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Abstract

We give a method of reduction of order for systems of ordinary differential equa-
tions having a certain structure. Our method is based on establishing a Bäcklund
transformation between an integrated modified system and an integrated version of
the system under consideration. The originality of our approach lies in the application
of ideas more familiar within the context of completely integrable partial differential
equations to the question of reduction of order of ordinary differential equations,
whether these last be integrable or not.

§1. Introduction

Given a system of ordinary differential equations (ODEs), it may not
always be “integrable” in any of the well-defined meanings of that word. Thus,
for example, it may not have a sufficient number of first integrals — with “suf-
ficient” and type of integral to be specified — or it may not have an underlying
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∗∗∗Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1, 37008
Salamanca, Spain.
e-mail: prada@usal.es

c© 2006 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



�

�

�

�

�

�

�

�

10 Pilar Ruiz Gordoa, Andrew Pickering and Julia Prada

linear problem (this last referring to the definition of “integrability” adopted
in the present paper). In such a case, perhaps the best that can be hoped for
is at least to be able to reduce the order of the system. This then becomes a
question of using properties of the structure of the system. For example, as
is well known, we can always reduce by one the order of any autonomous sys-
tem. The aim of the present paper is to show that for systems having a certain
structure, a reduction of order, sometimes quite drastic, is always possible, and
this whether the system is integrable or not.

In fact, this paper arises from recent work on integrable ODEs [1, 2, 3, 4],
these being derived as higher order analogues of the famous six Painlevé equa-
tions [5, 6, 7, 8]. In this work we made use of the connection between non-
isospectral scattering problems and linear problems for ODEs [9], and thus
naturally were led to ODEs having a very similar structure to the partial dif-
ferential equations (PDEs) to which they are related. This approach to ob-
taining higher order Painlevé equations is more general than that of simply
taking similarity reductions of the higher order flows of a hierarchy, see e.g.
[10], and provides an alternative to classical Painlevé classification, e.g. as un-
dertaken in [11, 12, 13, 14, 15]. However, having obtained an ODE together
with its underlying linear problem, there then remains the question of whether
that ODE is of the minimum order possible. Does it admit first integrals? As
a simple example, let us consider the similarity reduction of the Korteweg-de
Vries (KdV) equation [10, 16],

(1) vt + (vzz + 3v2)z = 0;

setting

(2) v(z, t) =
u(x)
(3t)

2
3
, x =

z

(3t)
1
3
,

yields

(3) (uxx + 3u2)x − xux − 2u = 0,

which integrates once [16] to give, with constant of integration C,

(4) (2u − x)uxx + (2u − x)2u − (ux)2 + ux = C.

Thus, whilst it is of course correct that the ODEs (3) and (4) define the same
function, this function is better described as being defined by a second order
equation. In particular, given that (4) is related to the second Painlevé equation
(PII),

(5) Uxx = 2U3 + xU + α,
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by a Bäcklund transformation (BT) [8, 10, 16],

(6) u = Ux − U2, U = −ux − α

2u − x
, C = α(1 − α),

this function is transcendental, but we would not refer to it as being a tran-
scendental function obtained at third order. For this reason it is important to
know if any reduction of order of an ODE believed to define a new transcen-
dental function is possible. This is true independently of which of the methods
in [1]–[15] are used to obtain the ODE. We show in fact that the integration
of the ODE (3), properly understood, is a consequence of the BT (6) between
equations (4) and (5).

The integration process presented here was discussed in [17] within the
context of a particular example, namely, a fourth Painlevé hierarchy derived
in [4] as an integrable hierarchy of ODEs related to the dispersive water wave
hierarchy of [18]–[25]. In particular, it allowed a reduction of order by two for
each member of this hierarchy of ODEs. Here we give a general formulation of
this approach. Further, once phrased generally, we observe that our method is
in fact applicable to a wide class of ODEs, both integrable and non-integrable.
Since our approach is based on the factorization of Hamiltonian operators for
PDEs under Miura maps [26], the technique presented here then represents a
curious juxtaposition of ideas, in the sense that it represents the application of
properties characteristic of integrable PDEs to the question of the reduction of
order of integrable and non-integrable ODEs.

