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Abstract

In this paper we propose special strategies to compute 1D integrals of functions
having weakly or strong singularities at the endpoints of the interval of integration
or complex poles close to the domain of integration. As application of the proposed
strategies, we compute a four dimensional integral arising from 3D Galerkin boundary
element methods (BEM) applied to hypersingular boundary integral equations.

§1. Introduction

In the computation of integrals and in the numerical solution of integral
equations, one often has to deal with the numerical integration of functions
with endpoint weak singularities, or with analytic functions having complex
conjugate poles near the domain of integration. Nonlinear changes of variables
have shown to be a very effective tool to face these problems. Indeed, in the
case of weak singularities a proper change of variable can make the integrand
function arbitrarily smooth. This, combined with the use of a standard rule
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like the Gauss-Legendre one or the composite trapezoidal formula, allows to
achieve high accuracy using a low number of abscissas (see [2], [8], [9], [11],
[14], [16]). Here we recall some of the known changes of variable, all having as
co-domain the interval (0, 1), which have been proposed in the literature. For
some comparisons (see [9]).

In [8], the following polynomial transformation, which is a generalization
of the one proposed in [6] to construct lattice rules for multiple integration on
the hypercube, has been used:

(1.1) ϕ1(t) =
(p + q − 1)

(p − 1)(q − 1)

∫ t

0

up−1 (1 − u)q−1 du, 0 ≤ t ≤ 1, p, q ≥ 1.

The integral in (1.1) could be computed, for any t ∈ (0, 1], using recurrence
relations (see [9]). In any case it can be evaluated more efficiently, for the
given values of p and q, by means of the n-point Gauss-Legendre rule, with
n = �p+q

2 �.
Then, we recall a trigonometric transformation of the form

(1.2) ϕ2(t) =

∫ t

0
(sin π

2 u)p−1(cos π
2 u)q−1 du∫ 1

0
(sin π

2 u)p−1(cos π
2 u)q−1 du

, 0 ≤ t ≤ 1, p, q ≥ 1.

This latter generalizes a trigonometric transformation proposed in [14]. Also
in this case the integral in (1.2) could be computed for any t ∈ (0, 1] by using
proper recurrence relations or by a direct computation using a Gauss-Legendre
rule.

A third transformation, of rational type, used in [11], [3] in connection
with the solution of certain integral equations, and in [4] to evaluate Hadamard
finite-part integrals, is the following one:

(1.3) ϕ3(t) =
tp

tp + (1 − t)q
, 0 ≤ t ≤ 1, p, q ≥ 1.

The last transformation we recall is of exponential type:

(1.4) ϕ4(t) =
1
2

+
1
2

tanh
(π

2
sinh(t)

)
, −∞ < t < ∞.

It is the well-known double exponential (DE) transformation (see [16], [10],
[15]).

In this paper we examine the use of nonlinear changes of variable for the
numerical evaluation of some 4-dimensional integrals arising in the numerical
solution of hypersingular boundary integral equations. In particular we consider
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3D Galerkin boundary element methods, where a key issue is the efficient and
fast computation of integrals of the form

(1.5)
∫

∆i

∫
∆j

k(x, y)
||x − y||3 dy dx,

where ∆i, ∆j are triangular elements, possibly curved, and k(x, y) is bounded.
When ∆i and ∆j are disjoint and not too close to each other, the compu-

tation of the above integral can be performed by standard rules. The difficult
cases are those where (i) ∆i and ∆j are coincident, or share a common edge,
or (ii) are disjoint but very close to each other. When ∆i and ∆j have only
a common point, but are not close to each other at some other points, the
computation can be classified standard.

Many papers have been devoted to this topic (see, for example, [1], [5], [12],
[13]), although none of them seems to treat the case (ii), which is considered by
some users the most “difficult” case. However in our opinion none of them are
fully satisfactory because generally they either require some analytical calcula-
tion which is by non means trivial, or do not take into account the presence of
complex poles which may effect adversely the numerical computation.

Indeed the strategy adopted by these methods is that of reducing the
computation of the multidimensional integral to the evaluation of nested 1D
integrals of analytic functions. However this is still not satisfactory because it is
by now well-known that when integrating an analytic function, the position of
its poles is crucial for the performance of a quadrature rule. When an analytic
function has poles which are outside the domain of integration but lie very close
to it, and this is what happens in the computation of some of our integrals,
its numerical integration by means of a quadrature rule can give very poor
accuracy if one does not adopt a special strategy.

In this paper we examine the case of (1.5) with ∆i, ∆j coinciding. The
other cases of ∆i, ∆j having a common edge or disjoint but very close to each
other will be treated in a following paper. We believe that our strategy can be
applied successfully also to these cases.

§2. One-dimensional Integration Rules

There are two typical approaches to compute (1.5). One uses the global
cartesian coordinates (see [5]), the other uses local polar coordinates (see [12]).
Both of them reduce (1.5) to four nested one-dimensional integrals, whose in-
tegrand functions are analytical in the first case, and analytical or with log-
singularities at the endpoints of the interval of integration in the second case.
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Unfortunately, in both cases the generated analytical functions have complex
poles, depending upon outer variables or the form of the triangles, which may be
arbitrarily close to the interval of integration. Therefore, for both approaches
the Gaussian quadrature rules perform very poorly unless one considers a high
number of quadrature nodes. Recalling that we have to compute four nested
one-dimensional integrals, we can use only a few (let us say, at the most 6÷10)
quadrature nodes for each integral. Notice that 10 quadrature nodes for each
integral means a total of 104 quadrature nodes to compute (1.5), which repre-
sents only one element of the system matrix arising from the Galerkin boundary
element method. For this reason in this section we propose special strategies,
which allow us to compute the integrals with the above-mentioned character-
istics using very few Gaussian quadrature nodes. In particular we propose to
use variable transformations of the type (1.1), either to make the integrand
functions smoother at the endpoints of the interval of integration, or to move
poles away from the interval. Then, the Gauss-Legendre rule is applied.

In these situations the DE-rule, which is obtained by combining (1.4) with
the (truncated) trapezoidal rule (see [16]), has certainly a much higher (ex-
ponential) rate of convergence. However, in the particular application we will
consider in Section 3, it is of key importance to obtain a good accuracy with a
very small number of function evaluations. For such small values of n, let us
say n ≤ 10, our approach appears more efficient.

A typical case is an integral of a function having only a log-singularities
at the endpoints of the interval of integration. For example,

(2.1) I1 =
∫ 1

0

ex log
1 − x

x
dx.

