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Abstract

This paper presents fast and accurate algorithms for computing the prices of
discretely sampled lookback options. Under the Black-Scholes framework, the pricing
of a discrete lookback option can be reduced to a series of convolutions of a function
with the Gaussian distribution. Using this fact, an efficient algorithm, which computes
these convolutions by a combination of the double-exponential integration formula
and the fast Gauss transform, has been proposed recently. We extend this algorithm
to lookback options under Merton’s jump-diffusion model and American lookback
options. Numerical experiments show that our method is much faster and more
accurate than conventional methods for lookback options under Merton’s model. For
American lookback options, our method outperforms conventional methods when
required accuracy is relatively high.

§1. Introduction

A lookback option is the right to sell an asset at the end of a time period
at the highest price the asset took during the period (lookback put option),
or to buy an asset at the lowest price it took during the period (lookback call
option). It is one of the most popular exotic options and various types of
lookback options are traded in the market. Usually, the maximum or minimum
is taken over a finite set of time points within the period called monitoring
dates, and such options are called discrete lookback options.
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990 Yusaku Yamamoto

The price of a lookback option is given as the discounted expectation
value of the option payoff under the risk-neutral probability measure [9]. In
the case of discrete lookback options, it is difficult to find an explicit formula
for the expectation value and many numerical methods have been proposed
so far, including the Monte Carlo method, the binomial method [13][14][3]
[2] and Reiner’s convolution method [21]. The binomial method approxi-
mates the geometric Brownian motion of the underlying asset by a discrete
process on a lattice. Reiner’s convolution method, on the other hand, ex-
ploits the fact that the expectation value can be computed by a series of
convolutions of a function with the transition probability density function
(tpdf) of the asset price, and computes these convolutions with the fast Fourier
transform.

Recently, Broadie and Yamamoto [8] proposed a fast and accurate algo-
rithm for pricing discrete path-dependent options including the lookback op-
tion. Their method is also based on the representation of the expectation value
by a series of convolutions and computes these convolutions efficiently by a
combination of the double-exponential numerical integration formula [22] and
the fast Gauss transform [11][12][16]. Numerical experiments show that their
method is much faster and more accurate than conventional methods. How-
ever, their algorithm has been limited to the standard lookback options under
the Black-Scholes model.

In this paper, we generalize their algorithm in two ways. First, we extend
the algorithm to deal with lookback options under Merton’s lognormal jump-
diffusion model [19]. This model is important because it can capture the heavy
tails of the tpdf of the asset price, which are often observed in the market
but cannot be described by the Black-Scholes model. Second, we propose a
modified version of the algorithm that can price American lookback options,
a variant of the lookback option with an early exercise feature. We compare
our algorithms with the conventional pricing methods such as the Monte Carlo
method, the binomial method and Reiner’s convolution method and show the
effectiveness of our approach.

This paper is organized as follows. In section 2, we formulate the pricing
problem of lookback options and show how the pricing computation can be
reduced to a series of convolutions. Sections 3 and 4 provide the details of our
algorithms for the standard lookback options under Merton’s jump-diffusion
model and the American lookback options, respectively. Numerical results that
illustrate the performance of our algorithms are shown in section 5. Finally, we
give some concluding remarks in section 6.
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§2. Problem Formulation

In this section, we formulate the pricing problem of lookback put options
following [8]. The pricing of lookback call options can be done in a completely
parallel manner, so we concentrate on put options in the following. Let the
time period be [0, T ] and the monitoring dates be ti = i∆t (i = 0, 1, . . . , n),
where ∆t = T/n. Also, denote the asset price at ti by Si and let

(2.1) Mi = max
1≤k≤i

Sk.

Then the payoff of the lookback put option can be written as Mn − Sn and its
price at time 0 is given by

(2.2) V LP
0 (S0) = e−rT E0[Mn − Sn],

where r is the riskless interest rate and Et[·] is the conditional expectation value
operator under the risk-neutral probability measure Q given information up to
time t [9].

Eq. (2.2) involves two random variables Sn and Mn at time T , so we need
the joint distribution function of them to compute the expectation value. To
reduce the dimensionality of the problem, we apply a change of measure (see
Babbs [2] and Andreasen [1]) and rewrite eq. (2.2) as:

(2.3) V LP
0 (S0) = e−qT S0 E′

0

[
Mn

Sn
− 1

]
,

where q is the dividend rate and E′
t[·] denotes the conditional expectation op-

erator under a new measure Q′ defined by

(2.4) dQ′ =
Sn

Ste(r−q)(T−t)
dQ.

