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Boundaries for Spaces of Holomorphic
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Abstract

We consider the Banach space Au(X) of holomorphic functions on the open unit
ball of a (complex) Banach space X which are uniformly continuous on the closed unit
ball, endowed with the supremum norm. A subset B of the unit ball of X is a boundary
for Au(X) if for every F ∈ Au(X), the norm of F is given by ‖F‖ = supx∈B |F (x)|.
We prove that for every compact K, the subset of extreme points in the unit ball of
C(K) is a boundary for Au(C(K)). If the covering dimension of K is at most one,
then every norm attaining function in Au(C(K)) must attain its norm at an extreme
point of the unit ball of C(K). We also show that for any infinite K, there is no Shilov
boundary for Au(C(K)), that is, there is no minimal closed boundary, a result known
before for K scattered.

§1. Introduction

A classical result by Šilov [Lo, p. 80] states that if A is a separating
algebra of continuous functions on a compact Hausdorff space K, then there is a
smallest closed subset F ⊂ K with the property that every function of A attains
its maximum absolute value at some point of F . Bishop [Bi] proved that for
every compact metrizable Hausdorff space K, any separating Banach algebra
A ⊂ C(K) has a minimal boundary, that is, there is M ⊂ K such that every
element in A attains its norm at M and M is minimal with such a property. For
the non compact case, Globevnik [Glo] introduced the corresponding concept
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28 Maŕıa D. Acosta

of boundary for a subalgebra of the space of bounded continuous functions on
a Hausdorff space T (not necessarily compact). Given an algebra A ⊂ Cb(T ), a
subset F ⊂ T is a boundary of A if

‖f‖ = sup
x∈F

|f(x)|, ∀f ∈ A.

Globevnik also described the boundaries of Au(c0), the space of complex valued
functions which are holomorphic on the open unit ball of c0 and uniformly
continuous on the closed unit ball. He proved that there is no a minimal closed
boundary (the Shilov boundary) in this case. Aron, Choi, Lourenço and Paques
[ACLP] showed that the Shilov boundary for Au(�p) (1 ≤ p < ∞) is the unit
sphere of �p and it does not exist for �∞.

Moraes and Romero [MoRo] gave the corresponding description for a pre-
dual of a Lorentz sequence space G of the boundaries of Au(G) and, as a
consequence, they also obtained the non-existence of a minimal closed bound-
ary in this case. In some of the mentioned papers the role played by the subset
of the C-extreme points of the unit ball seems to be essential.

Choi, Garćıa, Kim and Maestre showed that any function T ∈ Au(C(K, C))
attaining its norm at a function that does not vanish, in fact attains the norm
at an extreme point of the unit ball of C(K, C) [CGKM, Theorem 2.8]. If the
dimension of K is at most one, then they obtain that the previous statement is
always satisfied [CGKM, Theorem 2.9]. The same authors also prove that for
any scattered compact K, and for every function T ∈ Au(C(K, C)), the norm
of T is the supremum of the evaluations at the extreme points of the unit ball
of C(K, C) [CGKM, Theorem 3.3]. In the case that K is scattered and infinite,
they show that there is no minimal closed boundary for Au(C(K, C)) [CGKM,
Theorem 3.4].

On the other hand, it has been studied for many Banach spaces how the
unit ball can be described in terms of a rich extremal structure. More precisely,
Aron and Lohman [ArLo] introduced the so-called λ-property. A Banach space
has the λ-property if every element in the closed unit ball can be expressed
as a convex series of extreme points. For instance, �1 clearly satisfies this
condition. As a consequence, the norm of any (bounded and linear) functional
is the supremum of the evaluations on the extreme points of the unit ball. Also,
every norm attaining functional on a Banach space satisfying the λ-property,
attains its norm at an extreme point of the unit ball. Several authors studied
the λ-property in Banach spaces such as Aron, Bogachev, Jiménez-Vargas,
Lohman, Mena-Jurado and Navarro-Pascual (see, for instance [ArLo, BMN,
JMN1, JMN2, MeNa]).
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Our intention here is found at some average of the two kind of ideas we
mentioned before. We plan to find non-linear versions of results stated for
spaces satisfying the λ-property. In such versions we will use certain holomor-
phic functions instead of linear functionals and the maximum modulus principle
will play the role of convexity. Along this line we got somehow surprising re-
sults in the sense that holomorphic functions behave somehow as if they were
linear.

