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Abstract

We prove some structure results for isometries between noncommutative Lp

spaces associated to von Neumann algebras. We find that an isometry T : Lp(M1) →
Lp(M2) (1 ≤ p < ∞, p �= 2) can be canonically expressed in a certain simple
form whenever M1 has variants of Watanabe’s extension property. Although these
properties are not fully understood, we show that they are possessed by all “approx-
imately semifinite” (AS) algebras with no summand of type I2. Moreover, when M1

is AS, we demonstrate that the canonical form always defines an isometry, resulting
in a complete parameterization of the isometries from Lp(M1) to Lp(M2). AS al-
gebras include much more than semifinite algebras, so this classification is stronger
than Yeadon’s theorem (and its recent improvement), and the proof uses independent
techniques. Related to this, we examine the modular theory for positive projections
from a von Neumann algebra onto a Jordan image of another von Neumann alge-
bra, and use such projections to construct new Lp isometries by interpolation. Some
complementary results and questions are also presented.

§1. Introduction

In any class of Banach spaces, it is natural to ask about the isometries.
(Here an isometry is always assumed to be linear, but not assumed to be
surjective.) Lp function spaces are an obvious example, and their isometries
have been understood for half a century. To the operator algebraist, these
classical Lp spaces arise from commutative von Neumann algebras, and one
may as well ask about isometries in the larger class of noncommutative Lp
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spaces. This question was considered by a number of authors, with a variety
of assumptions; a succinct answer for semifinite algebras was given in 1981
by Yeadon [Y1]. In the recent paper [JRS], Yeadon’s result was extended to
the case where only the initial algebra is assumed semifinite. We will call
this the Generalized Yeadon Theorem (GYT) (Theorem 2.2 below), as it was
proved there by a simple modification of Yeadon’s original argument. With no
assumption of semifiniteness, the author classified all surjective isometries in
the paper [S1]. But in its most general form, the classification of isometries
between noncommutative Lp spaces is still an open question.

Let us agree that “Lp isometry” will mean an isometric map T : Lp(M1) →
Lp(M2), 1 ≤ p < ∞, p �= 2. Adapting Watanabe’s terminology ([W2], [W3]),
we say that an Lp isometry is typical if there are

1. a normal Jordan *-monomorphism J : M1 → M2,

2. a partial isometry w ∈ M2 with w∗w = J(1), and

3. a (not necessarily faithful) normal positive projection P : M2 → J(M1),

such that

T (ϕ1/p) = w(ϕ ◦ J−1 ◦ P )1/p, ∀ϕ ∈ (M1)+∗ .(1.1)

(Writing the projection as P : M2 → J(M1) will always mean that P fixes
J(M1) pointwise.) Here ϕ1/p is the generic positive element of Lp(M1); see
below for explanation. Since any Lp element is a linear combination of four
positive ones, (1.1) completely determines T . We will see in Section 2 that
typical isometries follow Banach’s original classification paradigm for (classical)
Lp isometries, and may naturally be considered “noncommutative weighted
composition operators”.

Question 1.1. Is every Lp isometry typical?

Results in the literature offer evidence for an affirmative answer. GYT
and the structure theorem for L1 isometries (due to Kirchberg [Ki]) imply that
an Lp isometry with semifinite domain must be typical. In [S1] typicality was
proved for surjective Lp isometries. And the paper [JRS] shows typicality for
Lp isometries which are 2-isometries at the operator space level, with J actually
a homomorphism and P a conditional expectation.

Our strategy here is the following. First we use a theorem of Bunce and
Wright [BW1] to prove a variant of Kirchberg’s result which shows that L1

isometries are typical. Then given an Lp isometry, we try to form an associated
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L1 isometry, apply typicality there, and deduce typicality for the original map.
It is not clear whether this procedure can work in general; it requires that
continuous homogeneous positive bounded functions on Lp(M1)+ which are
additive on orthogonal elements must in fact be additive. This is a natural
variant of the extension property (EP) introduced by Watanabe [W2], so we
call it EPp.

We will call a von Neumann algebra “approximately semifinite” (AS) if
it can be paved out by a net of semifinite subalgebras (see Section 5 for the
precise definition). The main results of Sections 3 through 5 are summarized
in

Theorem 1.2.

1. All L1 isometries are typical.

2. An Lp isometry must be typical if M1 has EPp and EP1; for positive Lp

isometries EP1 is sufficient.

3. An AS algebra with no summand of type I2 has EPp for any p ∈ [1,∞).

4. The class of AS algebras includes all semifinite algebras, all hyperfinite
algebras and factors of type III0 with separable predual, and others.

This is a stronger result than GYT, and the proofs are independent of
Yeadon’s paper. At this time we do not know any factor other than M2 which
does not have EPp, although we do have examples of non-AS algebras. Further
insight into these properties may help to resolve Question 1.1, and they seem
to merit investigation in their own right.

The converse of Question 1.1 is also interesting.

Question 1.3. For a given normal Jordan *-monomorphism J : M1 →
M2 and normal positive projection P : M2 → J(M1), does (1.1) extend
linearly to an Lp isometry?

If J(M1) is a von Neumann algebra, then P is a conditional expectation
and the answer to Question 1.3 is yes. The construction, given in Section 6,
is not entirely new, at least when J is multiplicative. In our context the key
observation is the independence from the choice of reference state. Then in
Section 7 we remove the assumption that J(M1) is a von Neumann algebra.
We are able to construct new Lp isometries from the data J, P by interpolation,
but now they do seem to depend on the choice of reference state. However, in
Section 8 we show that the possible dependence is removed, and Question 1.3
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can again be answered affirmatively, if P factors through a conditional expecta-
tion from M2 onto J(M1)′′. Exactly this issue was addressed in a recent work
of Haagerup and Størmer [HS2], although in a more general setting. We extend
their investigation in our specific case, guaranteeing the necessary factorization
whenever M1 is AS. Combining this with Theorem 1.2, we acquire a complete
parameterization of the isometries from Lp(M1) to Lp(M2) whenever M1 is
AS.

EP was proposed as a tool for Lp isometries by Keiichi Watanabe, and I
thank him for making his preprints available to me. With his permission, a few
of his unpublished results are incorporated here into Theorem 5.3 (and clearly
attributed to him). I am also grateful to each of Marius Junge, Zhong-Jin
Ruan, and Quanhua Xu for helpful conversations and for showing me Theorem
5.8 from [JRX].

This work was completed while the author was VIGRE Visiting Assistant
Professor at the University of Illinois at Urbana-Champaign.

§2. History and Background

It is not plausible to review the theory of noncommutative Lp spaces at
length here. The reader may want to consult [Te1], [N], [K1], [Ya] for details
of the constructions mentioned below; [PX] also includes an extensive bibli-
ography. Our interest, aside from refreshing the reader’s memory, lies largely
in setting up convenient notation and explaining why “typical” isometries are
a natural generalization of previous results going back to the origins of the
subject.

In fact the fundamental 1932 book of Banach [B, IX.5] already listed the
surjective isometries of �p and Lp(0, 1), p �= 2. In the second case, an Lp

isometry T is uniquely decomposed as a weighted composition operator:

T (f) = h · (f ◦ ϕ) = (sgn h) · |h| · (f ◦ ϕ),(2.1)

where h is a measurable function and ϕ is a measurable (a.e.) bijection of
[0, 1]. Clearly |h| is related to the Radon-Nikodým derivative for the change
of measure induced by ϕ. Although Banach did not prove this classification,
he did make the key observation that isometries on Lp spaces must preserve
disjointness of support; i.e.

fg = 0 ⇐⇒ T (f)T (g) = 0.(2.2)

We will see that the equations (2.1) and (2.2) provide a model for all succeeding
classifications.
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The extension to non-surjective isometries on general (classical) Lp spaces
was made in 1958 by Lamperti [L]. His description was similar, but he noted
that generally the bijection ϕ must be replaced by a “composition” induced
by a set-valued mapping, called a regular set isomorphism. See [L] or [FJ]
for details; for many measure spaces [HvN] one can indeed find a (presumably
more basic) point mapping. As Lamperti pointed out, (2.2) follows from a
characterization of equality in the Clarkson inequality. That is,

‖f + g‖p
p + ‖f − g‖p

p = 2(‖f‖p
p + ‖g‖p

p) ⇐⇒ fg = 0.(2.3)

This method also works for some other function spaces ([L], [FJ]).
It is interesting to note how much of the analogous noncommutative ma-

chinery was in place at this time. First observe that from the operator algebraic
point of view a regular set isomorphism is more welcome than a point mapping,
being a map on the projections in the associated L∞ algebra. In terms of this
(von Neumann) algebra, equation (2.2) tells us that the underlying map be-
tween projection lattices preserves orthogonality. Dye [D] had studied exactly
such maps in the noncommutative setting a few years before, showing that they
give rise to normal Jordan *-isomorphisms. And Kadison’s classic paper [Ka]
had demonstrated the correspondence between normal Jordan *-isomorphisms
and isometries. Noncommutative Lp spaces were around, too, but the isometric
theory would wait for noncommutative formulations of (2.3).

Let us recall the definition of the noncommutative Lp space (1 ≤ p < ∞)
associated to a semifinite algebra M equipped with a given faithful normal
semifinite tracial weight τ (simply called a “trace” from here on). The earliest
construction seems to be due to Segal [Se]. Consider the set

{T ∈ M | ‖T‖p � τ (|T |p)1/p < ∞}.

It can be shown that ‖ · ‖p defines a norm on this set, so the completion is a
Banach space, denoted Lp(M, τ ). It also turns out that one can identify ele-
ments of the completion with unbounded operators; to be specific, all the spaces
Lp(M, τ ) are subsets of the *-algebra of τ -measurable operators M(M, τ ) [N].
Clearly τ is playing the role of integration.

