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Abstract

In this paper, we discuss the properties of a quadrature formula with the zeros

of the Bessel functions as nodes for integrals

∫ ∞

−∞
|x|2ν+1f(x)dx, where ν is a real

constant greater than −1 and f(x) is a function analytic on the real axis (−∞, +∞).
We show from theoretical error analysis that (i) the quadrature formula converges
exponentially, (ii) it is as accurate as the trapezoidal formula over (−∞, +∞) and
(iii) the accuracy of the quadrature formula doubles that of an interpolation formula
with the same nodes. Numerical examples support the above theoretical results. We
also apply the quadrature formula to the numerical integration of integral involving
the Bessel function.

§1. Introduction

In this paper, we investigate the quadrature formula with the zeros of the
Bessel functions as nodes, namely,∫

−∞
|x|2ν+1f(x)dx ≈ h

∞∑
k=−∞

k �=0

wνk|hξνk|2ν+1f(hξνk)(1.1)

with

wνk =
Yν(πξν|k|)

Jν+1(πξν|k|)
=

2
π2ξν|k|Jν+1(πξν|k|)

, k = ±1,±2, . . . ,(1.2)
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where ν is a real constant greater than −1, h is a positive constant, ξνk, k =
±1,±2, . . . are the zeros of the Bessel function Jν(πx) of the first kind of order
ν ordered in such a way that

· · · < ξν −2 < ξν −1 < 0 < ξν1 < ξν2 < · · · ; ξν −k = −ξνk, k = 1, 2, . . .

and Yν is the Bessel function of the second kind of order ν 1.
The motivation of our study is as follows. The double exponential quadra-

ture formulae [11], abbreviated to the DE formulae, are known as optimal
quadrature formulae and efficient for various types of integrals. However, the
conventional DE formulae do not work well for integrals of oscillatory functions
over infinite intervals. Ooura and Mori partially overcame this weakness by
inventing a new formula of DE-type for integrals of the Fourier transform type
[8], that is, integrals of the form

(1.3)
∫ ∞

0

f(x) sinxdx,

where f(x) is a function with slow decay as x → +∞. The key idea of their
formula was to choose a DE transform so that the nodes of the quadrature
approach rapidly to the zeros of the function sin x and the integral can be
computed with a small number of function evaluations, while the DE transforms
in the conventional DE formula are chosen so that the transformed integrand
function decays double exponentially. We tried to extend Ooura and Mori’s DE
formula to a one for integrals of the Hankel transform type, that is, integrals
of the form

(1.4)
∫ ∞

0

f(x)Jν(x)dx,

where Jν(x) is the Bessel function of order ν and f(x) is a function with slow
decay as x → +∞. Since, as the conventional DE formula, Ooura and Mori’s
DE formula is based on the trapezoidal formula over (−∞, +∞), i.e., a quadra-
ture with the zeros of the sine function as nodes, we naturally expect that we
can compute (1.4) by a formula with the zeros of the Bessel functions as nodes
coupled with a DE transform similar to Ooura and Mori’s.

In a study motivated by the above discussion, we found the quadrature
formula (1.1). The formula was first presented by Frappier and Olivier [2],
who obtained the formula (1.1) by a limitation procedure of the Gauss-Jacobi

1The second equality of (1.2) is shown by the formula Jν(z)Yν+1(z) − Jν+1(z)Yν(z) =
−2/(πz) (formula 9.1.16 in [1]).
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quadrature and presented classes of integrand functions for which the quadra-
ture formula gives the exact integral values. In addition to Frappier and
Olivier’s results, Grozev, Rahman and Ghanem presented theorems on inte-
grand functions for which the quadrature formula (1.1) gives the exact integral
values [3, 4].

We investigated the quadrature formula (1.1) more thoroughly and found
it very efficient in the following sense.

1. The quadrature formula (1.1) converges exponentially as the density of
nodes increases if the integrand function is analytic on the real axis and
satisfies some conditions. Its error is of the same order as that of the
trapezoidal formula with equal mesh size h over the infinite interval

(1.5)
∫ ∞

−∞
f(x)dx ≈ h

∞∑
k=−∞

f(kh),

which gives the basis of the DE formula together with the DE transform
technique.

2. The quadrature formula (1.1) can be regarded as an interpolation-type one,
that is, it is obtained by integrating an interpolation formula with the same
nodes. We show the remarkable property that the accuracy of the quadra-
ture formula doubles that of the interpolation formula. This property is
common to the Gauss-type quadrature formulae and the trapezoidal one
(1.5).

3. We can apply the quadrature formula (1.1) to the computations of integrals
of the Hankel transform type (1.4), which is the motivation of this study.

The contents of this paper are as follows. In Section 2, we prepare some
notations for theoretical analysis and show a theorem on the quadrature error
of the formula (1.1), which should be compared with the one of the trapezoidal
formula (1.5). In Section 3, we show the quadrature formula (1.1) can be re-
garded as an interpolation-type one, that is, the quadrature formula can be
obtained by integrating an interpolation one with the same nodes. Then we
compare the quadrature error and the interpolation error and show that the
accuracy of the quadrature formula (1.1) doubles the one of the correspond-
ing interpolation formula, noting that it is common also to the Gauss-type
formula and the trapezoidal one (1.5). In Section 5, we show an application
of the quadrature formula (1.1) to the computation of integrals of the Hankel
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transform type (1.4). In Section 6, we present concluding remarks and refer to
problems for future studies.