In Section 2 we consider norm attaining holomorphic functions. We prove
that in the case that a function F ∈ Au(C(K, X)) attains its norm at a function
in C(K, X) that does not vanish, then F attains its norm at a function whose
evaluation at any point has norm one. As a consequence, if the pair (K, X)
has the extension property and X is C-rotund, any norm attaining function
F ∈ Au(C(K, X)) attains its norm at a C-extreme point of the unit ball of
C(K, X). Examples of spaces satisfying the previous assumption are (K, C),
for K scattered or [a, b] ⊂ R. If X is infinite-dimensional, then (K, X) has the
extension property for any compact K.

In Section 3 we give results stating that (under some conditions) it is
enough to know the evaluations of a function F ∈ Au(C(K, X)) on the extreme
points in the unit ball of C(K, X) in order to compute the norm of F . We obtain
that in the case that the set of continuous functions from K to X that do not
vanish is dense in C(K, X), then the norm of any element F ∈ Au(C(K, X)) is
given by

‖F‖ = sup{|F (f)| : f ∈ C(K, X), ‖f(t)‖ = 1, ∀t ∈ K}.

As a consequence, if X is finite-dimensional and 1 + dimK ≤ dim X or X is
infinite-dimensional, then the above statement is satisfied. If we also assume
that X is C-rotund, then the subset of C-extreme points in the unit ball of
C(K, X) is a boundary for Au(C(K, X)).

Last Section contains examples of spaces for which Au(C(K, X)) does not
have a minimal closed boundary. In the vector-valued case, we show under
the same assumptions used in Section 3, that there are two closed boundaries
disjoint for the subset of polynomials on Y which are weakly sequentially con-
tinuous on the unit ball of Y . As a consequence, if Y has also the Dunford-Pettis
property, we obtain that there is no Shilov boundary for Au(C(K, X)).

In the case of complex-valued functions, we can show the same result
without any restriction on K. For Y = C(K) (any infinite compact K) we
give examples of two closed boundaries whose intersection is empty. Therefore
Au(C(K)) has no a minimal closed boundary without any extra assumption
on K.
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§2. Holomorphic Functions Attaining Their Norms
at Extreme Points

In the following, we will write BX for the closed unit ball of a Banach space
X, SX for the unit sphere. If X is a complex Banach space, A∞(X) will be
the Banach space of all functions T : BX −→ C which are holomorphic in the
open unit ball and continuous and bounded on the closed unit ball, endowed
with the supremum norm. Au(X) will be the Banach space of all functions in
A∞(X) which are holomorphic in the open unit ball and uniformly continuous
on the closed unit ball. A function T ∈ A∞(X) attains its norm if for some
element x0 in the unit ball of X, it holds that

|Tx0| = ‖T‖.

The following result is an abstract version of [CGKM, Lemma 2.6].

Lemma 2.1. Let X be a complex Banach space and assume that the
element T ∈ A∞(X) attains its norm at x0 ∈ BX . If for some y ∈ X it is
satisfied that

‖x0 + zy‖ ≤ 1, ∀z ∈ C, |z| ≤ 1,

then ‖T‖ = |T (x0 + y)|.

Proof. Let D be the open unit disk in C and consider the function f :
D −→ C given by

f(z) = T (x0 + zy), (z ∈ D).

Since T ∈ A∞(X), then f is holomorphic on D and continuous on D, since f

is the uniform limit of the sequence of functions

fn(z) = T (rn(x0 + zy)) (z ∈ D),

where {rn} is a sequence in ]0, 1[ converging to 1.
Since T attains its norm at x0, then

‖T‖ = |Tx0| = |f(0)| ≤ max{|f(z)| : z ∈ D} ≤ ‖T‖,

and, as a consequence of the maximum modulus principle, f is constant on D,
and so

|T (x0 + y)| = |f(1)| = |f(0)| = ‖T‖,
that is, T also attains its norm at x0 + y.

Now we use the same argument of [CGKM, Theorem 2.8] for the vector val-
ued case. There is only a small difference: we skip an approximation argument
used in the proof and apply directly the previous lemma.
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Proposition 2.1. Let K be a compact Hausdorff topological space.
Assume that X is a complex Banach space and T ∈ A∞(C(K, X)) is a function
attaining its norm at an element f0 ∈ BC(K,X) such that

f0(t) �= 0, ∀t ∈ K.