Before stating Yeadon’s fundamental classification for isometries of semifi-
nite Lp spaces, we recall that a Jordan map on a von Neumann algebra is a
*-linear map which preserves the operator Jordan product x•y � (1/2)(xy+yx).
(We denote this by • instead of ◦ since we use the latter for composition very
frequently.) The unfamiliar reader may be comforted to know that a normal
Jordan *-monomorphism from one von Neumann algebra into another is the
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sum of a *-homomorphism π and a *-antihomorphism π′, where s(π)+s(π′) ≥ 1
and π(1) ⊥ π′(1) [St1]. (We use s and its variants s�, sr for “(left/right) support
of” throughout the paper.) This is frequently misinterpreted in the literature.
Part (but not all) of the confusion comes from the fact that the image is typi-
cally not multiplicatively closed; the simplest example is

J : M2 → M4, x 
→
(

x 0
0 xt

)
,

where t is the transpose map. Accordingly, we will refer to a Jordan image of a
von Neumann algebra as a “Jordan algebra” in order to remind the reader that
it is closed under the Jordan product and not the usual product. This slightly
abusive terminology should cause no confusion; we will not need the abstract
definitions of Jordan algebras, JW-algebras, etc.

Theorem 2.1 [Y1, Theorem 2]. A linear map

T : Lp(M1, τ1) → Lp(M2, τ2)

is isometric if and only if there exists

1. a normal Jordan *-monomorphism J : M1 → M2,

2. a partial isometry w ∈ M2 with w∗w = J(1), and

3. a positive self-adjoint operator B affiliated with M2 such that the spec-
tral projections of B commute with J(M1), s(B) = J(1), and τ1(x) =
τ2(BpJ(x)) for all x ∈ M+

1 ,

all satisfying

T (x) = wBJ(x), ∀x ∈ M1 ∩ Lp(M1, τ1).(2.4)

Moreover, J, B, and w are uniquely determined by T .

Note the striking resemblance between (2.1) and (2.4) - again, B is related
to a (noncommutative) Radon-Nikodým derivative.

Traciality is essential in the construction of Lp(M, τ ), so another method
is required for the general case. We proceed by analogy: if M is supposed to
be a noncommutative L∞ space, the associated L1 space should be the predual
M∗. This is not given as a space of operators, so it is not clear where the pth
roots are. Later, in Section 6, we will discuss Kosaki’s interpolation method
[K1]. Here we recall the first construction, due to Haagerup ([H1],[Te1]), which
goes as follows. Choose a faithful normal semifinite weight ϕ on M. The
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crossed product M̃ � M�σϕ R is semifinite, with canonical trace τ̄ and trace-
scaling dual action θ. Then M∗ can be identified, as an ordered vector space
and as an M−M bimodule, with the τ̄ -measurable operators T affiliated with
M̃ satisfying θs(T ) = e−sT . We may simply transfer the norm to this set
of operators, and we denote this space by L1(M). Of course, because of the
identification with M∗, L1(M) does not depend (up to isometric isomorphism)
on the choice of ϕ.

We will use the following intuitive notation: for ψ ∈ M+
∗ , we also denote

by ψ the corresponding operator in L1(M)+. (In the original papers this
was written as hψ, but several other notations are in use – it is ∆ψ,ϕ ⊗ λ in
the crossed product construction of the last paragraph. Some advantages and
applications of our convention, called a modular algebra, are demonstrated in
[C4, Section V.B.α], [Ya], [FT], [JS], [S2].) Recall that x ∈ M and ψ ∈ M∗
are said to commute if the functionals xψ = ψ(·x) and ψx = ψ(x·) agree. Of
course this is nothing but the requirement that x ∈ M ⊂ M̃ and ψ ∈ L1(M)
commute as operators. We also have the useful relations

ϕitψ−it = (Dϕ : Dψ)t; ψitxψ−it = σψ
t (x)

for ϕ, ψ ∈ M+
∗ , s(ϕ) ≤ s(ψ), x ∈ s(ψ)Ms(ψ).

Now we set Lp(M) (1 ≤ p < ∞) to be the set of τ̄ -measurable operators
T for which θs(T ) = e−s/pT , and defining a norm ‖T‖p = ‖|T |p‖1/p

1 gives us a
Banach space. As a space of operators, Lp(M) is still ordered, and any element
is a linear combination of four positive ones. This all agrees with our previous
construction in case M is semifinite: the identification is

Lp(M, τ )+ � h ↔ (τhp)1/p ∈ Lp(M)+.(2.5)

(Here τh(x) � τ (hx); more generally ϕh(x) � ϕ(hx) = ϕ(xh) whenever ϕ and
h commute.) But the reader should appreciate the paradigm shift: now L1

elements are “noncommutative measures”. Any theory for functorially produc-
ing Lp spaces from von Neumann algebras (i.e. without arbitrarily choosing
a base measure) is forced into such a construction, as von Neumann algebras
do not come with distinguished measures unless the algebra is a direct sum of
type I or II1 factors. It is more correct to think of a von Neumann algebra as
determining a measure class (in the sense of absolutely continuity), and this
generates an Lp space of measures directly. See [S2] for more discussion.

Now we revisit Theorem 2.1. The operator B commutes with J(M1), and
so when M1 is finite, the linear functional ϕ � |T (τ1/p

1 )|p = (τ2)Bp commutes
with J(M1). (Equivalently, the restriction of ϕ to J(M1)′′ is a finite trace.)
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Formulated in this way, Theorem 2.1 extends to the case where M2 is not
assumed semifinite (and M1 is not assumed finite). The result, which we call
GYT for “Generalized Yeadon Theorem”, was also noted in [JRS] but will be
proven here as Theorem 5.6.

Theorem 2.2 [JRS]. Let M1,M2 be von Neumann algebras, τ a fixed
trace on M1, and 1 ≤ p < ∞, p �= 2. If T : Lp(M1, τ ) → Lp(M2) is an
isometry, then there are, uniquely,

1. a normal Jordan *-monomorphism J : M1 → M2,

2. a partial isometry w ∈ M2 with w∗w = J(1), and

3. a normal semifinite weight ϕ on M2, which commutes with J(M1)′′ and
satisfies s(ϕ) = J(1), ϕ(J(x)) = τ (x) for all x ∈ (M1)+,

all satisfying

T (x) = wϕ1/pJ(x), ∀x ∈ M1 ∩ Lp(M1, τ ).(2.6)

Remark 2.3. An operator interpretation of τ and ϕ requires a little more
explanation when they are unbounded functionals ([Ya],[S2]), or one can rewrite
(2.6) as

T (h1/p) = w(ϕJ(h))1/p, h ∈ M1 ∩ L1(M1, τ )+,(2.7)

and extend by linearity. We will use (2.7) in the sequel.

For Theorems 2.1 and 2.2, a key ingredient of the proofs is the equality
condition in the Clarkson inequality for noncommutative Lp spaces. Yeadon
[Y1] showed this for semifinite von Neumann algebras; a few years later Kosaki
[K2] proved it for arbitrary von Neumann algebras with 2 < p < ∞; and only
recently Raynaud and Xu [RX] obtained a general version (relying on Kosaki’s
work). It plays a role in this paper as well.

Theorem 2.4 [RX]. (Equality condition for noncommutative Clarkson
inequality)

For ξ, η ∈ Lp(M), 0 < p < ∞, p �= 2,

‖ξ + η‖p + ‖ξ − η‖p = 2(‖ξ‖p + ‖η‖p) ⇐⇒ ξη∗ = ξ∗η = 0.(2.8)

We remind the reader that Lp elements have left and right support pro-
jections in M. Since s�(ξ) ⊥ s�(η) ⇐⇒ ξ∗η = 0 as elements of Haagerup’s Lp
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space, we will call pairs satisfying the conditions of (2.8) orthogonal. (This can
be interpreted in terms of Lp/2-valued inner products, see [JS].) We mentioned
earlier that isometries of classical Lp spaces preserve disjointness of support:
Theorem 2.4 tells us that all Lp isometries actually preserve orthogonality,
which is disjointness of left and right supports.

Comparing (1.1) and (2.1), one sees that typical Lp isometries correspond
to a noncommutative interpretation of Banach’s classification result for Lp(0, 1).
One may think of the partial isometry w as a “noncommutative function of unit
modulus” (corresponding to sgn h), and the precomposition with J−1 ◦ P as
a “ noncommutative isometric composition operator” (corresponding to f 
→
|h| · (f ◦ ϕ)).

§3. L1 Isometries

The starting point for our investigation is the following (paraphrased) re-
sult of Bunce and Wright. Recall that an o.d. homomorphism (M1)∗ → (M2)∗
is a linear homomorphism which is positive and preserves orthogonality between
positive functionals.

Theorem 3.1 (∼ [BW1, Theorem 2.6]). If T : (M1)∗ → (M2)∗ is an
o.d. homomorphism, then the map

J : s(ϕ) → s(T (ϕ)), ϕ ∈ (M1)+∗

is well-defined and extends to a normal Jordan *-homomorphism. We have
T ∗(1) central in M1, and

T (ϕ)(J(x)) = ϕ(T ∗(1)x), ∀x ∈ M1, ∀ϕ ∈ (M1)+∗ .(3.1)

Consider the case where T is a positive isometry of (M1)∗ into (M2)∗.
Then T is an o.d. homomorphism, as the equality condition of the Clarkson
inequality shows:

ϕ ⊥ ψ ⇒ ‖ϕ + ψ‖ + ‖ϕ − ψ‖ = 2(‖ϕ‖ + ‖ψ‖)
⇒ ‖T (ϕ) + T (ψ)‖ + ‖T (ϕ) − T (ψ)‖ = 2(‖T (ϕ)‖ + ‖T (ψ)‖)
⇒ T (ϕ) ⊥ T (ψ).

Applying Theorem 3.1 and equation (3.1), we first note that

‖ϕ‖ = ‖T (ϕ)‖ = T (ϕ)(s(T (ϕ))) = T (ϕ)(J(s(ϕ))) = ϕ(T ∗(1)s(ϕ))(3.2)
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for each ϕ ∈ (M1)∗, which is only possible if J is a monomorphism and T ∗(1) =
1. By (3.1) we have that T ∗ ◦ J = idM1 . Then P � J ◦ T ∗ is a normal positive
projection from M2 onto J(M1), T ∗ = J−1 ◦ P , and T is (J−1 ◦ P )∗.

The following observation will be useful. Since P = J ◦ T ∗, the supports
of P and T ∗ are the same. But s(T ∗) is the smallest projection in M2 such
that for all x ∈ (M2)+, ϕ ∈ (M1)+∗ ,

T (ϕ)(x) = ϕ(T ∗(x)) = ϕ(T ∗(s(T ∗)xs(T ∗))) = T (ϕ)(s(T ∗)xs(T ∗)).