By further introducing the log stock prices si = ln(Si/S0) and mi = ln(Mi/S0),
we can finally write the option price as

(2.5) V LP
0 (S0) = e−qT S0 E′

0

[
emn−sn − 1

]
.

This shows that it is sufficient to find the distribution of mn − sn to compute
the option price.

To compute eq. (2.5), we consider the distribution of mi − si (i = 0, 1, . . . ,

n). Apparently, the distribution function is zero when mi − si < 0 and there is
a finite probability mass at mi−si = 0. We therefore represent the distribution
of mi−si by two quantities, namely, a scalar ci which represents the probability
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that mi − si = 0 and a function gi(x) (x > 0) which represents the probability
density in the region mi − si > 0. Note that the probability density function
(pdf) of mi − si can be formally written as ciδ(x) + gi(x), where δ(x) is the
Dirac delta function. At time 0, we have

c0 = 1 and(2.6)

g0(x) = 0(2.7)

by definition. To compute ci and gi(x) given ci−1 and gi−1(x), we use the
identity:

mi − si = max(0, mi−1 − si)(2.8)

= max(0, (mi−1 − si−1) + (si−1 − si)).

If the asset price follows a Levy process, as in the case of the Black-Scholes
model or Merton’s jump-diffusion model, the increment si−1−si is independent
of mi−1 − si−1 and eq. (2.8) suggests that the pdf of mi − si is obtained by
computing the convolution of the pdf of mi−1 − si−1 with that of si−1 − si and
collecting all the probability mass corresponding to mi − si < 0 to the point
mi − si = 0. In summary, we have the following recursion formula:

ḡi(x) =
∫ ∞

−∞
{ci−1δ(y) + gi−1(y)} f(x − y) dy(2.9)

= ci−1f(x) +
∫ ∞

0

gi−1(y)f(x − y) dy,

ci =
∫ 0

−∞
ḡi(x),(2.10)

gi(x) = ḡi(x) (x > 0),(2.11)

where f(x) is the probability density function of si−1 − si. Equations (2.6),
(2.7), (2.9), (2.10) and (2.11), along with eq. (2.5), provides us with a means
of computing the lookback option price by a series of convolutions.

§3. The DE-FGT Algorithm for Pricing Lookback Options
under Merton’s Jump-diffusion Model

The model. Now we consider the case where the asset price follows the
lognormal jump-diffusion model introduced by Merton [19]. Under the proba-
bility measure Q, the dynamics of Si is governed by the following equation:

(3.1) dSt/St− = (r − q − νλ)dt + σdWt + d


NP

0 (t)∑
l=1

(Jl − 1)


 ,
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where Wt is a Wiener process, NP
t (s) is the number of jumps between t and

t + s, which follows a Poisson process with intensity λ, {Jl} is a sequence of
i.i.d. random variables whose distribution is given by

(3.2) ln(1 + Jl) ∼ N(γ − 1
2
δ2, δ2),

(3.3) ν = eγ − 1, and

(3.4) St− = lim
s→t−0

Ss.

The constants γ and δ determine the mean and the standard deviation of the
jumps, respectively. The processes Wt, NP

t (s) and {Jl} are assumed to be
mutually independent. This model is important because it introduces discon-
tinuous changes in the asset price and thereby reproduces the heavy tails of the
transition probability function, a characteristic which is often observed in the
market but cannot be described by the Black-Scholes model.

In this model, the market becomes incomplete because of the existence of
jumps and the standard option pricing argument based on the replicating port-
folio [4] is no longer applicable. However, under the assumption that the jump
risk is diversifiable, Merton [19] shows that the price can again be written as the
discounted expectation value of the option payoff. Thus, the incompleteness of
the market causes little problem from the computational point of view.