If we define the continuous function g by

g(t) :=
f0(t)

‖f0(t)‖
(t ∈ K),

then T also attains its norm at g.

Proof. We can assume that T is normalized. By the assumption we know
that

‖f0‖ ≤ 1, 1 = ‖T‖ = |Tf0|.

We will use the previous lemma for the functions f0 and g−f0 playing the role
of x0 and y. For an element z ∈ D, we have that for any t ∈ K, it is satisfied

‖f0(t) + z(g(t) − f0(t))‖ ≤
≤ ‖f0(t)‖ + ‖g(t) − f0(t)‖ =

= ‖f0(t)‖ + ‖f0(t)‖
∣∣∣∣ 1
‖f0(t)‖

− 1
∣∣∣∣ =

= ‖f0(t)‖ + (1 − ‖f0(t)‖) = 1.

We checked that f0 + z(g − f0) is an element in the unit ball of C(K, X). By
Lemma 2.1, T attains its norm at g, as we wanted to show.

We will introduce a topological condition on the pair (K, X) in order that
the assumption of the previous proposition is satisfied.

Definition 2.1 [BMN]. Let T be a topological space and X a normed
space. We say that the pair (T, X) has the extension property if for every
closed subset C ⊂ T , every function f : C −→ SX which is the restriction of a
continuous function from T to the unit ball of X, admits a continuous extension
f̃ : T −→ SX .

Theorem 2.1. Let K be a compact Hausdorff topological space and
X a complex Banach space such that (K, X) has the extension property. If
T ∈ A∞(C(K, X)) attains its norm, then T attains its norm at a function g

satisfying that
‖g(t)‖ = 1, ∀t ∈ K.
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Proof. Since T attains its norm by assumption, by using the maximum
modulus Theorem, we can assume that there is a function f0 ∈ SC(K,X) such
that

1 = ‖T‖ = |Tf0|.
In the case that f0(t) �= 0 for every t, the above proposition gives us the desired
statement. Assume that 0 ∈ f0(K). Define the subset

C :=
{

t ∈ K : ‖f0(t)‖ =
1
4

}
.

If C is not empty, let us consider the function f : C −→ SC(K,X) given by

f(t) = 4f0(t), ∀t ∈ C.

It is satisfied that f is the restriction to C of the continuous function from T

to the closed unit ball of C(K, X) given by

t 	→ 4f0(t) if ‖f0(t)‖ ≤ 1
4

t 	→ f0(t)
‖f0(t)‖

if ‖f0(t)‖ >
1
4
.

Since we are assuming that (K, X) has the extension property, and C is a closed
set, there is a continuous function f̂ : K −→ SX such that

f̂(t) = f(t), ∀t ∈ C.

Now we proceed as in [CGKM, Theorem 2.9], and define

h(t) =




f0(t) if ‖f0(t)‖ ≥ 1
4
,

1
4
f̂(t) if ‖f0(t)‖ <

1
4

(t ∈ K).

Since f̂ is a continuous extension of f to K, then h is continuous. f̂ takes
values on the unit sphere of C(K, X) and so, 0 /∈ h(K). Finally, if z belongs to
D, we have that

‖f0(t) + z(h(t) − f0(t))‖ ≤



‖f0(t)‖ if ‖f0(t)‖ ≥ 1

4
3
4

if ‖f0(t)‖ <
1
4
,

and hence ‖f0 + z(h − f0)‖ ≤ 1 for every z ∈ D. Since T attains its norm at
f0, by Lemma 2.1, T also attains its norm at h, and now, it is sufficient to use
Proposition 2.1 in order to get the announced statement.
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If C = ∅, it is sufficient to fix an element x0 in X with ‖x0‖ =
1
4

and define

h(t) =




f0(t) if ‖f0(t)‖ >
1
4
,

x0 if ‖f0(t)‖ <
1
4

(t ∈ K).

By using the same argument as in the previous case, T attains its norm at the
continuous function h and the use of Proposition 2.1 finishes the proof.

Definition 2.2. Given a complex Banach space X, an element x0 ∈ BX

is called a C-extreme point of BX if it satisfies that

(y ∈ X, ‖x0 + zy‖ ≤ 1, ∀z ∈ C, |z| ≤ 1) ⇒ y = 0

A Banach space X is called C-rotund if all the points in the unit sphere of X

are C-extreme points of the unit ball of X.

