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Abstract

The purpose of this paper is to present a method for approximate solution of
initial value problems of ordinary differential equation by the double exponential
transformation. The original problem is transformed into a Volterra integral equation
and it is solved via the indefinite integration formula derived by Muhammad and
Mori. A remarkable advantage of the double exponential transformation technique for
solving initial value problems in this method is that it is easily implemented and gives
a result with high accuracy also for problems with end point singularities and for stiff
problems. The high accuracy of the method proposed in this paper is confirmed by
numerical examples and an exponential convergence rate exp(−cN/ log N) is attained
in almost all cases.

§1. Introduction

Suppose that a first order initial value problem of the form


du

dx
= K(x, u), a < x < b,

u(x)
∣∣
x=a

= ua

(1.1)

is given. Our purpose is to solve this problem using the indefinite integration
formula derived by Muhammad and Mori [2] based on the double exponential
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transformation. Assume that the initial value problem (1.1) has a unique so-
lution in (a, b). In order to solve it by the indefinite integration formula, we
integrate the differential equation with respect to x to obtain a Volterra integral
equation

u(x) =
∫ x

a

K(ξ, u(ξ))dξ + ua, a < x < b.(1.2)

Once the differential equation is transformed into a Volterra integral equation
the double exponential indefinite integration formula proposed in [2] enables
us to approximate the resulting integral equation by a system of linear or non-
linear algebraic equations, whose solution gives an approximate solution of the
differential equation.

To state the results precisely, we need to define spaces of functions analytic
in a strip region about the real axis, which are characterized by the decay rate
of their elements in the neighborhood of the infinity. Let Dd be the strip region
of width 2d (d > 0), i.e.

(1.3) Dd ≡ {t ∈ C
∣∣ |Im t| < d}.

Let z = φ(t) denote a conformal map of Dd onto a simply connected domain
D with the boundary ∂D such that φ((−∞,∞)) = (a, b) where φ(−∞) = a,
φ(∞) = b. We denote φ−1 the inverse of φ. Let H1(Dd) be the family of all
functions g analytic in Dd such that

N1(g, Dd) = lim
ε→0

∫
∂Dd(ε)

|g(t)| |dt| < ∞,

Dd(ε) = {t ∈ C
∣∣ |Re t| < 1/ε, |Im t| < d(1 − ε)}.

A function g is said to decay double exponentially if there exist positive con-
stants α and C such that

(1.4) |g(t)| ≤ C exp (−α exp |t|) for t ∈ (−∞,∞),

or a function f is said to decay double exponentially with respect to the con-
formal map φ if there exist positive constants α and C such that

(1.5) |f(φ(t))φ′(t)| ≤ C exp (−α exp |t|) for t ∈ (−∞,∞).

In this sense φ satisfying (1.5) is called a double exponential transformation,
abbreviated as a DE transformation. Let Kα

φ(Dd) denote the family of functions
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f where f(φ(t))φ′(t) belongs to H1(Dd) and decays double exponentially with
respect to φ and with a constant α as in (1.5).

Incidentally, a function f is said to decay single exponentially with respect
to the conformal map φ1 if there exist positive constants α′ and C ′ such that

(1.6) |f(φ1(t))φ′
1(t)| ≤ C ′ exp (−α′|t|) for t ∈ (−∞,∞),

and φ1 satisfying (1.6) is called a single exponential transformation, abbreviated
as an SE transformation.

Hereafter we consider specifically the following DE transformation:

x = φ(t) =
(b − a)

2
tanh

(π

2
sinh t

)
+

(b + a)
2

,(1.7)

φ′(t) =
b − a

2

π
2 cosh t

cosh2
(

π
2 sinh t

) .(1.8)

Assume that f is a function which belongs to Kα
φ(Dd) with respect to φ defined

by (1.7). Then we have the following formula for an indefinite integral based
on the DE transformation [2]:

∫ s

a

f(x)dx = h

N∑
j=−N

f(φ(jh))φ′(jh)
(

1
2

+
1
π

Si
(

π
φ−1(s)

h
− jπ

))(1.9)

+ O

(
log N

N
exp

(
− πdN

log(πdN/α)

))
,

which holds uniformly for all s ∈ [a, b] where the mesh size h and the number
of function evaluations N should satisfy the relation

(1.10) h =
1
N

log(πdN/α).

