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What we deal with in computation in physics, for example, is usually a
function expressed in terms of a single formula like an algebraic function or an
elementary transcendental function, etc. In some cases it involves the symbol
of differentiation or that of integration, or it is given implicitly as a solution of
some differential equation whose coefficients consist of such functions. In any
case such a function is an analytic function handled in the complex function
theory. Actually I dare to say that more than 90 percent of practical applica-
tions of mathematical analysis deal with analytic functions. Nevertheless, in
conventional textbooks on numerical analysis almost all functional algorithms
such as interpolation, numerical integration, and numerical differentiation are
dealt with in the framework of only the elementary calculus or, in other words,
techniques in the theory of real functions. This seems strange to me. We have
successfully shown that methods based on the complex function theory are
quite efficient in a number of problems of numerical computation, in particular
in numerical integration [1]. In what follows, we show other examples in which
methods based on the complex function theory are useful and also point out
some flaws of the conventional methods.

§1. Significance of the Use of Complex Function Theory

Differentiation, integration and solution of differential equation, etc., are
usually an operation on functions of continuous variables. When we carry out
actual computation for such operations in a computer or other digital equip-
ments we must first approximately replace the continuous operand with finite
and discrete numerical parameters. Then we carry out computation for these
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(workshop proceedings) No.253, pp.24–37.

∗∗Faculty of Science, University of Tokyo

c© 2005 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



�

�

�

�

�

�

�

�

980 Hidetosi Takahasi

numerical values and get information about the consequence of differentiation,
integration, etc. from the result of computation (which again consists of finite
number of parameters). For such finite number of parameters we use, in many
cases, function values (sample values) at discrete values of the independent
variable (sample points). Sometimes we also use coefficients of an expansion in
terms of some suitable set of functions (power series or the Fourier series, for
example). However, in any case, in order to express a function in sufficiently
high precision with a relatively small number of parameters it is required that
the function is moderately smooth (or natural). Although in many books the
requirement on the smoothness is not so explicitly mentioned, it is implic-
itly included in the error representation of the numerical formula. In fact, in
many cases the error representation of numerical formulas includes the maxi-
mum absolute value of the nth order derivative of the function in question (n
is determined depending on the formula), and hence it is implicitly assumed
that the function is n-times differentiable and that its n-th order derivative
is not very large. However, in practical applications, it is quite rare that, for
example, we know that the function is three times differentiable but do not
know whether it is four times differentiable or not. In actual applications,
on the other hand, it is usually assumed implicitly that the function under
consideration is infinite times differentiable, or more strongly, is analytic in a
region which includes the real axis. In addition, there are many cases in which
the analyticity can actually be proved in some explicitly given region. This is
obviously the case if the function is defined explicitly in an analytical form.
As another example from the solid state physics, there is a strong reason to
believe that the function which describes the current-voltage characteristics of
a certain electronic device, a diode for example, is regular in the strip region
about the real axis with half width 2πkT (where k is the Boltzmann constant
and T is the absolute temperature). Also, to investigate what kind of an-
alyticity the state function of a material has, or in other words, where and
what kind of singularities exist in the complex plane, is an important subject
in the field of recent statistical mechanics. As seen from the discussion given
above we should recognize that it is by far more realistic to study in what
region the function is regular rather than to establish the n times differentia-
bility.

If we base our argument on the analyticity of the function in this way,
the complex function theory, in particular Cauchy’s integral formula, will play
a fundamental role as a matter of course. This will be exemplified in what
follows.
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§2. On Interpolation

We consider here interpolation. Interpolation is a method to express an
unknown function f(x) approximately in terms of its sample values

(1) y1 = f(x1), y2 = f(x2), . . . . . . , yn = f(xn).

Interpolation formulas in common use are always linear interpolation, i.e., in-
terpolation formulas f̄(x) expressed in the form f̄ =

∑
ci(x)f(xi). The most

commonly used interpolation is the one based on polynomials (the Lagrange
interpolation) in which we assume that f̄(x) is a polynomial of degree n − 1
and determine the coefficients in such a way that it satisfies (1). Although
the sample points x1, x2, . . ., xn can be chosen arbitrarily, they are usually
taken equidistantly. Several other interpolation formulas such as Newton’s and
Stirling’s formulas use a difference table. But the distinction among these
formulas lies only in computational algorithm and they are all the same as the
Lagrange interpolation from the algebraic point of view (i.e., as long as the
round-off error is neglected).