§2. Reduction of Order: a Simple Example

Let us begin by explaining our approach within the context of equation
(3). This equation can be written

(7) B[u](u − x/2) = 0,

where

(8) B[u] = ∂3
x + 4u∂x + 2ux

is one of the Hamiltonian operators of the KdV hierarchy [27] (∂x = ∂/∂x =
d/dx for an ODE). As is well known, this operator factorizes under the Miura
map

(9) u = F [U ] = Ux − U2
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to give

(10) B[u] |u=F [U ] = F ′[U ]B̃(F ′[U ])†,

where B̃ = −∂x is the Hamiltonian operator of the modified KdV (mKdV)
hierarchy, F ′[U ] is the Fréchet derivative of F [U ], and (F ′[U ])† is the adjoint
of this last. It is the factorization (10) that forms the basis of the definition of
a Miura map [26].

Considering this modification process, but now in the ODE case, then
yields

(11) B̃(F ′[U ])†(Ux − U2 − x/2) = 0

as a modified version of equation (7). That is, equation (11) has the same rela-
tion to equation (7) as the mKdV equation has to the KdV equation. Equation
(11) is

(12) ∂x(∂x + 2U)(Ux − U2 − x/2) = 0,

which then gives immediately the integrated modified version of equation (7)
as

(13) (∂x + 2U)(Ux − U2 − x/2) = α − 1/2 or Uxx = 2U3 + xU + α,

where α is an arbitrary constant. Thus we see that we have effected a reduction
of order, but for our modified equation. The question is then how to relate this
integrated modified equation, which is in fact PII (5), to our original equation
(7).

The answer to this question lies in constructing a BT between our inte-
grated modified equation and an integrated version of (7). In (13) we replace
Ux − U2 by u to obtain, along with (9), the BT

U(2u − x) + (ux − α) = 0,(14)

u − Ux + U2 = 0.(15)

Solving (15) for u and substituting into (14) yields (13). On the other hand,
solving (14) for U and substituting in (15) yields

(16) (2u − x)uxx + (2u − x)2u − (ux)2 + ux = α(1 − α),

and thus we recover the BT (14), (15) between PII and (16). This BT is
precisely that given in the Introduction, with (16) being the integrated version
of (7).
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Thus we see that a first integral of equation (7) can be obtained by first
passing to a modified equation, integrating that modified equation, and then
returning to our original variables through the construction of a BT, this BT
providing a mapping between the integrated modified equation and the inte-
grated version of the original equation (7). Here the advantage is that the
modified equation is much easier to integrate than the original equation. We
note that although the integrated version of (7) is well known, as is the BT
between this and PII , the integration procedure explained here, i.e. via modifi-
cation, has not been given before. It is this integration procedure that interests
us here.

§3. Reduction of Order via Modification

We work as usual in the algebra of differential functions, i.e. of smooth
functions of x, the variables ui(x), i = 0, . . . , N−1, and their derivatives ui,jx =
∂j

xui(x) up to some finite but unspecified order n. We consider differential
operators with coefficients matrices with entries in this algebra, which act on
N -vectors, again with entries in this algebra. These we denote as B[u] and L[u],
respectively; we will also use the notation u = (u0, u1, . . . , uN−1)T . Further,
we have defined as usual the notions of Hamiltonian operator and Miura map.
For details we refer to [27, 26, 28]. We recall that in our ODE case ∂x is the
total derivative operator d/dx.

We now formulate the ideas in the previous section as the following:

Theorem. Consider equations of the form B[u]L[u] = 0, where B is a
Hamiltonian operator. Let u = F[U], where U = (U0, . . . , UN−1)T , be a Miura
transformation such that:

(i) B[u] |u=F[U] = F′[U]B̃(F′[U])†, where F′[U] is the Fréchet derivative of
F[U], (F′[U)† its adjoint and B̃ = A∂x for some non-singular constant matrix
A;

(ii) (F′[U])†L[u]+γ = 0, with γ = (γ0, . . . , γN−1)T constant, is a linear system
in the modified variables U0, . . . , UN−1, for which it has the unique solution
U = G[u, γ].