Thus

s(P ) = s(T ∗) = sup
ϕ

s(T (ϕ)) = sup
ϕ

J(s(ϕ)) = J(1) = P (1).(3.3)

Now consider an isometry T from L1(M1) to L1(M2) which is not neces-
sarily positive. Let ϕ, ψ ∈ (M1)+∗ be arbitrary, and let the polar decompositions
be

T (ϕ) = u|T (ϕ)|; T (ψ) = v|T (ψ)|; T (ϕ + ψ) = w|T (ϕ + ψ)|.

So u∗u = s(|T (ϕ)|), and similarly for the others. Then

|T (ϕ + ψ)| = w∗T (ϕ + ψ) = w∗(T (ϕ) + T (ψ)) = w∗u|T (ϕ)| + w∗v|T (ψ)|.

View both sides as linear functionals and evaluate at 1:

|T (ϕ + ψ)|(1) = |T (ϕ)|(w∗u) + |T (ψ)|(w∗v) ≤ |T (ϕ)|(u∗u) + |T (ψ)|(v∗v)

= ‖T (ϕ)‖ + ‖T (ψ)‖ = ‖ϕ‖ + ‖ψ‖ = ‖ϕ + ψ‖ = ‖T (ϕ + ψ)‖ = |T (ϕ + ψ)|(1).

Apparently the inequality is an equality, which implies by Cauchy-Schwarz that
w s(|T (ϕ)|) = u, w s(|T (ψ)|) = v. It follows that any partial isometry occurring
in the polar decomposition of some T (ϕ) is a reduction of a largest partial
isometry w, with sr(w) = ∨{sr(T (ϕ)) | ϕ ∈ (M1)+∗ }, so that T (ϕ) = w|T (ϕ)|
for any ϕ ∈ (M1)+∗ . Then ξ 
→ w∗T (ξ) is a positive linear isometry, and we may
use the previous argument to obtain the decomposition T (ξ) = w(J−1 ◦P )∗(ξ).
Necessarily by (3.3) w∗w = J(1); if there is a faithful normal state ρ on M1,
w occurs in the polar decomposition of T (ρ).

We have shown that

Theorem 3.2. An L1 isometry is typical.

A different proof of this can be found in Kirchberg [Ki, Lemma 3.6].
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Remark 3.3. Using GYT and Theorem 3.2, it is not difficult to prove
that all Lp isometries with semifinite domain are typical. For if (2.7) holds,
one may define the positive L1 isometry

T ′ : τx 
→ ϕJ(x), x ∈ L1(M1, τ )+

and deduce typicality for T from that of T ′. As the development of this paper
is intended to be independent of GYT, we derive this fact (and GYT) formally
in Section 5.

§4. Lp Isometries, p > 1

Now consider an Lp isometry T with 1 < p < ∞, p �= 2. Define

T̄ : Lp(M1)+ → Lp(M2)+, T̄ (ϕ1/p) = |T (ϕ1/p)|.

Is this map linear on Lp(M1)+? To attack this question, we make the following

Definition 4.1. A continuous finite measure (c.f.m.) on Lp(M)+
(1 ≤ p < ∞) is a nonnegative real-valued function ρ which satisfies

1. ρ(λϕ1/p) = λρ(ϕ1/p),

2. ϕ ⊥ ψ ⇒ ρ(ϕ1/p + ψ1/p) = ρ(ϕ1/p) + ρ(ψ1/p),

3. ρ(ϕ1/p) ≤ C‖ϕ1/p‖ for some C < ∞ (denote by ‖ρ‖ the least such C),

4. ϕ
1/p
n → ϕ1/p ⇒ ρ(ϕ1/p

n ) → ρ(ϕ1/p),

for ψ, ϕ, ϕn ∈ M+
∗ , λ ∈ R+.

A von Neumann algebra M will be said to have EPp (extension property
for p) if every c.f.m. ρ on Lp(M)+ is additive. This implies that ρ extends
uniquely to a continuous linear functional on all of Lp(M) and thus may be
identified with an element of Lq(M)+ (1/p + 1/q = 1).

Remark 4.2. These definitions are adapted from [W2], where c.f.m.
are defined on L1(M)+ only (and C = 1, which is inconsequential). Thus
Watanabe’s EP corresponds to EP1 in our context.

Returning to T̄ , we see that each element ψ1/q ∈ Lq(M2)+ generates
a c.f.m. on Lp(M1)+ via ϕ1/p 
→ 〈T̄ (ϕ1/p), ψ1/q〉. The only nontrivial condi-
tions to check are (2) and (4). T̄ preserves orthogonality, so it is additive on
orthogonal elements, proving (2). (4) follows from a result of Raynaud
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[R, Lemma 3.2] on the continuity of the absolute value map in Lp, 0 < p < ∞.
The same lemma also shows that the map

Lp
+ → Lq

+, ϕ1/p 
→ ϕ1/q (0 < p, q < ∞)(4.1)

is continuous, which will be useful shortly.
If M1 has EPp, then the c.f.m. generated by ψ1/q must be evaluation at

some positive element of Lq(M1). We denote this element by π(ψ1/q), so

〈ϕ1/p, π(ψ1/q)〉 = 〈T̄ (ϕ1/p), ψ1/q〉.(4.2)

Now for all ϕ1/p ∈ Lp(M1)+,

〈ϕ1/p, π(ψ1/q)〉 = 〈|T (ϕ1/p)|, ψ1/q〉 ≤ ‖T (ϕ1/p)‖‖ψ1/q‖ = ‖ϕ1/p‖‖ψ1/q‖,

so π is norm-decreasing. And

〈ϕ1/p, π(ψ1/q
1 + ψ

1/q
2 )〉 = 〈T̄ (ϕ1/p), ψ1/q

1 + ψ
1/q
2 〉

= 〈T̄ (ϕ1/p), ψ1/q
1 〉 + 〈T̄ (ϕ1/p), ψ1/q

2 〉

= 〈ϕ1/p, π(ψ1/q
1 )〉 + 〈ϕ1/p, π(ψ1/q

2 )〉,

so π is linear. Also denote by π the unique linear extension to all of Lq(M2).
Now by (4.2), T̄ agrees with π∗ on Lp(M1)+. In particular, T̄ is additive.

A symmetric argument shows that the map

ϕ1/p 
→ |T (ϕ1/p)∗|, ϕ1/p ∈ Lp(M1)+(4.3)

is additive. Knowing that these two maps are additive allows us to find one of
the ingredients of typicality, the partial isometry.

Choose ϕ, ψ ∈ (M1)+∗ , and let the polar decompositions be

T (ϕ1/p) = u|T (ϕ1/p)|; T (ψ1/p) = v|T (ψ1/p)|;

T (ϕ1/p + ψ1/p) = w|T (ϕ1/p + ψ1/p)|.

We calculate[
u|T (ϕ1/p)|1/2 − w|T (ϕ1/p)|1/2

] [
u|T (ϕ1/p)|1/2 − w|T (ϕ1/p)|1/2

]∗
+

[
v|T (ψ1/p)|1/2 − w|T (ψ1/p)|1/2

] [
u|T (ψ1/p)|1/2 − w|T (ψ1/p)|1/2

]∗
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= u|T (ϕ1/p)|u∗ + w|T (ϕ1/p)|w∗ − u|T (ϕ1/p)|w∗ − w|T (ϕ1/p)|u∗

+v|T (ψ1/p)|v∗ + w|T (ψ1/p)|w∗ − v|T (ψ1/p)|w∗ − w|T (ψ1/p)|v∗.

Now we use

u|T (ϕ1/p)|u∗ + v|T (ψ1/p)|v∗ = |T (ϕ1/p)∗| + |T (ψ1/p)∗|
= |T (ϕ1/p + ψ1/p)∗|
= w|T (ϕ1/p + ψ1/p)|w∗

= w|T (ϕ1/p)|w∗ + w|T (ψ1/p)|w∗

(which follows from additivity of (4.3) and T̄ ) on the first and fifth term, and

u|T (ϕ1/p)| + v|T (ψ1/p)| = w|T (ϕ1/p + ψ1/p)| = w|T (ϕ1/p)| + w|T (ψ1/p)|

(which follows from additivity of T and T̄ ) on the third and seventh, and fourth
and eighth. This gives

w|T (ϕ1/p)|w∗ + w|T (ϕ1/p)|w∗ − w|T (ϕ1/p)|w∗ − w|T (ϕ1/p)|w∗

+w|T (ψ1/p)|w∗ + w|T (ψ1/p)|w∗ − w|T (ψ1/p)|w∗ − w|T (ψ1/p)|w∗ = 0.

We conclude that

u|T (ϕ1/p)|1/2 = w|T (ϕ1/p)|1/2, v|T (ψ1/p)|1/2 = w|T (ψ1/p)|1/2,

which means that u and v are restrictions of w. Then there is a largest partial
isometry w with T (ϕ1/p) = w|T (ϕ1/p)| for all ϕ1/p ∈ Lp(M1)+. This means
that the map

ξ 
→ w∗T (ξ), ξ ∈ Lp(M1)

is a positive linear isometry.
So it suffices to show typicality for a positive Lp isometry T . We will now

assume that M1 has EP1. Consider the map

T ′ : (M1)+∗ → (M2)+∗ ; ϕ → T (ϕ1/p)p.(4.4)

By mimicking the argument given above for T̄ , we may use EP1 to show that T ′

is additive. (Each h in (M2)+ generates a c.f.m. on (M1)+∗ by ϕ 
→ T ′(ϕ)(h).
If we denote by π′(h) the corresponding element of (M1)+, then π′ is linear and
extends to all of M2. We have that T ′ is the restriction of (π′)∗ to (M1)+∗ .)

Now extend T ′ linearly to all of (M1)∗ (as (π′)∗). Apparently T ′ is an
o.d. homomorphism (remember that T preserves orthogonality), so we may
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apply Theorem 3.1. Since T ′ is isometric on (M1)+∗ by (4.4), (3.2) again shows
that J is a monomorphism and (T ′)∗(1) = 1. Then (T ′)∗ ◦ J = idM1 , and
P � J ◦ (T ′)∗ is a normal positive projection from M2 onto J(M1).

Finally, notice that for any x ∈ M2,

T (ϕ1/p)p(x) = T ′(ϕ)(x) = ϕ((T ′)∗(x)) = ϕ(J−1◦J ◦(T ′)∗(x)) = ϕ(J−1◦P (x)).