There are two strategies to reduce the error of Lagrange interpolation:
(1) to decrease the interval of sample points h, (2) to increase the number of
sample points n. However, while decreasing h is always effective for reducing
the error, increasing n with fixed h will usually lead to a larger error if n

exceeds a certain limit. The resulting f̄(x), which quite often waves up and
down violently, becomes a function quite different from the original f(x). This
means that the Lagrange interpolation is not suitable for representing a function
globally in a single form.

There is another method in which the Lagrange interpolation is used locally
in such a way that one uses a Lagrange interpolation formula based on n = 2�

(even) points only on the central interval, and every time one moves to the
adjacent interval one switches the formula by shifting simultaneously all the
sample points to be used. Although this method works well as long as n is not
very large, one unavoidably encounters a discontinuity, due to the switchover
of the local formulas, when x goes across sample points. While f̄(x) itself is of
course continuous there, its derivative f̄ ′(x) is discontinuous. Although the so
called spline interpolation is known in which such a discontinuity of f̄ ′(x) does
not appear, one encounters another discontinuity at higher order derivatives
and hence it also seems to be a cheap trick.

There is a global interpolation formula in which such a discontinuity does
not appear. It is a formula of convolution type, i.e.,
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(2) f̄(x) =
∑

n

φ(x − nh)f(nh),

where φ(x) satisfies

(3) φ(0) = 1, φ(nh) = 0 (n = integer �= 0).

If φ(x) is analytic on the real axis, then f̄(x) is analytic there, and if φ(x)
is n-times differentiable then f̄(x) is also n-times differentiable. In addition,
the Lagrange interpolation formula in which the base interpolation formulas
are joined as explained above can be expressed in the form of (2). In that
case φ(x) is not a single function but a mixed function in which a number of
polynomials are joined at the points of integer multiples of h (Fig. 1). We call

Figure 1.

the function φ(x), including such a mixed function as above, an interpolator.
A typical analytic interpolator is given by

(4) φ(x) =
h

πx
sin

πx

h
.

This gives Shannon’s interpolation formula which plays a fundamental role in
information theory. This is nothing but a limit of the Lagrange interpolation
formula as n → ∞ and, in addition, it has a significant characteristic that
it is a self-consistent interpolation. An interpolation is called self-consistent,
if the following condition is satisfied: If the function which results from this
interpolation is again interpolated based on a set of new sample points of the
same distances as before, it reproduces the same function, i.e.,
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(5) f̄(x) =
∑

φ(x − nh + δ)f̄(nh − δ)

for any δ.
Unfortunately, however, Shannon’s interpolation formula cannot be used

for an algorithm of numerical computation in practical applications because
the convergence of the series is extremely slow. Thus our problem comes down
to somehow finding, even if we give up self-consistency or some other good
features, an interpolation formula of convolution type which is free from dis-
continuity from the viewpoint of practical purposes and at the same time con-
verges rapidly. In this search, Cauchy’s integral theorem is helpful in the error
estimation.

§2.1. A new interpolation formula

First we note that both the value and the error of the interpolation formula
expressed in terms of the interpolator defined as (4) are given in the form of a
complex integral

(6)
sin(πx/h)

2πi

∫
C

f(z)dz

(z − x) sin(πz/h)
,

where the singular points of the integrand include, in addition to the singularity
of f(z), simple poles z = x and z = nh (n = 0,±1,±2, . . .). We see that if the
path C of integration surrounds x in the positive direction the complex integral
above coincides with f(x) itself, while if C surrounds all the poles z = nh in
the positive direction it coincides −f̄(x). Consequently the integral whose path
surrounds all of these poles gives the error

∆(x) = f(x) − f̄(x).

If f(z) does not have a singularity and behaves as

(7) f(z) = o
(
e

π
h | Im z|

)

as z moves away from the real axis, then the integral (6) tends to 0 as the path
of integration moves sufficiently away from the real axis, and hence the error
is zero: ∆(x) = 0. The condition (7) is, in fact, equivalent to the condition
known in the field of communication theory that f(x) is band-limited. This
may be thought of as a condition on the smoothness of f(x).