Computing the lookback option price by the recursion formula.
To compute the lookback option price using the recursion formula (2.9), (2.10)
and (2.11), we need to know the pdf of si−1 − si under the new probability
measure Q′ defined by eq. (2.4). Andreasen [1] shows that under Q′, the asset
price St follows a new equation:

(3.5) dSt/St− = (r − q − νλ + σ2)dt + σdW ′
t + d


N ′P

0 (t)∑
l=1

(J ′
l − 1)


 ,

where W ′
t is a Wiener process under Q′, {J ′

l} is a sequence of i.i.d. random
variables whose distribution is given by

(3.6) ln(1 + J ′
l ) ∼ N(γ +

1
2
δ2, δ2),

and N ′P
t (s) is a Poisson process under Q′ with modified intensity

(3.7) λ′ = λ(1 + ν) = λeγ .
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Andreasen’s proof is based on Girsanov’s theorem [15][20] for jump-diffusion
processes. Alternatively, we can show by elementary arguments that an expec-
tation value of the form:

(3.8) V0(S0) = e−rT E0[h(S0, S1, . . . , Sn) Sn]

can be computed as

(3.9) V0(S0) = e−qT S0 E′
0[h(S0, S1, . . . , Sn)],

where E′
0[·] denotes the expectation value obtained by assuming that St follows

a modified process specified by eqs. (3.5), (3.6) and (3.7). See the appendix for
the proof. Because Mn is a function of {S0, S1, . . . , Sn}, we can readily apply
this fact to obtain eq. (2.3) from eq. (2.2).

By integrating eq. (3.5), we have

(3.10)

Si = Si−1 exp




(
r − q +

1
2
σ2 − νλ

)
∆t + σ

√
∆tz′0 +

N ′P
t (∆t)∑
l=1

(
δz′l + γ +

1
2
δ2

)
 ,

where zl (l = 0, 1, . . .) are independent random variables that follow the stan-
dard normal distribution N(0, 1) under Q′. Thus we know that the pdf of
si−1 − si has the following form:

f(x) =
∞∑

l=0

e−λ′∆t (λ′∆t)l

l!
f (l)(x),(3.11)

where

f (l)(x) =
1√

2π σl

exp

{
− (x + µ′

l)
2

2σ2
l

}
,(3.12)

µ′
l =

(
r − q +

1
2
σ2 − νλ

)
∆t + l

(
γ +

1
2
δ2

)
, and(3.13)

σ2
l = σ2∆t + lδ2.(3.14)

By truncating the infinite sum in eq. (3.11) at some lmax and inserting the
result into eq. (2.9), we can express the integral in the recursive formula (2.9)
as a sum of convolutions of gi−1(x) with Gaussian functions:

Ii(x)≡
∫ ∞

0

gi−1(y)f(x − y) dy(3.15)

�
lmax∑
l=0

e−λ′∆t (λ′∆t)l

l!

∫ ∞

0

gi−1(y)f (l)(x − y) dy.
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Application of the DE-FGT algorithm. Now that the convolution
in eq. (2.9) have been decomposed into convolutions of a function with Gaus-
sian distribution, we can apply the Double-Exponential Fast Gauss Transform
algorithm proposed in [8]. In particular, we introduce a double-exponential
type change of variables:

(3.16) y = ln
{

1 + exp
(π

2
(1 + u − e−u)

)}
and apply it to each term of eq. (3.15), obtaining

I
(l)
i (x) =

∫ ∞

0

gi−1(y)(l)f(x − y) dy(3.17)

=
∫ ∞

−∞
gi−1

(
ln

{
1 + exp

(π

2
(1 + u − e−u)

)})
× f (l)

(
x − ln

{
1 + exp

(π

2
(1 + u − e−u)

)})

×
exp

(
π
2 (1 + u − e−u)

)
π
2 (1 + e−u)

1 + exp
(

π
2 (1 + u − e−u)

) du.

Discretizing the integral (3.17) with the trapezoidal rule with step size h and
truncating the infinite sum at N− and N+ gives

(3.18) I
(l)
i (aj) �

N+∑
k=N−

gi−1(ak)f (l)(aj − ak) wk (j = N−, . . . , N+),

where

ak = ln
{
1 + exp

(π

2
(1 + kh − e−kh)

)}
and(3.19)

wk = h
exp

(
π
2 (1 + kh − e−kh)

)
π
2 (1 + e−kh)

1 + exp
(

π
2 (1 + kh − e−kh)

) .(3.20)

