

exists a clopen set U ⊂ Y such that U∩βk(U) is empty for all k = 1, 2, . . . , p−1
and U ∪ β(U) ∪ · · · ∪ βp−1(U) = Y . By the assumption, we can find a natural
number n such that

σnασ−1
n (βk(U)) = βk+1(U)

for all k ∈ N. Put V = σ−1
n (U). Then V, α(V ), . . . , αp−1(V ) are mutually

disjoint and their union is X. Hence p is in the periodic spectrum PS(α).
(2)⇒(1). Let F be a clopen partition of Y . It suffices to show that there

exists a homeomorphism σ : X → Y such that σασ−1(U) = β(U) for all U ∈ F .
We can find a Kakutani-Rohlin partition

Q = {Y (w, l) : w ∈ W, l = 1, 2, . . . , h(w)}

such that Q̃ is finer than F , where

Q̃ = {Y (w, l) : w ∈ W, l = 1, 2, . . . , h(w) − 1} ∪ {R(Q)}.
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We will construct σ : X → Y so that σασ−1(U) = β(U) holds for all U ∈ Q̃.
Let p be the greatest common divisor of h(w)’s. Then p is clearly in the periodic
spectrum of β, and so of α. Furthermore, there is N ∈ N such that

{pn : n ≥ N} ⊂
{ ∑

w∈W

awh(w) : aw ∈ N

}
.

By choosing a sufficiently small roof set, we can find a Kakutani-Rohlin parti-
tion

P = {X(v, k) : v ∈ V, k = 1, 2, . . . , h(v)}

for (X, α) such that h(v) is divisible by p and not less than pN for all v ∈ V .
By the choice of N , we have

h(v) =
∑

w∈W

av,wh(w)

for some natural numbers av,w (v ∈ V, w ∈ W ). Put bw =
∑

v∈V av,w and
divide each tower corresponding to w ∈ W into bw towers. Let us denote the
resulting Kakutani-Rohlin partition by Q′. Then

#P =
∑
v∈V

h(v) =
∑
v∈V

∑
w∈W

av,wh(w) =
∑

w∈W

bwh(w) = #Q′.

Therefore there exists a bijective map π from Q′ to P such that all consecutive
two clopen sets in any towers of Q′ go to consecutive clopen sets in a tower of
P. Since all non-empty clopen subsets of the Cantor set are homeomorphic,
there is a homeomorphism σ : X → Y such that σ(π(U)) = U for all U ∈ Q′.
It is not hard to see σασ−1(U) = β(U) for all U ∈ Q̃.

Corollary 3.2. Two Cantor minimal systems (X, α) and (Y, β) are
weakly approximately conjugate if and only if PS(α) = PS(β).

The theorem above says that the convergence of σnασ−1
n to β does not

bring any K-theoretical information except for periodic spectrum. To involve
K0-groups, we have to put an assumption on the conjugating map σn.

The following lemma was proved in [LM1, Lemma 4.7].

Lemma 3.3. Let X be the Cantor set and α, β be minimal homeomor-
phisms. Let P be a clopen partition of X. If [1U ] = [1β(U)] in K0(X, α) for all
U ∈ P, then one can find a homeomorphism σ ∈ [[α]] such that σασ−1(U) =
β(U) for all U ∈ P.
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As an immediate consequence of this lemma, we have the following. We
would like to give a proof using only dynamical terminology, while a similar
result can be found in [LM1, Theorem 5.4].

Theorem 3.4. For Cantor minimal systems (X, α) and (Y, β), the fol-
lowing are equivalent.

(1) K0(X, α) is unital order isomorphic to K0(Y, β).

(2) (X, α) and (Y, β) are strong orbit equivalent.

(3) There is a homeomorphism F : X → Y such that [[α]] = F−1[[β]]F .

(4) There exist homeomorphisms σn ∈ [[α]], τn ∈ [[β]] and F : X → Y such
that Fσnασ−1

n F−1 → β and F−1τnβτ−1
n F → α as n → ∞.

Proof. (1)⇔(2) follows [GPS1, Theorem 2.1].
(2)⇒(3). Suppose that the strong orbit equivalence between (X, α) and

(Y, β) is implemented by a homeomorphism F : X → Y . Then we have {g ◦F :
g ∈ Bβ} = Bα (see (i)⇒(ii) of [GPS1, Theorem 2.1] or (2)⇒(3) of Theorem 3.5
below), which implies that, for every τ ∈ [[β]] and U ⊂ X,

1U − 1U ◦ F−1τF = (1F (U) − 1F (U) ◦ τ ) ◦ F

is in the coboundary subgroup Bα. As mentioned in [GPS2, Proposition 2.11],
we know

[[α]] = {γ ∈ Homeo(X) : [1U ]α = [1U ◦ γ]α for all clopen sets U ⊂ X},

and so F−1τF belongs to [[α]]. The other inclusion follows in a similar fashion.
(3)⇒(4). Let {Pn} be a sequence of clopen partitions of Y which generates

the topology of Y . By applying Lemma 3.3 to the minimal homeomorphism
F−1βF and F−1(Pn), we obtain σn ∈ [[α]] such that

σnασ−1
n (F−1(U)) = F−1βF (F−1(U))

for every U ∈ Pn. Thus Fσnασ−1
n F−1(U) = β(U) for every U ∈ Pn. The

homeomorphisms τn can be constructed in the same way.
(4)⇒(1). It is easy to see that {g ◦ F : g ∈ Bβ} = Bα. Since K0(X, α) =

C(X, Z)/Bα and K0(Y, β) = C(Y, Z)/Bβ, the assertion is clear.

The theorem above can be viewed as an approximate version of [GPS1,
Theorem 2.4], in which it was shown that α and β are flip conjugate if and
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only if [[α]] = F−1[[β]]F . Furthermore, in [GPS2], it was proved that if [[α]] is
isomorphic to [[β]] as an abstract group, then there exists a homeomorphism F :
X → Y such that [[α]] = F−1[[β]]F . Indeed every isomorphism between [[α]]
and [[β]] is implemented by a homeomorphism. By using the same argument
as in [GPS2], one can prove a similar result for the closure of the topological
full group: every isomorphism between [[α]] and [[β]] is implemented by a
homeomorphism. Hence the conditions in the theorem above are also equivalent
to [[α]] being isomorphic to [[β]] as an abstract group.