Since a continuous function f : K −→ X satisfying that for every t ∈ K,
f(t) is a C-extreme point of the unit ball of X, is a C-extreme point of the unit
ball of C(K, X), then, by using the previous theorem we obtain the following
result:

Corollary 2.1. Let K be a compact topological space and X a complex
Banach space. Assume that (K, X) has the extension property and X is C-
rotund. If T ∈ A∞(C(K, X)) attains its norm, then T attains its norm at a
C-extreme point of BC(K,X).

Examples of pairs (K, X) satisfying the extension property are the follow-
ing:

• (K, X), for every infinite-dimensional Banach space X [Dug, Theorem 6.2].

• In the case that X is finite-dimensional, the pair (K, X) has the extension
property if, and only if, 1 + dimK ≤ dim X, where dimK is the covering
dimension of the topological space K (see [Smi, Theorem 9t]).

Let us mention that scattered compact topological spaces are 0-dimensional
[PeSe, Theorem 2, p. 214]. Since C is C-rotund and in fact all the points in
the unit sphere are extreme points, the previous result generalizes the scalar
version given in [CGKM, Theorem 1]. If we do not assume any restriction on
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K, the statement in Corollary 2.1 is not true. For instance, if K is the closed
unit disk of C, the subset

E = {f ∈ C(K) : |f(t)| = 1, ∀t ∈ K}

does not even satisfy that every norm attaining functional on C(K) attains
its norm at an element of E (see [Ai, Example 5]). In fact, Aizpuru showed
that if K is metrizable and every norm attaining functional on C(K, X) attains
its norm at an extreme point of the unit ball, then the pair (K, X) has the
extension property [Ai, Theorem 7]. Therefore, Corollary 2.1 can be read, in
fact, as a characterization in the case that the compact is metrizable.

§3. Holomorphic Functions for Which the Subset of Extreme
Points of the Unit Ball is a Boundary

In the previous section, in order to apply the Maximum modulus Principle
(proof of Proposition 2.1), it is essential that the holomorphic mapping attains
its norm. Here we will use a different perturbation in order to assert that the
subset of functions f ∈ C(K, X) satisfying that

‖f(t)‖ = 1, ∀t ∈ K

are enough to compute the norm of any element in A∞(C(K, X)).

Lemma 3.1. For every λ ∈ C satisfying 0 < |λ| < 1, the complex-
valued mapping given by

h(z) =
z + λ

1 + λz

(
z ∈ C, |z| <

1
|λ|

)

is a holomorphic mapping satisfying the following conditions:

i) h(0) = λ,

ii) |z| < 1 ⇒ |h(z)| < 1,

iii) |z| = 1 ⇒ |h(z)| = 1,

iv) h(z) = (λ)−1 +
(
λ − (λ)−1

) ∞∑
n=0

(−1)n(λz)n
(
|z| <

1
|λ|

)
.

Proof. h is just the restriction of a Möbius transformation that is holo-
morphic on the open disk of radius 1

|λ| and clearly satisfies (i). Since

1 = |h(1)| = |h(−1)| = |h(i)|,



�

�

�

�

�

�

�

�

Boundaries for Holomorphic Functions 35

then h preserves the unit sphere. Also |h(0)| = |λ| < 1, and so h preserves the
open unit disk.

Finally, for |z| < 1
|λ| , the Taylor series of h at zero is given by

h(z) = (λ)−1+
( |λ|2 − 1

λ

) 1
1 + λz

=

= (λ)−1+
(
λ − (λ)−1

) ∞∑
n=0

(−1)n(λz)n.

Globevnik introduced the definition of boundary for the noncompact case.

Definition 3.1. Let A ⊂ A∞(X) be a subset, we will say that B ⊂ BX

is a boundary for A if for every F ∈ A it is satisfied that

sup
x∈BX

|F (x)| := ‖F‖ = sup
x∈B

|F (x)|.

The Shilov boundary for A is a boundary for A which is closed and minimal
under these two conditions.

