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Time Local Well-posedness for the
Benjamin-Ono Equation with Large Initial Data

By

Naoyasu KiTa* and Jun-ichi SEGATA**

Abstract

This paper studies the time local well-posedness of the solution to the Benjamin-
Ono equation. Our aim is to remove smallness condition on the initial data which
was imposed in Kenig-Ponce-Vega’s work [13].

81. Introduction
We consider the initial value problem for the Benjamin-Ono equation:

(1.1) Opu + Hp02u + udyu = 0, z,t € R,
u(z,0) = up(x), r € R,

where H, denotes the Hilbert transform, i.e., H, = F~(—i&/|£|)F. The equa-
tion (1.1) arises in the study of long internal gravity waves in deep stratified
fluid. For the physical background, see Benjamin [3] and Ono [18].

We present the time local well-posedness of (1.1). Namely, we prove the
existence, uniqueness of the solution and the continuous dependence on the
initial data. There are several known results about this problem. One of their
concern is to overcome the regularity loss arising from the nonlinearity. Because
of this difficulty, the contraction mapping principle via the associated integral
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equation does not work as long as we consider the estimates only in the Sobolev
space H2?, where H3“ is defined by

Hy® ={f € S'(R); || fllgz > < oo}

with /1o = 1) (D) fllzz, (@) = (1+22)*/2 and (D,)* = F~1(€)*F.
Indeed, Molinet-Saut-Tzvetkov [17] negatively proved the solvability of the in-
tegral equation in H$? for any s € R.

Saut [21] proved the global well-posedness for (1.1) in H2. Abdelouhab-
Bona-Felland-Saut [1] and Iorio [8] proved the time global existence and unique-
ness of the solution in H5? with s > 3/2. Their proofs are based on the energy
method in which the estimate of ||0,ul| L (L) gives the regularity constraint

of the initial data. Ponce [19] obtained the global unique solution in Hi’/“
by the combination of energy method and dispersive structure of linear part in
(1.1). More recently, Koch-Tzvetkov [14] have studied the local well-posedness
with s > 5/4 due to the cut off technique of Fu(&). Furthermore, Kenig-Koenig
[10] proved the local well-posedness with s > 9/8. We remark here that it is
possible to minimize the regularity of ug by inducing another kind of function
space. In fact, Kenig-Ponce-Vega [13] construct a time local solution via the
integral equation by applying the smoothing property like

t
1D, / V(= ) F ()| 12y < CIF |z,

where ||U||LZ(L;) = [ullzrp)llcewy, De = FHEF and V(H) =
exp(—tH,02). They obtained the time local well-posedness in H3Y (s > 1)
for the cubic nonlinearity (Their argument is also applicable to the quadratic
case if ug satisfies ug € H3? (s > 1) and the additional weight condition).
In their result, however, the smallness of the initial data is required. This
is because the inclusion Ly (L) - L3°(L3) C Ly (L7) yields |[uflz1(ze) in the
nonlinearity and we can not expect that ||U||L;(L%°) — 0 even when T' — 0.

Our concern in this paper is to remove this smallness condition of ug.
Before presenting the rough sketch of our idea, we introduce the function space
Y7 in which the solution is constructed:

Yr={u:[0,T] x R — R; |Jully, < oo},

where Jully, = [ull e gzonmery + @) De)*2ull e 2y +
(D) (x)* ul| L2 (Lgey with p,u > 0 sufficiently small and 0 < e < p.
We first consider the modified equation such that

{8tu1/ + Ha:agul/ + uuawnu *u, =0,

(1.2) u, (0, ) = up(x),
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where 1, (z) = v~ n(z/v) with n € C§°, [n(xz)dz = 1 and v € (0,1]. Then,
the existence of w, in Yp easily follows and it is continuated as long as
s (D)l grs:0qprzron < 00. Note that [luy |y, is continuous with respect to 7.
To seek for the a priori estimate of ||u, |y;, we deform (1.2). Let ¢ € C§°(R)
and write u, 0,1, * Uy, = @Oy, * Uy + (U, — ©)eny * u,,. Note here that, if ¢
is close to ug, one can make wu, — ¢ sufficiently small when ¢ — 0. To control
the heavy term ©d,n, * u,, we employ the gauge transform (see section 2) so
that this quantity is, roughly speaking, absorbed in the linear operator. Then,
our desired a priori estimate follows via the integral equation. As for the con-
vergence of nonlinearity wu, 0,7, * u,, — ud;u, we also consider the estimate of
Uy, — Uy in Y] which is slightly weaker than Y (see Proposition 6.1). Let us
now state our main theorem.

Theorem 1.1. (i) Letug € HS°NH*1 = X* with s1+a; < s, 1/2 <
s1 and 1/2 < oy < 1. Then, for some T = T(ug) > 0, there exists a unique
solution to (1.1) such that u € C([0,T]; X®) NYp.

(ii) Let u'(t) be the solution to (1.1) with the initial data uf, satisfying ||uf —
uol|lxs < 0. If 6 > 0 is sufficiently small, then there exist some T' € (0,T) and
C > 0 such that

lv" = ull g, (xo) < Cllug — uol| x-,

() (D) * /2 (u” — ) < Cllug — uol|x--

”L%(L?T,)

In Theorem 1.1, the conditions on the initial data are determined by the
estimate of maximal function, where, we call ||f(:,2)| s the maximal func-
tion of f(t,x). Concretely speaking, the quantity ||u||L;(L%o) is bounded by
C(l[uoll grs0 + |luol| gz1-e1) (see Lemma 4.2).