The following theorem is an analogue of [GW, Theorem 2.3 (a)].

Theorem 3.5. When (X, α) and (Y, β) are Cantor minimal systems,
the following are equivalent.

(1) There is a unital order homomorphism ρ from K0(Y, β) to K0(X, α).

(2) There exist a continuous map F : X → Y and a minimal homeomorphism
γ ∈ [α] such that the integer valued cocycle associated with γ has at most
one point of discontinuity and βF = Fγ.

(3) There exists a continuous map F : X → Y such that {g ◦ F : g ∈ Bβ} is
contained in Bα.

(4) There exists a sequence of homeomorphisms σn : X → Y such that σnασ−1
n

→ β and limn→∞[f ◦ σn]α exists for all f ∈ C(Y, Z).

Proof. (1)⇒(2). Let ρ be a unital order homomorphism from K0(Y, β) to
K0(X, α). The proof goes in a similar fashion to [GW, Proposition 2.9]. Take
a0 ∈ X and b0 ∈ Y arbitrarily and put a1 = α(a0), b1 = β(b0). For each n ∈ N,
we would like to construct a Kakutani-Rohlin partition Pn = {Y (n, v, k) : v ∈
Vn, 1 ≤ k ≤ h(v)} for (Y, β) and homeomorphisms Fn : X → Y , γn ∈ [[α]], so
that the following conditions are satisfied.

(a) {Pn}n gives a Bratteli-Vershik model for (Y, β), and the roof sets R(Pn)
shrink to {b0}.

(b) b0 and b1 belong to distinct towers v0
n ∈ Vn and v1

n ∈ Vn in every Pn.

(c) For all v ∈ Vn and k = 1, 2, . . . , h(v), ρ([1Y (n,v,k)]β) = [1Y (n,v,k) ◦ Fn]α.

(d) For all v ∈ Vn and k = 1, 2, . . . , h(v)− 1, γnF−1
n (Y (n, v, k)) = F−1

n (Y (n, v,

k + 1)).

(e) Fn(a0) ∈ Y (n, v0
n, h(v0

n)) and Fn(a1) ∈ Y (n, v1
n, 1).
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(f) If Y (n, v, k) contains Y (n + 1, w, j), then F−1
n (Y (n, v, k)) also contains

F−1
n+1(Y (n + 1, w, j)).

(g) γn+1(x) = γn(x) for all x ∈ X \ F−1
n (R(Pn)).

(h) The clopen sets F−1
n (R(Pn)) shrink to {a0} and the clopen sets

γnF−1
n (R(Pn)) shrink to {a1}.

(i) {γi−1
n (a1) : 1 ≤ i ≤ h(v1

n), n ∈ N} is dense in X.

If this is done, we can finish the proof as follows. Define γ ∈ [α] by γ(x) =
γn(x) for x ∈ X \ F−1

n (R(Pn)) and γ(a0) = a1. Then γ is a well-defined
homeomorphism by (g) and (h). Moreover, the associated integer valued map is
clearly continuous on X \{a0}. By (i), the orbit of a1 by γ is dense in X. By (a)
and (f), Fn converges to a continuous surjection F satisfying F−1(Y (n, v, k)) =
F−1

n (Y (n, v, k)). By (h), F−1(b0) = {a0} and F−1(b1) = {a1}. It follows that
γ is a minimal homeomorphism. By (d), we have βF = Fγ.

Let us construct Pn, Fn and γn inductively. Choose a clopen neighbor-
hood U of b0 which does not contain b1. Put V1 = {v0

1 , v1
1}, h(v0

1) = h(v1
1) = 1,

Y (1, v0
1 , 1) = U and Y (1, v1

1 , 1) = Uc. Then P1 = {Y (1, v0
1 , 1), Y (1, v1

1 , 1)} is
a Kakutani-Rohlin partition for (Y, β). Since ρ([1Y (1,v0

1 ,1)]β) ≤ [1X ]α, we can
find a clopen neighborhood O of a0 which does not contain a1 and satisfies
ρ([1Y (1,v0

1 ,1)]β) = [1O]α. We have ρ([1Y (1,v1
1 ,1)]β) = [1Oc ]α automatically, be-

cause ρ is unital. Define a homeomorphism F1 : X → Y so that F1(O) = U .
Let γ1 = id. Then P1, F1 and γ1 meet all the requirements.

Suppose that Pn, Fn and γn has been constructed. For each v ∈ Vn,
{F−1

n (Y (n, v, k)) : 1 ≤ k ≤ h(v)} is a tower with respect to γn, that is, we have
γnF−1

n (Y (n, v, k)) = F−1
n (Y (n, v, k + 1)) for k �= h(v) by (d). But each level

F−1
n (Y (n, v, k)) may not be so small. In order to achieve (h) and (i), we divide

each tower by using γn so that every level has diameter less than 1/n. Let Q
be the obtained clopen partition of X and let cv be the number of towers which
the original tower corresponding to v ∈ Vn is divided into. Put

ι = min{µ(O) : O ∈ Q, µ is an α-invariant probability measure}.

Take a Kakutani-Rohlin partition Pn+1 = {Y (n + 1, w, j) : w ∈ Vn+1, 1 ≤ j ≤
h(w)} for (Y, β) so that the following are satisfied.

• The roof set R(Pn+1) is a sufficiently small clopen neighborhood of b0 and
contained in Y (n, v0

n, h(v0
n)) ∩ β−1(Y (n, v1

n, 1)).

• ν(R(Pn+1)) < ι for every β-invariant probability measure ν.
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• The tower v1
n+1 ∈ Vn+1 goes through every tower v ∈ Vn at least cv times.

• Pn+1 is finer than Pn as a partition and v0
n+1 �= v1

n+1.

• Each level of Pn+1 has diameter less than 1/n.