Then the pair of relations

(F′[U])†L[u] + γ = 0,(17)

u = F[U],(18)
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defines a Bäcklund transformation between the two systems

(F′[U])†L[F[U]] + γ = 0,(19)

u − F[G[u, γ]] = 0.(20)

Moreover the second of these, u − F[G[u, γ]] = 0, represents an integrated
version of the original system B[u]L[u] = 0.

Proof. Comparing the orders of B[u]L[u] = 0 and (20), which has N

integration constants, we see that we only need to show that if (20) holds, then
so does the equation B[u]L[u] = 0:

B[u]L[u] = B[F[G[u, γ]]]L[u] by virtue of (20)(21)

= F′[G[u, γ]]B̃(F′[G[u, γ]])†L[u] using (i)

= F′[G[u, γ]]B̃(−γ) using (ii)

= 0 since B̃ = A∂x.

We see that the above Theorem retains the structure of the example
discussed in Section 2, i.e. we consider passing to a modified equation
B̃(F′[U])†L[F[U] = 0 which, since B̃ = A∂x, is easy to integrate; this inte-
grated modified equation is then related to our original equation by means of
a BT. We now make two remarks:

Remark One. It may sometimes be necessary to make a change of variables
in order to put the system under consideration in the form B[u]L[u] = 0; see
Example 4.1.

Remark Two. That the above Theorem is also applicable to non-integrable
equations is a result of the observation that we have not made any requirements
on the form of L[u]. It is thus indeed the case that we are using transformation
properties of Hamiltonian operators under Miura maps — characteristic of
integrable PDEs — in order to effect a reduction of order of systems of ODEs,
integrable or not.

§4. Examples

§4.1. A seventh order scalar example

We consider as our first example the seventh order ODE

[u6x + 14uu4x + 28uxuxxx + 21(uxx)2 + 70u2uxx + 70u(ux)2 + 35u4]x(22)

+g(4u + 2xux) + 4h = 0,
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where g and h are arbitrary constants. This is a particular member of the ODE
hierarchy Rnux + gn−1(4u+2xux)+ gn = 0, where R is the recursion operator
of the KdV hierarchy (see equation (3.21) in [2]). We consider here the case
g �= 0, since the case g = 0 is easily integrated. Without loss of generality we
take g = 1.

We note that this ODE is not of the form B[u]L[u] = 0 for some B[u] and
L[u]. However, if we make the change of variable u = v − h, we obtain

[v6x + 14vv4x + 28vxvxxx + 21(vxx)2 + 70v2vxx + 70v(vx)2 + 35v4]x(23)

−14h[v4x + 10vvxx + 5(vx)2 + 10v3]x + 70h2[vxx + 3v2]x
−140h3vx + (4v + 2xvx) = 0.

This last is now in the required form B[v]L[v] = 0 with

B[v] = ∂3
x + 4v∂x + 2vx,(24)

L[v] = v4x + 10vvxx + 5(vx)2 + 10v3 − 14h[vxx + 3v2](25)

+70h2v − 70h3 + x.

Using the Miura map v = F [U ] = Ux − U2, as in Section 2, our Theorem
gives that

(26) v = F [G[v, γ]]

is an integrated version of equation (23), where U = G[v, γ] is the solution of

(27) (F ′[U ])†L[v] + γ = 0, i.e. of (∂x + 2U)L[v] − γ = 0.

This then gives

(28) U = G[v, γ] =
γ − ∂xL[v]

2L[v]
,

and substituting in (26) leads to

(29) L[v](∂2
xL[v]) − 1

2
(∂xL[v])2 + 2vL[v]2 = −1

2
(γ2).

Finally, setting v = u + h, we obtain the first integral of (22), with g = 1, as

(30) M [u](∂2
xM [u]) − 1

2
(∂xM [u])2 + 2(u + h)M [u]2 = −1

2
(γ2),
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where

(31)
M [u] = L[u+h] = u4x+10uuxx+5(ux)2+10u3−4h[uxx+3u2]+16h2u−32h3+x.

Thus, even though our original equation was not in the form B[u]L[u] = 0,
we are still able to effect a reduction of order by one. We also note that explicit
construction of the modified equation, or its integrated form, is not necessary.
In fact, in this case, the integrated modified equation is equivalent to a special
case of the sixth order member of the generalized second Painlevé hierarchy
given in [29].

