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Abstract

For a complex (quasi-) projective variety X � CPN with π2(X) = Z and an
integer d ≥ 0, let Hol∗d(S2, X) denote the space consisting of all basepoint preserving
holomorphic maps f from S2 to X with degree d. We study the topology of certain
subspaces of Hol∗d(S2, X) defined using the concept of multiplicity of roots, and we
show that the Atiyah-Jones-Segal type theorem ([1], [11]) holds for these subspaces if
X is belong to a certain family of complex quasi-projective varieties.

§1. Introduction

If d ≥ 0 is an integer and X � CPm−1 is a complex (quasi-) projective
variety with the condition π2(X) = Z, we denote by Hol∗d(S2, X) the space
consisting of all base point preserving holomorphic maps (i.e. algebraic curves)
f : S2 → X with [f ] = d ∈ Z = π2(X). The corresponding space of continuous
maps is denoted by Map∗

d(S2, X) = Ω2
dX. The principal motivation for this

paper derives from the work of G. Segal [11], in which he investigates the
topology of the space Hol∗d(S

2, X) for X = CPm−1 as follows.

Theorem 1.1 ([11]). Let m ≥ 2 and d ≥ 1 be integers. Then the
inclusion id : Hol∗d(S2, CPm−1) → Ω2

dCPm−1 is a homotopy equivalence up to
dimension (2m − 3)d.
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84 Kohhei Yamaguchi

Remark. We say that a map f : X → Y is a homotopy equivalence (resp.
homology equivalence) up to dimension N if the induced homomorphism f∗ :
πi(X) → πi(Y ) (resp. f∗ : Hi(X; Z) → Hi(Y ; Z)) is bijective when i < N and
is surjective when i = N .

In this paper, we shall investigate whether a similar result hold for certain
subspaces of Hol∗d(S2, X) introduced from the concept of multiplicity.

For a space X, we denote by SPd(X) the d-th symmetric product of X. By
definition, this is the quotient space Xd/Σd, where the symmetric group Σd acts
on the d-fold product Xd in the natural way. An element of SPd(X) may be
identified with a formal linear combination α =

∑k
i=1 dixi, where x1, . . . , xk are

distinct points of X and d1, . . . , dk are positive integers such that
∑k

i=1 di = d.
We shall refer to α as a “configuration” of points, the point xi having multi-
plicity di. We shall be concerned with a subspace SPd

n(X) of SPd(X), defined
as follows. If n ≥ 2,

SPd
n(X) =

{ k∑
i=1

dixi ∈ SPd(X) : di < n for all i
}

.

Thus, SPd
n(X) is obtained by imposing a condition of “bounded multiplicity”,

namely that all points xi (of any configuration) have multiplicity less than n.
There is a filtration

Cd(X) = SPd
2(X) ⊂ · · · ⊂ SPd

n(X) ⊂ · · · ⊂ SPd
d+1(X) = · · · = SPd(X),

where Cd(X) denotes the space of “configurations of d distinct points” in X.
Note that SPd

n(C) can be identified with the space of complex polynomials of
degree d which are monic, and all of whose roots have multiplicity less than n.
(The polynomial

∏k
i=1(z − xi)di corresponds to

∑k
i=1 dixi.)

If we choose the point [1 : · · · : 1] as the base point of CPm−1, the
space Hol∗d(S2, CPm−1) is identified with the space consisting of all m-tuples
(p1(z), . . . , pm(z)) ∈ C[z]m of monic polynomials of degree d such that the poly-
nomials p1(z), . . . , pm(z) have no common roots. It is also identified with the
space of m-tuples of positive disjoint divisors,

Hol∗d(S
2, CPm−1) = {(ξ1, . . . , ξm) ∈ SPd(C)m : ξ1 ∩ · · · ∩ ξm = ∅}.

In this situation, let Holnd (S2, CPm−1) denote the subspace defined by

Holnd (S2, CPm−1) = Hol∗d(S
2, CPm−1) ∩ SPd

n(C)m

= {(ξ1, . . . , ξm) ∈ SPd
n(C)m : ξ1 ∩ · · · ∩ ξm = ∅}.

Now we recall the following result.
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The Space of Holomorphic Maps 85

Theorem 1.2 ([13]). If n ≥ 2, there is a map Holnd (S2, CPm−1) →
Ω2

0Wm(CPn−1) which is a homology equivalence up to [d/2] when n = 2 and a
homotopy equivalence up to dimension D1(d; m, n) = d − 2m + 2 when n ≥ 3,
where [x] denotes the integer part of a number x and Wm(X) ⊂ Xm denotes
the m-th fat wedge.

In this paper, we would like to generalize the above result for another wider
complex projective varieties. For this purpose, let m, n ≥ 2 be integers and let
Xm ⊂ CPm−1 denote the quasi-projective variety defined by

Xm = CPm−1 −
⋃

1≤i<j≤m

Hi,j ,

where Hi,j = {[z1 : · · · : zm] ∈ CPm−1 : zi = zj = 0}.
It is known [5] that Xm is simply connected and that π2(Xm) = Z. If we

choose the point [1 : · · · : 1] as the base point of Xm, Hol∗d(S2, Xm) is identified
with the space consisting of all m-tuples (p1(z), . . . , pm(z)) ∈ C[z]m of mutually
coprime monic polynomials of degree d. We can also identify

Hol∗d(S
2, Xm) = {(ξ1, . . . , ξm) ∈ SPd(C)m : ξi ∩ ξj = ∅ if i �= j}.

We denote by Holnd (S2, Xm) the subspace of Hol∗d(S
2, Xm) defined by

Holnd (S2, Xm) = Hol∗d(S
2, Xm) ∩ SPd

n(C)m

= {(ξ1, . . . , ξm) ∈ SPd
n(C)m : ξi ∩ ξj = ∅ if i �= j}.