Here we chose to evaluate the integral at {aj}N+

j=N− because eq. (2.9) is used

recursively and gi(x) computed from I
(l)
i (x) is used as the integrand in the next

iteration.
Eq. (3.18) has the form of discrete convolution of a sequence {gi−1(ak)}

with the Gaussian distribution. The direct evaluation of this convolution would
require O(N2) work, where N ≡ N+ −N− + 1 is the number of sample points
at each time step. However, we can reduce the work to O(N) by using the fast
Gauss transform [11][12][16], which expands the Gaussian kernel in eq. (3.18)
with the Hermite functions [11] or with the Fourier series [12][16] and computes
the convolution efficiently by allowing a predetermined error level. Thus we
have established the DE-FGT algorithm for lookback options under Merton’s
model.
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Computational work. Since the computation of eq. (2.9) requires
lmax + 1 fast Gauss transforms and the recursion occurs n times, the total
work for computing the price of a lookback option is O(nNlmax) (excluding
the small amount of work needed to compute eqs. (2.10) and (2.5)). However,
Greengard and Strain [11] suggest an extension of the fast Gauss transform
which can compute the convolution of a function with sum of multiple Gaus-
sians (or Hermite functions) in only O(N) work. Using this technique, the
total computational work can be reduced to O(nN). This is smaller than the
O(nN log N) work needed by Reiner’s method [21], which has been known as
the fastest method so far. In addition, when N increases, the error of the
double exponential formula is expected to decrease faster than the error of the
Simpson’s rule used in Reiner’s method. Thus we can expect that our method
has an advantage over Reiner’s method.

A note on the form of the change of variables. It would be ap-
propriate here to make some comments on the form of the change of variables
defined by eq. (3.16). As can be easily seen, eq. (3.16) approaches the double-
exponential transform y = exp(π

2 exp(−u)) when u → −∞ and the linear
transform y = π

2 u when u → ∞. We chose this form because the integrand
decays like Gaussian when y → ∞. In fact, this choice has proved effective in
the pricing of various types of path-dependent options including the knock-out
options, hindsight options and Bermudan options [8]. However, other types of
double-exponential transforms are also applicable and it would be interesting
to compare the performance of different transforms.

§4. The DE-FGT Algorithm for Pricing American
Lookback Options

Pricing by dynamic programming. In this section, we consider the
pricing of American lookback options, for which exercise prior to the maturity
T is permitted. More precisely, we treat a variant for which early exercise
is possible only at discrete time points in [0, T ] called exercise dates (This
type of options are sometimes referred to as Bermudan lookback options). For
simplicity, the exercise dates are assumed to coincide with the monitoring dates,
though it is easy to remove this restriction. As the asset price dynamics, we
assume the Black-Scholes model or Merton’s jump-diffusion model.

It is well known that the rational price of an American lookback option is
given by the following expression:

(4.1) V LP
0 (S0) = sup

ι
E0[e−rtι(Mι − Sι)],
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where ι denotes Markov stopping time [9]. That is, we consider expectation
values of the option payoff under all possible stopping times (i.e. exercise
strategies) and take the supremum. To find this supremum, we can use dy-
namic programming and compute the option value backward in time using the
recursion [9]:

(4.2) V LP
i (Si, Mi) = max(Mi − Si, e−r∆tEi[V LP

i+1 ]).

Here, V LP
i is the option value at time ti and is a function of Mi and Si in

general and Ei[·] is the expectation value operator given information up to ti.
Mi − Si is the profit obtained from exercising the right immediately at time ti
(the exercise value), while e−∆tEi[V LP

i+1 ] is the discounted expectation value of
the option value at the next exercise date (the continuation value). Eq. (4.2)
states that it is optimal to exercise the option at time ti if the exercise value
is greater than the continuation value, and to hold the option otherwise. The
initial condition for the recursion (4.2) is given by

(4.3) V LP
n (Sn, Mn) = Mn − Sn.

Reduction to a 1-dimensional problem. The main computational
task in the pricing of American lookback option is the evaluation of the ex-
pectation value in eq. (4.2), which involves two random variables Si+1 and
Mi+1. To reduce the dimensionality of the problem, we introduce a new vari-
able V ′LP

i = V LP
i /Si and rewrite the backward recursion formula as follows:

(4.4) V ′LP
i (Si, Mi) = max(Mi/Si − 1, e−r∆tEi[V LP

i+1 ]/Si).