It might be pointed out that having put our system in the form B[v]L[v] =
0, integration to (29) is straightforward, since we have L[u] as an integrating
factor. However, the aim of the present paper is to avoid such ad-hoc consid-
erations. We now turn to systems where spotting how to reduce their order is
more difficult.

§4.2. Multicomponent systems of ODEs

Our examples in this section are based on the Hamiltonian structures
and Miura maps of evolution equations of generalized KdV type associated
to energy-dependent Schrödinger operators [23, 30]. We thus consider N -
component systems in the dependent variables u = (u0, u1, . . . , uN−1)T . We
find that we are always able to reduce the order of the system by N . We first
give our results in a general form, and then consider particular examples.

Consider systems of equations of, or which can be put into, the form

(32) B[u]L[u] = 0,

where B[u] is the Hamiltonian operator

(33) B[u] =




J0

. .
.

J1

. .
.

. .
. ...

J0 J1 . . . JN−1




with each

(34) Ji =
1
4
εi∂

3
x + ui∂x +

1
2
ui,x,
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where all εi are constant. Then we have the Miura map u=F[U], where U =
(U0, U1, . . . , UN−1)T , given by

(35) uk = −
k∑

i=0

(αk−iUi,x + UiUk−i)

with (and provided these relations are consistent)

(36) εk =
k∑

i=0

αiαk−i.

Under this Miura map the above Hamiltonian operator admits the factorization

(37) B[u] |u=F[U] = F′[U]B̃(F′[U])†,

where F′[U] is the Fréchet derivative of the Miura map,

(38) F′[U] =




f0

f1
. . .

...
. . .

. . .

fN−1 . . . f1 f0


 ,

with each fk = −αk∂x − 2Uk, and where B̃ is the Hamiltonian operator

(39) B̃ = −1
4




∂x

∂x

. .
.

∂x


 .

According to our Theorem,

(40) u = F[G[u, γ]]

is an integrated version of the system (32), where U = G[u, γ] is the solution
of

(41) (F′[U])†L[u] + γ = 0.

Setting L[u] = (L0[u], L1[u], . . . , LN−1[u])T , we find that this last equation
reads
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(42)

C




U0

U1

...

UN−1


 =

1
2




α0∂xL0[u] + α1∂xL1[u] . . . + αN−1∂xLN−1[u] + γ0

α0∂xL1[u] . . . + αN−2∂xLN−1[u] + γ1

...

α0∂xLN−1[u] + γN−1




where

(43) C =




L0[u] L1[u] . . . LN−1[u]
L1[u] . . . LN−1[u]

... . .
.

LN−1[u]


 .

Thus provided LN−1[u] �= 0, we can solve for the modified variables as

(44)

U = G[u, γ] =
1
2

C−1




α0∂xL0[u] + α1∂xL1[u] . . . + αN−1∂xLN−1[u] + γ0

α0∂xL1[u] . . . + αN−2∂xLN−1[u] + γ1

...

α0∂xLN−1[u] + γN−1


 ,

and substitution into (40) then gives the integrated version of equation (32).
We note that the integrated modified equation results from the substitution of
u = F[U] into (41), or equivalently into (42). Thus we see that, provided that
LN−1[u] �= 0, and provided that the relations (36) are consistent — for which a
sufficient condition, for example, is that ε0 �= 0 — we are always able to effect
a reduction of the order of our system (32) by N . This is true whatever the
form of L[u].

4.2.1. Particular examples
As a particular example of such a multicomponent system we take

(45) L[u] = (0, . . . , 0, 2, uN−1 + gx)T

where g is constant. In the case N = 2 and ε0 �= 0 = ε1, this corresponds
to a nonautonomous extension of the stationary flow of the dispersive water
wave system. We assume LN−1[u] �= 0; the case LN−1[u] = 0 leads only to
the trivial solution uN−1 = −gx and all ui = ci, i = 0, . . . , N − 2, each ci an
arbitrary constant.