Theorem 3.1. Let X be a complex Banach space, Y = C(K, X) and
assume that the subset

{f ∈ BC(K,X) : f(t) �= 0, ∀t ∈ K}

is a boundary for A∞(Y ). Then the subset of elements f in C(K, X) satisfying
that

‖f(t)‖ = 1, ∀t ∈ K

is also a boundary for A∞(Y ). The same statement also holds for Au(Y ).

Proof. Let F ∈ A∞(Y ) and ε > 0. By assumption there is a function
f ∈ BY such that

f(t) �= 0, ∀t ∈ K and |F (f)| > ‖F‖ − ε.

Since F is continuous we can also assume that r := ‖f‖ < 1.
We define the mapping G : D −→ Y given by

G(z)(t) =
z + ‖f(t)‖
1 + ‖f(t)‖z

f(t)
‖f(t)‖ (|z| ≤ 1, t ∈ K)
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G(0) = f , G is continuous and, in fact, by using Lemma 3.1, we know that

G(z)(t) =
f(t)

‖f(t)‖2
+

(
1 − 1

‖f(t)‖2

) ∞∑
n=0

‖f(t)‖n(−1)nznf(t), ∀|z| ≤ 1.

Since ‖f(t)‖ ≤ r < 1 for every t, the above series converges uniformly on the
closed unit disk and so, G is holomorphic on the open disk and continuous on
D, and also, by Lemma 3.1, satisfies

‖G(z)(t)‖ =
∣∣∣ z + ‖f(t)‖
1 + ‖f(t)‖z

∣∣∣< 1, ∀t ∈ K, |z| < 1,

that is, G applies the open unit disk on the open unit ball of Y .
We consider the composition H : D −→ C given by

H(z) = F (G(z)) (|z| ≤ 1).

Since G is holomorphic on D, G(D) is contained in the open unit ball of Y and
F ∈ A∞(Y ), then H is holomorphic on D. Also H is continuous on the closed
unit disk.

The maximum modulus of H on the closed unit disk is attained at some
element z0 in the unit sphere, and so,

‖F‖ − ε < |F (f)| = |H(0)| ≤ |H(z0)| = |F (G(z0))|.

Finally, let us observe that in view of Lemma 3.1, the function G(z0) verifies
that

‖G(z0)(t)‖ =
∣∣∣ z0 + ‖f(t)‖
1 + ‖f(t)‖z0

∣∣∣= 1, ∀t ∈ K,

and so the set of elements in C(K, X) such that every evaluation has norm one
is a boundary for A∞(Y ).

The same proof also works for Au(Y )

Corollary 3.1. Assume that K is a compact topological space and X is
a C-rotund Banach space, such that the set of continuous functions from K to
X that do not vanish is dense in C(K, X). Then the subset of C-extreme points
of BC(K,X) is a boundary for A∞(C(K, X)).

We mentioned before that scattered compact are 0-dimensional. Compact
intervals of the real line are 1-dimensional. In both cases, by the results men-
tioned at the end of the previous section, the pair (K, C) has the extension
property. This condition implies the denseness in C(K) of the set of continuous
functions that do not vanish (see [BMN, Lemma 7]). Hence, by using a simpler
proof, we obtained an improvement of [CGKM, Theorem 3.3]:
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Corollary 3.2. For K = [a, b] ⊂ R or for a scattered compact topologi-
cal space, the subset of extreme points in C(K) is a boundary for A∞(C(K)).

As we mentioned before, if X is finite-dimensional, the pair (K, X) has the
extension property if, and only if,

1 + dim K ≤ dimX.

If X is infinite-dimensional, the assumption of the denseness of the set of con-
tinuous functions not vanishing is satisfied, since, for any f ∈ C(K, X), f(K)
is a compact subset and it is sufficient to choose an element x0 ∈ εBX\f(K)
and define g := f − x0. The function g does not vanish and ‖f − g‖ ≤ ε.

In any of the previous cases, the set of continuous functions from K to X

that do not vanish is dense in C(K, X) [BMN, Lemma 7]. Therefore, by the
above comments, Theorem 3.1 and Corollary 3.1 we obtain:

Corollary 3.3. Let X be a (complex) Banach space and K a compact
Hausdorff topological space. Assume that one of the following conditions is
satisfied:

i) X is finite-dimensional and 1 + dimK ≤ dimX.

ii) X is infinite-dimensional.