The first three conditions can be achieved by taking a sufficiently small roof
set. The last two conditions are done by dividing towers. Let O0 ∈ Q (resp.
O1 ∈ Q) be the clopen set that contains a0 (resp. a1). Since ρ([1R(Pn+1)]β) <

[O0]α, [O1]α, we can find a clopen neighborhood O′
0 (resp. O′

1) of a0 (resp.
a1) which is contained in O0 (resp. O1) and whose K0-class is equal to
ρ([1R(Pn+1)]β). We will define Fn+1 so that Fn+1(O′

0) = R(Pn+1) and Fn+1(O′
1)

= β(R(Pn+1)). By using Lemma 2.5, take σ ∈ [[α]] with σ(O′
0) = O′

1, and de-
fine γn+1 on X \ (R(Pn) \ O′

0) by γn+1(x) = γn(x) for x ∈ X \ R(Pn) and
γn+1(x) = σ(x) for x ∈ O′

0. We need not be careful about the choice of σ, be-
cause in the next step we will replace γn+1|O′

0 by another one. Let us consider
the tower v1

n+1. By repeating use of Lemma 2.5, we can take a copy of the tower
via ρ, and define Fn+1 and γn+1 on it so that (c), (d), (e) and (f) are achieved.
Moreover, we can do it so that the tower goes through every tower in Q, that
is, each clopen set of Q intersects with {γi−1

n+1(a1) : 1 ≤ i ≤ h(v1
n+1)}. Hence

we can ensure the condition (i). Thereby the induction step is completed.
(2)⇒(3). Suppose that the integer valued function n : X → Z associated

with γ is continuous on X \ {a0}. It suffices to show that, for every clopen set
U ⊂ Y , (1U − 1β(U)) ◦ F belongs to Bα. Put V = F−1(U). Then we have

F−1β(U) = γF−1(U) =
⋃
k∈Z

αk(V ∩ n−1(k)).

If V does not contain a0, in the right-hand side of the equality above, the union
is actually finite. Hence we can see that

(1U − 1β(U)) ◦ F = 1V −
∑
k∈Z

1V ∩n−1(k) ◦ α−k

is in the coboundary subgroup Bα. In the case that V contains a0, by means
of

(1U − 1β(U)) ◦ F = −(1Uc − 1β(Uc)) ◦ F,

we can apply the same argument.
(3)⇒(4). Let Pn be a sequence of clopen partitions of Y such that Pn+1

is finer than Pn for all n ∈ N and
⋃
Pn generates the topology of Y . Let

Qn be the clopen partition generated by Pn and β(Pn). Although F is not a
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homeomorphism, for each n ∈ N, we can find a homeomorphism Fn : X → Y

such that F−1
n (U) = F−1(U) for every U ∈ Qn. By the assumption,

1F−1
n (U) − 1F−1

n β(U) = 1F−1(U) − 1F−1β(U) = (1U − 1β(U)) ◦ F

is zero in K0(X, α) for all U ∈ Pn. Now Lemma 3.3 applies to the minimal
homeomorphism F−1

n βFn and the clopen partition F−1
n (Pn) of X and yields

τn ∈ [[α]] such that

τnατ−1
n (F−1

n (U)) = F−1
n βFn(F−1

n (U))

for all U ∈ Pn. Put σn = Fnτn. Then we get

σnασ−1
n (U) = β(U)

for all U ∈ Pn, and moreover

[1U ◦ σn]α = [1U ◦ Fn ◦ τn]α = [1U ◦ Fn]α = [1U ◦ F ]α,

which completes the proof.
(4)⇒(1). The unital order homomorphism ρ is given by ρ([g]β) = limn→∞

[g ◦ σn]α for [g] ∈ K0(Y, β). By σnασ−1
n → β, one checks that this is really a

homomorphism from K0(Y, β).

Remark 3.6. It is known that (1) directly implies (3) in the theorem
above. See [LM1, Theorem 2.6] for example. This fact can be understood as
a corollary of Elliott’s classification theorem of AF algebras in the following
way. Let A and B be the unital AF algebras such that K0(A) and K0(B)
are unital order isomorphic to K0(X, α) and K0(Y, β), respectively. One can
regard C(X) and C(Y ) as the diagonal subalgebras of A and B. Then, by the
classification theorem, there is an homomorphism ϕ : B → A such that ϕ∗ = ρ

and ϕ(C(Y )) = C(X). Hence there exists a continuous map F : X → Y such
that ϕ(g) = g ◦ F for all g ∈ C(Y ). It is not hard to see that F meets the
requirement.

Next, we would like to consider when one can choose F to be a homeo-
morphism in the conditions (2) and (3) in Theorem 3.5.

Definition 3.7. Let G and H be dimension groups. We say an order
homomorphism ρ : G → H is an order surjection, if for every g ∈ G and h ∈ H

with 0 ≤ h ≤ ρ(g) there is g′ ∈ G such that ρ(g′) = h and 0 ≤ g′ ≤ g.

Evidently the order surjectivity implies ρ(G+) = H+. The other implica-
tion, however, does not hold in general.
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Example 3.8. Let G be the subgroup of C([0, π], R) generated by Q[x]
(the set of rational polynomials) and 2(π − x). Thus every g(x) ∈ G has the
form f(x) + 2n(π − x) with f(x) ∈ Q[x] and n ∈ Z. Put

G+ = {g(x) ∈ G : g(x) > 0 for all x ∈ [0, π]} ∪ {0}.

Then one checks that (G, G+, 1) is a unital ordered group satisfying the Riesz
interpolation property. Moreover G is simple and has no infinitesimal elements.

Put H = {g(π) ∈ R : g(x) ∈ G}. We regard H as a unital ordered
group with the order inherited from R. Then the point evaluation at x = π

gives a homomorphism ρ from G to H. It is obvious that ρ is a unital order
homomorphism. Clearly ρ is surjective and its kernel is {2n(π−x) : n ∈ Z} ∼= Z,
because π is transcendental.

Suppose that h ∈ H is positive. Since ρ is surjective, there is g(x) ∈ G

such that ρ(g) = g(π) = h > 0. Although the function g may not be positive,
for a sufficiently large n ∈ N, g(x)+2n(π−x) is strictly positive on [0, π]. Hence
we have ρ(G+) = H+. Nevertheless the order homomorphism ρ is not an order
surjection. To explain it, let g(x) = x+1 ∈ G and h = 4−π ∈ H. Then 0 < h <

ρ(g) = π+1. But there are no integer n such that 0 < 4−x+2n(π−x) < x+1
for all x ∈ [0, π].

Theorem 3.9. Let (X, α) and (Y, β) be Cantor minimal systems. Then
the following are equivalent.

(1) There is a unital order surjection ρ from K0(Y, β) to K0(X, α).