There is a filtration

∅ = Hol1d(S
2, Xm) ⊂ Hol2d(S

2, Xm) ⊂ Hol3d(S
2, Xm) ⊂ · · ·

⊂ Hold+1
d (S2, Xm) = Hold+2

d (S2, Xm) = · · · = Hol∗d(S
2, Xm).

Let ∨mX denote the m-times wedge of X, ∨mX = X ∨X ∨ · · · ∨X (m-times).
Then our main result is stated as follows.

Theorem 1.3. If m, n ≥ 2, there is a map Holnd (S2, Xm) → Ω2
0 ∨m

CPn−1 which is a homotopy equivalence up to dimension D(d; m, n) when n ≥ 3
and a homology equivalence up to dimension [d/2] when n = 2. Here the number
D(d; m, n) is given by

(1.3.1) D(d; m, n) =

{
d + n − 4 if d ≥ n

d if d < n.
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Remark. (1) Since lim
d→∞

D(d; m, n) = ∞, the space Holnd (S2, Xm) may

be regarded as a finite dimensional model for the infinite dimensional space
Ω2

0(∨mCPn−1).
(2) It follows from [5] that there is a fibration sequence Tn → Xm →

∨mCP∞. Hence, using an easy diagram chasing as in [[13]; page 251] we ob-
tain a homotopy equivalence lim

d,n→∞
Holnd (S2, Xm) 
 Ω2

0Xm. So we obtain the

stabilized version of the main theorem of [5] if n → ∞.

Next we shall indicate the following generalization of Theorem 1.3 to the
case of certain quasi-projective varieties XI .

Let I be a fixed collections of subsets of {1, 2, . . . , m} such that card(Λ) ≥ 2
for any Λ ∈ I. We denote by XI ⊂ CPm−1 the quasi-projective variety defined
by

XI = CPm−1 −
⋃
Λ∈I

HΛ,

where HΛ = {[z1 : · · · : zm] ∈ CPm−1 : zi = 0 for all i ∈ Λ}.
It is known [5] that XI is simply connected, π2(XI) = Z, and that there is

a fibration sequence Tm−1 = (S1)m−1 → XI
qI→ ∨ICP∞, where ∨IX denotes

the wedge of type I given by ∨IX = {(x1, . . . , xm) ∈ Xm : for each Λ ∈ I, xi =
∗ for some i ∈ Λ}.

Example. (1) If I = {{1, 2, . . . , m}}, XI = CPm−1 and ∨IX = Wm(X).
(2) If I = {{i, j} : 1 ≤ i < j ≤ m}, XI = Xm and ∨IX = ∨mX.

If we choose the point [1 : · · · : 1] ∈ XI as a base point of XI , we can
identify Hol∗d(S

2, XI) = {(ξ1, . . . , ξm) ∈ SPd(C)m : ∩i∈Λξi = ∅ for any Λ ∈ I}.
Then we denote by Holnd (S2, XI) the subspace of Hol∗d(S2, XI) defined by

Holnd (S2, XI) = Hol∗d(S
2, XI) ∩ SPd

n(C)m

= {(ξ1, . . . , ξm) ∈ SPd
n(C)m : ∩i∈Λξi = ∅ for any Λ ∈ I}.

There is a filtration

∅ = Hol1d(S
2, XI) ⊂ Hol2d(S

2, XI) ⊂ Hol3d(S
2, XI) ⊂ · · ·

⊂ Hold+1
d (S2, XI) = Hold+2

d (S2, XI) = · · · = Hol∗d(S
2, XI).

Theorem 1.4. Let m, n ≥ 2 be integers and I be a fixed collections of
subsets of {1, 2, . . . , m} such that card(Λ) ≥ 2 for each Λ ∈ I. Then there is
a map Holnd (S2, XI) → Ω2

0 ∨I CPn−1 which is a homotopy equivalence up to
dimension D(d; m, n) when n ≥ 3 and a homology equivalence up to dimension
[d/2] when n = 2. Here the number D(d; m, n) is same as in (1.3.1).
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Since XI = CPm−1 if I = {{1, 2, . . . , m}} and D1(d; m, n) < D(d; m, n)
when n > 2, the above theorem indicates that the main result of [13] can be
improved. Moreover, although the proof given in [13] only works for the case
X = CPm−1, the proof given in this paper works for all XI (and CPm−1, too).
So this permit us not only to sharpen the stability dimension, but also, more
importantly, to obtain the stability result for wider quasi-projective varieties.

Our results may confirm this Morse theory principle for another varieties
(e.g. various toric varieties cf. [8]). The explanation for these type theorems is
thought to be Morse theoretic in nature, i.e. the fact that the holomorphic maps
form the set of absolute minima of the energy functional on (a fixed component
of) the space of smooth maps. However, the existing proofs of these results are
topological in nature (cf. [3], [4]).

This paper is organized as follows. In section 2, we shall recall the stabi-
lized theorem using scanning method originally invented by G. Segal [11]. In
section 3, we shall give the proof of Theorem 1.3. To prove this we shall show
Theorem 3.3, which is the key of this paper. In section 4, we shall indicate how
the proof of Theorem 3.3 can be generalized and give the proof of Theorem 1.4.
Finally, in section 5, we shall study the stability of sd : SPd

n(Ck) → SPd+1
n (Ck)

using the geometric resolution ([12]) and we shall give the proof of Theorem 5.1,
which will be used in the proof of Theorem 3.3.

§2. Stabilized Spaces

In this section, we recall the scanning map and its basic properties. Be-
cause this was now well explained in several papers (cf. [5], [6], [7], [8], [10],
[11]), we only sketch the rough idea.

Let I be a collection of subsets of {1, 2, . . . , m} such that card(Λ) ≥ 2 for
any Λ ∈ I. For a connected space X, let EI,n

d (X) denote the space defined by
EI,n

d (X) = {(ξ1, . . . , ξm) ∈ SPd
n(X)m : ∩i∈Λξi = ∅ for any Λ ∈ I}.