Therefore T (ϕ1/p) = (ϕ ◦ J−1 ◦ P )1/p. We have shown

Theorem 4.3. Let T be an isometry from Lp(M1) to Lp(M2) (1 <

p < ∞, p �= 2), and assume M1 has EPp and EP1. Then T is typical. If T is
positive, then EP1 alone is sufficient to conclude typicality.

§5. EPp Algebras

Probably the reader is already wondering: Which von Neumann algebras
have EPp? This an Lp version of an old question of Mackey on linear extensions
of measures on projections. The most relevant formulation is the following: sup-
pose µ is a bounded nonnegative real-valued function on the projections in a
von Neumann algebra M which is completely additive on orthogonal projec-
tions. Is µ the restriction of a normal linear functional? The answer is yes,
provided M has no summand of type I2. This was achieved in stages by Glea-
son [G], Christensen [Ch], Yeadon [Y2]; for a very general result see [BW2]. It
is tempting to expect the same answer for EPp - and this would resolve Ques-
tion 1.1 affirmatively, by Theorem 4.3 - but there is no obvious Lp analogue
for the lattice of projections in a von Neumann algebra. For example, a state
with trivial centralizer [HT] cannot be written in any way as the sum of two
orthogonal positive normal linear functionals.

At the other extreme, a trace τ allows us to embed the τ -finite elements
densely into the predual while preserving orthogonality. This leads to Theorem
5.3, due in large part to Watanabe [W3, Lemma 6.7 and Theorem 6.9]. Working
with EP1, he proved the first part for sequences and the second for finite von
Neumann algebras. With his permission, we incorporate his proof in the one
given here.

We need a little preparation.

Definition 5.1. Let M be a von Neumann algebra and {Eα} a net of
normal conditional expectations onto increasing subalgebras {Mα}. We do not
assume that the Eα are faithful, but we do require that s(Eα) = Eα(1) (which
is the unit of Mα). Assume further that ∪Mα is σ-weakly dense in M, and
Eα ◦ Eβ = Eα for α < β. Then we say that M is paved out by {Mα, Eα}.
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Theorem 5.2 (∼ [Ts, Theorem 2]). Let M be paved out by {Mα, Eα}.

1. For any θ ∈ M+
∗ , (θ ◦ Eα) → θ in norm.

2. For any x ∈ M, Eα(x) converges strongly to x. (We write Eα(x) s→ x.)

Theorem 5.2 is proved by Tsukada in a slightly different guise. He does
not start by assuming that ∪Mα is σ-weakly dense in M, but reduces to this
case by requiring that all Eα preserve some faithful normal semifinite weight.
He also requires that the Eα are faithful, so let us show how his proof may be
altered to handle the weaker assumption s(Eα) = Eα(1).

The faithfulness is used in showing that if Eα(x) = 0 for all α, then
x = 0. First Tsukada deduces that Eα(x∗x) = 0 for any α, and of course
the faithfulness of a single Eα immediately implies that x∗x = 0. Without
faithfulness, we obtain that

Eα[s(Eα)(x∗x)s(Eα)] = Eα(x∗x) = 0 ⇒ s(Eα)x∗xs(Eα) = 0.

By assumption s(Eα) ↗ 1, so we still conclude x∗x = 0.

Theorem 5.3. Let 1 ≤ p < ∞.

1. If M is paved out by {Mα, Eα}, and each Mα has EPp, then M has EPp.

2. A semifinite von Neumann algebra with no summand of type I2 has EPp.

Proof. Assume the hypotheses of (1) and let ρ be a c.f.m. on Lp(M)+.
Then

ρα(ϕ1/p) � ρ((ϕ ◦ Eα)1/p), ϕ1/p ∈ Lp(Mα)+,

defines a c.f.m on Lp(Mα)+. (Note that ρα is continuous because the map

ϕ1/p 
→ (ϕ ◦ Eα)1/p(5.1)

generates an isometric embedding Lp(Mα) ↪→ Lp(M), as reviewed in Section 6.
Since ϕ and ϕ ◦ Eα have the same support in Mα ⊂ M, ρα is additive on
orthogonal elements.) We have assumed that Mα has EPp, so there is ψ

1/q
α ∈

Lq(Mα)+, ‖ψ1/q
α ‖ ≤ ‖ρ‖, with ρα(ϕ1/p) = 〈ϕ1/p, ψ

1/q
α 〉. Now for any θ1/p ∈

Lp(M)+, we have (θ ◦ Eα)1/p → θ1/p in norm. This follows from Theorem
5.2(1) and the continuity of (4.1).
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We invoke the continuity of ρ to calculate

ρ(θ1/p) = lim ρ((θ ◦ Eα)1/p) = lim ρα((θ |Mα
)1/p)

= lim〈(θ |Mα
)1/p, ψ1/q

α 〉 = lim〈(θ ◦ Eα)1/p, (ψα ◦ Eα)1/q〉.

The last equality depends on the fact that the family of inclusions (5.1) also
preserves duality, as mentioned in Section 6.

These arguments show that

〈θ1/p, (ψα ◦ Eα)1/q〉
= 〈θ1/p − (θ ◦ Eα)1/p, (ψα ◦ Eα)1/q〉 + 〈(θ ◦ Eα)1/p, (ψα ◦ Eα)1/q〉
→ 0 + ρ(θ1/p).

(Note that ‖(ψα ◦ Eα)1/q‖ = ‖ψ1/q
α ‖ is bounded.) Then ρ is the limit of linear

functionals and therefore linear itself, so M has EPp.
To prove part (2), first consider a finite algebra N with normal faithful

trace τ and no summand of type I2. Given a c.f.m. ρ, define the following
measure on the projection lattice of N : Φ(q) = ρ(qτ1/p). The continuity of
ρ implies that Φ is completely additive on orthogonal projections. By the
result mentioned at the beginning of this section, there must be ϕ ∈ M+

∗ with
Φ(q) = ϕ(q). Since N is finite, ϕ is of the form τh for some h ∈ L1(N , τ )+. We
obtain

ρ(qτ1/p) = τh(q).

Any element of Lp(N , τ )+ is well-approximated by a finite positive linear com-
bination of orthogonal projections, so ρ being a c.f.m. gives us

ρ(kτ1/p) = τ (hk), ∀k ∈ N+.

Now the map kτ1/p 
→ τ (hk) is bounded (by ‖ρ‖), so we must have h ∈
Lq(N , τ )+. That is,

ρ(kτ1/p) = 〈kτ1/p, hτ1/q〉,

and so N has EPp.
Part (2) then follows from (1): given M semifinite, we may fix a faithful

normal semifinite trace τ and notice that M is paved out by

{qαMqα, Eα : x 
→ qαxqα},

where qα runs over the lattice of τ -finite projections.
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Remark 5.4. Just as in Mackey’s question, von Neumann algebras of
type I2 do not have EPp. In M2, for example, the manifold of one-dimensional
projections can be homeomorphically identified with the Riemann sphere S2.
To extend (using Definition 4.1) to a c.f.m. on Lp(M2)+, a continuous nonneg-
ative function ρ on the sphere only needs to satisfy

ρ(p) + ρ(1 − p) = constant, ∀p ∈ S2.

(This is because 1 is the only element which may be written in more than one
way as an orthogonal sum of positive elements.) But typically such a c.f.m. will
not be linear with respect to the vector space structure of Lp(M2). The space
of functions defined above is an infinite-dimensional real cone, but Lq(M2)+
has dimension four.

From Theorems 5.3(2) and 4.3, we see that an Lp isometry with M1 semifi-
nite (and lacking a type I2 summand) must be typical. After a preparatory
lemma, we finally use this to give a new proof of GYT.

Lemma 5.5. Let J : M1 → M2 be a normal Jordan *-monomorphism,
P : M2 → J(M1) a normal positive projection, x ∈ M1, and y ∈ M2.

1. ‖P‖ = 1.

2. P (J(x) • y) = J(x) • P (y).

3. P (J(x)yJ(x)) = J(x)P (y)J(x).

4. P (J(M1)′ ∩M2) = J(Z(M1)).

Proof. Since ‖P (1)‖ = 1, the first statement is a consequence of the corol-
lary to the Russo-Dye Theorem [DR]. The next two statements are straight-
forward adaptations of [St2, Lemma 4.1], but it will be useful to note here
that the third follows from the second by the general Jordan algebra identity
aba = 2a• (a•b)−a2 •b. The fourth is not new, but less explicit in our sources.
It follows from taking z ∈ J(M1)′ ∩M2 and a projection p ∈ M1, and using
the previous parts:

J(p) • P (z) = P (J(p) • z) = P (J(p)zJ(p)) = J(p)P (z)J(p).(5.2)

Applying J−1 to (5.2) and using the Jordan identity just mentioned gives

p • [J−1 ◦ P (z)] = p[J−1 ◦ P (z)]p.
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This implies that J−1 ◦ P (z) ∈ Z(M1).

Note that Lemma 5.5(2) is the Jordan version of the fact that conditional
expectations are bimodule maps.

Theorem 5.6. Let T be an Lp isometry, and assume (M1, τ ) is semifi-
nite with no type I2 summand. Then GYT (Theorem 2.2) holds.

Proof. We first make the identification (2.5) between Lp(M1, τ ) and
Lp(M1). As just noted, T is typical, so there are w, J, P satisfying (1.1).
Letting ϕ be the (necessarily normal and semifinite) weight τ ◦ J−1 ◦ P , we
have ϕ(J(h)) = τ (h) for h ∈ (M1)+. Equation (3.3) guarantees that s(ϕ) =
J(1) = w∗w. It is left to show that ϕ commutes with J(M1)′′, to derive (2.7),
and to show uniqueness of the data.

Because ϕ may be unbounded, the commutation is more delicate than
ϕJ(x) = J(x)ϕ. The precise meaning is that J(M1)′′ ⊂ (M2)ϕ, the centralizer
of ϕ; we need to show that σϕ, which is defined on s(ϕ)M2s(ϕ), is the identity
on J(M1)′′. One natural approach goes by Theorem 7.1, but here we give a
different argument.

Let q be an arbitrary projection of M1, and let s be the symmetry (=self-
adjoint unitary) 1 − 2q. For y ∈ (M2)+, we use Lemma 5.5 to compute

ϕ(J(s)yJ(s)) = τ ◦ J−1 ◦ P (J(s)yJ(s)) = τ (sJ−1 ◦ P (y)s) = ϕ(y).