By introducing a new measure Q′ defined by

(4.5) dQ′ =
Si+1

Ste(r−q)(ti+1−t)
dQ,

we have

(4.6) e−r∆tEi[V LP
i+1 ] = Sie

−q∆tE′
i[V

LP
i+1/Si+1],

where E′
i[·] is the expectation value operator under Q′. Inserting this into

eq. (4.4) gives

(4.7) V ′LP
i (Si, Mi) = max(Mi/Si − 1, e−q∆tE′

i[V
′LP
i+1 ]).

Furthermore, it can be shown by induction that V ′LP
i (Si, Mi) is a function of

Mi/Si = emi−si only. Denoting this function by Ṽ LP
i , we finally obtain

(4.8) Ṽ LP
i (emi−si) = max(emi−si − 1, e−q∆tE′

i[Ṽ
LP
i+1 ]).



�

�

�

�

�

�

�

�

998 Yusaku Yamamoto

Thus we have reached a 1-dimensional problem, for which the only variable is
mi − si.

Computation of the expectation value. To compute the expectation
value E′

i[Ṽ
LP
i+1 ], we need to know the transition probability density function

p(mi+1 − si+1|mi − si). Since

(4.9) mi+1 − si+1 = max(0, (mi − si)) + (si − si+1))

(See eq. (2.8)), we know that mi+1 − si+1 is obtained by adding a random
variable si − si+1 to mi − si and resetting the result to zero if it is negative.
Hence

(4.10) p(x|y) = f(x − y)h(x) + δ(x)
∫ 0

−∞
f(x − y) dx,

where f(x) is the probability density function of si − si+1 (as defined in sec-
tion 2) and h(x) is the Heaviside step function which is 1 when x ≥ 0 and 0
otherwise. Thus the expectation value when mi − si = y can be computed as

E′
i[Ṽ

LP
i+1 ] =

∫ ∞

−∞
p(x|y)Ṽ LP

i+1 (ex) dx(4.11)

=
∫ 0

−∞
f(x − y) dx · Ṽ LP

i+1 (e0) +
∫ ∞

0

f(x − y)Ṽ LP
i+1 (ex) dx.

Eqs. (4.8) and (4.11), along with the initial condition

(4.12) Ṽ LP
n (emn−sn) = emn−sn − 1,

which follows from eq. (4.3) enable us to compute the option price at time 0
using backward recursion.

Application of the DE-FGT algorithm. Now that we have expressed
the option price by a series of convolutions of a function with (a sum of) Gaus-
sian distribution, we can apply our DE-FGT algorithm. However, notice that
the function Ṽ

(LP )
i+1 , which appears as the integrand in eq. (4.11), is defined us-

ing the max operator (see eq. (4.8)) and therefore has discontinuity in its first
and higher order derivatives. So straightforward application of the DE formula
to eq. (4.11) would not result in the fast convergence rate characteristic of the
formula.

To solve this problem, at each time step, we first use the bisection method
to find the value b of mi − si at which the exercise value and the continuation
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value are equal, divide the integration interval in the second term of eq. (4.11)
into two subintervals [0, b] and [b,∞), and apply the DE formula to each of
the subinterval. Thus the integrand is smooth in each subinterval and the
integration error is expected to decrease rapidly with the number of sample
points. Note that this technique cannot be used with Reiner’s method, because
it uses a fixed step size h for all time steps (a restriction imposed by the
use of FFT), but the length of the subinterval [0, b] is not a multiple of h in
general.

The computational work of the DE-FGT algorithm for American lookback
options is O(nN) when the number of exercise dates is n and the number of
sample points at each date is N .

§5. Numerical Results

We implemented our DE-FGT algorithms for lookback options and com-
pared its speed and accuracy with that of the conventional methods such as the
Monte Carlo method, the binomial method and Reiner’s convolution method
[21]. All the numerical experiments were done on a 2.0GHz Pentium IV PC
with Red-Hat Linux and GNU C++ compiler.