Si(x) is the sine integral defined by

(1.11) Si(x) =
∫ x

0

sin ζ

ζ
dζ.

§2. Application of Indefinite Integration Formula

We start with the first order initial value problem of the form (1.1). If we
integrate (1.1) with respect to x the initial value problem (1.1) can readily be
transformed into an integral equation (1.2). Therefore, the formula (1.9) for
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indefinite integration can be directly applied to the first term of the right hand
side of integral equation (1.2).

We assume here that the kernel K(ξ, u(ξ)) of the integral equation (1.2)
is analytic on a < ξ < b but at the end point ξ = a or ξ = b it may have
an integrable singularity. And assume that the integral kernel K(x, ·) belongs
to Kα

φ(Dd) with respect to φ defined by (1.7). Application of the indefinite
integration formula (1.9) to the kernel integral in the integral equation (1.2)
gives

∫ x

a

K(ξj , u(ξ))dξ ≈ h

N∑
j=−N

K(ξj , uj)φ′(jh)
(

1
2

+
1
π

Si
(

π
φ−1(x)

h
− jπ

))
,

(2.1)

where uj denotes an approximate value of u(ξj), and

ξ = φ(t) =
(b − a)

2
tanh

(π

2
sinh t

)
+

(b + a)
2

,

t = φ−1(ξ), x = φ(τ ), −∞ < τ ≤ φ−1(x),

ξj = φ(jh), j = −N, . . . , N.

Hereafter we call ξj = φ(jh), j = −N,−N + 1, . . . , N the Sinc points. If we
replace the first term of the right hand side of (1.2) with the right hand side of
(2.1) we have

u(x) − h
N∑

j=−N

K(ξj , uj)φ′(jh)
(

1
2

+
1
π

Si
(

π
φ−1(x)

h
− jπ

))
≈ ua.(2.2)

There are 2N + 1 unknowns uj , j = −N,−N + 1, . . . , N to be determined in
(2.2). In order to determine these 2N + 1 unknowns we employ the collocation
method and as the collocation points we choose the Sinc points

ξk = φ(kh) =
(b − a)

2
tanh

(π

2
sinh kh

)
+

(b + a)
2

,(2.3)

k = −N,−N + 1, . . . , N.

Applying the collocation to (2.2), we eventually obtain the following system of
2N +1 algebraic equations with 2N +1 unknowns uj , j = −N,−N +1, . . . , N :

uk−h

N∑
j=−N

K(ξj , uj)φ′(jh)
(

1
2

+
1
π

Si(π(k − j))
)

= ua,(2.4)

k = −N,−N + 1, . . . , N.
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The solution {uj}N
j=−N of the algebraic system (2.4) plays an important role in

numerical solution of initial value problem (1.1) because they are approximate
values of the exact solution u(x) of the initial value problem (1.1) at the Sinc
points ξk = φ(kh). If we need an approximate value of u(x) at an arbitrary
point x, we can use some interpolation based on the values uj obtained from the
algebraic system (2.4). The following interpolation formula may be convenient
to the present purpose:

uN (x) = ua + h

N∑
j=−N

K(ξj , uj)φ′(jh)
(

1
2

+
1
π

Si
(

π
φ−1(x)

h
− jπ

))
.(2.5)

§3. Solution of Linear Problem

When the initial value problem is linear, i.e., the kernel of integral equation
(1.2) has a form of

K(ξ, u(ξ)) = K(ξ)u(ξ),(3.1)

we can write the algebraic system (2.4) in a matrix form as

u = Mu + g,(3.2)

where the component of the matrix M = (Mkj) is

Mkj = hK(ξj)φ′(jh)
(

1
2

+
1
π

Si(π(k − j))
)

,(3.3)

and the vectors u and g are

(3.4) u =




u−N

u−N+1

...
uN


 and g =




ua

ua

...
ua


 .

Usually we can solve the system of linear equations (3.2), i.e. (I − M)u = g,
by the Gauss elimination.

