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§1. Introduction

In classical mechanics, solutions to various solid mechanics problems have
very well been established. The most famous one is the Boussinesq solution for
the case of concentrated vertical load acting on the surface of a semi-infinite
body. However, in engineering problems like foundation, road or airport pave-
ment design, solutions to a multi-layered system are required. Furthermore,
simple but accurate and flexible solution approach which can be extended to
multi-layered systems with various boundary conditions is of great necessity for
engineering design.

Authors of this paper have already analyzed various types of loads act-
ing simultaneously or separately on the surface of the pavement structure.
A pavement is modeled as a multi-layered elastic structure on the surface of
which circular wheel loads act. In general, a wheel load is assumed to exert
a vertical surface load due to the weight of the vehicle while braking or ac-
celerating the vehicle would exert horizontal surface load [1]. Moreover, when
large-sized vehicles like trucks and trailers turn on sharp corners wheels may
exert turning (torsional) load on the pavement surface [2]. Finally, a rolling
or stationary tire on the surface of a pavement system generates not only ver-
tical load but also centripetal shear load due to the fact that the wheel can
not freely expand due to surface frictional force [3]. This centripetal shear
load causes an increase in tensile stress at the surface of a pavement struc-
ture.

Theoretical analysis utilizes the principle of superposition and the solution
is given by summing up the solution of the various loads considered. In the

Communicated by H. Okamoto. Received December 10, 2004. Revised March 30, 2005.
2000 Mathematics Subject Classification(s): 74B05

∗College of Science and Engineering, Tokyo Denki University, Saitama 350-0394, Japan.

c© 2005 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



�

�

�

�

�

�

�

�

854 James Maina and Kunihito Matsui

analytical system developed by the authors, 10,000 measurement points can be
analyzed using a maximum of 100 loads and 100 pavement layers. This will
enable engineers determine stresses, displacements and strains at any point
within the pavement structure. It is considered that accurate analysis of the
effects of these different loads may contribute to the improvements of methods
for design of new pavements or evaluation of existing pavements for mainte-
nance or rehabilitation purposes and hence significantly reduce the cost involved
thereof.

Since numerical analysis of these loads showed similar characteristics, au-
thors decided to present, in this paper, a very basic solution due to vertical
loading that makes use of the Hankel transform. In this research, double
exponential (DE) formula developed by Prof. Mori was utilized to facilitate
semi-infinite numerical integration [4] and the Fortran program available at
Dr. Ooura’s webpage was used. A worked example for one layer system is
presented in order to check accuracy of DE-integration against the prescribed
boundary conditions. Problems with the implementation of numerical integra-
tion were found only in the vicinity of the pavement surface i.e. z = 0.

§2. Problem Formulation

Consider a multi-layered structure shown in Figure 1, on the surface of
which a uniformly distributed circular load is acting in the vertical direction.
The arrows on the infinitesimal block indicate positive direction of the stresses.
Equations of the theory of elasticity for three-dimensional problem in cylin-
drical coordinates, which satisfy equilibrium and compatibility conditions, are
employed.

§2.1. Equations of equilibrium

The following two equations represent equilibrium condition of the in-
finitesimal block shown in Figure 1.

∂σr

∂r
+

∂τrz

∂z
+

σr − σθ

r
= 0,(1)

∂τrz

∂r
+

∂σz

∂z
+

τrz

r
= 0.(2)
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Figure 1. Multi-layered system

§2.2. Stress-displacement relationship from Hooke’s law

The relation between stress and displacement can be represented in the
following manner:

σr = λ

(
∂u

∂r
+

u

r
+

∂w

∂z

)
+ 2µ

∂u

∂r
,(3)

σθ = λ

(
∂u

∂r
+

u

r
+

∂w

∂z

)
+ 2µ

u

r
,(4)

σz = λ

(
∂u

∂r
+

u

r
+

∂w

∂z

)
+ 2µ

∂w

∂z
,(5)

τrz = µ

(
∂u

∂z
+

∂w

∂r

)
,(6)

where, λ =
ν E

(1 + ν) (1 − 2ν)
, µ =

E

2(1 + ν)
.