(2) There is γ ∈ [α] such that the integer valued cocycle associated with γ has
at most one point of discontinuity and γ is conjugate to β.

(3) There is a homeomorphism F : X → Y such that {g ◦ F : g ∈ Bβ} is
contained in Bα.

(4) There are homeomorphisms σn ∈ [[α]] and F : X → Y such that
Fσnασ−1

n F−1 → β.

Proof. (1)⇒(2). This is done by changing a part of the proof of (1)⇒(2) in
Theorem 3.5. We follow the notation used there. In order to make F : X → Y

a homeomorphism, we have to require that the partition F−1
n (Pn) of X is

sufficiently finer in each inductive step. We will achieve it by dividing the
towers and changing Fn. Let us focus our attention on a tower corresponding
to v ∈ Vn. The clopen sets F−1

n (Y (n, v, k)) (k = 1, 2, . . . , h(v)) are not so small
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at first, and so we must divide these clopen sets. For simplicity, suppose that
F−1

n (Y (n, v, k)) is divided into two clopen sets X(n, v1, k) and X(n, v2, k) so
that

γn(X(n, v1, k)) = X(n, v1, k + 1), γn(X(n, v2, k)) = X(n, v2, k + 1)

for all k = 1, 2, . . . , h(v) − 1. By the order surjectivity of ρ, we can find the
clopen subsets Y (n, v1, k) and Y (n, v2, k) of Y (n, v, k) such that

β(Y (n, v1, k)) = Y (n, v1, k + 1), β(Y (n, v2, k)) = Y (n, v2, k + 1)

for all k = 1, 2, . . . , h(v) − 1 and

ρ([1Y (n,v1,k)]β) = [1X(n,v1,k)]α, ρ([1Y (n,v2,k)]β) = [1X(n,v2,k)]α

for all k = 1, 2, . . . , h(v). Then we rearrange Fn so that Fn(X(n, vi, k)) =
Y (n, vi, k) for i = 1, 2 and k = 1, 2, . . . , h(v). In this way, the tower in X can
be divided. Note that we need to take care of the condition (e), when dealing
with the towers corresponding to v0

n and v1
n.

(2)⇒(3), (3)⇒(4) and (4)⇒(1) can be proved in the same way as in
Theorem 3.5.

Remark 3.10. Of course, (3) of the theorem above is equivalent to
F−1[[β]]F ⊂ [[α]].

Remark 3.11. One can prove (1)⇒(3) directly in a similar fashion to
[LM1, Theorem 2.6]. See also Remark 3.6.

In [GW], so to say, a ‘modulo infinitesimal’ version of the theorem above
was discussed. More precisely, Glasner and Weiss showed that if there is a
unital order homomorphism from K0(Y, β)/ Inf to K0(X, α)/ Inf, then there
exists a minimal homeomorphism γ ∈ [α] such that the Cantor minimal system
(X, γ) admits (Y, β) as a factor. Besides, they proved that if K0(Y, β)/ Inf and
K0(X, α)/ Inf are unital order isomorphic, then γ can be chosen to be conjugate
to β.

We can modify the argument in the proof of Theorem 3.5 and 3.9 so that
it applies to the ‘modulo infinitesimal’ case. As a consequence, we get the
following.

Theorem 3.12. Let (X, α) and (Y, β) be Cantor minimal systems. The
following are equivalent.

(1) There is a unital order surjection from K0(Y, β)/ Inf to K0(X, α)/ Inf.
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(2) There exists γ ∈ [α] such that (X, γ) is conjugate to (Y, β).

§4. Approximate Conjugacy on X × T

In this section, we will extend Theorem 3.1 to dynamical systems on the
product space of the Cantor set X and the circle. The crossed product C∗-
algebra arising from this kind of dynamical system will be discussed in [LM2].
We identify the circle with T ∼= R/Z and denote the distance from t ∈ T to
zero by |t|. The finite cyclic group of order m is denoted by Zm

∼= Z/mZ and
may be identified with {0, 1, . . . , m − 1}.

Define o : Homeo(T) → Z2 by

o(ϕ) =

{
0 ϕ is orientation preserving

1 ϕ is orientation reversing.

Then the map o(·) is a homomorphism. Let Rt denote the translation on
T = R/Z by t ∈ T. By Isom(T) we mean the set of isometric homeomorphisms
on T. Thus,

Isom(T) = {Rt : t ∈ T} ∪ {Rtλ : t ∈ T},

where λ ∈ Homeo(T) is defined by λ(t) = −t, and so Isom(T) is isomorphic to
the semidirect product of T by Z2. Equip Isom(T) with the topology induced
from Homeo(T). Then Isom(T) is a disjoint union of two copies of T as a
topological space.

Definition 4.1. Let (X, α) be a Cantor minimal system. Suppose that
a continuous map X � x �→ ϕx ∈ Isom(T) is given. We denote the homeomor-
phism (x, t) �→ (α(x), ϕx(t)) on X × T by α × ϕ, and call (X × T, α × ϕ) the
skew product extension of (X, α) by ϕ.

When ϕ : X → Isom(T) is a continuous map, the composition of ϕ and o

gives a continuous function from X to Z2. We denote this Z2-valued function
by o(ϕ). Under the identification of

C(X, Z2)/{f − fα−1 : f ∈ C(X, Z2)}

with K0(X, α)/2K0(X, α), an element of K0(X, α)/2K0(X, α) is obtained from
o(ϕ). We write it by [o(ϕ)] or [o(ϕ)]α. If o(ϕ)(x) = 0 for all x ∈ X, there exists
a continuous function ξ : X → T such that ϕx = Rξ(x) for every x ∈ X. In this
case, let us denote the induced homeomorphism on X × T by α × Rξ instead
of α × ϕ.
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Definition 4.2. Let (X, α) be a Cantor minimal system and let ϕ :
X → Isom(T) be a continuous map. We say that α × ϕ (or ϕ) is orientation
preserving when [o(ϕ)] is zero in K0(X, α)/2K0(X, α).

The following lemma says that if [o(ϕ)] = 0 in K0(X, α)/2K0(X, α), we
may assume that ϕ takes its values in the rotation group.

Lemma 4.3. Let (X, α) be a Cantor minimal system and let ϕ : X →
Isom(T) be a continuous map. Suppose that α × ϕ is orientation preserving.
Then there exists a continuous map ξ : X → T such that α × ϕ is conjugate to
α × Rξ.