By introducing in (2.1) the change of variable (1.1), that here we write in the
form

(2.2) x = γq0,q1
0,1 (t) :=

(q0 + q1 − 1)
(q0 − 1)(q1 − 1)

∫ t

0

xq0−1(1 − x)q1−1 dx, q0, q1 ≥ 1,

and then applying the n-point Gauss-Legendre rule we obtain the improvements
reported in Table 1. Notice that in (2.2) for q1 = 1 we have

(2.3) γq0,1
0,1 (t) = tq0 =: γq0

0 (t)

and for q0 = 1

(2.4) γ1,q1
0,1 (t) = 1 − (1 − t)q1 =: γq1

1 (t);
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the choices (2.3) and (2.4) allow to smooth the singularities at the endpoints 0
and 1, respectively. If q0 = q1 = q, we set

(2.5) γq
0,1 := γq,q

0,1 .

n q = 1 q = 2 q = 3 q = 4
2 2.50 − 01 5.65 − 01 9.07 − 01 9.04 − 01
4 6.67 − 02 1.35 − 02 9.56 − 03 1.34 − 01
8 1.80 − 02 1.21 − 03 1.87 − 04 6.83 − 05
16 4.72 − 03 8.32 − 05 3.09 − 06 2.00 − 07
32 1.21 − 03 5.49 − 06 5.17 − 08 8.34 − 10
64 3.08 − 04 3.53 − 07 8.40 − 10 3.36 − 12
128 7.75 − 05 2.24 − 08 1.31 − 11 2.27 − 13
256 1.95 − 05 1.41 − 09 7.81 − 14 1.38 − 13
512 4.87 − 06 8.89 − 11 −− −−

Table 1. Relative errors in I1 =
∫ 1

0
eγ(t) log 1−γ(t)

γ(t)
γ′(t) dt, γ(t) = γq

0,1(t).

In all tables the sign “−−” means that full relative accuracy (i.e. 14
significant digits in our case) has been achieved.

Another situation that we will meet is that of integrals of the form

(2.6) I2 =
∫ 1

0

f(x)
x2 + ε2

dx

with ε small and f(x) smooth. To compute efficiently this integral it is conve-
nient to introduce preliminarily the simple change of variable

x = γq
0(t), q > 1,

and then to apply the n-point Gauss-Legendre rule. For example, if we take
f(x) = ex we obtain the relative errors of Table 2.

ε = 10−1 ε = 10−3 ε = 10−5

n q = 1 q = 2 q = 1 q = 4 q = 1 q = 7
4 4.25 − 02 6.11 − 03 9.72 − 01 6.31 − 01 1.00 + 00 8.88 − 01
8 1.45 − 03 5.75 − 04 9.05 − 01 1.71 − 01 9.99 − 01 2.74 − 01
16 9.75 − 07 1.20 − 07 6.61 − 01 2.73 − 03 9.96 − 01 1.11 − 01
32 1.98 − 13 −− 7.20 − 02 3.16 − 05 9.87 − 01 2.85 − 03
64 −− −− 6.30 − 03 1.29 − 10 9.47 − 01 4.50 − 07
128 −− −− 3.53 − 05 −− 7.92 − 01 1.43 − 12
256 −− −− 3.44 − 10 −− 2.90 − 01 −−
512 −− −− −− −− 3.85 − 02 −−

Table 2. Relative errors in I2 =
∫ 1

0
qtq−1etq

t2q+ε2 dt.

Since our 1D rules will be applied to a quadruple integral, it is important
to obtain the required accuracy using a small number of nodes. In the integral
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(2.6), when ε is very small, for example in the above case ε = 10−5, the value
of q one has to take makes the new integrand function so flat around the origin,
that to achieve a good accuracy one has to take a value of n which is not any
longer small. In this situation it is more convenient to proceed as follows. Write

(2.7) I2 =
(∫ ε

0

+
∫ 1

ε

)
f(x)

x2 + ε2
dx;

then apply the n-point Gauss-Legendre rule to the first integral on the right-
hand side, and to the second one after having introduced in it the change of
variable x = γq

0(t). Subdivision (2.7) is of key importance for the following
reasons. In (2.6) the transformation x = γq

0(t) leaves unchanged the interval
of integration, but as q gets larger, the modulus of the poles tends to 1, and
after a certain value of q some of the poles move again towards the interval
of integration. In (2.7) this unwanted phenomenon does not arise. Indeed, in
the first integral on the right-hand side the distance of the two poles from the
interval of integration is equal to the length of this latter, while the length of
the interval of integration of the second integral, after having introduced the
transformation x = γq

0(t), tends to zero as q tends to infinity. The effectiveness
of this new approach is shown by the results in Table 3.

ε = 10−1 ε = 10−3 ε = 10−5

2n q = 3 q = 100 q = 4 q = 100 q = 7 q = 100
4 8.26 − 03 6.04 − 03 3.00 − 01 1.28 − 02 4.40 − 01 2.04 − 01
8 6.07 − 05 1.15 − 05 1.31 − 03 4.50 − 03 8.36 − 02 3.42 − 02
16 5.44 − 09 2.11 − 09 2.93 − 04 3.20 − 05 9.46 − 03 4.90 − 04
32 −− −− 7.74 − 07 5.01 − 10 2.38 − 05 7.69 − 08
64 −− −− 6.54 − 13 −− 5.05 − 10 −−

Table 3. Relative errors in I2 =
∫ ε

0
ex

x2+ε2 dx +
∫ 1

ε
1
q

qtq−1etq

t2q+ε2 dt.

Similarly, if the integral has the form

(2.8) I3 =
∫ b

a

f(x)
(x2 + ε2)α

dx

with a < 0, b > 0 and α > 0, then we proceed as in (2.7) by splitting (2.8) as
follows

(2.9) I3 =

(∫ −ε

a

+
∫ ε

−ε

+
∫ b

ε

)
f(x)

(x2 + ε2)α
dx.

We apply the n-point Gauss-Legendre quadrature rule to each integral, after
having introduced the change of variable x = tq in the first and in the third
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integral to the right-hand side of (2.9). In the following Table 4, we have
reported the relative errors obtained by this last numerical procedure when in
(2.8) f ≡ 1, a = −0.5, b = 0.5 and α = 3/2.

In Table 4 and below GLm denotes the m-point Gauss-Legendre rule.