Furthermore, (σr, σθ, σz) are normal stress components in the (r, θ, z)-
direction of the cylindrical coordinate system and τrz is the shearing stress on
r-plane in the z-direction, which is similar to the shearing stress on z plane in
the r direction of the cylindrical coordinate system.
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§2.3. Elasticity equations of displacement

Displacements can be expressed in terms of strain function, Φ, in the
following manner:

ur =− ∂2Φ
∂r∂z

,(7)

uz = 2(1 − ν)∇2Φ − ∂2Φ
∂z2

,(8)

where, ur, uz are displacement components in (r, z)-directions of the cylindrical
coordinate system.

§2.4. Elasticity equations of stress

Substituting equations (7) and (8) into equations (3) ∼ (6), elasticity equa-
tions of stress may be expressed in terms of Φ as follows:

σr

2µ
=

∂

∂z

(
ν∇2 − ∂2

∂r2

)
Φ,(9)

σθ

2µ
=

∂

∂z

(
ν∇2 − 1

r

∂

∂r

)
Φ,(10)

σz

2µ
=

∂

∂z

(
(2 − ν)∇2 − ∂2

∂z2

)
Φ,(11)

τrz

2µ
=

∂

∂r

(
(1 − ν)∇2 − ∂2

∂z2

)
Φ,(12)

where, ν is Poisson’s ratio.

§2.5. Equations of compatibility

The compatibility equation is expressed as follows:

(13) ∇4Φ = 0,

where

(14) ∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
.

∇2 is the axi-symmetric Laplace operator and the stress function, Φ, is a
solution of the biharmonic equation.
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§3. The Hankel Transform of the Stress Function

Performing the Hankel transform [5] on compatibility equation yields:

(15)
∫ ∞

0

r∇4ΦJ0(ξr)dr =
(

d2

dz2
− ξ2

)2 ∫ ∞

0

rΦJ0(ξr)dr = 0,

where, J0(ξr) is the Bessel function of the first kind of order zero. Let G(ξ, z) =∫ ∞
0

rΦJ0(ξr)dr, and substituting into equation (15) yields:

(16)
(

d

dz2
− ξ2

)2

G(ξ, z) = 0.

In order for equation (16) to be satisfied, G(ξ, z) should be:

(17) G(ξ, z) = (A + Bz)e−ξz + (C + Dz)eξz .

Furthermore, differentiating G(ξ, z) with respect to z gives:

dG

dz
=−ξe−ξzA + (1 − ξz)e−ξzB + ξeξzC + (1 + ξz)eξzD,(18)

d2G

dz2
= ξ2 e−ξzA + (−2 + ξz)ξe−ξzB + ξ2eξzC + (2 + ξz)ξeξzD,(19)

d3G

dz3
=−ξ3e−ξzA + (3 − ξz)ξ2e−ξzB + ξ3eξzC + (3 + ξz)ξ2eξzD.(20)

§4. Derivation of Displacement and Stress Using
the Hankel Transform

The Hankel transforms ūr, ūz, σ̄z, and σ̄z are computed as follows:

ūr = ξ
∂

∂z

∫ ∞

0

rΦJ0(ξr)dr(21)

= ξ
dG

dz

=−ξ2e−ξzA + (1 − ξz)ξe−ξzB + ξ2eξzC + (1 + ξz)ξeξzD,

ūz = 2(1 − ν)
[

d2

dz2
− ξ2

]
G − d2G

dz2
(22)

= (1 − 2ν)
d2G

dz2
− 2(1 − ν)ξ2G

=−ξ2e−ξzA + (−2 + 4ν − ξz)ξe−ξzB

−ξ2eξzC + (2 − 4ν − ξz)ξeξzD,
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σ̄z = 2µ

[
(1 − ν)

d3G

dz3
− (2 − ν)ξ2 dG

dz

]
(23)

= 2µ
[
ξ3e−ξzA + (1 − 2ν + ξz)ξ2e−ξzB

−ξ3eξzC + (1 − 2ν − ξz)ξ2eξzD
]
,

τ̄rz =−2µξ

∫ ∞

0

r

[
(1 − ν)∇2Φ − ∂2Φ

∂z2

]
J0(ξr)dr(24)

= 2µξ

[
ν

d2G

dz2
+ (1 − ν)ξ2G

]
= 2µ

[
ξ3e−ξzA + (−2ν + ξz)ξ2e−ξzB

+ξ3eξzC + (2ν + ξz)ξ2eξzD
]
.