§2. Quadrature Error

Notations. Throughout this paper, we denote the integral on the left
hand side of (1.1) by Iν(f), i.e.,

Iν(f) =
∫ ∞

−∞
|x|2ν+1f(x)dx

and the quadrature formula on the right hand side of (1.1) by Iνh(f), i.e.,

Iνh(f) = h

∞∑
k=−∞

k �=0

wνk|hξνk|2ν+1f(hξνk).

For theoretical error analysis presented in this paper, we prepare some nota-
tions2.

Definition 2.1. Let d be a positive constant, Dd be the strip domain
Dd = { z ∈ C | | Im z| < d } and Γd be the boundary of Dd.

Let ν be a real constant such that ν > −1. We denote by B(ν, d) the set
of the functions f(z) such that

1. f(z) is analytic in Dd.

2. For arbitrary c such that 0 < c < d, the integral

Nνc(f) ≡
∫ +∞

−∞

[
|x + ic|2ν+1|f(x + ic)| + |x − ic|2ν+1|f(x − ic)|

]
dx

exists and, in addition, the limit Nν d−0(f) ≡ limc↑d Nνc(f) exists and is
finite.

3. For arbitrary c such that 0 < c < d,

(2.1) lim
x→±∞

∫ c

−c

|x + iy|2ν+1|f(x + iy)|dy = 0.

2Henceforth we denote the set of all the integers by Z, that of all the real numbers by R
and that of all the complex numbers by C.
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Besides we define some notations of integrals. For a function f(z) defined
on Dd and for c such that 0 < c < d, we denote the integral of f(z) over the
paths

{ x − ic | −∞ < x < +∞} ∪ { x + ic | + ∞ > x > −∞ }

by
∫
Γc

f(z)dz, that is,∫
Γc

f(z)dz =
∫ +∞

−∞

[
f(x − ic) − f(x + ic)

]
dx.

Further, the limit of
∫
Γc

f(z)dz as c ↑ d exists, we denote it by
∫
Γd−0

f(z)dz:∫
Γd−0

f(z)dz = lim
c↑d

∫
Γc

f(z)dz = lim
c↑d

∫ +∞

−∞

[
f(x − ic) − f(x + ic)

]
dx.

Error Analysis. An expression by complex integral of the quadrature
error of (1.1) and its upper bound are given in the following theorem.

Theorem 2.1. Let ν > −1 and f(z) ∈ B(ν, d). Then, the quadrature
error of (1.1) is given by the complex integral

Iν(f) − Iνh(f) =
1

2πi

∫
Γd−0

f(z)Φνh(z)dz(2.2)

with

Φνh(z) =

{
−iπz2ν+1H

(1)
ν (πz/h)/Jν(πz/h) ( 0 � arg z < π )

+iπz2ν+1H
(2)
ν (πz/h)/Jν(πz/h) ( −π � arg z < 0 ),

(2.3)

where H
(1)
ν = Jν +iYν and H

(2)
ν = Jν − iYν are the Hankel functions of order ν.

Besides, an upper bound of the quadrature error (2.2) is given by the inequality

(2.4) |Iν(f) − Iν(f, h)| � Cνd Nν d−0(f) exp
(
− 2πd

h

)
,

where Cνd is a positive constant depending only on ν and d.

Using the terminology in [12], we call the function Φνh(z) of (2.3) the
characteristic function of the quadrature formula (1.1). Theorem 2.1 says
that the quadrature error of the formula (1.1) decays exponentially with or-
der O[exp(−2πd/h)] as a function of 1/h, which is the node density per unit
length since we have

(2.5) hξνk ∼ ±h
(
|k| − πν

2
− π

4

)
as k → ±∞
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(formula 9.5.12 in [1]) and also corresponds to the mesh size of the trapezoidal
formula over the infinite interval with equidistant nodes (1.5). Roughly speak-
ing, the upper bound of the quadrature error (2.4) is found from the remark
that

Φνh(z) ≈ ±2πiz2ν+1 exp
(
±i2π

(
z

h
− ν

2
− 1

4

))
if ± Im z > 0 as | Im z| is large,

which is obtained from the asymptotic expansions of the Hankel functions

H(1)
ν (z) ∼

√
2/(πz) ei(z−νπ/2−π/4) ( |z| → ∞, −π < arg z < 2π ),

H(2)
ν (z) ∼

√
2/(πz) e−i(z−νπ/2−π/4) ( |z| → ∞, −2π < arg z < π )

(2.6)

(formulae 9.2.3 and 9.2.4 in [1]), and then

|Φνh(z)| ≈ π|z|2ν+1 exp
(
−2π

h
| Im z|

)
as | Im z| is large.

The proof of Theorem 2.1 goes as follows.