Remark that EI,n
d (C) = Holnd (S2, XI) if X = C. If A ⊂ X is a closed

subspace, we define the relative configuration space EI,n
d (X, A) = EI,n

d (X)/ ∼,

where (ξ1, . . . , ξm) ∼ (η1, . . . , ηm) if and only if ξj ∩ (X − A) = ηj ∩ (X − A)
for each 1 ≤ j ≤ m. Thus, for each EI,n

d (X, A), points in A are ignored. When
A �= ∅, there is a natural inclusion EI,n

d (X, A) → EI,n
d+1(X, A) given by adding

points in A. We define EI,n(X, A) =
⋃
d≥1

EI,n
d (X, A).

Let sd : EI,n
d (C) → EI,n

d+1(C) denote the stabilization map given by adding
a point from the edge in a usual way (see [5], [6], [8], [11]), and let lim

d→∞
EI,n

d (C)

the colimit space induced from stabilization maps sd.
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Let lim
d→∞

sd
n : lim

d→∞
EI,n

d (C) → Ω2
0E

I,n(S2,∞) be the scanning map defined

similarly as [[6]; page 99]. If we identify EI,n
d (C) = Holnd (S2, XI), then we have

the scanning map S : lim
d→∞

Holnd (S2, XI) → Ω2
0E

I,n(S2,∞).

Theorem 2.1. S : lim
d→∞

Holnd (S2, XI)
�→ Ω2

0E
I,n(S2,∞) is a homotopy

equivalence when n ≥ 3 and a homology equivalence when n = 2.

Proof. This is similar to the proof in section 3 of [11] (cf. [7]).

Lemma 2.1. There is a homotopy equivalence EI,n(S2,∞) 
 ∨ICPn−1.

Proof. If I = {{i, j} : 1 ≤ i < j ≤ n}, the proof is completely same as
that of [[5]; Proposition 3.2]. For a general case, the similar method may be
used and we omit the detail.

Corollary 2.1. S : lim
d→∞

Holnd (S2, XI)
�→ Ω2

0 ∨I
CPn−1 is a homotopy

equivalence when n ≥ 3 and a homology equivalence when n = 2.

§3. Unstability Result

Theorem 3.1. Let k ≥ 1 be an integer and let Ck = C − {1, 2, . . . , k}.
If d ≥ n ≥ 3, the stabilization map sd : SPd

n(Ck) → SPd+1
n (Ck) is a homotopy

equivalence up to dimension N(d, n) = d + n − 4 = D(d; m, n).

The proof of Theorem 3.1 is postponed to the last section and we prove
the following result.

Theorem 3.2. If m, n ≥ 2, sd : Holnd (S2, Xm) → Holnd+1(S
2, Xm) is a

homotopy equivalence up to dimension D(d; m, n) when n ≥ 3 and a homology
equivalence up to dimension [d/2] when n = 2. Here the number D(d; m, n) is
same as in (1.3.1).

Before proving Theorem 3.2, we complete the proof of Theorem 1.3.

Proof of Theorem 1.3. The assertion easily follows from Corollary 2.1 and
Theorem 3.2.

Definition. Let V ⊂ C be an open set and d1, . . . , dm ≥ 1 be integers.
Let En

d1,...,dm
(V ) be the subspace of SPd1

n (V ) × · · · × SPdm
n (V ) defined by

En
d1,...,dm

(V ) = {(ξ1, . . . , ξm) : ξi ∈ SPdi
n (V ) for each i, ξi ∩ ξj = ∅ if i �= j}.
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The Space of Holomorphic Maps 89

If d1 = d2 = · · · = dm = d, we write En
d (V ) = En

d1,...,dm
(V ). If V = C, we also

write En
d1,...,dm

= En
d1,...,dm

(C).
Let z1, . . . , zm ∈ {w ∈ C : 1 < |w| < 2} be any fixed points such that

zi �= zj if i �= j. For each 1 ≤ k ≤ m, define the map

jk : En
d1,...,dk,...,dm

({|w| < 1}) → En
d1,...,dk−1,dk+1,dk+1...,dm

({|w| < 2})

by (ξ1, . . . , ξm) �→ (ξ1, . . . , ξk−1, ξk + zk, ξk+1, . . . , ξm). Up to homotopy, jk

defines the map jk : En
d1,...,dk,...,dm

→ En
d1,...,dk−1,dk+1,dk+1,...,dm

.

Theorem 3.3. Let m, n ≥ 2, 1 ≤ k ≤ m, and d1, . . . , dm ≥ 2 are
integers. Then jk : En

d1,...,dk,...,dm
→ En

d1,...,dk−1,dk+1,dk+1,...,dm
is a homotopy

equivalence up to dimension D(dk; m, n) when n ≥ 3 and a homology equiva-
lence up to dimension [dk/2] when n = 2.

Before giving the proof of Theorem 3.3, we complete the proof of Theo-
rem 3.2.

Proof of Theorem 3.2. If we may identify Holnd (S2, Xm) = En
d (C), we

have sd = j1 ◦ j2 ◦ · · · ◦ jm (up to homotopy). Hence the assertion easily follows
from Theorem 3.3.

Definition. We say that a map f : X → Y is acyclic up to dimension

N if for any local coefficient system L on Y , f∗ : Hi(X, f∗L) → Hi(Y, L) is
bijective when i < N and is surjective when i = N , where f∗L is the induced
local system on X.

Lemma 3.1 ([9]). Let f : X → Y be a continuous map between con-
nected CW complexes such that π1(X) and π1(Y ) are abelian groups. If the
map f is acyclic up to dimension N , it is a homotopy equivalence up to dimen-
sion N .

Lemma 3.2. If d1, . . . , dm ≥ 2 and n ≥ 3 are integers, π1(En
d1,...,dm

) is
an abelian group.