ε = 10−1 ε = 10−3 ε = 10−5

3n GL3n q = 2 GL3n q = 4 q = 100 GL3n q = 7 q = 100
6 3.15 − 01 5.98 − 02 1.00 + 00 3.11 − 01 1.56 − 01 1.00 + 00 3.48 − 01 3.04 − 01
12 4.17 − 02 2.31 − 03 9.99 − 01 2.96 − 02 8.03 − 03 1.00 + 00 1.57 − 01 1.36 − 02
18 4.62 − 03 8.27 − 05 9.99 − 01 9.16 − 03 7.72 − 04 1.00 + 00 1.87 − 03 4.98 − 03
24 4.85 − 04 2.77 − 06 9.98 − 01 6.75 − 04 3.02 − 05 1.00 + 00 1.30 − 02 9.44 − 04
30 4.96 − 05 9.06 − 08 9.97 − 01 2.20 − 04 9.70 − 07 1.00 + 00 1.74 − 03 1.95 − 05
36 4.97 − 06 2.91 − 09 9.95 − 01 1.34 − 05 3.02 − 08 1.00 + 00 6.08 − 04 1.37 − 05
72 4.24 − 12 −− 9.82 − 01 6.12 − 11 −− 1.00 + 00 1.38 − 07 5.82 − 11
144 −− −− 9.32 − 01 −− −− 1.00 + 00 −− −−

Table 4. Relative errors in I3 = (
∫ |a|

1
q

ε
1
q

+
∫ b

1
q

ε
1
q

) qtq−1(t2q + ε2)−3/2 dt

+
∫ ε

−ε
(x2 + ε2)−3/2 dx, a = −0.5, b = 0.5.

The integral we have to compute could also be of the type

(2.10) I4 =
∫ 1

0

f(x)
[(x − r)2 + ε2]α

dx

with 0 < r < 1 and α > 0. Notice that also I3 can be rewritten in this form
and vice versa. In this case we can proceed as follows. Write first

I4 =
(∫ r

0

+
∫ 1

r

)
f(x)

[(x − r)2 + ε2]α
dx,

and then

(2.11) I4 =
1 − r

r

∫ 1

r

f( r
1−r (1 − t))

[(t − r)2 + ( 1−r
r ε)2]α

dt +
∫ 1

r

f(x)
[(x − r)2 + ε2]α

dx.

This splitting is suggested by the remark that, when one uses Gaussian rules,
poles with real parts close to the endpoints of the interval of integration are
less adverse than poles with a real part in the central part of the same interval.
Finally, we introduce, as for I2, the change of variable t, x = uq, q ≥ 1, in both
integrals and apply the same Gauss-Legendre rule to each of them.

Since this strategy is also alternative to a splitting of the type (2.9), we
have applied it to the same integral considered in Table 4. Therefore, in Table 5
we have reported the relative errors obtained by taking in (2.10) f ≡ 1, r = 0.5
and α = 3/2.
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ε = 10−1 ε = 5 · 10−2

2n GL2n q = 1 q = 50 GL2n q = 1 q = 50
6 3.15 − 01 6.77 − 01 4.95 − 02 7.14 − 01 1.46 − 01 3.80 − 02
12 4.17 − 02 2.49 − 03 2.55 − 06 3.34 − 01 2.25 − 02 3.06 − 03
18 4.62 − 03 6.05 − 05 9.70 − 06 1.27 − 01 2.19 − 03 1.83 − 04
24 4.85 − 04 1.03 − 06 4.48 − 08 4.43 − 02 1.54 − 04 1.00 − 05
30 4.96 − 05 9.08 − 09 1.28 − 09 1.48 − 02 7.72 − 06 5.18 − 07
36 4.97 − 06 1.60 − 10 1.21 − 11 4.86 − 03 1.62 − 07 2.58 − 08
72 4.24 − 12 −− −− 5.07 − 06 −− −−
144 −− −− −− 4.04 − 12 −− −−

Table 5. Relative errors in I4 = 1−r
r

∫ 1

r
1
q

quq−1f( r
1−r

(1 − uq))
[
(uq − r)2

+( 1−r
r

ε)2
]−3/2

du +
∫ 1

r
1
q

quq−1f(uq)[(uq − r)2 + ε2]−3/2 du, r = 0.5.

From a comparison between the Tables 4 and 5, it appears that (2.11) is
more effective when ε is not too small; let us say of order greater than 10−2.
Otherwise (2.9) seems to produce better results.

The above strategy has been applied also to similar integrals with the
algebraic polynomial (of degree 2) replaced by a corresponding trigonometric
polynomial. In particular, we have also considered integrals of the type

(2.12) I5 =
∫ b

a

f(x)
[(a1 cos(x) + b1 sin(x))2 + (a2 cos(x) + b2 sin(x))2]α

dx.

By z0 we denote the pair of complex conjugate poles of the trigonometric poly-
nomial closest to the interval of integration. In this situation, we have applied
the above strategy by choosing r = Re(z0). The results we have obtained by
taking in (2.12) f ≡ 1, a = −1.5, b = 0, α = 3/2 and a1 = 0, a2 = b2 = 1,
b1 = c with varying c, are reported in Table 6.

c = 1 c = 1/2 c = 1/4 c = 1/8
Re(z0) ≈ −0.55 Re(z0) ≈ −0.72 Re(z0) ≈ −0.77 Re(z0) ≈ −0.78
Im(z0) ≈ ±0.40 Im(z0) ≈ ±0.24 Im(z0) ≈ ±0.12 Im(z0) ≈ ±0.06

2n GL2n q = 50 GL2n q = 50 GL2n q = 50 GL2n q = 50
8 6.47 − 04 3.19 − 04 2.42 − 02 2.49 − 03 2.43 − 01 8.93 − 03 6.03 − 01 8.46 − 02
16 4.70 − 08 1.16 − 07 1.12 − 04 4.83 − 07 1.78 − 02 1.10 − 04 7.86 − 02 2.77 − 03
32 1.57 − 14 1.91 − 14 9.55 − 09 7.54 − 13 2.37 − 05 9.82 − 10 2.56 − 02 1.63 − 07
64 −− −− −− −− 7.15 − 09 −− 1.19 − 04 3.17 − 14
128 −− −− −− −− −− −− 1.46 − 09 −−

Table 6. Relative errors in I5 =
∫ 0

−1.5
[(c sin(x))2 + (cos(x) + sin(x))2]−3/2 dx.
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Also integrals of the form

(2.13) I6 =
∫ 1

ε

f(x)
x

dx,

with f(x) smooth and ε > 0 small, can be efficiently evaluated using a Gauss-
Legendre rule, after having introduced the change of variable x = tq. Some
relative errors concerning an integral of this type, with f(x) = ex, are reported
in Table 7.