In general, i.e. where at least one εi �= 0, the resulting system (32) is of
order N +2. In the case where all εi = 0, it is of order N . Thus our reduction of
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order by N leads respectively either to a second order system, or, remarkably,
to a complete integration of the system. Let us consider now the details of this
reduction process.

With the choice (45), C−1 reads

(46) C−1 =




1
LN−1[u]

1
LN−1[u] − LN−2[u]

(LN−1[u])2

. .
.

. .
. ...

1
LN−1[u] −

LN−2[u]

(LN−1[u])2
. . . (−1)N−1 (LN−2[u])N−1

(LN−1[u])N




,

with LN−2[u] = 2 and LN−1[u] = uN−1 + gx, and (44) then gives — where we
use the fact that ∂xLN−2[u] = 0 —

(47) Ui =
1
2

i∑
l=0

(−1)l (LN−2[u])l

(LN−1[u])l+1
(αi−l∂xLN−1[u] + γN−1−i+l) .

The integrated version of (32) is obtained by substituting these expressions for
Ui into the Miura map (35). The first N −1 equations of the Miura map define
u0, u1, . . . , uN−2 in terms of uN−1. The last equation of the Miura map,

(48) uN−1 = −
N−1∑
i=0

(αN−1−iUi,x + UiUN−1−i) ,

in the case where at least one εi �= 0, then gives a second order ODE in uN−1.
In the case where all εi = 0, where we also take all αj = 0, this last equation
of the Miura map allows recovery of uN−1 as an algebraic function of x.

We now consider as explicit examples the two and three component cases:

• For N = 2 we have the system of equations

1
4
ε0u1,xxx + u0u1,x +

1
2
u0,xu1 + g

(
u0 +

1
2
xu0,x

)
= 0,(49)

u0,x +
1
4
ε1u1,xxx +

3
2
u1u1,x + g

(
u1 +

1
2
xu1,x

)
= 0,(50)

which is either a fourth order system (when at least one εi �= 0) or a second
order system (when all εi = 0). The Miura map (35) is

u0 =−α0U0,x − U2
0 ,(51)

u1 =−α1U0,x − α0U1,x − 2U0U1,(52)
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and the equations corresponding to (47) are

U0 =
α0∂xL1 + γ1

2L1
,(53)

U1 =
L1(α1∂xL1 + γ0) − L0(α0∂xL1 + γ1)

2L2
1

,(54)

where ε0 = α2
0, ε1 = 2α0α1, L0 = 2 and L1 = u1 + gx. Substitution of these

expressions for U0 and U1 into the Miura map yields the system of integrated
equations:

u0 =
ε0(u1,x + g)2 − γ2

1

4(u1 + gx)2
− ε0u1,xx

2(u1 + gx)
,(55)

u1 =
−ε0(u1,x + g)2 + γ2

1

(u1 + gx)3
+

ε1(u1,x + g)2 + 4ε0u1,xx − 2γ0γ1

4(u1 + gx)2
(56)

− ε1u1,xx

2(u1 + gx)
.

The first of these then gives u0 in terms of u1. When at least one εi �= 0, the
second equation is a second order ODE for u1, and we have effected a reduction
of order by two; when all εi = 0, this second equation defines u1 as an algebraic
function of x, and thus we have a complete integration of the system.

We note that our calculation of the above integrated system is valid pro-
vided that the relations ε0 = α2

0, ε1 = 2α0α1 are consistent. The only case in
which these relations are not consistent is ε0 = 0 �= ε1, which corresponds in
the PDE case to Ito’s equation [31], and for which the difficulties of obtaining
a Miura map are well known [30, 32]; see also Section 4.3. However, we note
that the above formulae still give an integrated version of the system (49), (50),
even in this troublesome case.