Remark 1. Only for the existence, one can further minimize the regular-
ity of the initial data. Abdelouhab-Bona-Fell-Saut [1], Ginibre-Velo [7], Saut
[21] and Tom [23] proved the global existence of weak solutions in L2, HY*0
and H1Y respectively. Recently, Tao [22] has studied the global well-posedness
in 10 but the L2-stability of the data-to-solution map holds while the initial
data belongs to H1*, i.e., |[u/(t) —u(t)| 2 < C|luf—uo| pz. More recently, Kato
[9] has proved the well-posedness by supposing that ug € HS with s > 1/2 and
roughly speaking, ug satisfies the zero average condition [ ug(x)dz = 0.

We also remark that Koch-Tzvetkov [17] and Biagioni-Linares [5] nega-
tively proved the strong stability like

([ (t) = w(t)| oo < Cllug — uolgso  for s >0,
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if there is no weight condition on ug and u{. Though our result requires slightly
large regularity in comparison with Tao’s work, it suggests that the additional
weight condition yields the strong stability of the data-to-solution map in the
sense that its target space coincides with that of initial data.

Remark 2. The upper bound of oy is required in the proof of weighted
norm estimates (see section 4) and especially, in the estimate of [(z)*, H,0?].
It is possible to relax this weight condition. However, for the simplicity of our
argument, we do not handle this kind of generalization in this paper. Let us
also remark that the persistence of the solution fails if a; > 3 (see Iorio [8]).

We close this section by introducing several notations and reviewing typical
facts on the pseudo-differential operators. The Fourier transform (27)~1/2
[ e f(z)dx is denoted by Ff or f. B(X;Y) stands for the class of bounded
operators from X to Y. For simplicity, we often write B(X; X) = B(X). The
norm of the summation space X +Y is given by || f||x+v = inf{||g||x +||2|v; g+
h = f}. We call a(z,&) € C*(R x R) belongs to the symbol class S™ if
Sup, ¢ (§>’m+j|5‘gﬁfa(x,f)| < oo. For this symbol, the pseudo-differential op-

erator a(x,i~10,) is defined by
ol i710,)f = (2m) 1 [ eal, ) f(e)de.

Let o(a(z,i718,)) be the symbol of a(z,i719,). It is well-known (cf. Kumano-
go [16], Stein [20]) that, if a(x, &) € S* and b(x, &) € S™, then we have

o(a(z, i 10,)b(z,i719,)) € ™ and o([a(x,i710,), b(x,i 10,)]) € SH™ 1L,

where [A, B] = AB— BA. These properties follow from the symbolic expansion
formula like
(1.3) ola(z,i=10,)b(x,i718,))

N—-1

/ j
2 2@.!2.] A a(x,£)0b(x, €)

—i(z—y)(§—C)
o [ [ 000

X (/0 (1—0)N"1oNb(0y + (1 — )x,§d9> dydc,

_|_

where Os- [ [ stands for the oscillatory integral with respect to y and ¢. The
expansion formula (1.3) is also applicable even in the case a(z,§) = (£)°
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and b(z,§) = (), which gives the equivalence of |[(x)*(D.)? fllzz (resp.
[{2)*(D2)? fllzz(ry)) and [(Dq)?(x)* fllzz (vesp. [x)*(Dz) fllLe(zs,)). For
the symbol a(z,§) € S™, |a\5\7,") denotes the semi-norm defined by

[l = s sup(e) ™" [0{07alz, )]

We note that, for a(z, &) € S™, b(x,§) € Sm" and arbitrary N > 0, there exist
some N’ > 0 and C > 0 such that

lo(a(z,i70,)b(x, i 10,))| ™) < Clal b))

Furthermore, for a(z,£) € S™, a(x,i~'0,) € B(L2) if m < 0 and a(x,i~'0,) €
B(LE) (p € [1,00]) if m < 0. In these estimates, we see that the operator norms
l|a(x,i~'8,)||prz) and ||a(x,i*18z)||B(Lg(LrT)) are estimated by \amn) for some
N > 0. We also denote [ V(t — 7)F(r)dr by G(t)F.

82. Gauge Transform

In this section, we transform (1.2) appropriately for the a priori estimate.
We write

(2.1) Oy, + Hzaiul, + Ny, * Ozuy,
+ (uy — @) * 0wy, = 0,

with ¢ € C§°(R) to be chosen closely to ug in H3Y N H:*1. We next define

the gauge transformation of pseudo-differential operator with the symbol:

x

Ko(e.§) = (13150~ v@e) [ o) ay).
where ¢ € C§°(R) satisfies

1, if |€] < 1,

(2.2) v(E) = {0 if [¢] > 2.

Note that K, (z,£) € SY uniformly in v € (0,1]. Applying K, = K, (x,i"10,)
to (2.1) and letting v, = K,u,, we have
(2.3) O, + Hwagvu + Ku(ul/ - 90)771/ * Oz, + RV(@: ul/) =0,

where R, (o, u) = (K,pn, 0, +[K,, H,02])u. Note that the symbol of K, ¢n, *
Op + [Ky, (1 — (i710,))H.0?] belongs to S° uniformly in v € (0, 1] since the
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top symbol of the commutator is —0, K, (z,£)0:((1 — ¢)§|€]). The desired a
priori estimate of u, will be obtained in terms of v, by transforming (2.3) into
the integral equation. Henceforth, we are led to the preliminaries about several
estimates of V (¢) etc. (These are given in the next section.)