Thus ϕ = ϕ ◦ AdJ(s). By [T2, Corollary VIII.1.4], for any y ∈ J(1)M2J(1)
and t ∈ R,

σϕ
t (y) = σ

(ϕ◦Ad J(s))
t (y) = Ad J(s) ◦ σϕ

t ◦ AdJ(s)(y)

= J(s)σϕ
t (J(s))σϕ

t (y)σϕ
t (J(s))J(s).

Since y is arbitrary, we have that for each t, J(s)σϕ
t (J(s)) belongs to the center

of J(1)M2J(1). Then

[J(s)σϕ
t (J(s))]J(s) = J(s)[J(s)σϕ

t (J(s))] = σϕ
t (J(s))

⇒ J(s)σϕ
t (J(s)) = σϕ

t (J(s))J(s).

Central elements are fixed by modular automorphism groups, so

J(s)σϕ
t (J(s)) = σϕ

t (J(s))J(s) = σϕ
−t[σ

ϕ
t (J(s))J(s)] = J(s)σϕ

−t(J(s)).

Then
σϕ

t (J(s)) = σϕ
−t(J(s)) ⇒ σϕ

2t(J(s)) = J(s).
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So σϕ fixes all symmetries in J(M1), so all projections in J(M1), so all of
J(M1), and finally all of J(M1)′′. We will use this in the proof of Proposi-
tion 8.2.

Now take any h ∈ M1 ∩ L1(M1, τ )+, y ∈ M2, and observe

ϕJ(h)[y] = τ◦J−1◦P [J(h1/2)yJ(h1/2)] = τ [h1/2J−1◦P (y)h1/2] = τh◦J−1◦P [y].

This implies

w(ϕJ(h))1/p = w(τh ◦ J−1 ◦ P )1/p = T (h1/p),

which is exactly (2.7).
It remains to establish the uniqueness of the data w, J, ϕ. If v, K, ψ also

verify the hypotheses of GYT, then for any τ -finite projection q ∈ M1, we have

w(ϕJ(q))1/p = T (q) = v(ψK(q))1/p ⇒ ϕJ(q) = ψK(q).(5.3)

Now take any projection p ∈ M1, and note that for all τ -finite q ≤ p,

‖ψK(q)‖ = ‖ϕJ(q)‖ = ϕJ(q)(J(p)) = ψK(q)(J(p)).

This is only possible if J(p) ≥ K(q), and after taking the supremum over q we
get J(p) ≥ K(p). A parallel argument gives the opposite inequality, implying
J = K. By (5.3) we have ψJ(q) = ϕJ(q) for all τ -finite projections q, so ϕ = ψ

as weights. That w = v is now obvious.

Of course GYT and typicality still hold on I2 summands, by Yeadon’s
theorem and Remark 3.3. The uniqueness argument above suggests the same
statement for typical isometries, which we now prove.

Proposition 5.7. Any typical Lp isometry can be written in the form
(1.1) for a unique triple w, J, P satisfying s(P ) = P (1)(= J(1)).

Proof. We always have that s(P ) commutes with J(M1) [ES, Lemma 1.2]
and has the same central support as P (1). So if we consider the new Jordan *-
monomorphism J0 : x 
→ J(x)s(P ) and the new projection P0 : y 
→ P (y)s(P ),
we have J−1 ◦ P = J−1

0 ◦ P0 and s(P0) = P0(1).
To show uniqueness, suppose that an Lp isometry can be written in terms

of two triples w, J, P and w′, J ′, P ′ satisfying all the necessary conditions. By
taking absolute values we get that ϕ◦J−1◦P = ϕ◦J ′−1◦P ′ for all ϕ ∈ (M1)+∗ ,
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so we must have that the maps J−1 ◦ P and J ′−1 ◦ P ′ agree. Applying these
to J ′(p), p a projection in M1, gives

p = J−1 ◦ P ◦ J ′(p), or J(p) = P ◦ J ′(p).

Using Lemma 5.5(3), we calculate

P (J(p)J ′(p)J(p)) = J(p)P (J ′(p))J(p) = J(p)J(p)J(p) = J(p) = P (J(p)).

But J(p)J ′(p)J(p) ≤ J(p), and P is faithful on J(1)M2J(1). Therefore the
inequality is an equality, which implies J ′(p) ≥ J(p). The opposite inequality
is derived symmetrically, so J and J ′ agree on projections and must agree
everywhere. Knowing this, it is easy to see that P = P ′ and w = w′.

Because of Proposition 5.7, in the rest of the paper we will always assume
that the support of a normal positive projection P is equal to P (1). This was
incorporated into Definition 5.1 for the special case of conditional expectations,
and we saw in (3.3) that it already holds for all P generated by Theorem 3.1.

There are a few results in the literature which can be employed to establish
EPp in some type III von Neumann algebras. It follows from a construction
of Connes [C1, Corollaire 5.3.6] that factors of type III0 with separable pred-
ual are paved out by II∞ algebras ([C2, Proposition 3.9], [HS1, Theorem 8.3]),
so by Theorem 5.3 they all have EPp. In another direction, we have the fol-
lowing theorem of Junge, Ruan, and Xu, which is a nontrivial modification of
fundamental results for type III factors by Connes [C3] and Haagerup [H2].

Theorem 5.8 [JRX, Theorem 7.1]. Let M be a hyperfinite type III von
Neumann algebra with separable predual. Then there exist a normal faithful
state ϕ on M and an increasing sequence of ϕ-invariant normal faithful condi-
tional expectations {Ek} from M onto type I von Neumann subalgebras {Nk}
of M such that ∪Nk is σ-weakly dense in M.

This allows us to show

Proposition 5.9. Let M be a hyperfinite type III algebra with separable
predual. Then M has EPp.

Proof. This is a direct consequence of Theorems 5.3 and 5.8. The only
point which may not be obvious is that one can avoid I2 summands. That is
easy to fix: given by Theorem 5.8 the paving

Ek : M → Nk
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where Nk are type I, consider

Ek ⊗ id : M⊗ M3 → Nk ⊗ M3.

Since M is isomorphic to M⊗M3, {Nk⊗M3} can be identified with conditioned
subalgebras of M which have no summands of type I2. Theorem 5.3 applies to
the latter paving.

Definition 5.10. A von Neumann algebra will be called approxi-
mately semifinite (AS) if it can be paved out by semifinite subalgebras.

This terminology is an obvious analogy with the approximately finite-
dimensional (AFD) algebras, but it does not seem to be in the literature.
Assuming separable predual, so far we have seen that the class of AS alge-
bras contains all hyperfinite algebras and III0 factors. It also contains others:
for example, the tensor product of a hyperfinite type III algebra with L(Fn),
n ≥ 2. If we ignore I2 summands, we have the inclusions of classes

AS ⊂ EPp ⊂ vNa.

As of this writing the author does not know if both of these inclusions are
proper, or whether EPp is independent of p. We remark that if one wanted to
show that all von Neumann algebras with no I2 summand have EPp, it would
suffice to prove EPp for all type III algebras with separable predual. This fol-
lows from the fact that all von Neumann algebras are paved out by subalgebras
with separable predual (an observation of Haagerup included in [GGMS]). So
given an arbitrary type III algebra, tensor such a paving by M3 as in the proof
of Proposition 5.9 above.

Regarding AS, we wish to point out that a paving by semifinite algebras
may necessarily avoid some subalgebras: the centralizer of an inner homo-
geneous state on a hyperfinite type III algebra is not properly contained in
any other conditioned semifinite subalgebra (see [He] or [C1, Théorème 4.2.6]).
Such pavings do not exist in general; the author has recently established that
not all von Neumann algebras are AS. This will be presented in another set-
ting.

At this point we have verified all the assertions in Theorem 1.2. We should
also mention that it is possible to show directly that Lp isometries with AS
domains are typical: pave out the domain with semifinite Lp spaces, apply
typicality to each subspace, and argue that the associated Jordan maps, partial
isometries, and projections all converge in an appropriate sense. Such a proof
would presumably invoke Theorem 7.1.
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§6. Lp Isometries from *-(Anti)Isomorphisms and
Conditional Expectations

The projection P occurring in our definition of typicality is formally very
similar to a normal conditional expectation. In this section we provide a con-
struction of Lp isometries associated to *-(anti)isomorphisms onto subalgebras
which are the range of a normal conditional expectation. Some of this material
can be found in the literature: [J, Section 2], [HRS, Section 6], and [JX, Sec-
tion 2] treat the multiplicative case, while [W1, Section 3] discusses the general
case (some errors are pointed out in [W2], [W3]). None of these make explicit
the independence from the choice of reference state, which is crucial for the for-
mulation of Proposition 6.3. In the succeeding sections we will try to formulate
the analogous theory for P and apply it to Question 1.3.

We start by showing how a normal conditional expectation E : M → N
induces an inclusion of Lp spaces. Since Lp(s(E)Ms(E)) ⊂ Lp(M) naturally,
we may assume that E is faithful. One method is by Kosaki’s adaptation of the
complex interpolation method [K1]. Assume that N is σ-finite, fix a faithful
state ϕ ∈ N∗, and consider the left embedding of N in N∗: x 
→ xϕ. Then
Lp(N ) arises as the interpolated Banach space at 1/p [K1, Theorem 9.1]; more
precisely, we have

Lp(N )ϕ1/q = [N ,N∗]1/p � Lp(N ), 1/p + 1/q = 1.(6.1)

Here the equality is meant as sets, while the isomorphism is an isometric iden-
tification of Banach spaces.

We isometrically include this interpolation couple, by E∗, in the interpo-
lation couple for (M,M∗) arising from the embedding y 
→ y(ϕ ◦ E). The
reader can check that the following diagram commutes, with the horizontal
compositions being identity maps:

N −−−−→ M E−−−−→ N� � �
N∗

E∗−−−−→ M∗
restriction−−−−−−→ N∗

It is important here that E is a bimodule map: E(n1mn2) = n1E(m)n2! Then
by general interpolation theory (e.g. [K1, Theorem 1.2]) one may interpolate
these 1-complemented inclusions to get a 1-complemented inclusion at the Lp

level. By (6.1) we know that the map is densely defined by xϕ1/p 
→ x(ϕ◦E)1/p.