• For N = 3 we have the system of equations

1
4
ε0u2,xxx + u0u2,x +

1
2
u0,xu2 + g

(
u0 +

1
2
xu0,x

)
= 0,(57)

u0,x +
1
4
ε1u2,xxx + u1u2,x +

1
2
u1,xu2 + g

(
u1 +

1
2
xu1,x

)
= 0,(58)

u1,x +
1
4
ε2u2,xxx +

3
2
u2u2,x + g

(
u2 +

1
2
xu2,x

)
= 0,(59)
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which is either of fifth order or third order. The Miura map is given by

u0 =−α0U0,x − U2
0 ,(60)

u1 =−α1U0,x − α0U1,x − 2U0U1,(61)

u2 =−α2U0,x − α1U1,x − α0U2,x − U2
1 − 2U0U2,(62)

and the expressions for U0, U1 and U2, corresponding to (47), are

U0 =
α0∂xL2 + γ2

2L2
,(63)

U1 =
L2(α1∂xL2 + γ1) − L1(α0∂xL2 + γ2)

2L2
2

,(64)

U2 =
L2

2(α2∂xL2 + γ0) − L1L2(α1∂xL2 + γ1) + L2
1(α0∂xL2 + γ2)

2L3
2

,(65)

where ε0 = α2
0, ε1 = 2α0α1, ε2 = α2

1+2α0α2, L0 = 0, L1 = 2 and L2 = u2+gx.
Substituting into the Miura map then gives the integrated system

u0 =
ε0(u2,x + g)2 − γ2

2

4(u2 + gx)2
− ε0u2,xx

2(u2 + gx)
,(66)

u1 =
−ε0(u2,x + g)2 + γ2

2

(u2 + gx)3
+

ε1(u2,x + g)2 + 4ε0u2,xx − 2γ1γ2

4(u2 + gx)2
(67)

− ε1u2,xx

2(u2 + gx)
,

u2 = 3
ε0(u2,x + g)2 − γ2

2

(u2 + gx)4
− ε1(u2,x + g)2 + 2ε0u2,xx − 2γ1γ2

(u2 + gx)3
(68)

+
ε2(u2,x + g)2 + 4ε1u2,xx − 2γ0γ2 − γ2

1

4(u2 + gx)2
− ε2u2,xx

2(u2 + gx)
,

which is of order three less than (57)–(59). Thus, in the general case, we reduce
a fifth order system to one of second order; in the special case where all εi = 0,
we effect a complete integration of our system.

We remark that the complete integration of our N th order systems when
all εi = 0 is presumably related to the invertibility of the operator B[u] in this
case; our approach then corresponds to making an invertible change of variables
(the Miura map) which greatly simplifies the process of obtaining the general
solution.
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§4.3. An example of Ito type

We now consider two-component systems of, or which can be put into, the
form

(69) B[u]L[u] = 0,

where B[u] is the Hamiltonian operator

(70) B =

(
J1 J0 − ∂

J0 − ∂ J1

)
,

each Ji being as defined in (34), with ε0 = 0 �= ε1. It is the factorization of
this Hamiltonian operator that allows the construction of modifications of Ito’s
equation [32]. This factorization reads

(71) B[u] |u=F[U] = F′[U]B̃(F′[U])†,

where

(72) B̃ = −1
4

(
∂ 0
0 ∂

)

and

(73) F ′ =

(
α∂ − 2U1 −2U0

−2U0 α∂ − 2U1

)

is the Fréchet derivative of the Miura map u = F[U] given by the pair of
equations

u0 = αU0,x − 2U0U1 + 1,(74)

u1 = αU1,x − U2
0 − U2

1 ,(75)

and where α2 = ε1.
According to our Theorem,

(76) u = F[G[u, γ]]

is an integrated version of the system (69), where U = G[u, γ] is the solution
of

(77) (F′[U])†L[u] + γ = 0.
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Setting L[u] = (L0[u], L1[u])T , we find that this last equation reads

(78)

(
L1[u] L0[u]
L0[u] L1[u]

)(
U0

U1

)
=

1
2

(
−α∂xL0[u] + γ0

−α∂xL1[u] + γ1

)
,

and so, provided that (L1[u])2 − (L0[u])2 �= 0, we can solve for the modified
variables as

(79)

U = G[u, γ] =
1
2

1
(L1[u])2 − (L0[u])2

(
L1[u] −L0[u]
−L0[u] L1[u]

)(
−α∂xL0[u] + γ0

−α∂xL1[u] + γ1

)

and substitution into the Miura map then gives an integrated version of (69).
The integrated modified system results from the substitution of u = F[U] into
(77).