83. Preliminary

We introduce several linear estimates. The first lemma gives the smoothing
effects due to Kenig-Ponce-Vega [13] which overcome a loss of regularity in the
nonlinearity.

Lemma 3.1.  Let p € [2,00]. Then we have

(3.1) D3> VPV ()¢l 23y < CTYP (6|2,
(3.2) ||D;71/pG(t)F|\L§(L2T) < CTl/pHFHL;(L?F),
(3-3) IDy2G(t)F|lLsez2) < ClIF |l L (£2,)-

Proof of Lemma 3.1. The case p = co and (3.3) are given in [13]. By

.1) an .3), 1t 1s easy to see that, for A € R,

(3.1) and (3.3), it i v hat, for A € R

(3.4) ID2V (6)dll 22y < T?6l12,

(3.5) 1DV () dll 22y < Clld 2

(3.6) IDYPFAG()F || 22y < CTY?||F |11 (12)-

where C' > 0 is independent of A. Also, in [13], the following estimate appears:
(3.7) 1D AG () Fll oo r2) < COVNIFl L1 22,

where N is a large positive integer. Then, applying Stein’s interpolation for
analytic families of operators to the pairs (3.4)—(3.5) and (3.6)—(3.7), we obtain
the desired estimates for p # oo. O

We next state the Strichartz estimates (for the proof, see [6, p. 377] and
refer to [25]). These inequalities will be used for the weighted norm estimates.

Lemma 3.2. Let p; and rj (j =1,2) satisfy 0 < 2/r; =1/2—1/p; <
1/2. Then, we have

(3.8) V)l wny < Clidllcz,
(3.9) IGOFl Ly oy <CIF

’r‘, p/ 5
L2 (LE?)

where 1/ps +1/ph =1/ro +1/r5 = 1.
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We call [[u(-,z)||rse the maximal function of u. Concerning the estimates of
maximal functions, we have the following.

Lemma 3.3. Leto >1/2 and T € [0,1]. Then, we have

(3.10) IV ()¢l L2 Ly < Cllgll oo,
(3.11) IGO) Fllzz sy < CIFN Ly (srg0)s
(3.12) GO F L2 (rse) < Cl(D2) Fll L1 (1)

Proof of Lemma 3.3. The estimate (3.10) is due to Vega [24]. From
Minkowski’s inequality, (3.11) follows. To prove (3.12), we first show that
the integral kernel of (D,)~7 exp(tH,02) (denoted by K (t,z —y)) is estimated
as

|z —y|77 ifjlx—y| > 1,
3.13 Ktz —y)|<C
19 b=l {|:c—y-1+oif|x—ys1,

where C' > 0 does not depend on ¢t € (0,T]. Let z =  — y and write

K(t2)= (20 [ " exp(itele] +i26)(6)7de

— 00

— (2m)! / " exp(it€? + iz€)(€) 7 de

0
+ (27)7! / exp(it€? + iz€)(€)~dE

o0

=Ky(t,z)+ K_(t,2).

We only consider the estimate of K (t,2) since K_ (¢, z) is similarly estimated.
Changing the integral variable, we can write

Ko (t2) ei#’ /4ty I et e+ 1))70de if 2 >0,
,2) = . — o .
+ et Aty f_olo e itz (Z'(E+ 1)) 7dEif 2 <0,
where 2’ = z/2t. Let us mainly consider the case z > 0 step by step.
s 12 s 12

(The case z > 1) The identity d¢e™"* € = (1—2itz?€¢2)e 2" and
integration by parts give
2 * 2
|K (8, 2)| < 2|1 — 232’771 + z’/l €0 (1 — 2it2""€3) 12/ (€ + 1)) 77)|d¢

<Cz7°.
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(The case 0 < z < 1 and t2'*> > 1) Let y_1 € C°(R) with y_1(£) = 1
near £ = —1, and let x_1 =1 — x—1. Then, we see that

2 [T e 1>>-0d5'

-1

[K 4 (8 2)] <

+

S R SICIE 1>>—0ds‘
1
1K (6, 2)] 4 K pa(t, 2.

7itz'2£2 _ efitz'Z)

To estimate |Ky1(¢,2)|, we use the identity O¢(e

72itz’2§e’“z/252 and integration by parts. This yields
(3.14)

Kot )| < Ctta ( /

(D6~ x—1)(# (6 +1))7deg

1
b e e e 1)
-1

0
< Ct—lz/—l—a + Ct—lz/—l—o/ |€—itz 2¢2 e itz 2‘(5 + 1)_6_1d€.
-1
The integral in (3.14) is bounded by C(¢z’)? since, for 0 < R < 1 and ¢’ > o,
we have

0
/ |e—itz 2e2 e—itz 2|(£ + 1)_0_1d§
-1

1+R

0 _
—o—1 12\o’ o' —o—1
<C/_1+R(§+1) d§+0/_1 (") (€+1) d¢
<C(R™7+ (t2*)7 R7~7)

with R = (¢/(c’ — )"/ (tz/*)~1. Thus, noting that z > 2t!/2 in this case, we
have |K 4 1(t,2)] < Cz71%9. The estimate | K, 2(t, 2)| < C211 follows from
the identity 8556*“'3/252 =(1- 22'152’252)6’“2/252 and integration by parts.