Proposition 6.1. The Lp isometry constructed in the previous para-
graph is independent of the choice of ϕ.
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Proof. We show that when there is some C < ∞ so that ϕ2/p ≤ Cψ2/p

as operators in the modular algebra,

xϕ1/p = yψ1/p ⇒ x(ϕ ◦ E)1/p = y(ψ ◦ E)1/p, x, y ∈ N .(6.2)

This is sufficient, because by [Sc, Lemma 2.2],

ϕ2/p ≤ Cψ2/p ⇒ ϕ1/p = zψ1/p for some z ∈ N ,

and (6.2) then implies that the embeddings for ϕ and ψ agree on the dense set
{xϕ1/p | x ∈ N}. For any two faithful normal states ϕ, θ, we can conclude that
the embeddings each equal the embedding for (ϕ2/p+θ2/p)p/2

‖(ϕ2/p+θ2/p)p/2‖ and therefore
equal each other.

To prove (6.2), first recall the Connes cocycle derivative equation [T2,
Corollary VIII.4.22]

(D(ϕ ◦ E) : D(ψ ◦ E))t = (Dϕ : Dψ)t.(6.3)

The condition ϕ2/p ≤ Cψ2/p guarantees that (Dϕ : Dψ)t extends to a contin-
uous N -valued function on the strip {0 ≥ Im z ≥ −1/p} which is analytic on
the interior ( ∼ [T2, Theorem VIII.3.17], or see [S2]). We calculate

xϕ1/p = yψ1/p ⇒ x(Dϕ : Dψ)−i/p = y

⇒ x(D(ϕ ◦ E) : D(ψ ◦ E))−i/p = y

⇒ x(ϕ ◦ E)1/p = y(ψ ◦ E)1/p.

So we can avoid interpolation (and the choice of a reference state) alto-
gether by simply writing the Lp isometry as

ϕ1/p 
→ (ϕ ◦ E)1/p, ϕ ∈ N+
∗ ,(6.4)

and extending linearly off the positive cone. In a manner similar to the proof of
Proposition 6.1, one can show that the family of inclusions (6.4) preserves the
duality between Lp(N ) and Lq(N ) (1/p + 1/q = 1). It is also worth noting
that right-hand embeddings of the form N � x 
→ ϕx ∈ N∗, or even others,
will necessarily produce the same Lp isometry, namely (6.4).

In case N is not σ-finite, (6.4) defines an Lp isometry on each qN q, where
q is a σ-finite projection in N . Every finite set of vectors in Lp(N ) belongs to
some such qLp(N )q, as the left and right supports of each vector belong to the
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lattice of σ-finite projections. Being defined by (6.4), these Lp isometries agree
on their common domains and so define a global Lp isometry.

Suppressed in the above scenario is an inclusion map ι : N ↪→ M, which is
of course multiplicative. What if it is antimultiplicative? Since we have already
discussed the effect of the conditional expectation, let us consider only the map
on Lp(M) induced by a normal *-antiautomorphism α : M → M.

Fixing faithful ϕ, we set up the interpolation as follows. In the domain,
M ⊂ M∗ via x 
→ xϕ, while in the range, M ⊂ M∗ via y 
→ (ϕ ◦ α−1)y. This
gives us the commutative diagram

M α−−−−→ M� �
M∗ −−−−→

(α−1)∗
M∗

Because the inclusions are commuting and surjective, we get a surjective Lp

isometry which by (6.1) is densely defined by xϕ1/p 
→ (ϕ ◦ α−1)1/pα(x).
Once again this map is independent of the choice of ϕ. The proof is the

same as that of Proposition 6.1: it suffices to verify

xϕ1/p = yψ1/p ⇒ (ϕ ◦ α−1)1/pα(x) = (ψ ◦ α−1)1/pα(y)(6.5)

under the assumption ϕ2/p ≤ ψ2/p. Temporarily assuming the cocycle identity

(D(ψ ◦ α−1) : D(ϕ ◦ α−1))t = α((Dϕ : Dψ)−t),(6.6)

we have

xϕ1/p = yψ1/p ⇒ x(Dϕ : Dψ)−i/p = y

⇒ α[(Dϕ : Dψ)−i/p]α(x) = α(y)

⇒ [(D(ψ ◦ α−1) : D(ϕ ◦ α−1))i/p]α(x) = α(y)

⇒ (ϕ ◦ α−1)1/pα(x) = (ψ ◦ α−1)1/pα(y).

Of course it remains to show

Lemma 6.2. Equation (6.6) holds.

Proof. Let α : M → M be a normal *-antiautomorphism. We first claim
that

σϕ◦α−1

t = α ◦ σϕ
−t ◦ α−1.(6.7)
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Recall [T2, Theorem VIII.1.2] that the modular automorphism group for ϕ◦α−1

is the unique one-parameter automorphism group which (1) is ϕ◦α−1 invariant
and (2) satisfies the KMS condition for ϕ ◦ α−1. We check that the right-hand
side above meets the conditions. For the first,

ϕ ◦ α−1(α ◦ σϕ
−t ◦ α−1(x)) = ϕ ◦ σϕ

−t ◦ α−1(x) = ϕ ◦ α−1(x), x ∈ M.

For the second, fix x, y ∈ M. Use the KMS condition for ϕ to find a function
F = Fα−1(x),α−1(y) on {0 ≤ Im z ≤ 1} which is bounded, continuous, and
analytic on the interior - these properties are assumed but not stated for later
functions on the strip - with boundary values

F (t) = ϕ[(σϕ
t (α−1(x)))(α−1(y))], F (t + i) = ϕ[(α−1(y))(σϕ

t (α−1(x)))].

Notice

F (t) = ϕ◦α−1[(y)(α◦σϕ
t ◦α−1(x))], F (t+i) = ϕ◦α−1[(α◦σϕ

t ◦α−1(x))(y)].

Then G(z) � F (i − z) is a function on the strip which satisfies

G(t) = ϕ◦α−1[(α◦σϕ
−t◦α−1(x))(y)], G(t+i) = ϕ◦α−1[(y)(α◦σϕ

−t◦α−1(x))].

Thus α ◦ σϕ
−t ◦ α−1 satisfies the KMS condition for ϕ ◦ α−1 at any x, y, and

(6.7) is proved.
We establish (6.6) in a similar way. Choose x, y ∈ M, and by [T2, Theorem

VIII.3.3] find a function F = Fα−1(x),α−1(y) on the strip with

F (t) = ϕ[(Dϕ : Dψ)tσ
ψ
t (α−1(y))α−1(x)],

F (t + i) = ψ[α−1(x)(Dϕ : Dψ)tσ
ψ
t (α−1(y))].

We rewrite this, using cocycle relations and (6.7):

F (t) = ϕ[σϕ
t (α−1(y))(Dϕ : Dψ)tα

−1(x)]

= ϕ ◦ α−1[x α((Dϕ : Dψ)t)(α ◦ σϕ
t ◦ α−1(y))]

= ϕ ◦ α−1[x α((Dϕ : Dψ)t)σ
ϕ◦α−1

−t (y)].

Analogously, we obtain

F (t + i) = ψ ◦ α−1[α((Dϕ : Dψ)t)(σ
ϕ◦α−1

−t (y))x].
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Then G(z) � F (i − z) is a function on the strip which satisfies

G(t) = ψ ◦ α−1[α((Dϕ : Dψ)−t)(σ
ϕ◦α−1

t (y))x],

G(t + i) = ϕ ◦ α−1[x α((Dϕ : Dψ)−t)σ
ϕ◦α−1

t (y)].

Again by [T2, Theorem VIII.3.3], the existence of such a G for any x, y implies
that α((Dϕ : Dψ)−t) = (D(ψ ◦ α−1) : D(ϕ ◦ α−1))t, so we are done.

The non-σ-finite case can be handled as in our previous discussion. We
summarize these observations in

Proposition 6.3. Let α be a normal *-isomorphism or *-antiisomor-
phism from M1 into M2, and suppose that there is a normal conditional ex-
pectation E : M2 → α(M1). Then the map

ϕ1/p 
→ (ϕ ◦ α−1 ◦ E)1/p, ϕ ∈ (M1)+∗ ,

extends off the positive cone to a typical isometry Lp(M1) → Lp(M2).

§7. Modular Theory and Projections onto Jordan Subalgebras

What happens to Proposition 6.3 when α and E are replaced with a normal
Jordan *-monomorphism J and a normal positive projection P? To answer this,
we first recall the Jordan version of modular theory. We can still construct Lp

isometries by interpolation, but the lack of a relative modular theory for Jordan
algebras (along the lines of (6.3) and (6.6)) has prevented us from concluding in
general that there is no dependence on the choice of reference state. In Section 8
we will introduce hypotheses which remove this (possible) dependence.

We will need to compare some modular objects for linear functionals on
M1, J(M1), and M2. Since the second is usually not a von Neumann algebra,
we must use in place of a modular automorphism group the modular cosine
family [HH]. This is defined generally for a normal (faithful) state ϕ on a
JBW-algebra N ; we do not need the generality but do need the five conditions
which uniquely characterize ρϕ

t [HH, Theorem 3.3]:

1. each ρϕ
t is a positive normal unital linear map;

2. R � t 
→ ρϕ
t (x) is σ-weakly continuous for each x ∈ N ;

3. ρϕ
0 = idN and ρϕ

s ◦ ρϕ
t = (1/2)[ρϕ

s+t + ρϕ
s−t];

4. ϕ(ρϕ
t (a) • b) = ϕ(a • ρϕ

t (b));
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5. the sesquilinear form

sϕ(a, b) =
∫ ∞

−∞
ϕ(ρϕ

t (a) • b∗)(cosh πt)−1dt

is self-polar.

(A positive sesquilinear form s(·, ·) is said to be self-polar ([HH], [Wo]) if
(i) s(a, b) ≥ 0, ∀a, b ∈ N+; and (ii) the set of linear functionals {s(·, h) |
0 ≤ h ≤ 1} is weak*-dense in {ψ ∈ N ∗

+ | ψ ≤ ϕ}.) When N is a von Neumann
algebra, we have

ρϕ
t = (1/2)(σϕ

t + σϕ
−t)

and

sϕ(a, b) = 〈ϕ1/4aϕ1/4, ϕ1/4bϕ1/4〉.(7.1)

The following result of Haagerup and Størmer is the Jordan algebra version
of Takesaki’s theorem [T1] for conditional expectations. We specialize it to our
situation.