Proof. We consider the integral

(2.7) −
∫

C1+C2+C3

z2ν+1f(z)
H

(1)
ν (πz/h)

2Jν(πz/h)
dz =

1
2πi

∫
C1+C2+C3

f(z)Φνh(z)dz,

where C1, C2, C3 are the integral paths shown in Figure 1. Since the integrand
function is analytic in the domain { z ∈ C | 0 < Im z < d } , the integral path
C1 + C2 + C3 can be modified to C+ given in Figure 1 as the broken line. The
integrals on γk, k = ±1,±2, . . . are computed as follows. If k > 0, we have

−
∫

γk

z2ν+1f(z)
H

(1)
ν (πz/h)

2Jν(πz/h)
= −πi × (residue at z = hξνk) + O(ρ)

= − ih
2

(hξνk)2ν+1 H
(1)
ν (πξνk)

J ′
ν(πξνk)

+ O(ρ)

= − h(hξνk)2ν+1wνk + O(ρ) as ρ → 0,

where we used the formula

(2.8) J ′
ν(z) =

ν

z
Jν(z) − Jν+1(z)
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O Re z

Im z

C1

C2

C3

C4

C5

C6

C+

R1−R2

iδ

id

−iδ

−id

γνkγ0

hξνk

hξνN1−hξνN2

Figure 1. The integral paths C1, C2, C3, C4, C5, C6 for the proof of Theorem
2.1, where R1 = h(N1 + ν/2 + 1/4) and R2 = h(N2 + ν/2 + 1/4). In the proof
of the theorem, the path C1 +C2 +C3, the path C1 +C2 +C3 is modified to the
one C+ (broken line), which consists of the semi-circles γk, k = −N2,−N2 +
1, . . . ,−1, 1, 2, . . . , N1 of radius ρ > 0 with centres at z = hξνk, the one γ0 of
radius ρ with centre at z = 0, and the line segments joining them.

(formula 9.1.27 in [1]) on the third equality. If k < 0, we have

−
∫

γk

z2ν+1f(z)
H

(1)
ν (πz/h)

2Jν(πz/h)
= −πi × (residue at z = hξνk) + O(ρ)

= − ih
2

(−hξν|k|)2ν+1f(hξνk)
H

(1)
ν (−πξν|k|)

J ′
ν(−πξν|k|)

+ O(ρ)

=
ih
2

(eiπ)2ν+1(hξν|k|)2ν+1f(hξνk)
H

(1)
ν (eiππξν|k|)

Jν+1(eiππξν|k|)
+ O(ρ)

= − h

2
wνk(hξν|k|)2ν+1f(hξνk) + O(ρ) as ρ → 0,

where we used the formula (2.8) on the third equality and the relations

(2.9) Jν+1(eiπz) = eiνπJν(z), H(1)
ν (eiπz) = −e−iνπH(2)

ν (z)

(formulae 9.1.35 and 9.1.39 in [1]) on the fourth equality. The integral on γ0
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vanishes as ρ → 0 since we have

z2ν+1H
(1)
ν (πz/h)

Jν(πz/h)
=

{
O(z) if z 	∈ Z

O(z2ν+1 log z) if z ∈ Z,

which is obtained from the formulae Yν(z) = [Jν(z) cos(νπ)− J−ν(z)]/ sin(νπ)
if ν 	∈ Z (formula 9.1.2 in [1]) and

Yν(z) = − (z/2)−ν

π

ν−1∑
k=0

(ν − k − 1)!
k!

(
z

2

)2k

+
2
π

log
(

z

2

)
Jν(z)− (z/2)ν

π

∞∑
k=0

{ψ(k + 1)+ψ(ν + k + 1)} (−z2/4)k

k!(ν + k)!
if ν ∈ Z

with ψ(1) = −γ, ψ(n) = −γ +
∑n−1

k=1 k−1, n = 2, 3, . . . (formula 9.1.11 in [1])3.
Therefore we have

(2.10)

1
2πi

∫
C1+C2+C3

f(z)Φνh(z)dz =
1
2
p.v.

∫ 0

−R2

|x|2ν+1f(x)
H

(2)
ν (πx/h)

Jν(πx/h)
dx

+
1
2
p.v.

∫ R1

0

|x|2ν+1f(x)
H

(1)
ν (πx/h)

Jν(πx/h)
dx − h

2

N1∑
k=−N2

k �=0

wνk|hξνk|2ν+1f(hξνk),

where “p.v.” denotes the principal value and we used the relations (2.9) to
derive the first term of the right-hand side. Similarly we have

(2.11)

1
2πi

∫
C4+C5+C6

f(z)Φνh(z)dz =
1
2
p.v.

∫ R1

0

|x|2ν+1f(x)
H

(1)
ν (πx/h)

Jν(πx/h)
dx

+
1
2
p.v.

∫ R1

0

|x|2ν+1f(x)
H

(2)
ν (πx/h)

Jν(πx/h)
dx − h

2

N1∑
k=−N2

k �=0

wνk|hξνk|2ν+1f(hξνk).

3γ denotes Euler’s constant γ = 0.5772 15664 90153 . . . .
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Summing (2.10) and (2.11) leads us to the equality

(2.12)
1

2πi

∫
C1+···+C6

f(z)Φνh(z)dz

=
∫ R1

−R2

|x|2ν+1f(x)dx − h

N1∑
k=−N2

k �=0

wνk|hξνk|2ν+1f(hξνk).