Proof. Geometrically π1(En
d1,...,dm

) may described as the group of m-
tuples (d1-strings, d2-strings, · · · , dm-strings) of braids such that i-th braids
are allowed to pass until (n− 1)-crossings. Hence, the assertion may be proved
in a similar way as in [[5]; appendix].

Now we can give the proof of Theorem 3.3.
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Proof of Theorem 3.3. It suffices to give the proof when k = 1. Let
π : En

d1,...,dm
→ En

d2,...,dm
be the projection map given by π(ξ1, . . . , ξm) =

(ξ2, . . . , ξm). If n ≥ 3 and d1 < n, Theorem 3.3 follows from [[5]; Theorem 1.8]
and Lemmas 3.1, 3.2. If n = 2, we have a homotopy commutative diagram

Cd1(Ck) sd

−−−−→ Cd1+1(Ck)	 	
E2

d1,...,dm

j1−−−−→ E2
d1+1,d2,...,dm

π

	 π

	
E2

d2,...,dm

=−−−−→ E2
d2,...,dm

where we take k =
∑m

i=2 di and Ck = C − {1, 2, . . . , k}, vertical sequences are
fibrations and sd is a stabilization map. Since sd is a homology equivalence up
to dimension [d1/2] ([[11]; appendix]), j1 is also a homology equivalence up to
dimension [d1/2]. Hence the assertion holds when n = 2.

So without loss of generalities, we may assume that d1 ≥ n ≥ 3. Then
it follows from Lemmas 3.1, 3.2 that it suffices to show that j1 is acyclic up
to dimension N(d1, n) = d1 + n − 4. Let L be a local coefficient system on
En

d1+1,d2,...,dm
. We shall use the letter L to denote its restriction to any (closed

or open) subspace. In this case, we also consider the commutative diagram

En
d1,d2,...,dm

j1−−−−→ En
d1+1,d2,...,dm

π

	 π

	
En

d2,...,dm

=−−−−→ En
d2,...,dm

If vertical maps were fibrations, we could prove the assertion in a similar way
as above. However, they are fibrations only over certain subspaces as we shall
now explain.

Since En
d1,d2,...,dm

⊂ SPd1(C)×· · ·×SPdm(C) ∼= Cd1 ×· · ·×Cdm = Cd is an
open set, En

d1,d2,...,dm
is an open complex manifold of dimension d =

∑m
i=1 di

and the Poincaré duality isomorphism Hk(En
d1,d2,...,dm

; L)∼=H2d−k
c (En

d1,d2,...,dm
;

H(L)) holds, where H(L) denotes the orientation bundle and Hi
c denotes the

cohomology with compact supports ([2]).
From now on, we may identify En

d1,d2,...,dm
with the space consisting of

all m-tuples (p1(z), . . . , pm(z)) ∈ C[z]m of monic polynomials satisfying the
following two conditions:
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(a) pi(z) is a monic polynomial of degree di and has no roots of multiplicity
≥ n for each 1 ≤ i ≤ m.

(b) pi(z) and pk(z) are coprime whenever i �= k.

Let Ek1,k2,...,km

d1,d2,...,dm
be the subspace of En

d1,d2,...,dm
consisting of all m-tuples

of polynomials (p1(z), . . . , pm(z)) ∈ En
d1,d2,...,dm

which satisfies the following
condition:

(c) pj(z) has at least kj distinct roots for each 1 ≤ j ≤ m.

Let X1,k2,...,km

d1,d2,...,dm
= E1,k2,...,km

d1,d2,...,dm
−

m⋃
i=2

E1,k2,...,ki+1,...,km

d1,d2,...,di,...,dm
, i.e. the subset consisting

of all m-tuples (p1(z), . . . , pm(z)) ∈ En
d1,...,dm

such that each pi(z) (2 ≤ i ≤ m)
has exactly ki distinct roots.

Let Y k2,...,km

d2,...,dm
= π(X1,k2,...,km

d1,d2,...,dm
) = Ek2,...,km

d2,...,dm
−

m⋃
i=2

Ek2,...,ki+1,...,km

d2,...,di,...,dm
. The map

π restricts to a map π : X1,k2,...,km

d1,d2,...,dm
→ Y k2,...,km

d2,...,dm
and we obtain the homotopy

commutative diagram

SPd1
n (Ck) sd1

−−−−→ SPd1+1
n (Ck)	 	

X1,k2,...,km

d1,d2,...,dm

j1−−−−→ X1,k2,...,km

d1+1,d2,...,dm

π

	 π

	
Y k2,...,km

d2,...,dm

=−−−−→ Y k2,...,km

d2,...,dm

where we take k =
∑m

i=2 ki, Ck = C − {1, 2, . . . , k}, and vertical sequences are
fibrations.

Since sd1 is a homotopy equivalence up to dimension N(d1, n) by Theorem
3.1, j1 : X1,k2,...,km

d1,d2,...,dm
→ X1,k2,...,km

d1+1,d2,...,dm
is also a homotopy equivalence up to

dimension N(d1, n). Now we remark the following:

(†k) If 1 ≤ ki ≤ di (i = 2, . . . , m), then j1 : E1,k2,...,km

d1,d2,... ,dm
→ E1,k2,...,km

d1+1,d2,... ,dm
is

acyclic up to dimension N(d1, n).

We postpone the poof of (†k) and complete the proof of 3.3. If (†k) is true,
then j1 : E1,1,...,1

d1,d2,... ,dm
→ E1,1,...,1

d1+1,d2,... ,dm
is acyclic up to dimension N(d1, n).