Then, for every F ∈ A∞(C(K, X)), it is satisfied that

‖F‖ = sup{|F (f)| : f ∈ C(K, X), ‖f(t)‖ = 1 ∀t ∈ K}.

As a consequence, if we assume also that X is C-rotund, then

‖F‖ = sup{|F (f)| : f is a C-extreme point in BC(K,X)},

for any F ∈ A∞(C(K, X)).

In fact, as a consequence of a beautiful result due to Harris (see [Ha2,
Proposition 2 and Theorem 9]), if X is a C∗-algebra, then the space Y =
C(K, X) satisfies the statement given in Corollary 3.3, without any restriction
on the compact topological space K. Therefore, the above result holds, for
instance, if we take Cn (endowed with the maximum norm) as X. On the other
hand, the result appearing in Corollary 3.3 for infinite-dimensional spaces does
not require any special algebraic structure in X.
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§4. There is No Shilov Boundary for Au(C(K))

For the kind of spaces we are considering, first Globevnik proved that there
is no Shilov boundary for Au(c0) [Glo, Theorem 1.8]. Aron, Choi, Lourenço
and Paques proved the same result for �∞ [ACLP, Theorems 1 and 3]. Choi,
Garćıa, Kim and Maestre showed that for any infinite scattered compact K,
the Shilov boundary for Au(C(K)) does not exist [CGKM, Theorem 3.4]. We
will prove that under the assumptions of Corollary 3.3, the same result also
holds in a more general setting.

Theorem 4.1. Assume that K is an infinite compact Hausdorff topo-
logical space and X �= 0 is a complex Banach space. Suppose that one of the
following conditions is satisfied:

1) 1 + dimK ≤ dim X.

2) X is infinite-dimensional.

Then there is no Shilov boundary for Pwsc(C(K, X)), the subset of complex-
valued polynomials on C(K, X) that are weakly sequentially continuous.

Proof. Let us write Y = C(K, X). Consider the set C given by

C = {δt ⊗ x∗ : t ∈ K, x∗ ∈ BX∗},

that is a subset of Y ∗, acting as

(δt ⊗ x∗)(y) = x∗(y(t)) (y ∈ Y ).

It is clear that the subset C is norming for C(K, X) and it is weak∗-closed. We
check the last assertion; if we assume that a net {δtλ

⊗ x∗
λ} of elements in C is

w∗-convergent to y∗, then for every element x ∈ X, by applying the above net
to the function in C(K, X) constant and equal to x, then

y∗(x) = lim
λ

(δtλ
⊗ x∗

λ)(x) = lim
λ

x∗
λ(x).

As a consequence, the net {x∗
λ} converges in the w∗-topology to an element

x∗ in the unit ball of X∗. Finally, if we assume that x∗ �= 0 (otherwise our
argument will give y∗ = 0), and we choose x0 ∈ X satisfying that x∗(x0) = 1,
then for any f ∈ C(K), we consider the element fx0 ∈ Y , then

y∗(fx0) = lim
λ

(δtλ
⊗ x∗

λ)(fx0) = lim
λ

f(tλ)
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that is, the net {tλ} converges in K to an element t. Since {δtλ
} w∗
→ δt in C(K)∗

and {x∗
λ}

w∗
→ x∗ in X∗, we know that for any f ∈ C(K) and x ∈ X it is satisfied

y∗(fx) = lim
λ

(δtλ
⊗ x∗

λ)(fx) = f(t)x∗(x).

Since Y = C(K, X) = C(K)
∧
⊗ε X [DeFl, p. 48], the above convergence implies

that y∗ = δt ⊗ x∗, since the subspace generated by

{fx : f ∈ C(K), x ∈ X}

is dense in C(K)
∧
⊗ε X. Until now we checked that C is weak∗-closed in Y ∗,

C is norming and so, by the reversed Krein-Milman Theorem, C contains the
subset of extreme points of BY ∗ .

Since K is infinite, then C(K) contains an isometric copy of c0. In fact,
there is a sequence {tn} in the compact K and a sequence of functions {fn} in
BC(K) such that

0 ≤ fn ≤ 1, fn(tn) = 1, and supp fn ∩ supp fm = ∅ for m �= n.