It is shown from (2.1) and Lemma 2.2, which is given at the end of this section,
that the integrals on C6+C1 and C3+C4 vanish as N1, N2 → ∞. Consequently,
we obtain the equality (2.2).

The inequality (2.4) is obtained by evaluating the absolute value of the
complex integral on the left-hand side of (2.12) as follows. From (2.6) and
Lemma 2.2 given in the last of this section, we have

|Φνh(z)| � 2πκν

(πc

h

)
exp

(
−2πc

h

)
|z|2ν+1 {1+(term vanishing as |z| → ∞)} ,

on C2, C5, where κν is given in Lemma 2.2. On the other hand, from (2.6) and
Lemma 2.1, for arbitrary ε > 0, we have

|Φνh(z)| � 2π(1 + ε)|z|2ν+1 exp
(
−2π

h
| Im z|

)
� 2π(1 + ε)|z|2ν+1

on C6 + C1 and C3 + C4 if N1 and N2 are sufficiently large. Then we have

(2.13)

∣∣∣∣ 1
2πi

∫
C1+···+C6

z2ν+1f(z)Φνh(z)dz

∣∣∣∣
� C̃νc exp

(
−2πc

h

) (∫
C2

+
∫

C5

)
|z|2ν+1|f(z)||dz|

+ (1 + ε)
(∫

C3+C4

+
∫

C6+C1

)
|z|2ν+1|f(z)||dz|,

where C̃νc is a positive constant depending only on ν and d. The integrals of
the second term on the right-hand side vanish as N1, N2 → ∞ because of (2.1).
Therefore, taking the limit c ↑ d, we obtain the inequality (2.4).

We now compare the claim of Theorem 2.1 with the one on the quadrature
error of the trapezoidal formula (1.5) (Theorem 3.2.1 in [10]), namely,
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Theorem 2.2. Let h > 0 and f(z) ∈ B(−1/2, d). Then an upper bound
for the quadrature error of the trapezoidal formula (1.5) is given by the inequal-
ity ∣∣∣∣∣

∫ ∞

−∞
f(x)dx − h

∞∑
k=−∞

f(kh)

∣∣∣∣∣ � exp(−2πd/h)
1 − e−2πd/h

N−1/2 d(f).

Theorem 2.2 says that the quadrature error of the trapezoidal formula
(1.5) for a function f(x) decays exponentially with order O[exp(−2πd/h)] as a
function of the node density if f(z) ∈ B(−1/2, d). Therefore, if f(z) ∈ B(ν, d)
(ν � −1/2)4, the quadrature errors of the formula (1.1) and the trapezoidal one
(1.5) are of the same order. This coincidence of the error orders seems natural
if we remark that the trapezoidal formula is a special case of the quadrature
one (1.1). In fact, if we put ν = −1/2 in (1.1), we obtain from J−1/2(z) =√

2/(πz) cos z that ∫ ∞

−∞
f(x)dx ≈ h

∞∑
k=−∞

f

(
h

(
k +

1
2

))
,

which is nothing but the (midpoint) trapezoidal formula.

Lemmas Used in the Proofs of Theorem 2.1, 3.1. We here present
the lemmas used in the proof of Theorem 2.1, 3.1 and the proofs of these
lemmas.

Lemma 2.1. For arbitrary ε > 0, there exists a positive integer N such
that

(2.14)
1

|Jν(z)| � (1 + ε)
√

2π|z|e−| Im z| if |Re z| = π

(
N +

ν

2
+

1
4

)
.

Proof. It is sufficient to prove the lemma in the case that Re z > 0 since
we have |Jν(e±iπz)| = |e±iνπJν(z)| = |Jν(z)|. The asymptotic expansion of
|Jν(z)| (§7.2 in [13])

(2.15)

Jν(z) =
1√
2πz

[
ei(z−νπ/2−π/4){1 + O(z−1)} + e−i(z−νπ/2−π/4){1 + O(z−1)}

]
as z → ∞, | arg z| < π

4We here remark that B(ν, d) ⊂ B(ν′, d) if ν > ν′(> −1).
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leads us to the fact that, for arbitrary ε > 0, there exists a positive integer
N > 0 such that, if Re z = π(N + ν/2 + 1/4),

|Jν(z)| �
∣∣∣∣∣ 1√

2π|z|

[
(−1)Ne− Im z 1

1 + ε
+ (−1)NeIm z 1

1 + ε

]∣∣∣∣∣ � eIm z√
2π|z|

1
1 + ε

.

This is nothing but the inequality (2.14).

Lemma 2.2. For arbitrary M > 0, we define the value κν(M) by

(2.16) κν(M) = sup
| Im z|�M

{
e| Im z|√

2π|z| |Jν(z)|

}
.

Then the value κν(M) satisfies the properties that (i) κν(M) decreases mono-
tonously in M , (ii) κν(M) < +∞ and (iii) lim

M→∞
κν(M) = 1.

Using κν(M) defined in the above lemma, we have the inequality

(2.17)
1

|Jν(z)| � κν(M)
√

2π|z|e−| Im z| if | Im z| � M

for arbitrary M > 0.