Now in order to accelerate the convergence of the interpolation formula we
consider

(8) φ(x) =
sin(πx/h)

πx/h
ψ(x)
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which is a modification of (4). Here ψ(x) is an analytic function which satisfies
ψ(0) = 1 and must approach 0 quickly as |x| becomes large, because it is
introduced in order to accelerate the convergence. It turns out that the error
of the present interpolation is expressed as

(9) ∆(x) =
sin(πx/h)

2πi

∫
C

ψ(x − z)f(z)dz

(z − x) sin(πz/h)
.

Example 1.
ψ(x) = e−ax2/2h2

In this case ψ(x− z) increases very quickly if z moves parallel to the imaginary
axis and hence we cannot deform the path of integration (9) infinitely far away
from the real axis. However, since ψ(x − z)/ sin πz

h has saddle points at z =
x ± ihπ

a we can, provided that f(x) does not vary too rapidly, deform the
path of integration in such a way that it passes somewhere near these saddle
points, and the error ∆(x) turns out to be of the order of e−π2/2a|f(x− ihπ

a )|.
Therefore, if we choose a = 1/4, for example, we have e−π2/2a ≈ e−20 ≈ 10−8.7

and obtain a result with sufficient accuracy for single precision computation.
In this case, in order to take the terms of interpolation up to the term

satisfying e−a(x−nh)2/2h2 ≈ e−n2a/2 ≈ e−20, we have n = ±13. Of course
this holds under the assumption that f(z) is a slowly varying function and
does not increase so quickly as z moves parallel to the imaginary axis. If this
assumption does not hold, we need to choose a much smaller value for a and
then the number of terms becomes much larger.

Example 2.
ψ(x) = cosm(απx/h)

This ψ(x) is a periodic function of x and does not tend to 0 as x → ∞.
However, since it becomes very small in a neighborhood of the point satisfying
αx/h =half integer, we get an interpolation formula with a very small error if
we truncate the series at this point.

A characteristic of this ψ(x) is that the interpolation based on this function
is self-consistent if f(z) is a sufficiently mild function (band-limited to 1−k

2h ) with
0 < mα < k < 1.

§3. On the Power Series Expansion

We consider here another important method to represent a function in
terms of discrete parameters. It is a series expansion, in particular, the power
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series expansion. While the power series expansion has a remarkable merit
that for many important functions the series has simple and explicitly known
coefficients, it has a weak point in that the region of convergence is confined to
the inside of a circle in the complex plane and it does not converge outside the
circle even if the function itself varies there in a completely smooth manner.
A strategy to remedy this weak point is to prepare several power series and
to cover the required region with their circles of convergence. This method in
which new power series are successively generated by shifting the origin is noth-
ing but the so called analytic continuation. However, the analytic continuation
has been devised for the sake of theoretical treatment of complex functions,
and one usually encounters a difficulty if one tries to employ it as an actual
numerical algorithm. The difficulty is as follows. If one requires the new series
up to the nth term, one needs to compute by far larger number of terms than
n in the old series, and if one wants to employ such a procedure for several
steps the number of terms required in the earlier steps becomes tremendously
large and, in addition, one usually cannot know the number of necessary terms
in advance. Moreover, a serious loss of significant digits is also anticipated.

Now we propose here a new method which is a generalization of the idea
of the analytic continuation. We consider

(10) f(x) =
∑

anxn

and write x as a function in a more general form

(11) x = φ(u) =
∑

bnun.

If we apply the variable transformation (11) to (10) we have

(12) f(x) = f(φ(u)) = g(u) =
∑

cnun.

Although there is an algorithm by which {cn} is computed from {an} and {bn},
it gives rise to the same problem as is encountered in the shift of the origin in
analytic continuation. However, if we confine ourselves to the case where

(13) b0 = 0 i.e. φ(0) = 0,

which means that the series of φ(u) starts with the term u1, then cn can be
expressed in a finite form consisting only of a0, a1, . . ., an, b1, b2, . . ., bn. It
is equivalent to truncating each of the series (10) and (11) at the nth term, so
that we can easily write down the procedure as an operation on polynomials.