In such a case, the closed linear span of {fn : n ∈ N} is isometric to c0 and
{fn} is equivalent to the usual Schauder basis of c0, hence {fn}

w→ 0.
If we fix a bounded sequence {zn} in Y , and we define

yn(t) = fn(t)zn(t) (t ∈ K),

then we will check that {yn} is a weak-null sequence in C(K, X). Since {fn}
w→ 0

in C(K), for any bounded sequence {zn} in Y we know that

{(δt ⊗ x∗)(yn)} = {fn(t) x∗(zn(t))} → 0, ∀t ∈ K, ∀x∗ ∈ BX∗ .

In view of Rainwater’s Theorem [Die, p. 155], this implies that {yn} is a
weakly-null sequence in Y .

Let us consider the sets

N = {g ∈ BY : g(tn) = 0 for some n},
B = {h ∈ BY : ‖h(t)‖ = 1, ∀t ∈ K}.

We know that B is a boundary for A∞(Y ) (Corollary 3.3), and as a consequence,
it is also a boundary for Pwsc(Y ). It is clear that

‖g − h‖ ≥ 1, ∀g ∈ N , h ∈ B
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and so N∩B = ∅. We will show that N is also a boundary for Pwsc(Y ). Since B
is a boundary for Pwsc(Y ) and the elements in Pwsc(Y ) are weakly sequentially
continuous, then we consider an element h ∈ B. The sequence {gn} given by

gn(t) = h(t)(1 − fn(t)) (t ∈ K)

satisfies that ‖gn‖ ≤ 1 since 0 ≤ f ≤ 1 and ‖h‖ ≤ 1 and also gn(tn) = 0,
so gn ∈ N . On the other hand, we know that {gn}

w→ h and so, for any
P ∈ Pwsc(Y ), it is satisfied that

{P (gn)} → P (h).

Therefore, B and N are closed boundaries satisfying that B ∩N = ∅.

In the case that the Banach space Y has the Dunford-Pettis property,
it also has the polynomial Dunford-Pettis property ([Ry] or [Din, Proposi-
tion 2.34]). This means that under this assumption Pwsc(Y ) coincides with
all polynomials. Examples of spaces having the Dunford-Pettis property are
C(K1, C(K2)), C(K, L1(µ)) and C(K, X), where X is a space having the Schur
property (see [Die1, p. 47 and 48]).

By using that any function F ∈ A∞(Y ) is the uniform limit of polynomials
on any ball rBY (0 < r < 1), we obtain the following result.

Corollary 4.1. Let K be an infinite compact topological space and let
Y be one of the following spaces:

a) C(K, C(K1)), for a compact topological space K1.

b) C(K, L1(µ)), where µ is any measure.

c) C(K, X), where X is a finite-dimensional space and 1 + dimK ≤ dimX.

Then there is no Shilov boundary for A∞(Y ).

In the case that the continuous functions are C-valued, then we will get
that the set of extreme points of the unit ball is a boundary for A∞(C(K, C))
without any restriction on K, which improves the result that we obtained in
Section 3.

Theorem 4.2. For any compact topological space K, the set of extreme
points in the unit ball of C(K) is a boundary for A∞(C(K)).
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Proof. We will use a similar trick to the one appearing in the proof of
Theorem 4.1, which is based on a idea by Harris (see [Ha1] or [Ha2, Example
1, §3]). For F ∈ A∞(C(K)) and ε > 0, we choose a function F ∈ BC(K) such
that

|F (f)| > ‖F‖ − ε.

Since F is continuous on the closed unit ball, we can assume that ‖f‖ < 1.
We consider the holomorphic function g : D(0, 1) −→ C(K) given by

g(z)(t) =
z + f(t)
1 + f(t)z

(|z| ≤ 1, t ∈ K),

which is well-defined, holomorphic on D(0, 1) and continuous on the closed unit
disk. By Lemma 3.1, we have g(D(0, 1)) ⊂ BC(K) and g(D(0, 1)) is contained
in the open unit ball of C(K). Hence, the function H : D(0, 1) −→ C given by

H(z) = F (g(z)) (|z| ≤ 1)

is holomorphic in the open unit disk and continuous on D(0, 1). By the Maxi-
mum modulus Principle, there is z0 ∈ C with |z0| = 1 such that

|H(z0)| ≥ |H(z)|, ∀z ∈ D(0, 1).

Since H(0) = F (g(0)) = F (f), then

|F (g(z0))| = |H(z0)| ≥ |H(0)| = |F (f)| > ‖F‖ − ε.