Proof. Since [o(ϕ)] is zero in K0(X, α)/2K0(X, α), there exists a contin-
uous function f : X → Z2 such that o(ϕ)(x) = f(x) − f(α(x)) for all x ∈ X.
Define a continuous map ψ : X → Isom(T) by

ψx =

{
id f(x) = 0

λ f(x) = 1.

Then
o(ψα(x)ϕxψ−1

x ) = f(α(x)) + o(ϕx) − f(x) = 0,

and so there exists ξ ∈ C(X, T) such that ψα(x)ϕx = Rξ(x)ψx for all x ∈ X.
Thus, id×ψ gives a conjugacy between α × ϕ and α × Rξ.

Although the following theorem is actually contained in Theorem 4.9, we
would like to present it as a prototype. Note that every clopen subset of X ×T

is of the form U × T with a clopen set U ⊂ X. Hence the periodic spectrum
PS(α × ϕ) agrees with PS(α).

Theorem 4.4. Let (X, α) and (Y, β) be Cantor minimal systems and
let ϕ : X → Isom(T) and ψ : Y → Isom(T) be continuous maps. If both α × ϕ

and β × ψ are orientation preserving, then the following are equivalent.

(1) There exist homeomorphisms σn from X×T to Y ×T such that σn(α×ϕ)σ−1
n

converges to β × ψ in Homeo(T).

(2) The periodic spectrum PS(β) of β is contained in the periodic spectrum
PS(α) of α.

Proof. (1)⇒(2). The proof is the same as that of Theorem 3.1, because
of PS(α × ϕ) = PS(α) and PS(β × ψ) = PS(β).



�

�

�

�

�

�

�

�

Approximate Conjugacy and Full Groups 711

(2)⇒(1). Thanks to Lemma 4.3, we may assume that there exist ξ ∈
C(X, T) and ζ ∈ C(Y, T) such that ϕx = Rξ(x) and ψy = Rζ(y) for all x ∈ X

and y ∈ Y .
Let F be a clopen partition of Y and let ε > 0. It suffices to find a

homeomorphism σ : X → Y and a continuous function η : X → T such that

σασ−1(U) = β(U)

for all U ∈ F and
|(ξ − ζσ)(x) − (η − ηα)(x)| < ε

for all x ∈ X. If such σ and η are found, then σ × Rη does the work. In fact,
for (x, t) ∈ X × T,

(σ × Rη)(α × Rξ)(x, t) = (σ × Rη)(α(x), t + ξ(x))

= (σ(α(x)), t + ξ(x) + η(α(x)))

is close to

(β × Rζ)(σ × Rη)(x, t) = (β × Rζ)(σ(x), t + η(x))

= (β(σ(x)), t + η(x) + ζ(σ(x))).

Let
Q = {Y (v, k) : v ∈ V, k = 1, 2, . . . , h(v)}

be a Kakutani-Rohlin partition for (Y, β) such that h(v) > ε−1 for all v ∈ V

and
Q̃ = {Y (v, k) : v ∈ V, k = 1, 2, . . . , h(v) − 1} ∪ {R(Q)}

is finer than F . By Theorem 3.1, there exists a homeomorphism σ : X → Y

such that
σασ−1(U) = β(U)

holds for all U ∈ Q̃. Put X(v, k) = σ−1(Y (v, k)). Then

P = {X(v, k) : v ∈ V, k = 1, 2, . . . , h(v)}

is evidently a Kakutani-Rohlin partition for (X, α). Define a continuous func-
tion κ from α(R(P)) to T by

κ(x) =
h(v)−1∑

i=0

(ζσ − ξ)(αi(x))
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for all x ∈ X(v, 1). Since X is totally disconnected, there exists a continuous
function κ̃ from α(R(P)) to R such that

κ̃(x) + Z = κ(x) and − 1 < κ̃(x) < 1

for all x ∈ α(R(P)). Thus, κ̃ is a lift of κ satisfying −1 < κ̃ < 1. We can define
the continuous function η : X → T ∼= R/Z by η(x) = 0 for x ∈ α(R(P)) and

η(αj(x)) =
j−1∑
i=0

(ζσ − ξ)(αi(x)) − j

h(v)
κ̃(x) + Z

for x ∈ X(v, 1) and j = 1, 2, . . . , h(v) − 1, where the last term Z means that η

takes its values in T ∼= R/Z. One can check that |(ξ − ζσ)(x) − (η − ηα)(x)|
is less than ε for all x ∈ X, because |h(v)−1κ̃(x)| is less than ε. The proof is
completed.

We would like to consider the general case. Let α×ϕ be as above. Define
a homeomorphism on X × Z2 by

α × o(ϕ) : (x, k) �→ (α(x), k + o(ϕ)(x)).

Then, if the Z2-valued continuous function o(ϕ) is not zero in K0(X, α)/2K0

(X, α), by [M1, Lemma 3.6], α × o(ϕ) is a minimal homeomorphism on the
Cantor set X × Z2. The projection π from X × Z2 to the first coordinate X

gives a factor map. It is well known that π induces a unital order embedding
π∗ from K0(X, α) to K0(X × Z2, α × o(ϕ)). In particular, PS(α) is contained
in PS(α × o(ϕ)).

In general, if a continuous Zm-valued function c : X → Zm is given, then
one can define α × c on X × Zm in a similar fashion. This kind of dynamical
system was studied in [M1] and [M2].

Although we need the following lemma in the case m = 2, we would like
to describe a general version.

Lemma 4.5. Let (X, α) be a Cantor minimal system and let c : X →
Zm be a continuous function. Suppose that α× c is a minimal homeomorphism
on X × Zm. Then we have

T (K0(X × Zm, α × c)/π∗(K0(X, α))) ∼= Zm,

where T (·) means the torsion subgroup. Moreover, its generator is given by the
Z-valued continuous function

f0(x, k) =

{
1 c(α−1(x)) �= 0 and k ∈ {0, 1, . . . , c(α−1(x)) − 1}
0 otherwise.
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Proof. Let us denote the homeomorphism (x, k) �→ (x, k + 1) by γ. It is
clear that γ commutes with α × c.