(The case 0 < z <1 and 2% < 1) Changing the integral variable, we have
another expression of K (¢, z) such that

K+(t,z):eiz2/4tt—l/2/ eI (V26 4 12,0y~ e

_t1/2z/

) o0 L2
etz [T e e ) s
—tl/22/

+ei22/4tt—1/2 /oo €_i£2(1—XO(§)><t_l/2(€+t1/2z/)>_od§

—t1/2 4

= K+’3(t,Z) + K+74(t, 2)7
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where xo € C§°(R) with xo(§) = 1 in the neighborhood of [-1,0]. It is
easy to see that |K, 3(t,2)| < Ct~(179)/2 < Cz='*7. Making use of the
identity dce=" = —2i¢e~2%€" and integration by parts, we can show that
|Ky4(t,2)] < Ct~(179)/2 < €2~ Thus, (3.13) follows. Hence, (3.13) and
Young’s inequality yield (3.12). |

In the nonlinear estimates, the fractional order differentiation will be ap-
plied to the quadratic term in (2.3). To handle this, we require the Leibnitz’
type rule for the fractional order derivatives due to Kenig-Ponce-Vega [12, Ap-
pendix].

Lemma 3.4. Leto € (0,1) and 09,01 € [0, 0] with 0 = o¢ + 01. Also,
let ¢ € [1,00) and qo,q1,70,71 € (1,00) with 1/q = 1/q0 + 1/q1 and 1/2 =
1/ro + 1/r1. Then, we have
(3.15)

1D7(f9) = (Dgf)g — F(DIg)lrarzy < CIUDT fllpgo oy 1D gll par nry-

When we apply the Leibnitz’ rule for the fractional order derivative to the

. . . . . . s—1/2
nonlinearity, we encounter the estimate of lower order derivatives like D, / U

and J,u. The following lemma and its corollary help us control these quantities.
In particular, we require the case ¢o = 1,q1 = 00,79 = 00 and 71 = 2 (the end
point case of the interpolation).

Lemma 3.5. Let 09,01 > 0, ap,an € R and qo,q1,70,71 € [1,00].
Also, let 0 = (1—0)og+ 001, a = (1—0)ag+ 001, 1/g=(1-0)/q0+60/q1 and
1/r=(1=0)/ro+6/r1 with § € [0,1]. Then, for f € S(R;C*>[0,T)]), we have

(3.16) 1D (=) fllLa ey

1-60
< (sup e Dgr e gy e )
S

0
> (Sup 61—)\2||Dgl+i)\(0'1—a'0)< >a1+1)\(a1 aO)fHL‘“(L”)) )
AER

Proof of Lemma 3.5.  We first define the complex valued function F'(z) by
F(2) = / g-(t, ) D7) 2y (¢, ) dtda,
Rx[0,T]

where o(2) = (1 — 2)o0 + 201, a(z) = (1 — 2)ap + zay and

g:(t,2) = llg( @) |77 Dg(t,2) 7O sgng(t,)
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with g € S(R; C*[0,T)), 1/¢'(2) = (1—2)/q)+z/q;, and 1/7"(z) = (1—2)/r{+
z/r} (the prime ' denotes the Holder conjugate). Then, F(z) is holomorphic
in the strip S = {# € C;0 < Rez < 1} and continuous in S. In addition,
lim gz |—oe [F'(2)| = 0 in virtue of the multiplication ¢*". According to the
three line theorem, we see that

(317) |F( )‘ < Ml RezMRez’
where M; = supycg |F(j +i))| (j =0,1). By applying Holder’s inequality,
(3.18)

L2 L B L B
j < || ||(zq/q(]Lr sup (e]—)\ ||ng+z)\(a1 Uo)<x>aj+z)\(a1 aO)fHLqJ(L;j)) )
A x

Combining (3.17)(3.18) and (LY (L}.))" ~ L4(L%) with z = 6, we obtain
Lemma 3.5. g

Corollary 3.6.  In addition to the assumptions in Lemma 3.5, let p > 0.
Then, we have

(3.19) H<Dz>a<x>af”LZ(L
< OID2) (@)™ fll a0 10, | (Do) @) F s .

Proof of Corollary 3.6. By estimating the integral kernels of operators,
we see, for instance, that

||Dgo+i>\(a1fao) <:E>i)\(a1fa0) <D1>7(00+H)HB(LZO(L;9)) < C<)\>N

with N sufficiently large. Then, Lemma 3.5 yields the desired result. O

In our argument, the pseudo-differential operator K, often appears. We
note that K, ¢ B(L.) uniformly in v € (0, 1] since the symbol of K, contains
the gap for £ = +o0 if v = 0. The following lemma states that K, € B(L?)
(1 < p < 00) and its operator norm is estimated in terms of |||l x=.