Since |z0| = 1, then, by Lema 3.1, |g(z0)(t)| = 1 for every t ∈ K and |F (g(z0))|
≥ ‖F‖− ε, then g(z0) is an extreme point of BC(K) and we proved that the set
of extreme points in the unit ball of C(K) is a boundary for A∞(C(K)).

Proposition 4.1. If B,S ⊂ BC(K), B is a boundary for A∞(C(K)) and
S is weakly sequentially dense in B and balanced, then S is also a boundary. As
a consequence, if K is infinite, there are two closed boundaries for A∞(C(K))
whose intersection is empty, hence there is no Shilov boundary. The same
statements also hold for Au(C(K)).

Proof. Let us fix F ∈ A∞(C(K)) and ε > 0. Since B is a boundary for
A∞(C(K)), there is f ∈ B such that |F (f)| > ‖F‖ − ε. Since S is weakly
sequentially dense in B, we can find a sequence {gn}

w→ f such that gn ∈ S, for
each n. Since F is continuous, there is δ > 0 such that

g ∈ BC(K), ‖g − f‖ ≤ δ ⇒ |F (g) − F (f)| < ε.
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By using that F is holomorphic in the open ball of C(K), there is a continuous
polynomial P on C(K) such that

|P (g) − F (g)| ≤ ε, ∀g ∈ (1 − δ)BC(K).

Since C(K) has the Dunford-Pettis property, it also has the polynomial
Dunford-Pettis property ([Ry] or [Din, Proposition 2.34]). Hence, for n large
enough we will have

|P ((1 − δ)gn) − P ((1 − δ)f)| < ε.

Finally, for n large enough we obtain

|F (f) − F ((1 − δ)gn)| ≤ |F (f) − F ((1 − δ)f)| +
+|F ((1 − δ)f) − P ((1 − δ)f)| + |P ((1 − δ)f) − P ((1 − δ)gn)| +
+|P ((1 − δ)gn) − F ((1 − δ)gn)| ≤ 4ε.

Hence
|F ((1 − δ)gn)| ≥ |F (f)| − 4ε ≥ ‖F‖ − 5ε,

for n large enough and so by the Maximum modulus Theorem there is a scalar
λn with |λn| = 1, satisfying that |F (λngn)| ≥ ‖F‖ − 5ε. Since gn ∈ S and
S is balanced, then λngn ∈ S and we proved that S is also a boundary for
A∞(C(K)).

We proved in Theorem 4.2 that

B = {f ∈ C(K) : |f(t)| = 1, ∀t ∈ K}

is a (closed) boundary for A∞(C(K)). For any infinite compact K, we can
follow the same argument appearing in the proof of Theorem 4.1 by fixing
a sequence {fn} in C(K) which is equivalent to the c0-basis, satisfying that
fn(tn) = 1 for some tn ∈ K and 0 ≤ fn ≤ 1. The subset

S = {g ∈ BC(K) : g(tn) = 0 for some n}

is balanced and weakly sequentially dense in B, since for any h ∈ B, the sequence
{h(1−fn)} converges weakly to h and h(1−fn) ∈ S. By the assertion we proved
before, S is also a boundary for A∞(C(K)). It is satisfied that S ∩B = ∅ since
‖h − g‖ ≥ 1 for every h ∈ B, g ∈ S.

The same proof also works for Au(C(K)).

Aron, Choi, Lourenço and Paques proved that A∞(�∞) has no Shilov
boundary [ACLP, Proposition 4]. We followed their scheme to obtain the same
result for every C(K) instead of �∞.
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Remark. By modifying a little bit the above argument, it can be shown
that any subset S which is weakly sequentially dense in a boundary of Au

(C(K)), is also a boundary of the same algebra.
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[PeSe] Pe�lczyński, A. and Semadeni, Z., Spaces of continuous functions. III. Spaces C(Ω)
for Ω without perfect subsets, Studia Math., 18 (1959), 211-222.

[Ry] Ryan, R., Dunford-Pettis properties, Bull. Acad. Polon. Sci. Math., 27 (1979),
373-379.

[Smi] Smirnov, Y. M., On the dimension of proximity spaces, Mat. Sb. N.S., 38 (80)
(1956), 283-302. English translation: Amer. Math. Soc. Transl. Ser. 2, 21 (1962),
1-20.