ε = 10−1 ε = 10−3 ε = 10−5

n q = 1 q = 3 q = 1 q = 6 q = 1 q = 8
4 4.44 − 02 2.36 − 06 3.38 − 01 2.37 − 04 5.73 − 01 1.03 − 03
8 2.48 − 05 2.75 − 12 1.96 − 01 8.47 − 09 4.74 − 01 2.94 − 07
16 7.15 − 10 −− 7.45 − 02 −− 3.71 − 01 −−
32 −− −− 1.09 − 02 −− 2.66 − 01 −−
64 −− −− 2.05 − 04 −− 1.64 − 01 −−
128 −− −− 6.43 − 08 −− 7.37 − 02 −−
256 −− −− −− −− 1.60 − 02 −−

Table 7. Relative errors in I6 =
∫ 1

ε
1
q

qetq

t
dt.

In the introduction we have remarked that for small values of n, the ap-
proach we have proposed gives slightly better results than the DE-rule. This
is due to the fact that the stepsize h of the DE-rule is chosen to optimize the
rate of convergence, that is, the behavior of the remainder term as n → ∞ (see
[15]). Indeed, as n → ∞ the accuracy given by the DE-rule is superior to that
given by our numerical integration approach.

However, in the applications we are interested in, we ought to achieve a
good accuracy by taking a small value of n. Therefore, in the case of the DE-
rule, for a given (low) value of n we would like to choose the parameter h which
minimizes the error.

For the integrals I1 through I5 of this section we have plotted the behavior
of the error term as a function of h, for several values of n. In all cases we have
examined, a proper choice of h has reduced substantially the error. Here we
report a few examples, which are however representative of all cases we have
examined. In all cases there exists an optimal choice of h which allows to reach
very high accuracies using a small value of n. However we do not know a simple
formula to compute such value, or a good approximation of it. We note that
all figures have been obtained by subdividing the domain of h into 100 equal
parts. Therefore the actual minima could be even smaller than those appearing
in the figures.
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Figure 1. Integral I1, n = 3, h ∈ (0.45, 0.65).
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Figure 2. Integral I1, n = 5, h ∈ (0.35, 0.55).
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stepsize k (h=k+0.48)
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Figure 3. Integral I1, n = 5, h ∈ (0.4847, 0.4849).
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Figure 4. Integral I4, r = 0.5, ε = 10−1, n = 3, h ∈ (0.1, 2).
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Figure 5. Integral I4, r = 0.5, ε = 10−1, n = 3, h ∈ (1.1355289, 1.135529).
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Figure 6. Integral I4, r = 0.5, ε = 10−3, n = 3, h ∈ (1.48238e − 03, 1.4824e − 03).
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Figure 7. Integral I5, ε = 1/2, n = 3, h ∈ (3.9797635, 3.979764).
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Figure 8. Integral I5, ε = 1/8, n = 3, h ∈ (2.40832, 2.40833).
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The last integral we need to consider is

(2.14) I7 =
∫ R(y)

0

=
f(x)

x
dx,

defined as Hadamard finite-part, where y is an outer variable, which can make
R(y) very close to zero. Since a change of variable does not leave unchanged
the value of the integral, and we do not want to construct an ad hoc rule for
each value of the variable y, we suggest to proceed as follows. If f(0) exists
and can be easily computed, then write

(2.15)
∫ R(y)

0

=
f(x)

x
dx =

∫ R(y)

0

f(x) − f(0)
x

dx + f(0) log R(y)

and apply the Gauss-Legendre to the integral on the right-hand side of (2.15).
If however this is not the case, then write

(2.16)
∫ R(y)

0

=
f(x)

x
dx =

(∫ r

0

= +
∫ R(y)

r

)
f(x)

x
dx.

where r > 0 has a suitable fixed value. To compute the first integral on the
right-hand side we use a standard product rule for Hadamard finite part in-
tegrals, whose coefficients have been computed once for all ([7]). The sec-
ond integral can be computed by the technique suggested for (2.13) with a
large q (for example, q = 100) when f is smooth. The choice of r may
depend on f . Indeed, if f has a pair of complex poles with the real part
fixed, independent of y and belonging to the interval of integration (0, R(y)),
it is convenient to take r equal to the real part of the poles. If the real
part varies with y in a little range of (0, R(y)) we can choose r as an in-
termediate value of the range; otherwise, it is convenient to use a product
formula without splitting. Finally, if f is smooth, we suggest to choose r

small.
In the Tables 8 and 9 we have reported the relative errors obtained first

by applying directly the product rule with n quadrature points (PRn) to
I5 in (2.14), and then by splitting I5 as in (2.16) and computing the in-
tegrals to the left-hand side as suggested above (PRn + GLn). In partic-
ular, in Table 8 we report the relative errors corresponding to the choice
f(x) = f1(x) = 1/[(x − r)2 + ε2] with r = 0.1 and ε varying; in Table 9
we give those corresponding to f(x) = f2(x) = ex and r = 0.1 in (2.16).
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ε = 10−1 ε = 10−2 ε = 10−3

2n PR2n PRn + GLn PR2n PRn + GLn PR2n PRn + GLn

4 1.83 + 00 2.31 − 01 1.00 + 00 4.72 − 01 1.00 + 00 8.35 − 01
8 2.45 + 00 1.50 − 01 3.15 + 00 1.03 + 00 1.27 + 00 4.17 − 01
16 9.62 − 02 2.86 − 04 1.06 + 01 6.54 − 02 6.66 + 00 9.01 − 01
32 6.53 − 05 9.92 − 10 6.86 + 00 7.60 − 03 9.63 + 00 1.07 + 00
64 1.30 − 11 2.32 − 13 1.66 + 00 1.51 − 05 9.03 + 00 1.64 − 01
128 −− −− 1.42 − 01 3.33 − 12 3.67 + 01 2.31 − 03
256 −− −− 4.54 − 04 −− 4.45 + 01 5.77 − 07
512 −− −− 9.03 − 10 −− 1.22 + 00 3.86 − 15

Table 8. Relative errors in I7 =
∫ R(y)

0

[(x−0.1)2+ε2]−1

x
dx

= (
∫ r

0
+
∫ R(y)

r
) [(x−0.1)2+ε2]−1

x
dx with r = 0.1, R(y) = 0.5.

R(y) = 10−2 R(y) = 0.5
2n PR2n PRn + GLn PR2n PRn + GLn

4 1.14 − 11 1.13 − 03 1.80 − 03 1.97 − 02
8 −− 1.29 − 07 4.69 − 10 6.49 − 06
16 −− 6.38 − 15 4.09 − 13 1.20 − 12
32 −− −− −− 3.65 − 13
64 −− −− −− −−

Table 9. Relative errors in I7 =
∫ R(y)

0
ex

x
dx =

∫ r

0
ex

x
dx

+
∫ (R(y))

1
q

r
1
q

qetq

t
dt with r = 0.1, q = 100.