Proof. The property (i) is obvious. In order to prove the properties (ii)
and (iii), we rewrite κν(M) as

(2.18) κν(M) = sup
| Im z|�M,Re z�0

{
e| Im z|√

2π|z| |Jν(z)|

}
,

which is guaranteed by the relation |Jν(e±iπz)| = |e±iνπJν(z)| = |Jν(z)|. From
the above expression of κν(M) and the asymptotic expansion (2.15), we obtain
the property (iii).

It is easy to prove the property (ii). In fact, from the asymptotic expansion
(2.15), we have for sufficiently large R > 0

(2.19)
e| Im z|√

2π|z| |Jν(z)|
≈ 1 if |z| > R, | Im z| � M, Re z � 0

and, in addition, we have

(2.20) sup

{
e| Im z|√

2π|z| |Jν(z)|

∣∣∣∣∣ |z| � R, | Im z| � M, Re z � 0

}
< ∞

since Jν(z) has zeros only on the real axis.



�

�

�

�

�

�

�

�

960 Hidenori Ogata

§3. Quadrature Formula of Interpolation-Type

We here show that the quadrature formula (1.1) can be regarded as of
interpolation-type. In fact, it can be obtained by integrating formally the
following interpolation formula with the same nodes, namely,

f(x) ≈ Lνhf(x) = −
∞∑

k=−∞
k �=0

f(hξνk)
(hξνk/x)νJν(πx/h)

Jν+1(πξνk)(πx/h − πξνk)
(3.1)

= −
∞∑

k=1

f(hξνk)
(hξνk/x)νJν(πx/h)

Jν+1(πξνk)(πx/h − πξνk)

+
∞∑

k=1

f(−hξνk)
(hξνk/x)νJν(πx/h)

Jν+1(πξνk)(πx/h + πξνk)

with a real constant ν. It is easily shown by J ′
ν(πξνk) = −Jν+1(πξνk), which

is obtained from the formula (2.8), that

(3.2) Lνhf(hξνk) = f(hξνk). k = ±1,±2, . . .

If −1 < ν < 1/2, we can formally integrate (3.1) term by term to obtain

Iν(f) ≈
∫ ∞

−∞
|x|2ν+1Lνhf(x)dx

= −
∞∑

k=1

f(hξνk)
(hξνk)ν

Jν+1(πξνk)

∫ ∞

−∞

|x|2ν+1x−νJν(πx/h)
πx/h − πξνk

dx

+
∞∑

k=1

f(−hξνk)
(hξνk)ν

Jν+1(πξνk)

∫ ∞

−∞

|x|2ν+1x−νJν(πx/h)
πx/h + πξνk

dx.

Then we obtain the quadrature formula (1.1) using the formula∫ ∞

−∞

|x|2ν+1x−νJν(πx/h)
πx/h − πξνk

dx = − sgn k (hξν|k|)ν+1Yν(πξν|k|)(3.3)

with

sgn k =

{
+1 if k > 0

−1 if k < 0

if −1 < ν < 1/2. The proof of (3.3) will be given at the end of this section.
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Remark 1. The interpolation formula (3.1) can be obtained by an ana-
logue of the Lagrange interpolation of nodes x1, x2, . . . , xN

(3.4) f(x) ≈ LNf(x) =
N∑

k=1

f(xk)
W (x)

W ′(xk)(x − xk)

with W (x) =
∏N

k=1(x − xk). In fact, we put

(3.5) W (x) =
(πx

h

)−ν

Jν

(πx

h

)
=

1
2νΓ(ν + 1)

∞∏
k=1

{
1 −

(
x

hξνk

)2
}

(and N = ∞) in (3.4) 5 and, using (2.8), we obtain the interpolation formula
(3.1).

Remark 2. In the case of ν = −1/2, the interpolation formula (3.1)
becomes the Sinc approximation

(3.6) f(x) ≈
∞∑

k=−∞
f(kh)

sin[(π/h)(x − kh)]
(π/h)(x − kh)

,

which is recently applied to various subjects of numerical analysis by Stenger
and others [10]. In fact, if we put ν = −1/2 in (3.1) and remark that J−1/2(x) =√

2/(πx) cos x obtained from formulae 10.1.1 and 10.1.12 in [1], we have

L−1/2 hf(x) =
∞∑

k=−∞
f

(
h

(
k +

1
2

))
sin[πx/h − π(k + 1/2)]

πx/h − π(k + 1/2)
,

which is nothing but the (midpoint) Sinc approximation.

Error Analysis. An upper bound of the interpolation error of (3.1) is
given by the following theorem.