Derivation of the Hankel transforms of σr and σθ is not straight forward
but can be performed in the following manner:

H1 =
∫ ∞

0

r

{
σr +

2µur

r

}
J0(ξr)dr(25)

=
∫ ∞

0

r

{
∂

∂z

[
(ν − 1)∇2Φ +

∂2Φ
∂z2

]}
J0(ξr)dr

= ν
d3G

dz3
+ (1 − ν)ξ2 dG

dz

= −ξ3e−ξzA + (1 + 2ν − ξz)ξ2e−ξzB

+ξ3eξzC + (1 + 2ν + ξz)ξ2eξzD.

Furthermore;

H2 =
∫ ∞

0

r {σr + σθ} J0(ξr)dr(26)

=
∫ ∞

0

r

{
∂

∂z

[
(2ν − 1)∇2Φ +

∂2Φ
∂z2

]}
J0(ξr)dr

= 2ν
d3G

dz3
+ (1 − 2ν)ξ2 dG

dz

= −ξ3e−ξzA + (1 + 4ν − ξz)ξ2e−ξzB

+ξ3eξzC + (1 + 4ν + ξz)ξ2eξzD.
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Hankel transform of displacements and stresses derived above may be writ-
ten in a matrix form as follows:

(27)




ūr(ξ, z)
ūz(ξ, z)
σ̄z(ξ, z)
τ̄rz(ξ, z)




= [P1(ξ, z)]




A(ξ)
B(ξ)
C(ξ)
D(ξ)




,

where

[P1 (ξ, z)] =

−ξ2e−ξz ξ(1 − ξz)e−ξz ξ2eξz ξ(1 + ξz)eξz

−ξ2e−ξz ξ(−2 + 4ν − ξz)e−ξz −ξ2eξz ξ(2 − 4ν − ξz)eξz

2µξ3e−ξz 2µξ2(1 − 2ν + ξz)e−ξz −2µξ3eξz 2µξ2(1 − 2ν − ξz)eξz

2µξ3e−ξz 2µξ2(−2ν + ξz)e−ξz 2µξ3eξz 2µξ2(2ν − ξz)eξz


 .

Furthermore, the Hankel transform for the remaining stresses, i.e. σr and
σθ may also be written in the following manner:

(28)

{
H1(ξ, z)
H2(ξ, z)

}
= [P2(ξ, z)]




A(ξ)
B(ξ)
C(ξ)
D(ξ)




,

where

[P2 (ξ, z)] =[
−2µξ3e−ξz 2µ(1 + 2ν − ξz)ξ2e−ξz 2µξ3eξz 2µ(1 + 2ν + ξz)ξ2eξz

−2µξ3e−ξz 2µ(1 + 4ν − ξz)ξ2e−ξz 2µξ3eξz 2µ(1 + 4ν + ξz)ξ2eξz

]
.

The above equations show that solutions to these problems may be ob-
tained analytically. Coefficients of integration, A, B, C, and D, which may be
different in each layer, are functions of Hankel parameter, ξ . These coefficients
may be determined from the specified boundary conditions.

§5. Boundary Conditions

§5.1. Surface, z = 0

Since a vertical uniformly distributed circular load is considered, the fol-
lowing two equations represent surface boundary conditions due to circular load
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of radius a:

1. r ≤ a

{
σz(r, 0) = −p,

τrz = 0,

2. r > a

{
σz(r, 0) = 0,

τrz = 0,

where, σz and τrz are stress components as defined in Figure 1 and p is the
external uniformly distributed vertical load.

§5.2. Between layers i and i + 1

The following equations satisfy the equilibrium conditions at the layer
interface:

u
(i)
r (r, hi) = u

(i+1)
r (r, 0),(29)

u
(i)
z (r, hi) = u

(i+1)
z (r, 0),

σ
(i)
z (r, hi) = σ

(i+1)
z (r, 0),

τ
(i)
rz (r, hi) = τ

(i+1)
rz (r, 0),

where, r is the horizontal position in the cylindrical coordinate system and hi

is the thickness of layer i.

§5.3. Infinity, z = ∞

The bottom layer is semi-infinite (hn → ∞) and all responses (stress,
displacement and strains) approach zero as z approaches ∞.