§5.1. Lookback options under Merton’s model

We show the results for discrete lookback put options under Merton’s
model in Figures 1 and 2. The parameters are S0 = 100, r = 0.1, q = 0,
σ = 0.3, λ = 2.0, δ = 0.3, γ = 0, and T = 0.2. The number of monitoring
dates, n, is 25 for Figure 1 and 50 for Figure 2. These frequencies correspond to
bi-daily monitoring and daily monitoring, respectively. As the reference prices
against which to compute the errors, we used V LP

0 = 12.09911864 for n = 25
and V LP

0 = 12.57499666 for n = 50, both of which were computed by Reiner’s
method with 256, 000 sample points. We expect these values to be correct to at
least ten digits after the decimal point because Reiner’s method is a convergent
method and the results for 64, 000, 128, 000 and 256, 000 sample points agreed
within the error of 10−10.

In the figures, the vertical axis and the horizontal axis represent the
error in the calculated option price and the computation time, respectively,
both in log scale. In the computation of eq. (3.17), we truncated the inte-
gral at the lower bound umin = −4.0 and the upper bound umax = 20σ

√
T

and used N sample points to approximate the integral. The values of N are
shown in the graph. lmax in eq. (3.15) was set to 20. For the fast Gauss
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Figure 1. Computation time and accuracy of the three algorithms for pricing
discrete lookback options under Merton’s model (25 monitoring dates).
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Figure 2. Computation time and accuracy of the three algorithms for pricing
discrete lookback options under Merton’s model (50 monitoring dates).
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transform, we used Greengard and Strain’s algorithm [11]. This algorithm
was also used for the American lookback options to be described in the next
subsection. For comparison, we also plotted the computation time and ac-
curacy for the Monte Carlo method and Reiner’s method. The number of
sample paths for the Monte Carlo method and the number of sample points
for Reiner’s method are also shown in the graphs. We did not try the bino-
mial method because it takes into account only transitions to adjacent lattice
points and is therefore not appropriate for pricing options under jump-diffusion
models.

It is clear from the graphs that our DE-FGT algorithm converges much
faster than the conventional Monte Carlo method or Reiner’s convolution
method and can compute the option prices within 1.0 second to an accuracy of
10−9.

§5.2. American lookback options

Results for the American lookback options under the Black-Scholes model
are shown in Figures 3 and 4. The parameters are S0 = 100, r = 0.1, q = 0,
σ = 0.3 and T = 0.2. The number of exercise dates, n, is 5 for Figure 3 and 10
for Figure 4. The reference prices computed by Reiner’s method with 409,600
sample points are V LP

0 = 7.05538954 for n = 5 and V LP
0 = 7.92740313 for

n = 10. These values are expected to be correct to at least nine digits after
the decimal point because the results for 102, 400, 204, 800 and 409, 600 sample
points agreed within the error of 10−9.

In this case, we compared three methods, namely, our DE-FGT method,
the binomial method [13] and Reiner’s convolution method. We didn’t try
the Monte Carlo method because, as is well known, the standard MC method
cannot deal with early exercise features. Although several attempts have been
made to overcome this difficulty [5][6][17], these methods are basically for op-
tions depending on multiple assets and are inherently slower than the binomial
method for options on a single asset. In the graphs, the number of sample
points for the DE-FGT method and Reiner’s method and the number of time
steps for the binomial method are shown.

The results show that Reiner’s method is the fastest when required accu-
racy is relatively low. Still, our method is competitive when higher accuracy
is needed. Also, the convergence of Reiner’s method is rather irregular. This
seems to be because of the discontinuity in the first derivative of the integrand
function, which we mentioned at the end of the previous section. In contrast,
our method exhibits much smoother convergence behavior.
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Figure 3. Computation time and accuracy of the three algorithms for pricing
American lookback options under the BS model (5 exercise dates).
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Figure 4. Computation time and accuracy of the three algorithms for pricing
American lookback options under the BS model (10 exercise dates).



�

�

�

�

�

�

�

�

DE-FGT Algorithms for Lookback Options 1003

§6. Conclusion

In this paper, we proposed new pricing algorithms based on the double-
exponential integration formula and the fast Gauss transform for lookback op-
tions under Merton’s jump-diffusion model and American lookback options. For
lookback options under Merton’s model, our method outperforms conventional
methods such as Reiner’s convolution method and can compute the option price
within 1 second up to an accuracy of 10−9. For American lookback options,
Reiner’s method is the fastest when required accuracy is relatively low. But
our method is competitive when higher accuracy is required. In addition, the
convergence of our method is much smoother.