Lemma 3.7. Letp € (1,00) and v € (0,1). Then, we have
(3.20) 1 Kullgey < C;

where the positive constant C is independent of v € (0,1] and does not diverge
as ¢ — ug in X°. Furthermore, in the above inequalities, we may replace LY
by LP(LY%) with r € (1,00).
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Proof of Lemma 3.7. Note that K, (z,§) = L, 4+ (z,&)x+(§) + Lo, —x— (&),

where
Lus(2,6) = exp (i\/f (1= vniwe) [ o)

and x4 (&) (resp. x—(§)) is the characteristic function on (0,00) (resp.
(—00,0)). It is well-known that x+(i~'0,) € B(LE), and thus it suffices to
show that L, 1 (z,i710,) € B(LE). We write

(3.21) Lyt (x,8) =9(§/2) Lo+ (2,€) + (1 — 9(£/2)) Lo+ (2,€)
= Lu,j:,l(xa 6) + Ll/,i,2(xa 5)

By the integration by parts, the integral kernels of L, 4 1(z,i7'0,) (denoted
by L, +1[x,y]) are estimated as

Lucsalegll = o) | e“wau,i,l(x,g)dg'

< Cexp(Cllollx)(z — ),

where N > 0 is sufficiently large. Also, note that

(322) Lysa(rc)
— - vt/ e ( £/ 20 - w(@)iwe) [ o)
— (1 9(/2)
+(1 = wlef2) (o (/2 2000) [ otwiiy) -1).

where we remarked that, if 1 —1(£/2) # 0, then 1 —¢(£) = 1. Furthermore,
the symbol exp(i~*(7/2)/ 27 (v€) f_g:oo ©(y)dy) — 1 yields the integral operator
with the kernel bounded by C exp(C|p||xs)v~ {(x —y)/v)~N, and 1 —(£/2)
yields LP-bounded operator. Hence, we see that L, 1 o(z,i718,) € B(LP) and
(3.20) follows. O

84. 'Weighted Norm Estimates

In this section, we derive several linear estimates in the weighted norms,
which bring us the persistence of the solution.
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Lemma 4.1. Let o,a € [1/2,1) and ¢’ > o + «. Then, for T € (0,1),
we have

(4.1) V)&l Lo gy < C(H¢||H;’,0 + 1@l o),
(4.2) (G F || Lo gy < CT'?||Dg _1/2F||L;(L%‘F)
TP @ Fll Ly 1242800 04

Proof of Lemma 4.1. Let w = V(t)¢ and multyply (x)*(D,)° on both
hand sides of (8; + H,02)w = 0 with w(0,x) = ¢, we have

(0% + Ha02)(2)*(Da)"w = [Hy 0, (2)*|( D) "w.
Thus, Duhamel’s principle gives
(43)  (2)N(Da)Tw =V (t){x)*(De)?¢ + G(t)[Ha03, (2)*](Da) w.
Note that the symbolic calculation of the pseudo-differential operators gives
[Ho03, ()] = 202 (2)*) (1 = (i7" 02)) Dz + (B(L?) operator),
where ¥(i710,) = F 11 (&)F where 1(€) is defined by (2.2). Then, applying
Lemma 3.2 and Hoélder’s inequality to (4.3), we have
IV ()ellge g o) < Cllllgs + CT(|(1 = 4™ 02) D2V (£)(Da) ¢l 13,
where 1/g > o —1/2. Also, Lemma 3.1 (3.1) gives
IV ()8l gz raz=) < Clill g + CTY 2| DY/ 2(Dy )7 | 2
<C(lollag~ + 1l go'0)-
We next prove (4.2). Similarly to the derivation of (4.3), we have
(44) (2)(D2) Gt F = G(8)(2)*(D2) F + G(1)[H 03, (2)*]G(t)(Dz) " F
=L+ L.
By Lemma 3.2 (3.9), I; is estimated as

||11HL;?(L§) < C||<9C>a<Dx>gF||L1T(L2)+L4T/3(L;)-

As for I, we see that
(4.5)
12| Loe (z2)
< O (0x(2)*) (1 = 9(i7102)) DaG(t){ D) F | 1y (12)
+CG()( D) Fll1 (z2)

< CTY2| Do G(t)(Da) " Fl a2 + Cl @) (D) Fll s (24147511



WELL-POSEDNESS FOR THE BENJAMIN-ONO EQUATION 155

Note that, to obtain the last inequality of (4.5), we used 1 — ¥(i71d,) €
B(Li(L%)) and Lemma 3.2 (3.9). Lemmas 3.1, 3.2 and D,((D,)° — DJ) €
B(L?) (1< p < c0) yield

HDIG(t)<Dm>UFHL%(L2T) < CHDals/quUF”L;(LQT) + C||FHL1T(L§)+L‘;/3(L}D)

< CIDZ V2Pl Ly u) + I Da) Fll 1 )4 190500

Hence, Lemma 4.1 follows. ]

The lemma given below is concerning the estimates of maximal function
and determines the regularity and weight conditions on the initial data.

Lemma 4.2. Letp€[0,1), a€[1/2,1),0 >u+1/2 ando’ > p+a+
1/2. Then, for T € (0, 1), we have
(4.6) (Do) (@)*V()dllz2(z5) < ClIll oo + 10l rg),
(D) (@) G F || L2 (130) < CTY2|DZ ~Y2F | 11 12,
+CDLY @ F,,

—~
:J;
~

~—

(L2)+Ly* (L)

Proof of Lemma 4.2. We only prove (4.7) since (4.6) follows more easily.
Applying Lemmas 3.2 and 3.3 to (4.4), we have
(4.8)
[{Da)"(x)* G () Fll L2 (L3)
< (D) G (1) (@) Fl L2 120y + (D) G () [Ho03, ()]G () F | L2 (122
< Cl(De) (@) Fllps (pzyr1z1) + CT|(Do)* /2T PLG(t)F| 1o 12
+CT' 2 |(Dy) 2T Py G(1) F | 2 12,
where p+1/2+¢ < o, P = [t(i710,)H,02, (2)*] and Py = [(1—4(i~1))H,0?,