§3. The Four-dimensional Integral

The integral we have to compute has the following form

(3.1) I∆ =
∫

∆

= dx̄

∫
∆

=
N i(x̄)N j(ȳ)
||x̄ − ȳ||3 dȳ,

where for simplicity we assume ∆ to be a triangle with corners at (0, 0), (a1, a2),
(b1, b2) and {N i(x̄)}, {N j(ȳ)} are the shape and the test functions, respectively.
Our approach however easily extends to the case of a curved triangle, given by
a smooth parametric representation.

By the linear transformation x̄ = Ax, ȳ = Ay with

A =

(
a1 b1

a2 b2

)

we map the domain ∆ into the reference triangle T having corners at (0, 0),
(1, 0) (0, 1). In this case the integral (3.1) can be replaced by
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(3.2) IT = |A|2
∫

T

= dx

∫
T

=
Ni(x)Nj(y)
||A(x − y)||3 dy,

where |A| = det(A), Ni(x) := N i(Ax) and Nj(y) := N j(Ay).
The value of IT is generally different from that of I∆; however the sum of

the values of the integrals defined over all boundary elements ∆i is equal to
the sum of the corresponding integrals of form (3.2). Therefore from now on
we refer to the form (3.2).

To compute (3.2) we split it as follows:

IT = |A|2
[∫

T

Ni(x) dx

∫
T

−Nj(y) − Nj(x)
||A(x − y)||3 dy(3.3)

+
∫

T

Ni(x)Nj(x) dx

∫
T

=
dy

||A(x − y)||3

]
=: |A|2 [IT,1 + IT,2]

since the inner integral in IT,2 can be evaluated analytically and the strong
singularity in IT,1 is of Cauchy type.

As regards IT,1, first we introduce the following polar coordinates

(3.4)

{
y1 = x1 + r cos(ϑ)

y2 = x2 + r sin(ϑ)

where 0 ≤ r ≤ R(ϑ), 0 ≤ ϑ ≤ 2π. Then we split the interval (0, 2π) into three
subintervals (ϑ0, ϑ1), (ϑ1, ϑ2) and (ϑ2, ϑ3), with

(3.5)




ϑ0 = −π + arctan
(

x2

x1

)

ϑ1 = − arctan
(

x2

1 − x1

)

ϑ2 = π − arctan
(

1 − x2

x1

)

ϑ3 = π + arctan
(

x2

x1

)
.

For ϑ ∈ [ϑl−1, ϑl], l = 1, 2, 3, we have 0 ≤ r ≤ Rl with

(3.6) Rl := Rl(x1, x2, ϑ) =
dl(x1, x2)

pl(ϑ)



�

�

�

�

�

�

�

�

Numerical Integration in 3D Galerkin BEM 885

where

(3.7)


d1(x1, x2) = x2

d2(x1, x2) =
1√
2
(1 − x1 − x2)

d3(x1, x2) = x1

,




p1(ϑ) = − sin(ϑ)

p2(ϑ) =
1√
2
[sin(ϑ) + cos(ϑ)]

p3(ϑ) = − cos(ϑ)

.

Our integral IT,1 can then be expressed as follows:

IT,1 =
∫ 1

0

dx1

∫ 1−x1

0

Ni(x1, x2) dx2(3.8)

3∑
l=1

∫ ϑl

ϑl−1

dϑ

∫ Rl

0

=
Nj(x1 + r cos(ϑ), x2 + r sin(ϑ)) − Nj(x1, x2)

r2f(ϑ)
dr,

where

f(ϑ) = [(a1 cos(ϑ) + b1 sin(ϑ))2 + (a2 cos(ϑ) + b2 sin(ϑ))2]3/2.

Notice that f(ϑ) vanishes when

tan(ϑ) = α ± iβ,

with
α = −a1b1 + a2b2

b2
1 + b2

2

, β =
a2b1 − a1b2

b2
1 + b2

2

.

In particular the poles of f(ϑ) depend on the corners of the triangle ∆. There-
fore their distance from the interval of integration with respect to the variable
ϑ depends upon the shape of ∆ and could be very small. For example, in
the case of a triangle ∆, whose corners are at (0, 0), (a, 1), (0, 1), we have ap-
proximately the following complex poles: (−1.01 + kπ) ± 0.40 ı when a = 1,
(−0.85 + kπ) ± 0.24 ı when a = 1/2 and (−0.80 + kπ) ± 0.12 ı when a = 1/4,
k ∈ ZZ .

To proceed we set

Nr
j (x1, x2; r, ϑ) =

Nj(x1 + r cos(ϑ), x2 + r sin(ϑ)) − Nj(x1, x2)
r
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and write

(3.9)

IT,1 =
∫ 1

0

dx1

∫ 1−x1

0

Ni(x1, x2) dx2

3∑
l=1

∫ ϑl

ϑl−1

[f(ϑ)]−1 dϑ

∫ Rl

0

=
Nr

j (x1, x2; r, ϑ)
r

dr

=
∫ 1

0

dx1

∫ 1−x1

0

Ni(x1, x2) dx2

3∑
l=1

∫ ϑl

ϑl−1

[f(ϑ)]−1

[∫ Rl

0

Nr
j (x1, x2; r, ϑ) − Nr

j (x1, x2; 0, ϑ)
r

dr + Nr
j (x1, x2; 0, ϑ) log(Rl)

]
dϑ

Remark. Notice that in the case of {Nj} linear, that is Nj = N l
j , j =

1, 2, 3, and

(3.10)

N l
1(x1, x2) = x1,

N l
2(x1, x2) = x2,

N l
3(x1, x2) = 1 − x1 − x2,

we have
Nr

1 (x1, x2; r, ϑ) = cos(ϑ),

Nr
2 (x1, x2; r, ϑ) = sin(ϑ),

Nr
3 (x1, x2; r, ϑ) = −[sin(ϑ) + cos(ϑ)].

Therefore Nr
j depends only upon ϑ and the integral over (0, Rl) in the first

expression of IT,1 in (3.9) can be performed analytically.

By denoting

Dj(x1, x2; r, ϑ) :=
Nr

j (x1, x2; r, ϑ) − Nr
j (x1, x2; 0, ϑ)

r
,

we write

IT,1 =
3∑

l=1

I l
T,1,
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where

(3.11)

I l
T,1 =

∫ 1

0

dx1

∫ 1−x1

0

Ni(x1, x2) dx2

∫ ϑl

ϑl−1

[f(ϑ)]−1

[∫ Rl

0

Dj(x1, x2; r, ϑ) dr + Nr
j (x1, x2; 0, ϑ) log(Rl)

]
dϑ, l = 1, 2, 3.