Future work includes extension of our algorithms to more general jump-
diffusion asset price models such as the variance gamma models and stochastic
volatility models with jumps [10], and extension to other types of exotic options
such as options on two or more assets and various types of path-dependent
options.
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Appendix

Theorem 6.1. Suppose that St follows the stochastic differential equa-
tion (3.1) and we want to compute the expectation value

(6.1) V0(S0) = e−rT E0[h(S0, S1, . . . , Sn) Sn].

V0 can be computed as

(6.2) V0(S0) = e−qT S0 E′
0[h(S0, S1, . . . , Sn)],

where E′
0[·] is the expectation value obtained by assuming that St follows a

modified process specified by eqs. (3.5), (3.6) and (3.7).



�

�

�

�

�

�

�

�

1004 Yusaku Yamamoto

Proof. By integrating eq. (3.1) from ti to ti+1, we obtain the relationship
between Si and Si+1 as follows:

(6.3)

Si = Si−1 exp




(
r − q − 1

2
σ2 − νλ

)
∆t + σ

√
∆tz0 +

NP
t (∆t)∑
l=1

(
δzl + γ − 1

2
δ2

)
 ,

where zl (l = 0, 1, . . .) are independent random variables that follow the stan-
dard normal distribution N(0, 1) under Q. Let

(6.4) xi ≡ ln
(

Si

Si−1

)
(i = 1, 2, . . . , n).

Then xi’s are mutually independent and follow the same distribution whose
pdf is:

p(xi) =
∞∑

l=0

e−λ∆t (λ∆t)l

l!
p(l)(xi),(6.5)

where

p(l)(xi) =
1√

2π σl

exp

{
− (xi − µl)

2

2σ2
l

}
,(6.6)

µl =
(

r − q − 1
2
σ2 − νλ

)
∆t + l

(
γ − 1

2
δ2

)
, and(6.7)

σ2
l = σ2∆t + lδ2.(6.8)

Using xi, eq. (6.1) can be rewritten as

(6.9)

V0(S0) = e−rT

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxn h(S0, S0e

x1 , . . . , S0e
x1+···+xn) S0e

x1+···+xn

× p(x1) · · · p(xn)

= e−rT S0

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxn h(S0, S0e

x1 , . . . , S0e
x1+···+xn)

× p(x1)ex1 · · · p(xn)exn .
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From eq. (6.5) through eq. (6.8) we have

(6.10)

p(xi) exi

=
∞∑

l=0

e−λ∆t (λ∆t)l

l!
1√

2π σl

exp

{
− (xi − µl)

2

2σ2
l

}
exi

=
∞∑

l=0

e−λ∆t (λ∆t)l

l!
1√

2π σl

exp

{
−

(
xi − (µl + σ2

l )
)2

2σ2
l

}
exp

{
µl +

1
2
σ2

l

}

=
∞∑

l=0

e−λ∆t (λ∆t)l

l!
1√

2π σl

exp

{
−

(
xi − (µl + σ2

l )
)2

2σ2
l

}

× exp{(r − q)∆t + lγ − νλ∆t}

= e(r−q)∆t
∞∑

l=0

e−λ(1+ν)∆t (λ(1 + ν)∆t)l

l!
1√

2π σl

exp

{
−

(
xi − (µl + σ2

l )
)2

2σ2
l

}

= e(r−q)∆t
∞∑

l=0

e−λ′∆t (λ′∆t)l

l!
1√

2π σl

exp

{
− (xi − µ′

l)
2

2σ2
l

}
,

where we used eqs. (3.3), (3.7) and (3.13). If we define a new function

(6.11) p̃(xi) =
∞∑

l=0

e−λ′∆t (λ′∆t)l

l!
1√

2π σl

exp

{
− (xi − µ′

l)
2

2σ2
l

}

we can rewrite eq. (6.9) as

(6.12)

V0(S0) = e−qT S0

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxn h(S0, S0e

x1 , . . . , S0e
x1+···+xn)

× p̃(x1) · · · p̃(xn)

Noting that p̃(xi) is the probability distribution function of xi under the as-
sumption that St follows a modified process specified by eqs. (3.5), (3.6) and
(3.7), we can write the right hand side of eq. (6.12) as

(6.13) e−qT S0 E′
0[h(S0, S1, . . . , Sn)].

This completes the proof.
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