()] with ¢ € C§°(R). By Hélder’s inequality, the first term on the right hand
side of (4.8) is estimated as

(4.9) H<Dz>g<$>QFHL1T(L3)+L1T(L;) < C||<Dw>g<$>aFHLlT(L;;)+L;/3(L;)~
Since P f = /Pl(amy)f(y) dy, where

) 1
Pi(z,y) = —(2m)"! / @V (4 (€)E]¢ ] de /0 D (1)L s 10y 46
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and |0 Py (x,y)| < C{z—y)~2 (k = 0,1,2), the second term in (4.8) is estimated
as
(4.10)

(Do) T2 PLG(#)F || 2o 12y < CIIG () F || e (12

< CIFM Ly 12y 235 11
< CI(D.)" (@) Fl,

(by Lemma 3.2)
(L3)+L7 (1Y)
As for the third term in (4.8), we note that

Py =20, (x)*(1 — (i~ '0,)) D,
+(pseudo-differential operator with symbol in S).
Then, it follows that
||<Dx>“+1/2+€P2G(t)F||Lﬁ(L?T)
< C||<Dw>u+1/2+e(ax<x>a)(1 - w(iilax))DwG(t)F”Lg’?(Li)
+CT2 (D) PTG F e (12)-

Since the symbol of [(D,)*t1/2t€ 9, ()] belongs to S#~1/?*¢ Lemmas 3.1
and 3.2 give

(4.11) (D) PPy G() F | 2 r2y
< O|IDEH 24 GF || g 15 + CTY?|G{D2)” Fll g (12)
< CIDI 2P| Ly ray + ClDz)" (@) Fll s (p2y4 1421

where 1/g > o — 1/2. Combining (4.8)—(4.11), we obtain Lemma 4.2. O

85. Nonlinear Estimates

In what follows, we only consider the case s € (1, 3/2) since the other cases
are verified without major modification. For a brief description, we let

|||u”|im'tial = ||u||L°°(XS)7

T
Nl smootn = ||<x>7”<Dz>5+1/2uHLi/E(L%)’
lullmazim = [{Da)* () ull L2 (Lg).

and thus |Ju|ly; (introduced in section 1) equals to ||uinitiar + [|wllsmootn +
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Lemma 5.1.  There exist some C,C,,3 >0 and 6 € (0,1) such that

(5.1) (D) 2Ky (f009) 1 (22
< Cllf lmazim l9lsmootn + CUF Wrazim I Dmootn 19l marim 19 Womootn
+CT| fllyz Mgl
(52) D™ @)™ (F0:0) 1y gy sptoas) < CT W v Nl
where C, may diverge as ¢ — ug in X°.
Proof of Lemma 5.1. For small k > 0, we write
(Do)~ 2K, (f0ng) = (Do)~ /2K, (1) " ((2)" fOu9)
= ()" K, (Dy)* V2 ((2)" fO.g)
(@) T (D) 2 K] ((2)" £,9)
(D) V2K, (2) "] ((2)" fOeg)-

Applying Holder’s inequality to the first term on the right hand side and not-
ing that [(D,)*1/2, K,] € B(LL(L})) and [(D,)* /2K, (x)~"] € B(LL(L}))
since the symbol of these commutators belong to S°~3/2 with s — 3/2 <0, we
have

(D2)* 2K, (f0:9)l| 11 (12) < CIEW(D2)* 2 ((2)" f0ug) | 1212,
+Co|(2)" fOugll L1 (12)
= Il + 127

where 1 < p < 1/(1 — k). As for I, the Holder and Sobolev inequalities yield

Iy < Cy|(2)™ fOx9ll L2 (12,
< CoTY2 | fll pe (rrzro 90l Loe (120

By Lemma 3.7 and (D, )*~1/2 — Dy e B(LP(L%)), we see that

I <O D52 ((2)* £0.:9) | (12 + Cl{@)" FOugll e r2,y
=111 + ©ia.
15 is estimated as
Ly <Cl{a)* /2 fO,gll 2 (12,
< CT1/2||<$>a1f||L;°(Lg°)||g||L39(H;*°)
< CTI/?HfHL;?(Hjl*“‘l)HQHL;O(H;O),
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since kK + 1/2 < a;. By Lemma 3.4, we have

Iy < |{@)"f D52 0ugll 2 (12
+C|D (@) fll o (1) 1029l 22 (12
= I + I119,

where

1/p1=0(1/p—¢)+ (1 —0)e,
1/ri=0/c0+ (1 —0)/2,
1/pa=(1=0)(1/p—¢) + be,
1/ra=(1-0)/oc+0/2,

with Op/2+(1—6)(s+1/2—pu/2) =s—1/2,60 € (0,1) and p > 0 small enough.
By Hélder’s inequality and H, € B(LY °(L2)), we see that

Tuan < @)l yra-em g 122 D32 0ul 17e 1)
< C|||f“|ma:rim(|||g”|smooth + T1/2|||gminitial)'
To estimate 112 by the interpolation (Corollary 3.6), we choose ' > x and
P > 0 so that
K'=0p" +(1-0)(—p),
0=(1-0)p"+0(—p).