Theorem 3.1. Let ν > −3/2 and f(z) ∈ B(ν/2 − 1/4, d). Then the
interpolation error of the formula (3.1) is expressed by the complex integral

(3.7) f(x) − Lνhf(x) =
Jν(πx/h)

2πixν

∫
Γd−0

zνf(z)
(z − x)Jν(πz/h)

dz,

where x is an arbitrary real number, and an upper bound of the error is given
by the inequality

(3.8) sup
−∞<x<∞

|f(x) − Lνhf(x)| � CνdNν d−0(f)h−ν−1/2 exp
(
−πd

h

)
,

where Cνd is a positive constant depending only on ν and d.
5The expression of (3.5) can be obtained if we remark that the function x−νJν(z) is entire
with zeros only at z = πξνk, k = ±1,±2, . . . [13].
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Proof. We here consider the complex integral

(3.9)
Jν(πx/h)

2πixν

∫
C1+C2+C3+C4+C5+C6

zνf(z)
(z − x)Jν(πz/h)

dz

where N1, N2 are positive numbers and C1, C2, . . . , C6 are rectilinear lines given
in Figure 1). Since f(z) is analytic in the domain Dd and that z−νJν(πz/h) is
entire function with zeros only at z = hξνk, k = ±1,±2, . . ., we obtain by the
residue theorem the equation

(3.10) integral (3.9) = f(x) +
N1∑

k=−N2
k �=0

f(hξνk)
(hξνk/x)νJν(πx/h)

Jν+1(πξνk)(πx/h − πξνk),

where we used the formula (2.8). By (2.1) and Lemma 2.1, the integrals on
C6 + C1 and C3 + C4 in (3.9) vanish as N1, N2 → ∞. Therefore we have (3.7)
by taking the limit c ↑ d.

The inequality (3.8) is obtained by estimating the absolute value of the
right hand side of (3.7) as in the proof of Theorem 2.1. Using Lemma 2.1 and
2.2, we have for arbitrary ε > 0

(3.11)∣∣∣∣∫
C1+···+C6

zνf(z)dz

(z − x)Jν(πz/h)

∣∣∣∣ � κν

(πc

h

) √
2π2

h

e−πc/h

c

(∫
C2

+
∫

C5

)
|z|ν+1/2|

× f(z)||dz| +
√

2π2

h

2(1 + ε)
R − |x|

(∫
C3+C4

+
∫

C6+C1

)
|z|ν+1/2|f(z)||dz|

with R = min{R1, R2} if N1 and N2 are sufficiently large. The integrals of the
second term on the right-hand side vanish as N1, N2 → ∞ because of (2.1).
Therefore, using the inequality ([13], §3.31) |x−νJν(πx/h)| � (π/(2h))ν/Γ(ν +
1), we obtain the inequality (3.8).

We here compare the interpolation error given in Theorem 3.1 with the
quadrature error given in Theorem 2.1. From the two theorems, we have for
functions f(z) ∈ B(ν, d) (−1 < ν < 1/2)(

interpolation
error

)
= O

[
exp

(
−πd

h

)]
,

(
quadrature

error

)
= O

[
exp

(
−2πd

h

)]
,

that is,

(quadrature error) ≈ (interpolation error)2.
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In other words, the accuracy of the quadrature formula doubles the one of the
corresponding interpolation formula. We remark that the Gauss-type quadra-
ture formula and the trapezoidal one (1.5) have the same property. In fact,
the n-point Gauss-type quadrature formulae give the exact integral values for
polynomial of degree < 2n − 1 while the n-point orthogonal polynomial inter-
polation formulae, from which the Gauss-type quadrature ones are obtained by
term-by-term integration, give the exact function value for polynomials of de-
gree < n. In the case of the trapezoidal formula, the quadrature error is of order
O[exp(−2πd/h)] for integrand functions f(z) ∈ B(−1/2, d) as given in Theorem
2.2 while the error of the corresponding interpolation formula, namely, the Sinc
approximation (3.6), from which the trapezoidal one is obtained by term-by-
term integration, is of order O[exp(−πd/h)] for functions f(z) ∈ B(−1/2, d)
(Theorem 3.1.3 in [10]).

Proof of (3.3). We here prove the formula (3.3).

Proof. Note that we have

∫ ∞

−∞

|x|2ν+1x−νJν(πx/h)
πx/h − πξνk

dx(3.12)

=
(

h

π

)ν+1 {∫ ∞

0

xν+1Jν(x)
x − πξνk

dx −
∫ ∞

0

xν+1Jν(x)
x + πξνk

dx

}
since x−νJν(πx/h) is an even function.

We here consider the complex integral

(3.13)
∫

C

zν+1H
(1)
ν (z)

z − πξνk
dz = 0,

where C is the integral path given in Figure 2 and the equality is evident from
Cauchy’s theorem. From the asymptotic expansions of H

(1)
ν (z) (2.6), there

exists C > 0 such that |H(1)
ν (z)| � C

√
2/(π|z|) exp(− Im z) for sufficiently

large |z| ( 0 � arg z � π ). Then we have the upper bounds of the integrals on
C1, C2 and C3

|(integral on C1)| � C

√
2

πR1

∫ c

0

e−ydy � C

√
2

πR1
,

|(integral on C2)| � C

√
2
πc

(R1 + R2)e−c. |(integral on C3)| � C

√
2

πR2
,
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O Re z

Im z

C1

C2

C3

C4 C5 C6

R1−R2

ic

γνkγ0

πξνk

Figure 2. The integral path C = C1 + C2 + C3 + C4 + γ0 + C5 + γνk + C6 for
the proof of (3.3), where R1, R2, c are positive constants, γνk is the semi-circle
of radius ρ > 0 with centre at z = hξνk and γ0 is the semi-circle of radius ρ

with centre at z = 0.