Suppose that f ∈ C(X×Zm, Z) gives a torsion element in K0(X×Zm, α×
c)/π∗(K0(X, α)). There exist n ∈ N and g ∈ C(X, Z) such that

nf − g ◦ π ∈ Bα×c,

which implies that

nf ◦ γ−1 − g ◦ π ◦ γ−1 = nf ◦ γ−1 − g ◦ π

is contained in Bα×c. Therefore we have n[f ] = n[f ◦γ−1] in K0(X×Zm, α×c).
Since the K0-group is torsion free, it follows that [f ] belongs to the kernel of
id−γ∗. By virtue of [M2, Lemma 3.6], we get

T (K0(X × Zm, α × c)/π∗(K0(X, α))) = Ker(id−γ∗)/π∗(K0(X, α)) ∼= Zm.

Put U = X × {0}. Then it is easy to see

f0 − f0 ◦ γ−1 = 1U − 1U ◦ (α × c)−1 ∈ Bα×c.

Thus [f0] is in the kernel of id−γ∗. By [M2, Lemma 3.6] and its proof, we can
conclude that [f0] is the generator.

By using the lemma above, the computation of PS(α × c) is carried out.

Lemma 4.6. Let (X, α) be a Cantor minimal system and let c : X →
Z2 be a continuous map. Suppose PS(α) �= PS(α × c). Then, there exists
n ∈ N such that 2n−1 ∈ PS(α), 2n /∈ PS(α) and PS(α × c) = 2PS(α) ∪
PS(α). Furthermore, when 2n−1[f ] equals [1X ] in K0(X, α), we have [c] =
[f ] + 2K0(X, α) in K0(X, α)/2K0(X, α).

Proof. We follow the notation used in the lemma above. If [c] is zero in
K0(X, α)/2K0(X, α), then obviously PS(α× c) agrees with PS(α). Hence we
may assume that [c] is not zero, and that α × c is minimal on X × Z2.

Suppose p ∈ PS(α × c) \ PS(α). Since [1X×Z2 ] is divisible by p in
K0(X × Z2, α × c), there exists f ∈ C(X × Z2, Z) such that p[f ] = [1X×Z2 ].
By p /∈ PS(α), we have [f ] /∈ π∗(K0(X, α)). But p[f ] = [1X×Z2 ] = π∗([1X ]),
which means that [f ] gives a torsion element of K0(X×Z2, α×c)/π∗(K0(X, α)).
Therefore, by the lemma above, we can see that p is even and 2[f ] ∈
π∗(K0(X, α)). It follows that p/2 belongs to PS(α). Hence we can conclude
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that PS(α× c) agrees with 2PS(α)∪PS(α). Note that it also follows that [f ]
is the generator of

T (K0(X × Z2, α × c)/π∗(K0(X, α))) ∼= Z2.

If [1X ] is infinitely 2-divisible in K0(X, α), then PS(α) contains 2PS(α), which
contradicts PS(α × c) �= PS(α). Thus, there exists n ∈ N such that 2n−1 ∈
PS(α) and 2n /∈ PS(α).

Suppose that 2n−1[f ] equals [1X ] in K0(X, α). Since 2n belongs to PS(α×
c), there exists f1 ∈ C(X ×Z2, Z) such that 2[f1] = [fπ] in K0(X ×Z2, α× c).
As shown in the preceding paragraph, [f1] is the generator of

T (K0(X × Z2, α × c)/π∗(K0(X, α))) ∼= Z2.

By the lemma above,

f0(x, k) =

{
1 c(α−1(x)) = 1 and k = 0

0 otherwise

is also the generator, and so we have [f1] − [f0] ∈ π∗(K0(X, α)). Observe that

2[f0] = [f0] + [f0 ◦ γ−1] = [g0π],

where g0 ∈ C(X, Z) is given by

g0(x) =

{
1 c(x) = 1

0 c(x) = 0.

It follows that 2n−1[g0π] = 2n[f0] is equal to 2n[f1] = 2n−1[fπ] modulo
2nπ∗(K0(X, α)). Hence [g0]− [f ] belongs to 2K0(X, α), because π∗ is injective.
As a consequence, we get

[c] = [g0] + 2K0(X, α) = [f ] + 2K0(X, α).

Lemma 4.7. Let m1, m2, . . . , mk be natural numbers and let q be their
greatest common divisor. Let χ1, χ2, . . . , χk be elements of Z2. Suppose that
either of the following holds:

(1) There exist i, j ∈ {1, 2, . . . , k} such that mi ∈ 2N, χi �= 0 and mj /∈ 2N.

(2) There exist i, j ∈ {1, 2, . . . , k} such that mi /∈ 2N, χi = 0 and χj �= 0.



�

�

�

�

�

�

�

�

Approximate Conjugacy and Full Groups 715

Then, there exists a natural number N ∈ N such that, for every n ≥ N and
χ ∈ Z2, we can find l1, l2, . . . , lk ∈ N so that

l1m1 + l2m2 + · · · + lkmk = nq

and
l1χ1 + l2χ2 + · · · + lkχk = χ.

Proof. Let us consider the case (1). We may assume m1 ∈ 2N, χ1 �= 0
and m2 /∈ 2N. It is clear that there exists N ∈ N such that

{nq : n ≥ N} ⊂
{

k∑
i=1

limi : li ∈ N, l1 > m2

}
.

Suppose that n ≥ N and χ are given. We can find l1, l2, . . . , lk ∈ N so that

l1m1 + l2m2 + · · · + lkmk = nq.

If l1χ1 + l2χ2 + · · ·+ lkχk is equal to χ, then we have nothing to do. Otherwise,
by replacing l1 with l1 − m2 and l2 with l2 + m1, the assertion follows.

In the case (2), we get the conclusion in a similar fashion.

Let
P = {X(v, k) : v ∈ V, k = 1, 2, . . . , h(v)}

be a Kakutani-Rohlin partition for a Cantor minimal system (X, α). Let ϕ :
X → Isom(T) be a continuous map. Suppose that o(ϕ) is constant on each
clopen set of P. For every v ∈ V ,

o(ϕ)(x) + o(ϕ)(α(x)) + · · · + o(ϕ)(αh(v)−1(x))

does not depend on x ∈ X(v, 1). We write this value by o(ϕ)v ∈ Z2.