Sometimes we may also be able to solve the linear system of equations
(3.2) by successive approximation, that is, by means of an iterative scheme{

u(0) = g,

u(m+1) = Mu(m) + g, m = 0, 1, 2, . . .
(3.5)
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with u(m) defined as

(3.6) u(m) =




u
(m)
−N

u
(m)
−N+1

...
u

(m)
N


 .

We employed g = (ua, ua, . . . , ua)T as an initial guess. In some cases the
Seidel iteration may be used instead of the iteration scheme described in (3.5).
However we do not go into details of these alternatives.

As an example we solved the following initial value problem of ordinary
differential equation using the Gauss elimination and also the iteration method
(3.5) mentioned above.

Example 1. 


du

dx
= u sin x, 0 < x < 1,

u(0) = 1.

(3.7)

The exact solution of this problem is u(x) = exp(1−cos x). In order to ob-
serve the efficiency of the DE transformation we also solved this problem by the
method based on the SE transformation. For the DE and SE transformations
we employed

x = φ(t) =
1
2

tanh
(π

2
sinh t

)
+

1
2

and
x = φ1(t) =

1
2

tanh
t

2
+

1
2
,

respectively. For each N of N = 2, 4, 8, 16, 32, 64, 128 we chose the mesh size h

as

h =
1
N

log(πdN/α)(3.8)

for the DE transformation and h = π/
√

N for the SE transformation. Because
the kernel has no singularity in (0, 1), we can take d = π/2 for the DE transfor-
mation [4]. The parameter α is π/2. Computation was carried out in quadruple
accuracy. For each N , the maximum value of the absolute value of the error

(3.9) Emax = max
−N≤k≤N

|uk − u(xk)|

was computed at the Sinc points xk = φ(kh). Also, for the SE transformation,
we used the Sinc points xk = φ1(kh). The behavior of the error is shown in
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Fig. 1. The curve marked as DE is the error by the method based on the
DE transformation and the curve marked as SE is the one based on the SE
transformation. The numbers on the error curve (8, 12, 16, 25) are the times of
iteration when we solved the problem by using the iteration method (3.5). The
error curve corresponding to the Gauss elimination and by the iteration method
(3.5) overlap almost everywhere so that they are almost indistinguishable with
each other.

SE

DE

N

M
A

X
 E

R
R

O
R

8

12

16

25

Figure 1. Max error of Example 1.

§4. Solution of Nonlinear Problem

If the initial value problem (1.1) is nonlinear, then the system of algebraic
equations (2.4) is nonlinear with respect to {uj}N

j=−N . Therefore in this case,
we must employ some iterative method to solve the system for {uj}N

j=−N . To
solve the nonlinear algebraic system (2.4) we can successfully apply Newton’s
method with a good choice of the initial value in many cases. We employ here
g = (ua, ua, . . . , ua)T as an initial guess. We rewrite the algebraic system as

F (u) = 0(4.1)
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using the vector u defined as (3.4) and the vector

(4.2) F =




F−N

F−N+1

...
FN


 ,

where

Fk = uk − h

N∑
j=−N

K(ξj , uj)φ′(jh)
(

1
2

+
1
π

Si(π(k − j)
)
− ua,(4.3)

ξl = φ(lh) l = −N,−N + 1, . . . , N.

Then Newton’s method can be written{
u(0) = g,

u(m+1) = u(m) − J−1[u(m)]F (u(m)), m = 0, 1, 2, . . . ,
(4.4)

where the component of the Jacobi matrix J = (Jkj) is given as

Jkj = δkj − h
∂K(ξj , uj)

∂uj
φ′(jh)

(
1
2

+
1
π

Si(π(k − j))
)

(4.5)

and the vector g and u(m) are defined as (3.4) and (3.6).
If u(m) in (4.4) converges to u, then we have an approximate solution of

the initial value problem (1.1) at an arbitrary x as

uN (x) = ua + h
N∑

j=−N

K(ξj , uj)φ′(jh)
(

1
2

+
1
π

Si
(

π
φ−1(x)

h
− jπ

))
(4.6)

similarly to (2.5).
Sometimes as an alternative method to solve (2.4) we may use the following

iterative scheme which is directly obtained from (2.4):


u
(0)
k = ua

u
(m+1)
k = ua + h

N∑
j=−N

K
(
ξj , u

(m)
j

)
φ′(jh)

(
1
2

+
1
π

Si (π(k − j))
)

k = −N,−N + 1, . . . , N − 1, N, m = 0, 1, 2, . . . .