Since E1,1,...,1
d1,d2,... ,dm

= En
d1,d2,... ,dm

, j1 : En
d1,d2,... ,dm

→ En
d1+1,d2,... ,dm

is acyclic
up to dimension N(d1, n). This completes the proof of Theorem 3.3.
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Proof of (†k): The proof of (†k) is by downwards induction on k =
∑m

i=2 ki.
The induction begins with k =

∑m
i=2 di. Since E1,d2,...,dm

d1,d2,... ,dm
= X1,d2,...,dm

d1,d2,... ,dm
, the

assertion is clearly true. As a next step, we assume that (†l) holds for any l > k

and we shall prove that (†k) is true. We remark that for any 2 ≤ j ≤ m the
following statement holds:

(‡j) j1 :
j⋃

i=1

E
1,l2(i),...,lm(i)
d1,d2,... ,dm

→
j⋃

i=1

E
1,l2(i),...,lm(i)
d1+1,d2,... ,dm

is a homology equivalence up to

dimension N(d1, n) whenever
∑m

t=2 lt(i) > k for any 1 ≤ j ≤ m.

Proof of (‡j): We can prove (‡j) easily by induction on j. In fact, if
j = 1, (‡j) holds, because (†l) is true when l > k. Now assume (‡j−1) is
true and we shall show that (‡j) is true. Since E1,k2,...,km

d1,d2,... ,dm
∩ E

1,k′
2,...,k′

m

d1,d2,... ,dm
=

E
1,max(k2,k′

2),...,max(km,k′
m)

d1,d2,... ,dm
, using the Mayer-Vietoris exact sequence and

5-lemma, we can prove the assertion (‡j) easily.

It follows from (‡m) that j1 :
m⋃

i=2

E1,k2,...,ki+1,... ,km

d1,d2,...,di,... ,dm
→

m⋃
i=2

E1,k2,...,ki+1,...,km

d1+1,d2,...,di,... ,dm

is a homology equivalence up to dimension N(d1, n).
Since E1,k2,...,ki+1,...,km

d1,d2,...,di,... ,dm
⊂ En

d1,d2,...,di,... ,dm
is an open subspace, the space

m⋃
i=2

E1,k2,...,ki+1,... ,km

d1,d2,...,di,... ,dm
is an open complex manifold of dimension d. Hence it

follows from Poincaré duality that there is a commutative diagram

Hj

(
m⋃

i=2

E1,k2,...,ki+1,... ,km
d1,d2,...,di,... ,dm

; L

)
j1∗−−−−→ Hj

(
m⋃

i=2

E1,k2,...,ki+1,...,km
d1+1,d2,...,di,... ,dm

; L

)

∼=
� ∼=

�
H2d−j

c

(
m⋃

i=2

E1,k2,...,ki+1,... ,km
d1,d2,...,di,... ,dm

)
j1

∗
−−−−→ H2d+2−j

c

(
m⋃

i=2

E1,k2,...,ki+1,...,km
d1+1,d2,...,di,... ,dm

)

where Hk
c (Y ) = Hk

c (Y ; H(L)). Hence, the induced homomorphism

(i) j1
∗ : Hj

c

(
m⋃

i=2

E1,k2,...,ki+1,...,km

d1,d2,...,di,...,dm

)
→ Hj+2

c

(
m⋃

i=2

E1,k2,...,ki+1,...,km

d1+1,d2,...,di,... ,dm

)

is bijective when j > 2d − N(d1, n) and surjective when j = 2d − N(d1, n).
Similarly, because j1 : X1,k2,...,km

d1,d2,...,dm
→ X1,k2,...,km

d1+1,d2,...,dm
is also a homotopy

equivalence up to dimension N(d1, n), the induced homomorphism

(ii) j1
∗ : Hj

c (X1,k2,...,km

d1,d2,...,dm
) → Hj+2

c (X1,k2,...,km

d1+1,d2,...,dm
)

is bijective when j > 2d − N(d1, n) and surjective when j = 2d − N(d1, n).
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Consider the cohomology exact sequence with compact supports of the pair

(E1,k2,...,km

d1,d2,...,dm
,

m⋃
i=2

E1,k2,...,ki+1,...,km

d1,d2,...,di,... ,dm
). Then because X1,k2,...,km

d1,d2,...,dm
= E1,k2,...,km

d1,d2,...,dm
−

m⋃
i=2

E1,k2,...,ki+1,...,km

d1,d2,...,di,... ,dm
, it follows from 5-lemma that we see that (as in [11]) j1

∗ :

Hj
c (E1,k2,...,km

d1,d2,...,dm
) → Hj+2

c (E1,k2,...,km

d1+1,d2,...,dm
) is bijective when j > 2d−N(d1, n) and

surjective when j = 2d − N(d1, n). Then using Poincaré duality isomorphism,
j1∗ : Hi(E

1,k2,...,km

d1,d2,...,dm
; L) → Hi(E

1,k2,...,km

d1+1,d2,...,dm
; L) is bijective when i < N(d1, n)

and surjective when i = N(d1, n). Hence j1 : E1,k2,...,km

d1,d2,...,dm
→ E1,k2,...,km

d1+1,d2,...,dm
is

acyclic up to dimension N(d1, n) and this completes the proof of (†k).

§4. Generalizations

Let I be a collections of subsets of {1, 2, . . . , m} such that card(Λ) ≥ 2 for
any Λ ∈ I. We denote by EI,n

d1,...,dm
(X) the space

EI,n
d1,...,dm

(X) = {(ξ1, . . . , ξm) : ∩i∈Λξi = ∅ for any Λ ∈ I, ξi ∈ SPdi
n (X)}.

If d1 = · · · = dm = d, we write EI,n
d (X) = EI,n

d1,...,dm
(X). If X = C, we also

write EI,n
d1,...,dm

= EI,n
d1,...,dm

(C).

Theorem 4.1. If m, n ≥ 2, sd : Holnd (S2, XI) → Holnd+1(S
2, XI) is a

homotopy equivalence up to dimension D(d; m, n) when n ≥ 3 and a homology
equivalence up to dimension [d/2] when n = 2. Here the number D(d; m, n) is
given in (1.3.1).