These conditions are applicable to all layers in the multi-layered system.
The Hankel transform considering boundary condition at the surface of the
pavement as well as the uniformly distributed circular load, p, whose radius is
a would be given as: {

σ̄1
z(0, ξ)

τ̄1
rz(0, ξ)

}
=

{
−p̄(ξ)

0

}
,

where the Hankel transform of the load, p̄, may be determined as:

p̄(ξ) =
∫ ∞

0

rpJ0(ξr)dr =
pa

ξ
J1(ξa).

By using equations (27) and (29), it is possible to develop a global propa-
gation matrix showing the relationship between displacement and stress com-
ponents of the 1st layer and coefficients of integration of the lowest layer (the
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N th layer). Furthermore, when z → ∞ in case of the N th layer (semi-infinite
medium), displacement and stress components approach zero and coefficients
of integration will become: Dn = Cn = 0 .

By taking into consideration boundary condition at the surface of the pave-
ment where there is a uniformly distributed circular load, p, with radius a as
well as interface conditions and represent components of the global propagation
matrix by tij , the relationship between the 1st and N th layers in the Hankel
transform domain would be given as:


ū1

r

ū1
z

σ̄1
z

τ̄1
rz




=




ū1
r(0, ξ)

ū1
z(0, ξ)
−p̄

0




=




t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44







An

Bn

0
0




,

and from the above relation, it is found that coefficients of integration for the
N th layer may be determined as:

{
An

Bn

}
=

[
t31 t32
t41 t42

]−1 {
p̄

0

}
.

By using coefficients of integration for the N th layer, coefficients of inte-
gration (A, B, C, and D) for other layers could be computed in a stepwise
process.

§6. Solution

After solving for coefficients of integration, it is possible to perform the
inverse transform where responses at any point of interest may be determined:

§6.1. The inverse Hankel transform

The inverse Hankel transform of ūr, ūz, σ̄z, τ̄rz, σ̄r and σ̄θ may be deter-
mined, respectively as follows:

ur =
∫ ∞

0

ξ
[
−ξ2e−ξzA + (1 − ξz)ξe−ξzB(30)

+ξ2eξzC + (1 + ξz)ξeξzD
]
J1(ξr)dξ,

uz =
∫ ∞

0

ξ
[
−ξ2e−ξzA + (−2 + 4ν − ξz)ξe−ξzB(31)

−ξ2eξzC + (2 − 4ν − ξz)ξeξzD
]
J0(ξr)dξ,
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σz = 2µ

∫ ∞

0

ξ
[
ξ3e−ξzA + (1 − 2ν + ξz)ξ2e−ξzB(32)

−ξ3eξzC + (1 − 2ν − ξz)ξ2eξzD
]
J0(ξr)dξ,

τrz = 2µ

∫ ∞

0

ξ
[
ξ3e−ξzA + (−2ν + ξz)ξ2e−ξzB(33)

+ξ3eξzC + (2ν + ξz)ξ2eξzD
]
J1(ξr)dξ,

σr = 2µ

[∫ ∞

0

ξ

{
σ̄r

2µ
+

ūr

r

}
J0(ξr)dξ − ur

r

]
(34)

= 2µ

∫ ∞

0

ξ
[
−ξ3e−ξzA + (1 + 2ν − ξz)ξ2e−ξzB

+ξ3eξzC + (1 + 2ν + ξz)ξ2eξzD
]
J0(ξr)dξ

−2µ

r

∫ ∞

0

ξ
[
−ξ2e−ξzA + (1 − ξz)ξe−ξzB

+ξ2eξzC + (1 + ξz)ξeξzD
]
J1(ξr)dξ,

σθ = 2µ

∫ ∞

0

ξ

{
σ̄r

2µ
+

σ̄θ

2µ

}
J0(ξr)dξ − σr(35)

= 2µ

∫ ∞

0

ξ
[
2νξ2e−ξzB + 2νξ2eξzD

]
J0(ξr)dξ

+
2µ

r

∫ ∞

0

ξ
[
−ξ2e−ξzA + (1 − ξz)ξe−ξzB

+ξ2eξzC + (1 + ξz)ξeξzD
]
J1(ξr)dξ.