(4.7)

As an example, we solve the following nonlinear initial value problem of or-
dinary differential equation by Newton’s method (4.4) and also by the iteration
method (4.7).
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Example 2. 


du

dx
= −exu2(x), 0 < x < 1,

u(0) =
1
2
.

(4.8)

The exact solution of this problem is u(x) = 1/(ex + 1). Since a = 0 and
b = 1, we employ the DE transformation

(4.9) x = φ(t) =
1
2

tanh
(π

2
sinh t

)
+

1
2
.

For each number N of N = 2, 4, 8, 16, 32, 64, 128, we chose the mesh size h as

h =
1
N

log(πdN/α)(4.10)

with d = π/2, α = π/2. Computation was carried out in quadruple accuracy.
For each N , the maximum value of the absolute error

(4.11) Emax = max
−N≤k≤N

|uk − u(xk)|

was computed at the Sinc points xk = φ(kh). To confirm the efficiency of our
method, we also solved this problem by the two methods, i.e. by Newton’s
method (4.4) and by the simple iteration scheme (4.7) mentioned above based
on the single exponential transformation x = φ1(t) = tanh t/2. The behavior
of the error is shown in Fig. 2. The curve marked as DE is the error by the DE
transformation and the one marked as SE is the error by the SE transformation.
The numbers on the error curves (4, 4, 5, 5) and (11, 15, 21, 32) are the times of
iteration when we solved the problem by using Newton’s method (4.4) and by
the iteration method (4.7), respectively. The error curves by Newton’s method
(4.4) and by the iteration method (4.7) overlap almost everywhere so that they
are almost indistinguishable with each other.

§5. Stiff Problem

Next we examined the efficiency of our method by solving the following
initial value problem of a system of linear ordinary differential equations. This
is a famous problem from the book by C. W. Gear [1].

Example 3. 


du

dx
= 998u + 1998v, u(0) = 1,

dv

dx
= −999u − 1999v, v(0) = 0.
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Figure 2. Max error of Example 2.

The exact solution is {
u(x) = 2e−x − e−1000x,

v(x) = −e−x + e−1000x.

This system of equations is regarded as a typical example of stiff problems.
To solve this equation by means of the procedure mentioned in the previous
section, we employ the DE transformation

x = exp(t − e−t)

presented in [4] because the present problem is defined on 0 ≤ x < ∞. For
each N of N = 2, 4, 8, . . . , 256 we chose the mesh size h such that it satisfies
the relation

h =
1
N

log(πN/4),

and the following maximum error Emax at the Sinc points was computed:

Emax = max
−N≤j≤N

{
|u(xj) − uj |, |v(xj) − vj |

}
, xj = φ(jh).
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We also solved this problem using the following transformation and the mesh
size [3]:

x = log
(
et +

√
e2t + 1

)
, h =

π√
2N

.

This gives an SE transformation. The error curves marked as DE and as SE
in Fig. 3 are the results. We should note that, although we did not pay any
special care for the stiffness, the DE transformation is very efficient for this stiff
problem as seen from Fig. 3.

SE

DE

N

M
A

X
 E

R
R

O
R

Figure 3. Max error of Example 3.

In every examples shown above error behavior which can be regarded as
O(exp(−cN/ log N)) is observed when we used the DE transformation. This
is a direct result from (1.9) in case of linear problems [2]. Although we pro-
posed simple iteration schemes (3.5) and (4.7) in order to solve the algebraic
system, both schemes are not always guaranteed to converge to the exact so-
lution. Therefore, we should be careful when we solve the problem using these
iteration schemes. We recommend Newton’s method described in (4.4) for
nonlinear problems. To investigate the convergence conditions of Newton’s
method as well as of the iteration schemes (3.5) and (4.7) will be left to the
future work.

Finally the authors are grateful to the referee for valuable comments.
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