Proof of Theorem 1.4. The assertion follows from Corollary 2.1 and
Theorem 4.1.

Proof of Theorem 4.1. If n = 2, the above theorem easily follows from
[[11];appendix] as in the proof of Theorem 3.3. So we consider the case n ≥ 3.
If d < n, Holnd (S2, XI) = Hol∗d(S2, XI). So in this case, the assertion also easily
follows from [[5]; Theorem 4.1]. So we assume that d ≥ n ≥ 3. Then the proof
is reduced to show the following Theorem 4.2. So it remains to show:

Theorem 4.2. Let m ≥ 2, 1 ≤ k ≤ m, and d1, . . . , dm ≥ 2 are in-
tegers. Then if dk ≥ n ≥ 3, the stabilization map jk : EI,n

d1,...,dk,...,dm
→

EI,n
d1,...,dk−1,dk+1,dk+1,...,dm

is a homotopy equivalence up to dimension N(dk, n),
where N(d, n) = d + n − 4.
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Proof. It suffices to show the case k = 1. The proof is similar to that of
Theorem 3.3 and we shall sketch the main idea here.

Since d1, . . . , dm ≥ 2, the modified proof of Lemma 3.2 shows that the
fundamental group of EI,n

d1,...,dm
is an abelian group. Hence it suffices to show

that j1 : EI,n
d1,d2,...,dm

→ EI,n
d1+1,d2,...,dm

is acyclic up to dimension N(d1, n). Let
L be a local coefficient system on EI,n

d1+1,d2,...,dm
(and hence on any subspace).

We denote by I ′ the set I ′ = {Λ∩{1, 2, . . . , m−1} : Λ ∈ I} and let EI′,n
d2,...,dm

(X)
be the space defined by

EI′,n
d2,...,dm

(X) = {(ξ2, . . . , ξm) : ∩i∈Λξi = ∅ for any Λ ∈ I ′, ξi ∈ SPdi
n (X)}.

If we consider the projection π : EI,n
d1,d2,...,dm

→ EI′,n
d2,...,dm

(C) given by

π(ξ1, ξ2, . . . , ξm) = (ξ2, . . . , ξm),

we have a commutative diagram:

EI,n
d1,d2,...,dm

j1−−−−→ EI,n
d1+1,d2,...,dm

π

� π

�
EI′,n

d2,...,dm
(C)

=−−−−→ EI′,n
d2,...,dm

(C)

Let Ek
d1,...,dm

⊂ EI,n
d1,...,dm

denote the subspace defined by

Ek
d1,...,dm

=


(ξ1, . . . , ξm) ∈ EI,n

d1,...,dm
: card


 ⋃

1∈Λ,Λ∈I

{∩ξi : 1 �= i ∈ Λ}


≥ k


 .

Similarly, let Xk
d1,...,dm

⊂ EI,n
d1,...,dm

and Y k
d2,...,dm

⊂ EI′,n
d2,...,dm

(C) be subsets
defined by {

Xk
d1,...,dm

= Ek
d1,...,dm

− Ek+1
d1,...,dm

Y k
d2,...,dm

= π(Xk
d1,...,dm

).

Then the map π restricts to a map π : Xk
d1,...,dm

→ Y k
d2,...,dm

and we have a
commutative diagram

SPd1
n (Ck)

sd1−−−−→ SPd1+1(Ck)� �
Xk

d1,d2,...,dm

j1−−−−→ Xk
d1+1,d2,...,dm

π

� π

�
Y k

d2,...,dm

=−−−−→ Y k
d2,...,dm

where vertical sequences are fibrations.
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Since sd1 is a homotopy equivalence up to dimension N(d1, n), the stabi-
lization map j1 : Xk

d1,d2,...,dm
→ Xk

d1+1,d2,...,dm
is also a homotopy equivalence

up to dimension N(d1, n).
As in the proof of Theorem 3.3 we can use the Mayer-Vietoris exact se-

quence, 5-lemma, Poincaré duality and this to prove, by downwards induction
on k, that the following statement holds:

(†k) j1 : Ek
d1,d2,...,dm

→ Ek
d1+1,d2,...,dm

is acyclic up to dimension N(d1, n).

The statement of the theorem is given by (†1).

§5. Proof of Theorem 3.1

We need the following result.

Theorem 5.1. If d ≥ n ≥ 3 and k ≥ 1, sd : SPd
n(Ck) → SPd+1

n (Ck)
is a acyclic up to dimension N(d, n) = d + n − 4, where we take Ck = C −
{1, 2, . . . , k}.

Proof of Theorem 3.1. If n = 2, the assertion follows from [[11]; appendix].
If d < n and n ≥ 3, then SPd

n(X) = SPd(X). Hence the assertion follows from
[[5]; Lemma 2.4]. So without loss of generalities, we may assume that d ≥ n ≥ 3.
A similar proof of that of Lemma 3.2 shows that π1(SPd

n(Ck)) is abelian. Hence
the assertion follows from Lemma 3.1 and Theorem 5.1.

Proof of Theorem 5.1. Let L be a local coefficient system on SPd+1
n (Ck).

Since Ck is orientable, it extends to a local coefficient system on SPd(C), which
is denoted by the same letter L. We shall also use the same letter L to denote
its restriction to any (open or closed) subspace. Define the subspace Xd

n(k) ⊂
SPd(C) by Xd

n(k) = SPd(C) − SPd
n(Ck).