Remark. In the case of {Nj} quadratic, that is Nj = Nq
j , j = 1, ..., 6,

and

(3.12)

Nq
1 (x1, x2) = x1(2x1 − 1),

Nq
2 (x1, x2) = x2(2x2 − 1),

Nq
3 (x1, x2) = (1 − x1 − x2)(2(1 − x1 − x2) − 1),

Nq
4 (x1, x2) = 4x1x2,

Nq
5 (x1, x2) = 4x2(1 − x1 − x2),

Nq
6 (x1, x2) = 4x1(1 − x1 − x2),

we have
D1(x1, x2; r, ϑ) = 2 cos2(ϑ),

D2(x1, x2; r, ϑ) = 2 sin2(ϑ),

D3(x1, x2; r, ϑ) = 2[sin(ϑ) + cos(ϑ)]2,

D4(x1, x2; r, ϑ) = 4 sin(ϑ) cos(ϑ),

D5(x1, x2; r, ϑ) = −4 sin(ϑ)[sin(ϑ) + cos(ϑ)],

D6(x1, x2; r, ϑ) = −4 cos(ϑ)[sin(ϑ) + cos(ϑ)].

Therefore, since Dj(x1, x2; r, ϑ) does not depend upon r, the integral over
(0, Rl) in (3.11) can be performed analytically.

Since Rl takes different values for l = 1, 2, 3, the computation of I l
T,1 have

to be performed using different strategies according to these values.
We first consider I1

T,1, where we have set x2 = (1 − x1)x̃2, x̃2 ∈ (0, 1):

(3.13)

I1
T,1 =

∫ 1

0

(1 − x1) dx1

∫ 1

0

Ni(x1, (1 − x1)x̃2) dx̃2

∫ ϑ̃1

ϑ̃0

[f(ϑ)]−1

[∫ R̃1

0

Dj(x1, (1 − x1)x̃2; r, ϑ) dr + Nr
j (x1, (1 − x1)x̃2; 0, ϑ) log(R̃1)

]
dϑ
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with 


ϑ̃0 = −π + arctan
(

(1 − x1)x̃2

x1

)
,

ϑ̃1 = − arctan (x̃2) ,

R̃1 =
(1 − x1)x̃2

− sin(ϑ)
.

Taking into account of the behaviors of the integrand functions of each integral
in (3.13) and of the behaviors of the endpoints ϑ̃0, ϑ̃1 as x1, x̃2 → 0, 1, the
following smoothing transformations have been introduced




x1 = γq11
0,1 (x), x ∈ (0, 1),

x̃2 = γq12
0 (y), y ∈ (0, 1),

ϑ = γq13
0 ((b − a)t + a), t ∈ (0, 1),

whose smoothing exponents q1l, l = 1, 2, 3, will be specified later. In the last
change of variable (a, b) denotes the interval of integration with respect to the
variable ϑ. If no real parts ϑR of the poles of f(ϑ) belong to (ϑ̃0, ϑ̃1), the
interval of integration is (ϑ̃0, ϑ̃1). Otherwise we split this interval into two
subintervals (ϑ̃0, ϑR) and (ϑR, ϑ̃1) and we apply the above change of variable
to each of them, taking (a, b) ≡ (ϑ̃0, ϑR) and (a, b) ≡ (ϑR, ϑ̃1).

Finally, for the variables x1 and x̃2 the numerical integration is performed
using the n-point Gauss-Legendre rule, while for the variable ϑ we have used
the 2n-point Gauss-Legendre rule.

In the case of I2
T,1 we have

(3.14)

I2
T,1 =

∫ 1

0

(1 − x1) dx1

∫ 1

0

Ni(x1, (1 − x1)x̃2) dx̃2

∫ ϑ̃2

ϑ̃1

[f(ϑ)]−1

[∫ R̃2

0

Dj(x1, (1 − x1)x̃2; r, ϑ) dr + Nr
j (x1, (1 − x1)x̃2; 0, ϑ) log(R̃2)

]
dϑ

where 


ϑ̃1 = − arctan (x̃2) ,

ϑ̃2 = π − arctan
(

1 − (1 − x1)x̃2

x1

)
,

R̃2 =
(1 − x1)(1 − x̃2)
sin(ϑ) + cos(ϑ)

.
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In (3.14) we first introduce the smoothing transformations


x1 = γq21
0,1 (x), x ∈ (0, 1),

x̃2 = γq22
1 (y), y ∈ (0, 1),

ϑ = γq23
0,1 ((b − a)t + a), t ∈ (0, 1),

where, as above, (a, b) ≡ (ϑ̃1, ϑ̃2) is split into (ϑ̃1, ϑR)∪(ϑR, ϑ̃2) whenever there
exists a pole of f(ϑ) whose real part ϑR ∈ (ϑ̃1, ϑ̃2). Then we apply the same
Gauss-Legendre product rule used in the previous case.

The integral

(3.15)

I3
T,1 =

∫ 1

0

(1 − x1) dx1

∫ 1

0

Ni(x1, (1 − x1)x̃2) dx̃2

∫ ϑ̃3

ϑ̃2

[f(ϑ)]−1

[∫ R̃3

0

Dj(x1, (1 − x1)x̃2; r, ϑ) dr + Nr
j (x1, (1 − x1)x̃2; 0, ϑ) log(R̃3)

]
dϑ

where 


ϑ̃2 = π − arctan
(

1 − (1 − x1)x̃2

x1

)
,

ϑ̃3 = π + arctan
(

(1 − x1)x̃2

x1

)
,

R̃3 =
x1

− cos(ϑ)
,

is treated similarly to the previous cases. Here we set


x1 = γq31
0 (x), x ∈ (0, 1),

x̃2 = γq32
0,1 (y), y ∈ (0, 1),

ϑ = γq33
0,1 ((b − a)t + a), t ∈ (0, 1),

and the interval (a, b) ≡ (ϑ̃2, ϑ̃3) is split into (ϑ̃2, ϑR)∪(ϑR, ϑ̃3) if ϑR ∈ (ϑ̃2, ϑ̃3).
In the case of linear and quadratic functions Nj , a choice of the above

smoothing exponents ql1, ql2, ql3, l = 1, 2, 3, which leads to very satisfactory
results, is reported in Table 10.
However, for basis functions of higher order the choice

ql1 = ql2 = ql3 = 2, l = 1, 2, 3,

is quite satisfactory.
As already stated earlier, the inner most integral in IT,2 defined in (3.3),

can be evaluated analytically. Indeed, we have
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Ni, Nj linear I1
T,1 I2

T,1 I3
T,1

i j q11 q12 q13 q21 q22 q23 q31 q32 q33
1 1:3 2 3 2 2 3 2 2 1 2
2 1:3 2 2 2 2 3 2 3 2 2
3 1:3 2 3 2 1 2 2 3 2 2

Ni, Nj quadratic I1
T,1 I2

T,1 I3
T,1

i j q11 q12 q13 q21 q22 q23 q31 q32 q33
1 1:6 2 3 2 2 3 2 3 2 2
2 1:6 2 2 2 2 3 2 3 2 2
3 1:6 2 3 2 2 2 2 3 2 2
4 1:6 2 2 2 2 3 2 3 2 2
5 1:6 2 2 2 2 2 2 3 2 2
6 1:6 2 3 2 2 2 2 3 2 2

Table 10. The best choice for the exponents qlm, l, m = 1, 2, 3.