4.3.1. A particular example
We consider as a particular example the system of equations

u0u1,x +
1
2
u0,xu1 + g

(
u0 +

1
2
xu0,x − 1

)
= 0,(80)

u0,x +
1
4
ε1u1,xxx +

3
2
u1u1,x + g

(
u1 +

1
2
xu1,x

)
= 0,(81)

where g is a constant. This system corresponds to the choice L[u] = (2, u1 +
gx)T , and is a nonautonomous extension of the stationary flow of Ito’s equation.

We assume (L1[u])2 − (L0[u])2 �= 0; the case L1[u] = ±L0[u] leads only to
the trivial solution u1 = −gx ± 2, u0 = ±gx + c, c an arbitrary constant.

Proceeding as in our previous examples, we solve for the modified variables,

U0 =
2α(u1,x + g) + γ0(u1 + gx) − 2γ1

2 [(u1 + gx)2 − 4]
,(82)

U1 =−α(u1 + gx)(u1,x + g) − γ1(u1 + gx) + 2γ0

2 [(u1 + gx)2 − 4]
,(83)

and substitute into the Miura map, which leads to
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(84)

u0 =
ε1u1,xx

[(u1 + gx)2 − 4]
−

ε1(u1 + gx)u2
1,x

[(u1 + gx)2 − 4]2
− 2gε1(u1 + gx)u1,x

[(u1 + gx)2 − 4]2

+
u4

1 + 4gxu3
1 + (6g2x2 − δ)u2

1 + (β + 4g3x3 − 2gδx)u1

[(u1 + gx)2 − 4]2

+
(g4x4 − g2δx2 + βgx − 4δ + 48)

[(u1 + gx)2 − 4]2
,

(85)

0 =−2ε1(u1 + gx)u1,xx +
ε1(u2

1 + g2x2 + 2gxu1 + 4)
[(u1 + gx)2 − 4]

(u2
1,x + 2gu1,x)

−4u5
1 + 16gxu4

1 + (24g2x2 − 32)u3
1 + (16g3x3 − 64gx + β)u2

1

[(u1 + gx)2 − 4]

+
(32g2x2− 4g4x4− 2gβx + 16δ− 192)u1− g2βx2 + 16gδx − 128gx − 4β

[(u1 + gx)2 − 4]

where we now take as constants of integration β and δ defined via β = γ2
0 +

γ2
1 − ε1g

2 and δ = (γ0γ1/2) + 8. The system (84), (85) is an integrated version
of the system (80), (81); the first equation defines u0 in terms of u1, and the
second is a second order ODE for u1. Thus we have reduced the order of our
system from four to two.

§5. Conclusions

We have given a method of reduction of order for systems of ODEs having
a certain structure. For some systems, this approach even allows a complete
integration. This method, based on ideas more familiar within the context of
completely integrable PDEs, is applicable to both integrable and non-integrable
systems.

One important possible application of our results is to integrable ODEs
believed to define new transcendental functions, where it might be possible
to effect a reduction of order by exploiting their links to completely integrable
PDEs; see Example 4.1 and also [17]. However, it is also clear that our approach
has applications to any ODE related in a suitable way to a completely integrable
PDE, and beyond this to any ODE that happens to have the form required in
order to apply our Theorem.

We have also given a variety of illustrative examples. Here it is worth
pointing out that what is important in these examples is the factorization of
B[u] and not the particular choice of L[u]. Thus, whilst the order of the
system depends also on L[u] — in our particular examples in Sections 4.2.1
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and 4.3.1, we have, for reasons of clarity, taken only very simple forms of L[u],
not depending on derivatives of the ui — we can always, for virtually any choice
of L[u], effect an N -fold integration.

In later papers we will consider further extensions of our approach, for
example to systems where the Hamiltonian operator of the modified system
is not of the simple form A∂x, or to cases where only weaker versions of our
results are possible. With regard to this last, we note that for some systems,
an N -fold integration is not possible, but partial results can still be obtained
whereby a p-fold integration, for some p < N , can be performed; that is, we
only obtain p < N first integrals.
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forme, Bull. Soc. Math. France, 28 (1900), 201-261.
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