The stabilization map sd : SPd
n(Ck) → SPd+1

n (Ck) naturally extends the
map sd : SPd(C) → SPd+1(C). We also use the same letter sd to denote its
restriction to any subspace. Remark that sd : Xd

n(k) → Xd+1
n (k) naturally

extends to the open embedding sd
+ : Xd

n(k) × C → Xd+1
n (k). This also induces

the map sd
+ : Xd+1

n (k)+ → (Xd
n(k) × C)+, where X+ denotes the one-point

compactification of a locally compact space X.
Because SPd(C) ∼= Cd, it follows from the Alexander duality that for any

1 ≤ i ≤ 2d − 2 there is an isomorphism Hi(SPd
n(Ck), L)

∼=→ H2d−1−i
c (Xd

n(k))



�

�

�

�

�

�

�

�

96 Kohhei Yamaguchi

such that the following diagram is commutative:

Hi(SPd
n(Ck); L)

sd
∗−−−−→ Hi(SPd+1

n (Ck); L)

∼=
	 ∼=

	
H2d−i−1

c (Xd
n(k))

(sd
+)∗

−−−−→ H2d−i+1
c (Xd+1

n (k))

where Hk
c (X) = Hk

c (X; L) and (sd
+)∗ denotes the composite of homomorphisms

Hk
c (Xd

n(k))
suspension iso.−−−−−−−−−−→∼=

Hk+2
c (Xd

n(k) × C)
(sd

+)∗

−−−−→ Hk+2
c (Xd+1

n (k)).

Hence it suffices to show the following:

(†) (sd
+)∗ : Hi

c(Xd
n(k)) → Hi+2

c (Xd+1
n (k)) is bijective when i > M(d, n) and

surjective when i = M(d, n), where M(d, n) = d − n + 3.

Define the subspaces Ad
n(k) and Σd

n(k) of Xd
n(k) by

Ad
n(k) =

k⋃
i=1

({i} + SPd−1(C)), Σd
n(k) = Xd

n(k) − Ad
n(k).

Similarly, sd : Ad
n(k) → Ad+1

n (k) and sd : Σd
n(k) → Σd+1

n (k) naturally extend to
the open embeddings sd,1 : Ad

n(k)×C → Ad+1
n (k), sd,2 : Σd

n(k)×C → Σd+1
n (k).

We note the following two results.

Proposition 5.1. (sd,1
+ )∗ : Hi

c(Ad
n(k))

∼=→ Hi+2
c (Ad+1

c (k)) is an isomor-
phism for any i ≥ 1.

Theorem 5.2. (sd,2
+ )∗ : Hi

c(Σd
n(k)) → Hi+2

c (Σd+1
c (k)) is bijective when

i > M(d, n) and surjective when i = M(d, n).

We postpone the proofs of the above two results and complete the proof
of Theorem 3.1. Consider the commutative diagram

−−−−→ Hi
c(Σ

d
n(k)) −−−−→ Hi

c(X
d
n(k)) −−−−→ Hi

c(A
d
n(k)) −−−−→

(s
d,2
+ )∗
� (sd

+)∗
� (s

d,1
+ )∗
�

−−−−→ Hi+2
c (Σd+1

n (k)) −−−−→ Hi+2
c (Xd+1

n (k)) −−−−→ Hi+2
c (Ad+1

n (k)) −−−−→

where horizontal sequences are exact. It follows from Proposition 5.1, Theorem
5.2 and 5-lemma that (sd

+)∗ : Hi
c(X

d
n(k)) → Hi+2

c (Xd+1
n (k)) is bijective when



�

�

�

�

�

�

�

�

The Space of Holomorphic Maps 97

i > M(d, n) and surjective when i = M(d, n). This completes the proof of
Theorem 3.1.

Proof of Proposition 5.1. We prove by induction on k. If k = 1, Ad
n(1) ∼=

C
d−1 and the assertion trivial. If we assume that the assertion holds for Ad

n(m)
if m < k, then we can prove the assertion for Ad

n(k) using Mayer-Vietoris exact
sequence.

Proof of Theorem 5.2. From now on, we shall identify SPd(C) with the
space consisting of all monic polynomials f(z) ∈ C[z] of degree d. Then Σd

n(k)
may be regarded as the space consisting of all monic polynomials f(z) ∈ C[z]
of degree d such that f(j) �= 0 for any 1 ≤ j ≤ k and that it has at least one
root of multiplicity ≥ n.

We write N = [d/n]+1 and let φ : C → C
N be the Segre embedding given

by φ(t) = (t, t2, t3, . . . , tN ). Let f(z) = g(z)
∏s

i=1(z − αi)n ∈ Σd
n(k) be any

element, where

(i) αi ∈ C for each 1 ≤ i ≤ s, and αi �= αj if i �= j.

(ii) g(z) ∈ C[z] is a monic polynomial of degree (d − ns).

Define the open (s − 1)-dimensional simplex ∆(f ; α1, . . . , αs) in C
n by

∆(f ; α1, . . . , αs) =
{ s∑

i=1

tiφ(αi) :
s∑

i=1

ti = 1, ti > 0 for each i
}
.

We denote by G(Σd
n(k)) the geometric resolution of Σd

n(k) defined by

G(Σd
n(k)) =

⋃
f∈Σd

n(k),{αi}

∆(f ; α1, . . . , αs) × {f} ⊂ C
n × Σd

n(k).

Let qd : G(Σd
n(k)) → Σd

n(k) be the second projection. Then it is known [12]
that qd : G(Σd

n(k)) �→ Σd
n(k) is a homotopy equivalence. It also extends to

a homotopy equivalence qd
+ : G(Σd

n(k))+
�→ Σd

n(k)+, where X+ = X ∪ ∞
denotes the one-point compactification of a locally compact space X. Let F d

p ⊂
G(Σd

n(k))+ denote the subspace defined by

F d
p =


 ⋃

s≤p;f∈Σd
n(k),{αi}

∆(f ; α1, . . . , αs) × {f}




+

.

There is an increasing filtration

{∞} = F d
0 ⊂ F d

1 ⊂ · · · ⊂ F d
[d/n]−1 ⊂ F d

[d/n] = F d
[d/n]+1 = · · · = G(Σd

n(k))+,
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and if 1 ≤ p ≤ [d/n], there is a fibre bundle qd
p : (F d

p −F d
p−1) → Cp(Ck) with fibre

Rp−1 × SPd−np(Ck). The open embedding sd,2 : Σd
n(k)×C → Σd+1

n (k) induces
a stabilization map G(Σd

n(k)) × C → G(Σd+1
n (k)) which preserves filtrations.