Lemma 4.8. Let (X, α) and (Y, β) be Cantor minimal systems and let
ϕ : X → Isom(T) and ψ : Y → Isom(T) be continuous maps. Suppose that

P = {X(v, k) : v ∈ V, k = 1, 2, . . . , h(v)}

and
Q = {Y (w, l) : w ∈ W, l = 1, 2, . . . , h(w)}

are Kakutani-Rohlin partitions for (X, α) and (Y, β), and that π : Q → P is a
bijection satisfying the following.
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(1) π(Y (w, l + 1)) = α(π(Y (w, l))) for all w ∈ W and l = 1, 2, . . . , h(w) − 1.

(2) For all v ∈ V , we have o(ϕ)v =
∑

o(ψ)w, where the summation runs over
all w ∈ W such that π(Y (w, 1)) belongs to the tower v.

Then there exist a homeomorphism σ : X → Y and a continuous map ω : X →
Isom(T) such that σ(π(U)) = U for all U ∈ Q and

max
x∈X

max
t∈T

|ψσ(x)ωx(t) − ωα(x)ϕx(t)| < max
v∈V

h(v)−1.

Proof. Choose a homeomorphism σ : X → Y so that σ(π(U)) = U for all
U ∈ Q.

Let v ∈ V and x ∈ X(v, 1). By (1) and (2), there exists κ(x) ∈ T such
that

Rκ(x) =
(
ψσ(αh(v)−1(x))ψσ(αh(v)−2(x)) . . . ψσ(x)

) (
ϕαh(v)−1(x)ϕαh(v)−2(x) . . . ϕx

)−1
.

Then κ is a continuous function from α(R(P)) to T. Let κ̃ : α(R(P)) → R be
a continuous function such that

κ̃(x) + Z = κ(x) and − 1 < κ̃(x) < 1

for all x ∈ α(R(P)), that is, κ̃ is a lift of κ satisfying −1 < κ̃ < 1. Define
χ(v, j) ∈ Z2 by

χ(v, j) =
h(v)−1∑

i=j

o(ψσ(αi(x))),

where x belongs to X(v, 1) and χ(v, j) does not depend on the choice of x.
Define η : X → T by

η(αj(x)) = −(−1)χ(v,j) j

h(v)
κ̃(x) + Z

for all x ∈ X(v, 1) and j = 0, 1, . . . , h(v) − 1. Then η is a T-valued continuous
function on X. Since

o(ψσ(αj(x))) + χ(v, j) = χ(v, j + 1),

we have∣∣ψσ(αj(x))(Rη(αj(x))(t)) − Rη(αj+1(x))(ψσ(αj(x))(t))
∣∣ ≤ 1

h(v)
|κ̃(x)| <

1
h(v)

for all t ∈ T, x ∈ X(v, 1) and j = 0, 1, . . . , h(v) − 1. Define a continuous map
ω : X → Isom(T) by

ωx = id
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for all x ∈ α(R(P)) and

ωαj(x) = Rη(αj(x))

(
ψσ(αj−1(x))ψσ(αj−2(x)) . . . ψσ(x)

) (
ϕαj−1(x)ϕαj−2(x) . . . ϕx

)−1

for all x ∈ X(v, 1) and j = 1, 2, . . . , h(v) − 1. Then, one checks that

∣∣ψσ(αj(x))ωαj(x)(t) − ωαj+1(x)ϕαj(x)(t)
∣∣ <

1
h(v)

for all t ∈ T, x ∈ X(v, 1) and j = 0, 1, . . . , h(v) − 1.

The following is the main theorem of this section.

Theorem 4.9. Let (X, α) and (Y, β) be Cantor minimal systems and
let ϕ : X → Isom(T) and ψ : Y → Isom(T) be continuous maps. The following
are equivalent.

(1) There exist homeomorphisms σn from X×T to Y ×T such that σn(α×ϕ)σ−1
n

converges to β × ψ in Homeo(Y × T).

(2) PS(β) is contained in PS(α), and either of the following conditions is
satisfied:

(a) [o(ψ)]β = 0 and [o(ϕ)]α = 0

(b) [o(ψ)]β �= 0 and there exist n ∈ N, f ∈ C(X, Z) and g ∈ C(Y, Z) such
that

2n−1[f ]α = [1X ]α, [f ]α + 2K0(X, α) = [o(ϕ)]α

and
2n−1[g]β = [1Y ]β , [g]β + 2K0(Y, β) = [o(ψ)]β .

(c) [o(ψ)]β �= 0 and PS(β × o(ψ)) = PS(β).

Proof. (1)⇒(2). Note that every homeomorphism from X×T to Y ×T is
of the form σ×ω, where σ : X → Y is a homeomorphism and ω is a continuous
map from X to Homeo(T).

By the same proof as (1)⇒(2) of Theorem 3.1, we see that PS(β) =
PS(β × ψ) is contained in PS(α) = PS(α × ϕ).

At first, suppose that [o(ψ)]β is not zero and there exist n ∈ N and g ∈
C(Y, Z) such that

2n−1[g]β = [1Y ]β , [g]β + 2K0(Y, β) = [o(ψ)]β .
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Let π denote the projection from Y × Z2 to the first coordinate Y . Let f0 be
the function described in Lemma 4.5. Then

2[f0] = [f0 + f0 ◦ γ−1] = [g0 ◦ π]

in K0(Y × Z2, β × o(ψ)), where g0 : Y → Z is defined by

g0(y) =

{
1 o(ψ)(β−1(y)) �= 0

0 otherwise.

Therefore [g0]β + 2K0(Y, β) = [o(ψ)]β and π∗([g0]β) is 2-divisible in K0(Y ×
Z2, β × o(ψ)). Hence π∗([g]β) is also 2-divisible, which means that PS(β ×
o(ψ)) �= PS(β).

Under this assumption, we will show (b). There exists a Kakutani-Rohlin
partition

Q = {Y (w, l) : w ∈ W, l = 1, 2, . . . , h(w)}

such that the following hold:

• For all w ∈ W , h(w) is divisible by 2n−1. Put mw = 21−nh(w).

• The function o(ψ) is constant on each clopen set belonging to Q.

• o(ψ)w is equal to mw + 2Z for all w ∈ W .