(3.16)

IT,2 =
∫ 1

0

dx1

∫ 1−x1

0

Ni(x1, x2)Nj(x1, x2) dx2∫ 1

0

dy1

∫ 1−y1

0

dy2

{[a1(x1−y1)+b1(x2−y2)]2+[a2(x1−y1) + b2(x2−y2)]2}3/2

=
1

|A|2
∫ 1

0

dx1

∫ 1−x1

0

Ki,j(x1, x2)

[√
ax2

1 + b(x2 − 1)2 + 2cx1(x2 − 1)
x1(x1 + x2 − 1)

−
√

ax2
1 + bx2

2 + 2cx1x2

x1x2
+

√
a(x1 − 1)2 + bx2

2 + 2cx2(x1 − 1)
x2(x1 + x2 − 1)

]
dx2

=:
1

|A|2 [I1
T,2 + I2

T,2 + I3
T,2],

where
Ki,j(x1, x2) = Ni(x1, x2)Nj(x1, x2),

a = a2
1 + a2

2, b = b2
1 + b2

2, c = a1b1 + a2b2.

To compute I1
T,2 we proceed as follows:

(3.17)

I1
T,2 =

∫ 1

0

dx1

∫ 1−x1

0

[
Ki,j(x1, x2)

√
ax2

1 + b(x2 − 1)2 + 2cx1(x2 − 1)

−
√

b (1 − x1 − x2) Ki,j(0, x2)

−
√

a + b − 2c x1 Ki,j(x1, 1 − x1)
]
/[x1(x1 + x2 − 1)] dx2
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−
√

b

∫ 1

0

dx1

x1

∫ 1−x1

0

Ki,j(0, x2) dx2

+
√

a + b − 2c

∫ 1

0

Ki,j(x1, 1 − x1) dx1

∫ 1−x1

0

dx2

x1 + x2 − 1

=: I1,1
T,2 + I1,2

T,2 + I1,3
T,2

As regards I1,1
T,2, first we introduce the changes of variable x1 = η and x2 =

−ξ − η + 1, with 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1 − ξ, and then we apply the Duffy
transformation ξ = uv and η = (1 − u)v, with 0 ≤ u, v ≤ 1; hence, we have

(3.18)

I1,1
T,2 = −

∫ 1

0

dξ

∫ 1−ξ

0

[
Ki,j(η,−ξ − η + 1)

√
aη2 + b(ξ + η)2 − 2cη(ξ + η)

−
√

b ξ Ki,j(0,−ξ − η + 1) −
√

a + b − 2c η Ki,j(η, 1 − η)
]
/(ξη) dη

= −
∫ 1

0

du

∫ 1

0

[
Ki,j((1 − u)v, 1 − v)

√
a(1 − u)2 + b − 2c(1 − u)

−
√

b u Ki,j(0, 1 − v)

−
√

a + b − 2c(1 − u)Ki,j((1 − u)v, 1 − (1 − u)v)
]
/[u(1 − u)] dv.

Moreover,

(3.19) I1,2
T,2 = −

√
b

∫ 1

0

[∫ 1−x1

0
Ki,j(0, x2) dx2 −

∫ 1

0
Ki,j(0, x2) dx2

]
x1

dx1

and

(3.20) I1,3
T,2 = −

√
a + b − 2c

∫ 1

0

Ki,j(x1, 1 − x1) log(1 − x1) dx1.

To compute I2
T,2, we first rewrite it as follows:

I2
T,2 = −

∫ 1

0

dx1

∫ 1−x1

0

[
Ki,j(x1, x2)

√
ax2

1 + bx2
2 + 2cx1x2(3.21)

−
√

a x1 Ki,j(x1, 0) −
√

b x2 Ki,j(0, x2)
]
/(x1x2) dx2

−
√

a

∫ 1

0

Ki,j(x1, 0) log(1 − x1) dx1

−
√

b

∫ 1

0

[∫ 1−x1

0
Ki,j(0, x2) dx2 −

∫ 1

0
Ki,j(0, x2) dx2

]
x1

dx1

=: I2,1
T,2 + I2,2

T,2 + I1,2
T,2,
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being the latter integral equal to that defined in (3.19). We then introduce in
I2,1
T,2 the Duffy transformation x1 = uv and x2 = (1 − u)v, 0 ≤ u, v ≤ 1; we

obtain

(3.22)

I2,1
T,2 = −

∫ 1

0

du

∫ 1

0

[
Ki,j(uv, (1 − u)v)

√
au2 + b(1 − u)2 + 2cu(1 − u)

−
√

a uKi,j(uv, 0) −
√

b (1 − u) Ki,j(0, (1 − u)v)
]
/[u(1 − u)] dv.

Finally, we treat I3
T,2 in an analogous way to I1

T,2; therefore, first we write

(3.23)

I3
T,2 =

∫ 1

0

dx1

∫ 1−x1

0

[
Ki,j(x1, x2)

√
a(x1 − 1)2 + bx2

2 + 2cx2(x1 − 1)

−
√

a (1 − x1 − x2) Ki,j(x1, 0)

−
√

a + b − 2c x2 Ki,j(x1, 1 − x1)
]
/[x2(x1 + x2 − 1)] dx2

−
√

a

∫ 1

0

Ki,j(x1, 0) log(1 − x1) dx1

−
√

a + b − 2c

∫ 1

0

Ki,j(x1, 1 − x1) log(1 − x1) dx1

=: I3,1
T,2 + I2,2

T,2 + I1,3
T,2,

being the second and the third integral at the right-hand side of (3.23) equal
to I2,2

T,2 and I1,3
T,2 defined in (3.21) and (3.20), respectively. Hence, we rewrite

I3,1
T,2 by introducing first the changes of variable x1 = −ξ − η + 1 and x2 = η,

with 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1 − ξ, and then the Duffy transformation ξ = uv

and η = (1 − u)v, with 0 ≤ u, v ≤ 1:

(3.24)