In particular, if 1 ≤ p ≤ [d/n], there is a commutative diagram

Rp−1 × SPd−np(Ck) 1×sd−np

−−−−−→ Rp−1 × SPd+1−np(Ck)	 	
F d

p − F d
p−1

sd
p−−−−→ F d+1

p − F d+1
p−1

qd
p

	 qd+1
p

	
Cp(Ck) =−−−−→ Cp(Ck)

where vertical sequences are fibrations.
Since sd−np : SPd−np(Ck) → SPd+1−np(Ck) is a homotopy equivalence

up to dimension (d − np) ([5]; (2.4)), sd
p : F d

p − F d
p−1 → F d+1

p − F d+1
p−1 is also

a homotopy equivalence up to dimension (d − np). Because qd
p is a locally

trivial, if 1 ≤ p ≤ [d/n] F d
p −F d

p−1 is an orientable open manifold of dimension
(2d − (2n − 3)p) and there is a commutative diagram

H2d−(2n−3)p−i(F d
p − F d

p−1)
(sd

p)∗−−−−→ H2d−(2n−3)p−i(F d+1
p − F d+1

p−1 )

P.d.
	∼= P.d.

	∼=

Hi
c(F

d
p − F d

p−1)
(sd

p)∗−−−−→ Hi+2
c (F d+1

p − F d+1
p−1 )

Because 2d − (2n − 3)p − i ≤ d − np if and only if i ≥ d − (n − 3)p, we obtain
the following:

(†p) If 1 ≤ p ≤ [d/n], then (sd
p)∗ : Hi

c(F d
p − F d

p−1) → Hi+2
c (F d+1

p − F d+1
p−1 ) is

bijective when i > d − (n − 3)p and surjective when i = d − (n − 3)p.

Consider the commutative diagram

−−−−→ Hi
c(F

d
p − F d

p−1) −−−−→ Hi
c(F

d
p ) −−−−→ Hi

c(F
d
p−1) −−−−→

(sd
p)∗
� � �

−−−−→ Hi+2
c (F d+1

p − F d+1
p−1 ) −−−−→ Hi+2

c (F d+1
p ) −−−−→ Hi+2

c (F d+1
p−1 ) −−−−→

where horizontal sequences are exact. Then we have:

(‡p) If 1 ≤ p ≤ [d/n], then (sd
p)∗ : Hi

c(F d
p ) → Hi+2

c (F d+1
p ) is bijective when

i > M(d, n) = d − n + 3 and surjective when i = M(d, n).
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In fact, we can prove (‡p) easily by induction on p. Since F d
0 = ∅, the case

p = 1 follows from (†1). Next we assume that (‡p−1) is true. Then (‡p) follows
from the above diagram and 5-lemma. Now we can prove Theorem 5.2 as
follows.

First, assume [d/n] = [(d + 1)/n] = D and consider the commutative
diagram

Hi
c(Σd

n(k))
(qd)∗←−−−−∼=

Hi
c(G(Σd

n(k))) =−−−−→ Hi
c(F d

D)

(sd,2
+ )∗

	 (sd
D)∗

	
Hi+2

c (Σd+1
n (k))

(qd+1)∗←−−−−−∼=
Hi+2

c (G(Σd+1
n (k))) =−−−−→ Hi+2

c (F d+1
D )

Then it follows from the above diagram and (‡D) that the induced homomor-
phism (sd,2

+ )∗ : Hi
c(Σd

n(k)) → Hi+2
c (Σd+1

c (k)) is bijective when i > M(d, n)
and surjective when i = M(d, n). Hence Theorem 5.2 is proved when [d/n] =
[(d + 1)/n].

Next, assume D = [d/n] < [(d+1)/n]. Consider the commutative diagram

Hi
c(Σ

d
n(k))

(qd)∗←−−−−∼=
Hi

c(G(Σd
n(k))) = Hi

c(F
d
D+1)

=−−−−→ Hi
c(F

d
D)

(s
d,2
+ )∗
� (sd

D)∗

�
Hi+2

c (Σd+1
n (k))

(qd+1)∗←−−−−−∼=
Hi+2

c (G(Σd+1
n (k))) = Hi+2

c (F d+1
D+1)

j∗D−−−−→ Hi+2
c (F d+1

D )

Now remark the following:

Lemma 5.1. If i ≥ 3D + 1, j∗D : Hi+2
c (F d+1

D+1)
∼=→ Hi+2

c (F d+1
D ) is an

isomorphism.

We postpone the proof of Lemma 5.1 and complete the proof of Theorem
5.2. Since M(d, n) ≥ 3D + 1, it follows from the above commutative diagram,
(‡D) and Lemma 5.1 that (sd,2

+ )∗ : Hi
c(Σd

n(k)) → Hi+2
c (Σd+1

c (k)) is bijective
when i > M(d, n) and surjective when i = M(d, n).

Proof of Lemma 5.1. Since there is a fibre bundle F d+1
D+1 − F d+1

D →
CD+1(Ck) with fibre RD, using the Thom isomorphism and Poincaré dual-
ity, there is an isomorphism Hi+2

c (F d+1
D+1 − F d+1

D ) ∼= Hi+2−D
c (CD+1(Ck)) ∼=

H3D−i(CD+1(Ck)).
Hence, if i ≥ 3D + 1, H3D−i(CD+1(Ck)) = 0 and Hi+2

c (F d+1
D+1 − F d+1

D ) =
Hi+3

c (F d+1
D+1 − F d+1

D ) = 0. So the assertion follows from the cohomology exact
sequence with compact supports of the pair (F d+1

D+1, F
d+1
D ).
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