Then, we see that

(5.3)
15 (@) fll s
< IKD) (@)™ (@)~ fll o 1

< CO(Dg)* ()P =" +’””flligxu—sp)(L%c)H<Dac>5“/2<x>”3’“ +"fllzi(LQT)

< Cl )2 (Da) (@) 1l (1) D)) 0L
zAT Lo " (L%)

We write
(@) V(D) ()P f = ()P et /2 (D YRy f
H{(Da), ()~ R 2 gy f
()2, (Dy) ] ()



WELL-POSEDNESS FOR THE BENJAMIN-ONO EQUATION 159

Since p and « are taken so small that p’ — k" + k — a1 +1/2 < 0 and all the
commutators in the above are L2(L$)-bounded, we have

(5.4) () /2Dy (@) =4 fl 2 (1) < Cl S lmazim-
On the other hand, we write
(D)2 () =070 f = () P A ) A
+[<D1>S+1/27 <l,>fpfm/+m]f.
Bly/a([<px>s+1/2, (x)=P=F'+#]) € §5=1/2 and the Sobolev embedding Ha'*"
L)'*

(5.5)

D)2 @) P Al e gy S 2 e g
FTV2(Da) 2 ) A ] e

SO(”Umsmooth + T1/2|||fminitial)~

)

By (5.3)—(5.5), we see that
(5.6) 1D Y2(@)" fll s )
< Ol lomasim (I lsmootn + T2 fllinitiar)
< Ol Wnaaim I Wmoorn + CT 1 f -
As for [|0zg]|prz 12y, We use Hy € B(LE? (L)) and Corollary 3.6. Then,
BT 10l iz < CIDgl o i)
< Cllglmazim Ngllsmootn + T *lgllinitiar)’
< Cllglmazimllolimootn + CT gy

Thus, combining (5.6) and (5.7), we obtan (5.1). We next prove (5.2). It

suffices to estimate || D3* (z)* fO.gl|, . (L2) . We write
T x

+Ly/*(LY)
D3 ((z)* fOrg) = ()™ f D3 0ug + (D3 ()™ f)Oug
+(D3 ({2)* fOug) — ()™ fD3 0pg — (D3 (2)*" f)Ou).
Then, L2.(L2) C L3 (L2) and Lemma 3.4 yield
(5.8)
||‘D:SE1 <x>a1faitg”L,}(L%)_’_L;/:s(Li)
< OTV2@) fl s gy D) 0a g2y + (D @)™ £)0a 3o 1
< CTY?|[(2)™ £l 12 (Lgl)H<Dz>sl+19||ng(L;2) + CT**| fllinitiatllglinitiar,
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where

1/]51 + 1/]52 = 1/2, 1/F1 + 1/7’“‘2 = 1/2

1/po=(1—-0)/2+0s, 1/fa=(1—10)/co+0/2,
with s1 +1 = (1 — 0)1/2 + 6(s; + 1 + fi/2) for small i € (0,1). By the
interpolation (Corollary 3.6), we have

1(D2)* gl 12 172y < CIDY @) 12 (e D) 4 2) 1151 g

where j satisfies 0 = (1 — 0)j + 6(—p). Since the smallness of p and ji allows
p<ajpand s;+ 144 <s+1/2, we see that

(5.9) (D) *gll 52 172 < Clghmasim (I hsmootn + T2 gllinitiar)’
< Cliglly,-

As for |\<J;>°‘1f||L,;1(LT~»1), we remark that 1/2 — 1/p; = 1/p2 = i/4(sy + 1) +
z \Lp

e(s1+1—0/2)/(s14+1) < p for small i and e. Therefore, the Hardy-Littlewood-

Sobolev inequality gives

(5.10) 1 Fll g 0y < CID P @) Fl Ly o
<CTY™|flmazim
<Clflly-

Combining (5.8)—(5.10), we obtain (5.2). O

The lemma given below is concerning the estimates of the remainder term.

Lemma 5.2.  Let s’ slightly less than s. Then, there exist C, > 0 and
small positive constant 3 such that

(5.11) ”RV((PvuV)”LlT(H;’O) < CoTlullyy,
(512) ||RV(()07 u,,) - R, (90, uV’)||L§~(H§’~0)

B
< CoTlluy = urll e o0y + CoT @+ V) (luwllye + T llvs).

Proof of Lemma 5.2.  Since K, on, * 0, + [K,, (1 —(i710,))H,0?] € S°,
this is H$"-bounded and its operator norm is estimated in terms of large order
derivatives of ¢. Also, [¢(i710,)H.0?%, K,] € B(HZP) since (i =10, )H.0% €
B(H:°). Hence, we obtain (5.11). The estimate (5.12) likewise follows. We
note that % and v/° appear in the estimates of K, — K, and n, — n,» (The
slight loss of regularity occurs in these estimates). 1
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§6. Proof of Theorem 1.1

The local existence of the modified solution u, to (1.2) follows from Lem-
mas 3.1, 4.1, 4.2 and the strong smoothing property of 7, *. Furthermore, this
local solution is continuated as long as ||u, (t)||xs < co. We note that |Ju, |y, is
continuous with respective to T'. Let |Jug||xs < do and T, = sup{T’; |Ju. |y, <
26’¢50 for 0 < 7 < T} (The large positive constant é@ may diverge as ¢ — ug
in X* and it will be specified later). The modified solutions u, and v, = K,u,
respectively satisfy

(6.1)  w, =V (t)ug — G(t)(uyny * Ozu,),
(6.2) v, =V({t)K,up — G)K,((u, — @)ny, * Opu,) — G(t) R, (0, uy).