Theorem 7.1 [HS2, Theorem 4.2]. Let J : M1 → M2 be a normal
Jordan *-monomorphism. Let ψ ∈ (M2)∗ be a faithful state, and denote by θ

the restriction ψ |J(M1). Then the following are equivalent:

1. There is a normal positive projection P : M2 → J(M1) such that ψ = θ◦P ;

2. sθ = sψ |J(M1)×J(M1);

3. ρθ
t = ρψ

t |J(M1), ∀t ∈ R.

When these conditions hold, P can be defined by

sψ(y, J(x)) = sψ(P (y), J(x)), x ∈ M1, y ∈ M2.(7.2)

Note that the analogue for a normal ψ-preserving conditional expectation E :
N → M is

ψ(yx) = ψ(E(y)x), y ∈ N , x ∈ M.(7.3)

For a faithful normal state ϕ, we will make use of the following transform,
familiar from Tomita-Takesaki theory:

Φϕ(x) =
∫ ∞

−∞
σϕ

t (x)(coshπt)−1dt =
∫ ∞

−∞
ρϕ

t (x)(coshπt)−1dt.(7.4)
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We have the equality [vD, Lemma 4.1]

ϕ1/2xϕ1/2 = (1/2)[Φϕ(x)ϕ + ϕΦϕ(x)] � ϕ • Φϕ(x).(7.5)

So Φϕ(x) is the Jordan derivative of ϕ1/2xϕ1/2 with respect to ϕ. (In fact
Φϕ is a right inverse for ρϕ

i/2 (which makes sense for a dense set, via analytic
continuation). One might also observe that (7.4) and (7.5) prove the implication
(3) → (2) of Theorem 7.1, as ϕ1/2xϕ1/2(y) = sϕ(x, y∗).)

We will assume that M1 is σ-finite, and for the time being, assume also
that P is faithful. Choose a faithful state ϕ ∈ (M1)∗. Now we set up Kosaki’s
complex interpolation method [K1] again, but we require the symmetric em-
bedding

ι1 : M1 ↪→ (M1)∗, x 
→ ϕ1/2xϕ1/2.(7.6)

This gives us the interpolation spaces

ϕ1/2qLp(M1)ϕ1/2q = [M1, (M1)∗]1/p � Lp(M1), 1/p + 1/q = 1,(7.7)

where again the equality is between sets and the isomorphism is isometric.
Accordingly, we can base a construction of Lp(M2) on a symmetric embedding
ι2 using the faithful state ϕ ◦ J−1 ◦ P . We will often compress notation by
denoting the image of (J−1 ◦ P )∗ by a bar, so (ϕ ◦ J−1 ◦ P ) = ϕ̄.

Theorem 7.2. With the setup of the preceding paragraph, the following
diagram commutes:

M1
J−−−−→ M2

J−1◦P−−−−→ M1

ι1

� ι2

� ι1

�
(M1)∗

(J−1◦P )∗−−−−−−→ (M2)∗
J∗−−−−→ (M1)∗

This induces the 1-complemented inclusion of Lp spaces

Lp(M1) ↪→ Lp(M2) � Lp(M1),

densely defined by

ϕ1/2pxϕ1/2p → ϕ̄1/2pJ(x)ϕ̄1/2p, x ∈ M1,(7.8)

and

ϕ̄1/2pyϕ̄1/2p → ϕ1/2p(J−1 ◦ P (y))ϕ1/2p, y ∈ M2.(7.9)
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Proof. Theorem 7.1 tells us that the restriction of ρ
(ϕ◦J−1◦P )
t to J(M1) is

ρ
(ϕ◦J−1)
t . By consulting the five conditions characterizing ρ

(ϕ◦J−1)
t , one checks

that it agrees with J ◦ ρϕ
t ◦J−1. (This “must” be true, as J is a normal Jordan

*-isomorphism onto its image.) These facts imply

Φϕ̄(J(x)) =
∫

ρϕ̄
t (J(x))(coshπt)−1dt

=
∫

ρ
(ϕ◦J−1)
t (J(x))(coshπt)−1dt

=
∫

J ◦ ρϕ
t ◦ J−1(J(x))(coshπt)−1dt

= J

[∫
ρϕ

t (x)(coshπt)−1dt

]
= J(Φϕ(x)).

Now we are ready to check that the diagram in Theorem 7.2 commutes,
starting with the left-hand square. This amounts to showing that for x ∈
M1, y ∈ M2,

ϕ̄1/2J(x)ϕ̄1/2(y) = [(ϕ1/2xϕ1/2) ◦ J−1 ◦ P ](y).(7.10)

We calculate

ϕ̄1/2J(x)ϕ̄1/2(y) = [ϕ̄ • Φϕ̄(J(x))](y)

= ϕ̄(Φϕ̄(J(x)) • y)

= ϕ̄((J(Φϕ(x))) • y)
∗= ϕ(Φϕ(x) • (J−1 ◦ P (y)))

= ϕ1/2xϕ1/2(J−1 ◦ P (y))

= [(ϕ1/2xϕ1/2) ◦ J−1 ◦ P ](y).

We used Lemma 5.5(2) in the equality marked ∗=.
For the right-hand square, we need to demonstrate that for x ∈ M1,

y ∈ M2,
[(ϕ̄1/2yϕ̄1/2) ◦ J ](x) = (ϕ1/2(J−1 ◦ P (y))ϕ1/2)(x).

But this equation is equivalent to (7.10), which was just shown.
It again follows from general interpolation theory that the inclusion and

norm one projection extend to the interpolated spaces. Since ϕ1/2xϕ1/2 is
identified with ϕ̄1/2J(x)ϕ̄1/2, the equality (7.7) gives us (7.8) and (7.9).
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Remark 7.3. Theorem 7.2 holds without change if P is not faithful.
With q the support of P , replace M2 by qM2q, and notice that Lp(qM2q) �
qLp(M2)q ⊂ Lp(M2).

It also seems possible, if not pleasant, to extend Theorem 7.2 to non-σ-
finite M1 by using a weight. When P is a normal conditional expectation,
most of the necessary tools are in [Te2] and [I].

Remark 7.4. As mentioned, typicality may be related to a Jordan version
of (6.3) and (6.6). Cocycles are not symmetric objects (the “handedness” is
apparent in the modular algebra realization (Dϕ : Dψ)t = ϕitψ−it), so one
cannot expect either of these equations for the projection P . We can derive
at least something analogous using (7.10). Let faithful ϕ ≤ Cψ ∈ (M1)+∗ for
some C < ∞, so y = (Dϕ : Dψ)−i/2(= ϕ1/2ψ−1/2) exists in M1. Now write

ϕ̄ = ϕ ◦ J−1 ◦ P = ψ1/2y∗yψ1/2 ◦ J−1 ◦ P = ψ̄1/2J(y∗y)ψ̄1/2.

If we write z = (Dϕ̄ : Dψ̄)−i/2, this gives z∗z = J(y∗y). Taking square roots,
|z| = J(|y|), or

|(Dϕ̄ : Dψ̄)−i/2| = J(|(Dϕ : Dψ)−i/2|).

§8. Factorization and Typical Isometries

We have not been able to show that the isometry constructed in (7.8) is
generally independent of the choice of ϕ. We now introduce a hypothesis which
removes the (possible) dependence.

Proposition 8.1. Let J : M1 → M2 be a normal Jordan *-monomor-
phism and P : M2 → J(M1) be a normal positive projection, with P factoring
as

P = P ′ ◦ F, F : M2 → J(M1)′′ a normal conditional expectation.(8.1)

Then (1.1) (taking w = 1) defines an Lp isometry.
If M1 is σ-finite, then this agrees with the Lp isometry (7.8) obtained in

Theorem 7.2 for any faithful normal state ϕ ∈ (M1)∗, and as a consequence
the range is 1-complemented.

Proof. It suffices to prove these statements for the map

Lp(M1)+ � ϕ1/p 
→ (ϕ ◦ J−1 ◦ P ′)1/p ∈ Lp(J(M1)′′)+,(8.2)
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since precomposition with the conditional expectation F embeds Lp(J(M1)′′)
in Lp(M2) as discussed in Section 6.

Now J is the sum of a *-homomorphism π and a *-antihomomorphism
π′, where π(1) and π′(1) are orthogonal and central in J(M1)′′. We may
assume that the abelian summand of M1, if it exists, is in the support of π

and not π′. This decomposes M1 into three summands: s(π)(1 − s(π′))M1,
(1 − s(π))s(π′)M1, and s(π)s(π′)M1. Note that the images of the first two
are central summands of J(M1) which are multiplicatively closed, so they
are also central summands of J(M1)′′. Since P and P ′ respect this central
decomposition (by Lemma 5.5), P ′ restricts to the identity on these, and we
are in the situation of Proposition 6.3. It is left to discuss the third summand,
so in the remainder of the proof we assume that s(π) = s(π′) = 1 and that M1

has no abelian summand.
We first claim

J(M1)′′ = {π(x) ⊕ π′(y) | x, y ∈ M1} � M1 ⊕Mop
1 .

Let v ∈ M1 be a partial isometry with vv∗ = p ⊥ q = v∗v. Then J(M1)′′

contains
(π(v) ⊕ π′(v))(π(p)⊕ π′(p)) = 0 ⊕ π′(v)

and is closed under multiplication, addition, and adjoints, whence it is easy to
verify the claim.

By Lemma 5.5(4), P ′(π(1) ⊕ 0) = J(λ) ∈ J(Z(M1)), where 0 ≤ λ ≤ 1.
Then

P ′(π(x) ⊕ 0) = P ′[(π(x) ⊕ π′(x)) • (π(1) ⊕ 0)](8.3)

= (π(x) ⊕ π′(x)) • P ′(π(1) ⊕ 0)

= π(x)π(λ)⊕ π′(x)π′(λ)

= J(xλ),

and similarly

P ′(0 ⊕ π′(y)) = π(y)π(1 − λ) ⊕ π′(y)π′(1 − λ) = J(y(1 − λ)).

Note that λ and 1 − λ must be nonsingular, because faithfulness of P ′ is a
consequence of s(P ) = P (1)(= J(1)). We obtain that

ϕ ◦ J−1 ◦ P ′ = (λϕ ◦ π−1) ⊕ ((1 − λ)ϕ ◦ π′−1).