The region of convergence of the power series expansion of g(u) derived
in this way is also a disk in the u plane. If we map this disk into the x plane
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the image will become a region which is of course different from the circle of
convergence of the series of f(x) and, in many cases, it will be possible for
the new series to converge in a region in which the old series does not. By
a suitable choice of φ(u) we can make the series of g(u) converge in a very
large region of x. Although the region of convergence will assume a variety of
shapes, we see that in general f(x) should not have a singularity inside this
region. Consequently it is desirable to look for a mapping function φ(u) which
leads to a region of convergence whose shape is like an ameba that expands its
territory keeping itself away from the singularities.

Example.

φ1(u) =
2u

1 + u
, φ2(u) =

4u

(1 + u)2
, φ3(u) =

8u(1 + u2)
(1 + u)4

Each of these mapping functions arises from

(14) 1 − x =
(

1 − u

1 + u

)k

k = 1, 2, 4.

Every function satisfies φ(1) = 1, i.e., not only 0 but also 1 is fixed by the
transformations. In addition x = ∞ corresponds to u = −1.

Suppose that f(x) has singular points (or branch points) only at x = 1 and
∞. Then g(u) has singularities at 1 and −1 and hence the radius of convergence
is 1. Conversely, if we transfer back the situation to the x plane we see that,
with φ1 the series converges in the left half plane bounded by Rex = 1 which
is a line parallel to the imaginary axis; with φ2 it converges in the entire plane
cut along the half real axis from x = 1 up to +∞; and with φ3 it converges in
the doubly sheeted entire plane until we reach another cut from x = 1 to −∞
(in the negative direction) on the second sheet which we find by crossing the
above mentioned cut.

If we take k larger than four, a singularity appears inside the unit circle in
the u plane and hence the radius of convergence becomes less than 1, so that
the advantage of transformation will become smaller. There is a transformation
that is free from such a drawback. It corresponds to the Landen transformation
of an elliptic function. The optimal transformation obtained as a limit of such
a function is given by the elliptic modular function

(15) x = φ4(u) ≡ 16u(1 + u2 + u6 + u12 + · · · )4
(1 + 2u + 2u4 + 2u9 + · · · )4 .

The correspondence under this mapping is

φ(0) = 0, φ(1) = 1, φ(−1) = ∞, φ(−e−π) = −1, φ(e−π) = 1/2,
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and it maps the unit disk in the u-plane infinitely many times onto the x plane
except 1 and ∞.

§3.1. Variable transformation as analytic continuation

Variable transformations of this kind not only enlarge the region of con-
vergence but also accelerate slowly convergent series. Hence the scope of ap-
plications of such transformations is large in that it can be used as a method
of summation which enables us to evaluate a nonconvergent series or a method
of acceleration on series.

This variable transformation can also be regarded as a kind of analytic
continuation. By means of this method we can investigate the behavior of a
function defined in terms of a power series expansion, for example a function
defined as

ζ(x, s) =
∞∑

n=1

xn/ns,

on the Riemann surface far from the principal sheet. Although it is a restriction
that we cannot move the origin x = 0 because it always corresponds to u = 0,
we can freely choose φ(u) in other respects, and accordingly, in principle, we
can enlarge the region of convergence as largely as we like. In contrast to
the conventional analytic continuation it is a remarkable characteristic of the
present method that it can be carried out in a single step. Although it may
be divided into several steps, the same result can be obtained in a single step,
so that it is useless to divide it into more than one step as is required in the
conventional analytic continuation. However, it should be noted that even when
we employ this method the value of |u| will approach the radius of convergence
if we try to reach very far in the x plane, so that the convergence of the series
deteriorates in this case.
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Translators’ notes

• The original paper was read at the RIMS Workshop “Suuchi Kaiseki to Konpyûta” (Nu-
merical Analysis and Computer) held in October 31–November 2, 1974. The translation
plan was approved by Professor Takahasi’s survived family. Translators acknowledge
with gratitude the helpful comments by Professor Masaaki Sugihara and two anonymous
referees. However, only translators are to be blamed for any remaining mistranslations.

• The author, Professor Hidetosi Takahasi, was born on January 15th, 1915, and passed
away on June 30th, 1985. He was a renowned physicist, but he is also famous in the
applied mathematics community for the DE formulas and other inventions in numerical
analysis. He is considered to be one of the pioneers of Japanese computer science. A
purple ribbon medal was awarded on him in 1975 by the Japanese government. In 1980,
he was elected to a person of cultural merits — one of the highest honors in Japan.