The integral on γνk is computed as follows. If k > 0, we have

(integral on γνk) = − iπ × (residue at z = πξνk) + O(ρ)

= π(πξνk)ν+1Yν(πξνk) + O(ρ) as ρ ↓ 0

and, if k < 0,

(integral on γνk) = − iπ × (residue at z = eiππξν|k|) + O(ρ)

= − iπ(eiππξν|k|)ν+1H(1)
ν (eiππξν|k|) + O(ρ)

= − π(πξν|k|)ν+1Yν(πξν|k|) + O(ρ) as ρ ↓ 0,

where we used (2.9) on the third equality. The integral on γ0 is shown to vanish
as ρ ↓ 0 by a way similar to the one in the proof of Theorem 2.1. The limit of
the integral on C4 + C5 + C6 as ρ ↓ 0 is shown to be

lim
ρ↓0

(integral on C4 + C5 + C6)

= p.v.

∫ R1

0

xν+1H
(1)
ν (x)

x − πξνk
dx − p.v.

∫ R2

0

(eiπx)ν+1H
(1)
ν (eiπx)

x + πξνk

= p.v.

∫ R1

0

xν+1H
(1)
ν (x)

x − πξνk
dx − p.v.

∫ R2

0

xν+1H
(2)
ν (x)

x + πξνk
dx,

where we used (2.9) on the second equality.
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Substituting the above results into (3.13), we have

0 = lim
R1,R2→∞

lim
ρ↓0

Re
∫

C

zν+1H
(1)
ν (z)

z − πξνk
dz

=
∫ ∞

0

xν+1Jν(x)
x − πξνk

dx −
∫ ∞

0

xν+1Jν(x)
x + πξνk

dx + sgn k π(πξν|k|)ν+1Yν(πξν|k|).

Consequently, we have (3.3) by (3.12).

§4. Numerical Examples

We here show examples for the quadrature formula (1.1). All the compu-
tations in this paper were carried out on a SUN Blade 150 workstation using
programs coded in C++ with double precision working.

Example 1. The integrand function of the first example is

f1(x) =
exp(− coshx)

1 + x2
,

which decays double exponentially at infinity. The integrals of functions decay-
ing more slowly are transformed to the integrals of functions decaying double
exponentially by the DE transforms used in the DE rules [11]. The exact in-
tegral value6 of f1(x) with ν = 0 is I0(f1) = 0.30635 46949 25705 . . .. We
computed the integral I0(f1) by the quadrature formula (1.1) and plotted the
relative error of the quadrature |Iνh(f1) − Iν(f1)|/|Iν(f1)| as functions of the
node density 1/h in Figure 3(a), which also includes the interpolation error7

∆Lνh(f) ≡ sup
−∞<x<+∞

|f(x) − Lνhf(x)|.

The orders of the quadrature and the interpolation errors theoretically esti-
mated in Section 2, 3 or from the numerical results are summarised in Table
1. In the table, the value d in the theoretical error estimates is taken as d ≈ 1
because f(z) has poles at z = ±i, and the orders of the errors in the numerical
examples are given as functions of 1/h in the form exp(−c/h) with constants
c(> 0) estimated by applying the least square fitting to the numerical data.

6They are obtained by splitting them into two parts at x = 0, namely, Iν(f1) =(∫ 0
−∞ +

∫ +∞
0

)
|x|2ν+1f1(x)dx and applying the DE formula to these integrals [12] using

a program made by Dr. T. Ooura [9].
7Actually, the supremum on (−∞, +∞) is approximated by the maximum over 1028 points
on the interval [−M, M ] (M = 4.0) distributed by using uniform random numbers.
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(a) Example 1 (b) Example 2

Figure 3. The errors of the quadrature formula (1.1) and the interpolation
formula (3.1) with ν = 0 for (a) f1(x) of Example 1 and for (b) f2(x) of
Example 2.

From the figure and the table, it is evident that the numerical results support
the results of the theoretical error analysis, that is, the facts that the quadrature
error is of order O[exp(−2πd/h)] and the relation

(quadrature error) = (interpolation error)2.

Example 2. The integrand function of the second example is

f2(x) = exp(−x2).

The exact integral value of f2(x) with ν = 0 is I0(f1) = 1.
The errors of the quadrature formula (1.1) and the interpolation formula

(3.1) are shown as a function of 1/h in Figure 3(b). From this figure, we find
that the orders of the errors are not in the form O[exp(−c/h)] with constants
c(> 0). The theoretical error estimates by (2.4) and (3.8) are too rough for the
function f2(x) and estimating the errors by applying the saddle point method
to the complex integrals (2.2) and (3.7) gives more accurate error estimates,
which are of the form O[exp(−c/h2)] with constants c > 0. The orders of the
quadrature and interpolation errors theoretically estimated or from the numer-
ical results are summarized in Table 1. In the table, the orders of the errors
from the numerical results are given in the form O[exp(−c/h)] with constants
c(> 0) estimated by applying the least square fitting to the numerical data.
From the table, it is evident that the numerical results make good agreements
with the results of the theoretical error analysis.
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Table 1. The quadrature and the interpolation errors for f1(x) of Example 1
and for f2(x) of Example 2.