Computation of the above equations is generally performed using numerical
integration. However, it has always been difficult to maintain good computa-
tional accuracy for points in the vicinity of z = 0. Comparison of the prescribed
boundary conditions with the results obtained using DE-integration will show
accuracy of DE-integration.

§7. Numerical Integration Using DE-Integration

§7.1. Axi-symmetric loading

The external surface loading is as shown in Figure 2. Since a vertical
uniformly distributed circular load is considered to act on the surface of a semi-
infinite medium, the surface pressure p due to the total load P with radius a

may be determined as:

p =
P

π × a2
,

where, P = 49 kN, a = 0.15 m and p = 0.693 MPa.
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P = 49 kN

a = 0.15 m

x

z

Figure 2. Axi-symmetric Vertical Loading

By using the above loading information σz at the pavement surface was
determined using DE-integration and the results are shown in Figure 3. In this
figure, square marker (�) and triangular marker (�) represent results by DE-
integration for semi-infinite and finite integrals, respectively and the solid line
represents true values. The top figure shows the whole range of computation
while the bottom figure shows an enlarged view in the vicinity of the loaded
area. Relative error in the DE-integration was set at 1.0E-8.

In this case, the results are supposed to be 0.693 MPa between the −0.15 m
to +0.15 m span, 0.347 MPa at 0.15 m edge and then zero elsewhere. Results
presented in Figure 3 show that for points that are odd multiples of the radius
of the load, i.e. 0.15 m, 0.45 m and 0.75 m, semi-infinite DE-integration had
problems achieving results with acceptable accuracy. For the case of finite
DE-integration, zeros of Bessel functions were used as limits of integration for
stepwise computation of the function. However, results by finite DE-integration
were poor in the vicinity of 0.15 m. Moreover, since many zeros of Bessel
functions were required in order to integrate the function to a good accuracy,
the analysis was very time consuming.

An important point to note here is that for values of z > 0 both semi-
infinite and finite DE-integration gave similar results as shown in Figure 4. This
figure shows results obtained in the case where z = 0.15 m. True values are
not known but it is assumed that since the two integrations procedure achieved
similar results, these results may be considered accurate. Computation time in
this case was relatively shorter as compared to the case where z → 0.
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Figure 3. Comparison between DE-integration results and true values
Top: Overall view Bottom: Enlarged view near the loaded area
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Figure 4. DE-integration results for z = 0.15 m

§7.2. Richardson’s extrapolation

In order to speed up computation time as well as to improve computa-
tional accuracy in the vicinity of z = 0, Richardson’s extrapolation was incor-
porated in the numerical analysis procedure. Furthermore, efficient application
of Richardson’s extrapolation to the integral may be achieved by the procedure
suggested by Prof. Sugihara [6, 7]. In this case, the integral

(36) I =

∞∫
0

f(ξ)dξ

was modified to:

(37) I = lim
b→0

∞∫
0

f(ξ)e−ξ2bdξ

In order to perform Richardson’s extrapolation, five values of b were used.
They were b = 2−n for n = 10, 11, 12, 13, 14. Results obtained using Richard-
son’s extrapolation for both semi-infinite and finite DE-integration are shown
in Figure 5. This figure shows a substantial improvement in the accuracy of
DE-integration and especially finite DE-integration. The accuracy by semi-
infinite DE-integration improved significantly, but there was still a problem in
the vicinity of the edge of the load (i.e. 0.15 m).
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Figure 5. Comparison between DE-integration results with Richardson’s ex-
trapolation and true values

Top: Overall view Bottom: Enlarged view near the loaded area
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§8. General Observations

Using the stress function and the Hankel transform, a computer code for
general analysis of an multi-layered elastic system (GAMES) has successfully
been developed. Identification of the problem areas helped in the improve-
ment of the accuracy of computations. Accuracy was improved through the
introduction of Richardson’s extrapolation in the vicinity of z = 0. For prac-
tical applications, it is recommended that semi-infinite DE-integration be used
since the acceptable results for engineering works are obtained in a very short
computation time.

The program developed is now capable of performing analysis for up to
10,000 measurement points in an elastic multilayer system with a maximum
of 100 layers on the surface of which a maximum of 100 uniformly distributed
circular loads act.
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