I3,1
T,2 = −

∫ 1

0

dξ

∫ 1−ξ

0

[
Ki,j(−ξ − η + 1, η, )

√
a(ξ + η)2 + bη2 − 2cη(ξ + η)

−
√

b ξ Ki,j(−ξ−η + 1, 0)−
√

a + b−2c η Ki,j(−ξ−η+1, ξ+η)
]
/(ξη) dη

= −
∫ 1

0

du

∫ 1

0

[
Ki,j(1 − v, (1 − u)v)

√
a + b(1 − u)2 − 2c(1 − u)

−
√

a u Ki,j(1 − v, 0) −
√

a + b − 2c (1 − u) Ki,j(1 − v, v)
]
/[u(1 − u)] dv.
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By taking into account equations (3.17)-(3.24), from (3.16) we derive that

(3.25) IT,2 =
1

|A|2 [I1,1
T,2 + I2,1

T,2 + I3,1
T,2 + 2(I1,2

T,2 + I2,2
T,2 + I1,3

T,2)].

The first three integrals are evaluated by using the n-point Gauss-Legendre
formula, while the remaining ones are computed by using the same Gaussian
rule, after having introduced our smoothing change of variable (2.4) with q1 = 3.

In Table 11 we have reported the relative errors for ITa
obtained in the

case of the triangle Ta with corners at (0, 0), (a, 1), (0, 1), with a varying in
{1, 1/2, 1/4} and by using linear functions Ni, Nj .

i j n T1 T1/2 T1/4
1 1 6 7.28 − 05 7.09 − 05 3.15 − 04

8 1.36 − 05 8.87 − 06 2.84 − 05
10 4.00 − 06 1.95 − 06 5.67 − 06

1 2 6 7.59 − 04 3.04 − 03 1.83 − 03
8 3.53 − 05 1.86 − 04 1.51 − 04
10 5.23 − 06 1.68 − 04 2.76 − 05

1 3 6 3.15 − 04 2.90 − 04 1.73 − 05
8 5.38 − 06 3.08 − 05 3.30 − 05
10 3.37 − 06 3.34 − 06 1.12 − 05

2 1 6 2.89 − 03 1.87 − 02 3.42 − 03
8 3.32 − 04 1.52 − 03 1.89 − 04
10 1.51 − 04 1.53 − 03 1.93 − 04

2 2 6 3.42 − 04 1.66 − 04 4.48 − 04
8 6.29 − 05 7.75 − 06 4.65 − 05
10 2.08 − 05 2.36 − 05 2.55 − 05

2 3 6 1.22 − 03 4.75 − 04 9.06 − 05
8 4.27 − 04 7.34 − 05 9.46 − 05
10 9.91 − 05 2.08 − 05 6.64 − 06

3 1 6 4.05 − 04 2.20 − 04 3.91 − 04
8 2.11 − 05 7.94 − 06 1.04 − 06
10 1.01 − 05 2.85 − 06 4.38 − 06

3 2 6 3.05 − 04 2.22 − 04 7.07 − 04
8 7.15 − 06 2.01 − 05 7.97 − 05
10 2.93 − 05 3.97 − 06 3.17 − 06

3 3 6 3.47 − 05 3.85 − 06 3.14 − 05
8 3.25 − 06 2.88 − 06 8.62 − 06
10 5.01 − 07 5.50 − 08 8.39 − 07

Table 11. Relative errors for ITa , where Ta has corners at (0,0), (a,1), (0,1) and with
Ni, Nj linear.

In Table 12 we have reported the relative errors obtained for ITa
, on the

same triangle Ta of Table 11 and by using quadratic functions Ni, Nj .

Remark. We explicitly remark that if we apply the above numerical
procedure without introducing smoothing transformations, we generally obtain
orders of relative accuracy halved with respect to those reported in the Tables
11 and 12. Moreover, notice that for simplicity we have considered in Table
10 only a choice for the smoothing exponents with varying {Nj}, j = 1, ..., 6.
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i j n T1 T1/2 T1/4
min max min max min max

1 1:6 6 5.10 − 05 3.54 − 03 7.79 − 04 2.89 − 02 9.69 − 05 2.22 − 01
8 1.29 − 05 6.68 − 05 2.42 − 05 8.00 − 04 1.60 − 05 7.54 − 02
10 3.18 − 06 4.71 − 05 1.24 − 06 4.65 − 05 3.85 − 06 1.72 − 03

2 1:6 6 4.88 − 04 4.28 − 03 1.27 − 04 9.69 − 03 1.21 − 04 1.24 − 01
8 1.21 − 05 5.86 − 04 4.33 − 07 5.48 − 04 5.20 − 05 3.40 − 03
10 1.73 − 05 1.58 − 04 1.30 − 05 5.29 − 04 3.98 − 06 9.05 − 03

3 1:6 6 3.47 − 05 4.29 − 03 8.61 − 05 1.31 − 03 8.29 − 05 3.73 − 03
8 2.12 − 05 1.03 − 04 4.09 − 06 7.28 − 05 9.73 − 06 9.87 − 05
10 9.15 − 07 2.73 − 05 3.01 − 07 7.62 − 06 7.14 − 07 7.69 − 05

4 1:6 6 5.42 − 04 2.65 − 03 1.45 − 05 9.79 − 03 7.73 − 05 4.96 − 03
8 7.80 − 06 4.60 − 05 1.02 − 05 1.46 − 04 8.53 − 06 4.09 − 04
10 2.36 − 06 3.11 − 05 2.56 − 06 5.07 − 05 4.62 − 06 8.21 − 05

5 1:6 6 4.78 − 05 3.49 − 03 3.15 − 05 4.44 − 04 1.06 − 04 2.25 − 03
8 2.37 − 06 7.88 − 05 5.59 − 06 8.98 − 05 3.39 − 05 6.84 − 05
10 1.58 − 06 2.83 − 05 1.08 − 07 1.08 − 05 4.21 − 06 2.16 − 05

6 1:6 6 8.77 − 05 4.76 − 03 2.64 − 04 1.23 − 03 5.72 − 05 2.01 − 03
8 4.22 − 06 6.83 − 05 4.00 − 06 1.06 − 04 5.85 − 05 1.38 − 04
10 2.14 − 06 1.18 − 05 1.54 − 06 1.65 − 05 2.11 − 06 1.57 − 05

Table 12. Minimum and maximum relative errors for ITa , where Ta has corners at
(0,0), (a,1), (0,1) and with Ni, Nj quadratic.

Obviously this fact has involved in some particular cases a loss of precision;
indeed, in these cases a suitable choice would have given a more accurate relative
precision than that of the Tables 11 and 12.
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