By the assumption, we can find a homeomorphism σ : X → Y and a continuous
map ω : X → Homeo(T) such that

σασ−1(U) = β(U)

for all U ∈ Q and
|ωα(x)(ϕx(t)) − ψσ(x)(ωx(t))| <

1
2

for all (x, t) ∈ X × T. Hence we have

o(ω)(α(x)) + o(ϕ)(x) = o(ψ)(σ(x)) + o(ω)(x)

for all x ∈ X, which implies that [o(ϕ)]α = [o(ψσ)]α. Defining X(w, l) =
σ−1(Y (w, l)), we obtain a Kakutani-Rohlin partition

P = {X(w, l) : x ∈ W, l = 1, 2, . . . , h(w)}

for (X, α). Put

f(x) =

{
1 x ∈ X(w, l), l ∈ {1, 2, . . . , mw}
0 otherwise.
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Then 2n−1[f ]α = [1X ]α, and

[o(ϕ)]α = [o(ψσ)]α =
∑

w∈W

mw[1X(w,1)]α + 2K0(X, α) = [f ]α + 2K0(X, α),

which means that (b) holds.
If [o(ψ)]β is zero, then we can find a Kakutani-Rohlin partition Q such that

o(ψ)w = 0 for all w ∈ W . The same argument as above implies [o(ϕ)]α = 0.
Thus (a) holds.

In the other case, we get (c) immediately.
(2)⇒(1). Suppose that PS(β) is contained in PS(α). We will modify the

argument of Theorem 3.1 and apply Lemma 4.8. Take a clopen partition F of
Y arbitrarily and let ε > 0. It suffices to find a homeomorphism σ : X → Y

and a continuous map ω : X → Isom(T) such that

σασ−1(U) = β(U)

for all U ∈ F and
|ψσ(x)(ωx(t)) − ωα(x)(ϕx(t))| < ε

for all (x, t) ∈ X × T.
Let us assume (b). There exists a Kakutani-Rohlin partition

Q = {Y (w, k) : w ∈ W, l = 1, 2, . . . , h(w)}

such that the following conditions are satisfied.

• For all w ∈ W , h(w) is divisible by 2n−1. Put mw = 21−nh(w).

• The function o(ψ) is constant on each clopen set belonging to Q.

• o(ψ)w is equal to mw + 2Z for all w ∈ W .

• Q̃ is finer than F , where

Q̃ = {Y (w, k) : w ∈ W, l = 1, 2, . . . , h(w) − 1} ∪ {R(Q)}.

Let p be the greatest common divisor of mw’s. Note that 2n−1p is the greatest
common divisor of h(w)’s. There exists a natural number N ∈ N such that

{2n−1pm : m ≥ N} ⊂
{ ∑

w∈W

awh(w) : aw ∈ N

}
.

Let
P = {X(v, k) : v ∈ V, k = 1, 2, . . . , h(v)}

be a Kakutani-Rohlin partition for (X, α) which satisfies the following.
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• For all v ∈ V , h(v) is divisible by 2n−1p and greater than 2n−1pN .

• The function o(ϕ) is constant on each clopen set belonging to P.

• o(ϕ)v is equal to 21−nh(v) + 2Z for all v ∈ V .

Then we can find natural numbers av,w so that

h(v) =
∑

w∈W

av,wh(w).

It follows that

o(ϕ)v = 21−nh(v) + 2Z = 21−n
∑

w∈W

av,wh(w) + 2Z =
∑

w∈W

av,wo(ψ)w.

Therefore Lemma 4.8 applies and the required σ : X → Y and ω : X → Isom(T)
are obtained.

When we assume (a), a similar argument is valid (or we can say that it
follows from (2)⇒(1) of Theorem 4.4).

Finally, let us consider the case (c). Let Q be a Kakutani-Rohlin partition
for (Y, β) such that o(ψ) is constant on each clopen set belonging to Q and Q̃ is
finer than F . Let p be the greatest common divisor of h(w)’s and let p = 2n−1q

with n ∈ N and q /∈ 2N. Put mw = 21−nh(w). Note that the greatest common
divisor of mw’s is q. If o(ψ)w = mw + 2Z for all w ∈ W , then there exists
f ∈ C(Y, Z) such that

2n−1[f ]β = [1Y ]β

and
[f ]β + 2K0(Y, β) = [o(ψ)]β .

By Lemmas 4.5 and 4.6, we have PS(β × o(ψ)) �= PS(β), which is a contra-
diction. Hence there exists w ∈ W such that o(ψ)w �= mw + 2Z. Moreover,
there exists w ∈ W such that o(ψ)w is not zero, because [o(ψ)]β is not zero. It
follows that we have either of the following.

• There are w1, w2 ∈ W such that mw1 is even, o(ψ)w1 �= 0 and mw2 is odd.

• There are w1, w2 ∈ W such that mw1 is odd, o(ψ)w1 = 0 and o(ψ)w2 �= 0.

Then Lemma 4.7 applies and yields a natural number N . Let

P = {X(v, k) : v ∈ V, k = 1, 2, . . . , h(v)}

be a Kakutani-Rohlin partition for (X, α) which satisfies the following.
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• For all v ∈ V , h(v) is divisible by p and greater than Np.

• The function o(ϕ) is constant on each clopen set belonging to P.

By the choice of N , there exist natural numbers av,w such that

h(v) =
∑

w∈W

av,wh(w)

and
o(ϕ)v =

∑
w∈W

av,wo(ψ)w

for every v ∈ V . Therefore we can apply Lemma 4.8 and complete the proof.

Combining Lemma 4.6 and Theorem 4.9, we get the following.

Corollary 4.10. Let (X, α) and (Y, β) be Cantor minimal systems and
let ϕ : X → Isom(T) and ψ : Y → Isom(T) be continuous maps. Then α×ϕ and
β × ψ are weakly approximately conjugate if and only if either of the following
holds.

(1) PS(α) = PS(β) and both α × ϕ and β × ψ are orientation preserving.

(2) PS(α) = PS(β), PS(α × o(ϕ)) = PS(β × o(ψ)) and neither α × ϕ nor
β × ψ are orientation preserving.

In the proof of Lemma 4.8, it was essentially used that the cocycles ϕ and
ψ are Isom(T)-valued. Unfortunately, our proof does not work for cocycles with
values in Homeo(T). We do not know when two minimal homeomorphisms on
X × T are weakly approximately conjugate in general.
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