error
example theoretical numerical

1 quadrature
O[exp(−2πd/h)]
= O[exp(−6.3 . . . /h)]

O[exp(−6.4 . . . /h)]

interpolation
O[exp(−πd/h)]
= O[exp(−3.1 . . . /h)]

O[exp(−3.0 . . . /h)]

2 quadrature
O[exp(−π2/h2)]
= O[exp(−9.9 . . . /h2)]

O[exp(−8.9 . . . /h2)]

interpolation
O[exp(−π2/(4h2))]
= O[exp(−2.5 . . . /h2)]

O[exp(−2.3 . . . /h2)]

§5. Application to Integrals of the Hankel Transformation Type

In this section, we present an application of the quadrature formula (1.1)
to the computations of (1.4), which was the motivation of the presented study.
We here construct a DE-type quadrature formula for (1.4) similar to Ooura
and Mori’s DE formula for integrals (1.3), namely, a quadrature formula with a
DE-type transform such that the nodes approach to the zeros of Jν(x) double
exponentially.

We apply the variable transform

(5.1) x =
π

h
ψ(t) with ψ(t) = t tanh

(π

2
sinh t

)
to an integral (1.4) and, remarking that the transformed integrand function
π
hf(π

hψ(t))Jν(π
hψ(t))ψ′(t) is of the form |t|2ν+1 × (even function), apply the

quadrature formula (1.1) to the transformed integral. Then we have the ap-
proximation

(5.2)
∫ ∞

0

f(x)Jν(x)dx ≈ π
∞∑

k=1

wνkf
(π

h
ψ(hξνk)

)
Jν

(π

h
ψ(hξνk)

)
ψ′(hξνk).

The infinite sum on the right hand side of (5.2) can be truncated with a small
number of function evaluations since the quadrature nodes approach to the
zeros of Jν(x), that is, π

hψ(hξνk) ∼ πξνk double exponentially as k → ∞.
Therefore, we expect that we can effectively compute integrals (1.4) by the DE
formula (5.2).
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Numerical Examples. We computed the integrals

(i)
∫ ∞

0

J0(x)dx = 1, (ii)
∫ ∞

0

xJ0(x)
x2 + 1

dx = K0(1),

where Kν is the modified Bessel function of order ν of the second kind, by the
formula (5.2).

Figure 4 shows the relative errors of the formula (5.2) for the integrals
(i) and (ii) as a function of the node density 1/h or the number of function
evaluations N , the minimal integer k such that∣∣∣f (π

h
ψ(hξνk)

)
Jν

(π

h
ψ(hξνk)

)
ψ′(hξνk)

∣∣∣ < ε = 10−15

and the infinite sum of (5.2) is truncated at the k-term. From Figure 4, we
find that the DE formula (5.2) work well for the integral (i) but not so for the
integral (ii).
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Figure 4. The relative errors of the DE formula (5.2) for the integrals (i) and
(ii) as a function of the nodes density 1/h or the number of function evaluations
N .

The reason why the DE formula fails to compute the integral (ii) efficiently
is considered to be as follows. The integrand function of (ii) has singularities at
z = ±i. Then the transformed integrand function f(π

hψ(w))Jν(π
hψ(w))ψ′(w)

has singularities at the images of z = ±i by the mapping w = ψ−1(h
π z), which

approach the real axis as h → 0. It is known in theoretical error analysis
of numerical integrations [12] that a quadrature formula does not work well
if the integrand function has singularities near the real axis. Therefore, the
quadrature (5.2) is efficient if f(x) is an entire function, and not so if f(x) has
singularities.

A remedy for this weakness is to adopt a DE-type transform such that
the singularities of the transformed integrand function does not approach to
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the real axis as h → 0 as the one used in the robust DE formula for Fourier
transformation type integrals by Ooura and Mori [7]. However, it is difficult to
find the explicit form of a transform satisfying the above property.

§6. Concluding Remarks

In this paper, we investigated the quadrature formula (1.1) with the zeros
of the Bessel functions as nodes and showed that the formula has the following
three nice properties: First, the quadrature formula converges exponentially
a function of the density of nodes 1/h. Second, the quadrature formula can
be obtained by integrating an interpolation formula with the same nodes and
that, as the Gauss-type formulae and the trapezoidal one, the accuracy of
the quadrature doubles the one of the interpolation. Lastly, we applied the
formula to the computations of integrals of the Hankel transform type. In
relation to integrals of the Hankel transform type, we also remark that Ooura
and Mori have presented DE-type formulae for oscillatory functions with slow
decay [5, 6, 7] in addition to their first DE-type formula for Fourier integrals
[8].

Problems for future studies are to apply the quadrature formula (1.1) or
the interpolation formula (3.1) to practical computations and to improve the
DE formula for integrals of the Hankel transform type so that it works well for
integrand functions with singularities as mentioned in Section 5. As shown in
this paper, the quadrature formula (1.1) has nice properties like the trapezoidal
one (1.5), which gives the basis of the DE formulae together with the DE
transforms. Therefore we expect that the formula can be used in many subjects
of numerical computations.
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