The map (8.2) is then

ϕ1/p 
→ (λϕ ◦ π−1)1/p ⊕ ((1 − λ)ϕ ◦ π′−1)1/p.
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Since π and π′ induce (surjective) isometric isomorphisms at the Lp level in
each summand, this map has a linear extension to all of Lp(M1). The image of
ξ ∈ Lp(M1) is a vector whose two orthogonal components have norms ‖λ1/pξ‖
and ‖(1 − λ)1/pξ‖; it has total norm

(‖λ|ξ|p‖ + ‖(1 − λ)|ξ|p‖)1/p = ‖|ξ|p‖1/p = ‖ξ‖.

Therefore the map is isometric.
The second assertion of the proposition almost follows from the discus-

sion in Section 6 of Lp isometries induced by (possibly antimultiplicative)
1-complemented inclusions. There we noted that any left or right embedding
gave the same isometry, and so was typical. Here we make this statement
explicit for symmetric embeddings. So suppose ϕ1/2pxϕ1/2p = ψ1/2pyψ1/2p ∈
Lp(M1)+. By taking square roots, we can find a partial isometry v ∈ M1 with
vx1/2ϕ1/2p = y1/2ψ1/2p. Considering first the antimultiplicative embedding,
we know by (6.5) that

(ϕ ◦ π′−1)1/2pπ′(vx1/2) = (ψ ◦ π′−1)1/2pπ′(y1/2),

so

(ϕ ◦ π′−1)1/2pπ′(x)(ϕ ◦ π′−1)1/2p

= [(ϕ ◦ π′−1)1/2pπ′(vx1/2)][(ϕ ◦ π′−1)1/2pπ′(vx1/2)]∗

= [(ψ ◦ π′−1)1/2pπ′(y1/2)][(ψ ◦ π′−1)1/2pπ′(y1/2)]∗

= (ψ ◦ π′−1)1/2pπ′(y)(ψ ◦ π′−1)1/2p.

Obviously this relation extends off the positive cone. A similar calculation
holds for π, so it holds for J . This means that the Lp isometry (7.8) does not
depend on the choice of state and therefore agrees with (8.2).

The papers [HS2], [St3] consider exactly the factorization (8.1) for projec-
tions onto arbitrary JW-subalgebras, which includes our situation. They do
conclude the factorization in case

1. Z(J(M1)) = Z(J(M1)′′); or

2. (M1, τ ) is semifinite and the weight τ̄ = τ ◦ J−1 ◦ P is semifinite.

In our situation, condition (1) precludes the presence of both multiplicative and
antimultiplicative homomorphisms on a non-abelian summand, so J(M1) =
J(M1)′′ and the conclusion is automatic. Our final result subsumes condition
(2) by assuming only that M1 is AS.
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Proposition 8.2. Let J : M1 → M2 be a normal Jordan *-monomor-
phism, and P : M2 → J(M1) be a normal positive projection. If M1 is
AS, then P factors as P |J(M1)′′ ◦F , where F : M2 → J(M1)′′ is a normal
conditional expectation.

Proof. First note that by the arguments in the beginning of the proof of
Proposition 8.1, we may assume that J = π ⊕ π′, where M1 has no abelian
summand and both π, π′ are faithful.

We start with the case where (M1, τ ) is finite, writing τ̄ = τ ◦ J−1 ◦ P .
In the proof of Theorem 5.6 we saw that J(M1)′′ is pointwise invariant under
στ̄ , so by Takesaki’s theorem [T1] there is a normal τ̄ -preserving conditional
expectation F : M2 → J(M1)′′. Now we use equations (7.2) and (7.3) to
calculate

sτ̄ (P (F (y)), J(x)) = sτ̄ (F (y), J(x)) = τ̄1/2J(x∗)τ̄1/2(F (y)) = τ̄(J(x∗)F (y))

= τ̄ (J(x∗)y) = τ̄1/2J(x∗)τ̄1/2(y) = sτ̄ (y, J(x)) = sτ̄ (P (y), J(x))

for any x ∈ M1, y ∈ M2. This implies that P ◦ F = P , and the finite case is
complete.

Now let {Mα, Eα} be a paving of M1 by finite subalgebras, and denote
by 1α the unit of Mα (which may not be the unit of M1). Write

Ēα = J ◦ Eα ◦ J−1 : J(M1) → J(Mα).

Then Ēα ◦ P is a positive normal projection onto the Jordan image of a finite
algebra, so by the first part of the proof we can factor it as

M2
P−−−−→ J(M1)

Fα

� �Ēα

J(Mα)′′
Sλα−−−−→ J(Mα)

Here Fα is a normal conditional expectation, and Sλα
is the symmetrization

guaranteed by (8.3),

Sλα
: π(x) ⊕ π′(y) 
→ J(λαx + (1 − λα)y),(8.4)

where 0 ≤ λα ≤ 1α is an element of J(Z(Mα)). We also have, as before,
that the nonsingular element J(λ) � P (π(1)) is in J(Z(M1)). The commuting
square gives us the relation

Ēα(J(λ)) = Ēα ◦ P (π(1)) = Sλα
◦ Fα(π(1)) = Sλα

(π(1α)) = J(λα).
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This implies that λα = Eα(λ) s→ λ by Theorem 5.2(2).
It remains to construct the conditional expectation. Since s(P ) = J(1)

by assumption, we only need to consider elements in J(1)M2J(1). We use
J(1) = π(1) + π′(1) to write a generic element as

y =
(

a b
c d

)
,

where a ∈ π(1)M2π(1), etc. By Theorem 5.2(2) we have

P (y) = s − lim Ēα ◦ P (y) = s − limSλα
◦ Fα(y).(8.5)

Since Fα is a conditional expectation and J(Mα) is inside the diagonal J(M1)′′,
we may write

Fα

(
a b
c d

)
=

(
F 1

α(a) 0

0 F 2
α(d)

)
.

Then (8.5) becomes

P (y) =(8.6)

s − lim
(

π(λα)F 1
α(a)+π(1−λα)[π◦π′−1(F 2

α(d))] 0

0 π′(λα)[π′◦π−1(F 1
α(a))]+π′(1−λα)F 2

α(d)

)
,

which we claim can be written as

P (y) = Sλ ◦ F (y), where F (y) = s − lim
(

F 1
α(a) 0

0 F 2
α(d)

)
.(8.7)

To establish the claim, we check that (i) the strong limits in the definition
of F do exist, (ii) the factorization (8.7) is correct, (iii) F is normal, (iv) F

is contractive, (v) the range of F is contained in J(M1)′′, and (vi) F fixes
J(M1)′′.

We have from the above that

P (( a 0
0 0 )) = s − lim

(
π(λα)F 1

α(a) 0

0 π′(λα)[π′◦π−1(F 1
α(a))]

)
,

so π(λα)F 1
α(a) is strongly convergent. We now represent π(M) faithfully

and nondegenerately as an algebra of operators on a Hilbert space, and let
en = e[1/n, 1] be spectral projections of π(λ). Since λ is nonsingular, these
projections increase to π(1). Given any vector ξ, we have

‖[F 1
α(a) − F 1

β (a)]ξ‖ ∼ ‖[F 1
α(a) − F 1

β (a)]enξ‖
= ‖[F 1

α(a) − F 1
β (a)]π(λ)(π(λ)−1enξ)‖

= ‖((F 1
α(a)[π(λ)− π(λα)] + [π(λα)F 1

α(a) − π(λβ)F 1
β (a)]

+ F 1
β (a)[π(λ) − π(λβ)])(π(λ)−1enξ)‖

→ 0 as α, β increase.
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Note that the first approximation can be made independent of α and β since
{F 1

α(a)} is a norm-bounded set. The same argument establishes the strong con-
vergence of F 2

α(d), and (i) is obtained. Since π(λα), F 1
α(a), F 2

α(d) are strongly
convergent, (ii) follows from (8.6).

For (iii), again it suffices by symmetry to check that

π(1)M2π(1) � xγ
s→ x ⇒ F

((
xγ 0
0 0

)) s→ F (( x 0
0 0 )) .(8.8)

(All limits in this paragraph are along increasing γ.) Since P is normal, we
have

P
((

xγ 0
0 0

)) s→ P (( x 0
0 0 ))

and then
Sλ

((
s−limα F 1

α(xγ) 0
0 0

))
s→ Sλ

((
s−limα F 1

α(x) 0
0 0

))
.

Reading off the upper left entry,

π(λ)[s − lim
α

F 1
α(xγ)] s→ π(λ)[s − lim

α
F 1

α(x)].

By an approximation argument similar to that of the previous paragraph,

s − lim
α

F 1
α(xγ) s→ s − lim

α
F 1

α(x).

But this is exactly the conclusion of (8.8), and we have (iii).
Now (iv) and (v) are automatic from the form of F , and (vi) follows from

the normality of F and the fact that F fixes ∪J(Mα)′′. The proof is complete.

The preceding propositions may seem somewhat technical, but they can
be summarized nicely.

Theorem 8.3. Let J : M1 → M2 be a normal Jordan *-monomor-
phism, and let P : M2 → J(M1) be a normal positive projection. Each condi-
tion below implies its successor:

1. M1 is AS;

2. the projection P factors through a conditional expectation onto J(M1)′′;

3. the map ϕ1/p 
→ (ϕ ◦ J−1 ◦ P )1/p, ϕ ∈ (M1)+∗ , extends linearly to an
isometry from Lp(M1) to Lp(M2).
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§9. Conclusion

From Theorems 1.2 and 8.3, we have arrived at a complete description of
all the isometries from Lp(M1) to Lp(M2), provided that M1 is AS. They are
typical, arising via (1.1), and arbitrary data J, P, w are allowed. When M1 is
only assumed to have EPp and EP1, which may be weaker, we can still say
that all Lp isometries are typical.

The main motivation for this paper was to develop Watanabe’s ideas, es-
pecially EP, as far as possible. This certainly provides new methods and in-
formation, but we have only been able to apply them to Questions 1.1 and 1.3
when the initial algebra is well-approximated by semifinite algebras. We do
not claim that further work in this direction is necessary for a solution to one
or both of these questions. It certainly seems possible that another technique
may produce a relatively straightforward solution - for example, the paper [S1]
handles the surjective case by different methods. Nonetheless, we do think that
EPp, AS, and condition (2) from Theorem 8.3 are worth investigating on their
own merits, and our work here shows their relation to Lp isometries.
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