The uniform lower bound of 7T, and convergence of u, as v | 0 are obtained
by the following proposition.

Proposition 6.1. The following assertions hold.
1. There exists some Ty > 0 such that inf,~o T, > Ty.

2. For some T € (0,Tp), we have

(6.3) s vz < 2Co0o,
lww — uwr ‘HYT/ < C@(Vﬁ + V/B)v
where || - |y, is given by
58 = 151 ot o, 124D 2 e

(D) (2)** fllLz (g
with s' (resp. sy, ') slightly less than s (resp. s1,p).

To prove Proposition 6.1, we need two lemmas. The first lemma suggests
that the estimates of v, gives those of u,,.

Lemma 6.2. Let s’ < s and T € (0,T,). Then, there exist positive
constants C,Cy, and 3 such that

(6.5) [\l ge (30

< CH’UVHL;O(H;’O) + Colluyllpge (L2),

(6.6) )= (D) 20 12 3

< CH<x>7p<Dx>s+1/2UV||L;/€(L2%) + CWTBHUVHL%C(H;’O),
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(6.7) Jluy — UD'HL%(H;UO)

< Cllvw = vurll oo grer0y + Copllw —wrllLge 22
+Co (V% + V") (luwllye + s v ),
(6:8) [1{) (D) 2wy = wu) | e 1
< Cll @) (D) 2 0y = vl e 1

B
+C TP [ty = st || e a0y + Co (W + ) (v + sy,
T x
where Cy is allowed to diverge as ¢ — ug in X°.

Proof of Lemma 6.2. Since 9,K, = K,0, — (7/2)"/?0K,H,(1 —
Y(i710,))n,*, we see that

(6.9) (D) 10,0, = K, (D)5 1 0pu, +7r(u,),

where r(u,) is a remainder with ||7(u, )| s (r2) bounded by Cylluy[|pse(r2) +
ﬁ”ul’”L%o(H;’O) with k£ > 0 small. Let K,(¢)(= K,) be the pseudo-differential
operator of the symbol:

X

Ro(,6) = exp ( 7 - v@nioe |

We here note that K. » plays a role like an inverse of K, and, precisely speaking,
I - K,K, € S~ uniformly in v € (0,1]. Applying K, to (6.9), we have

(D)* 'Oy, = K, (D)5 0,0, + (I — K, K,) (D)3 05wy — Kyr(uy).
Thus, it follows from Lemma 3.7 that

||<Dr>87lazuu”L§’9(L§) < C||UDHL%0(H;,0) + CSDHUVHL;,C(H;*W)

+(CV’||U”HL§'9(L§) + ’%HUVHL;}O(H;”))-

Using ||uy||Loo(H371,o) < C||uV||L%o(Lg)+n||uy||L%O(Hs,o) and taking x sufficiently
T e Ed x
small, we obtain (6.5). We next prove (6.6). Write

<Dx>s+1/2uu = I?V<D£>S+1/Q'Uu + (I - I?I/KI/)<D$>S+1/ZUV
_I?u[<Dz>s+1/27Ku]uv~
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Then, Lemma 3.7, L2(LY/?) ¢ L¥/*(L2) and HY*" c L}/* yield

1) (D2)* 2 e gy < IR @) (D2)" 20, e 1)
—-p I s+1/2
+I[{z) 7, Ku)(Dy) / UVHLQT(Li/E)
@)~ oK) (D)™ 2, | e
2 (L
—P I s+1/2
+[[(x) K, [(Dy) / ’KV]UVHLQT(LJID/E)

< CH <I>7P<D1,>s+1/2111,||Li/s(L%

)

)

FOTY2 (), R (D) 20, yarn

FOT(I = By ) (D2) 0 1720,

—|-C'Tl/2H[?V[<Dw>s-‘rl/27 KV]U:V”L%O(H;/Q,O).
Since o([(z) 7, K,]) € S~ and o([(D,)*t/2, K,]) € 557/, we see that

@) =D))< Ol (D) 20, e )

+C¢T1/2(”’UV||L%C(H;’O) + ||UDHL;°(H;*0))-

Since HUV||L%Q(H;,0) < C’q,||uy||L%o(H;,o)7 we obtain (6.6). The estimates (6.7)

and (6.8) follow in the similar way. We note that, to derive v + v/ ?in the
estimate of K, — K, the slight loss of regularity occurs. |

The second lemma allows to make the nonlinearity in (6.2) small enough
by taking ¢ close to ug and T > 0 small.

Lemma 6.3.  There exist positive constants C, C, and 3 such that
(6.10) e = @lmazim < Clluo = ¢llxs + CoT? (1 + fuy v )?,

where C, may diverge as ¢ — ug in X°. Furthermore, taking ¢ close to ug in
X?, we have

(6.11) s lsmooth < Clluo — @llxs + CoT? (1 + lluylly ).

Proof of Lemma 6.3. We first note that ||, * u,|lyz < Clluy|y,. In
fact, by regarding n,* = v27i(vi~19,), the symbol of [(x)*,7(ri~1d,)] be-
longs to S~! uniformly in v € (0,1] if @ < 1, which yields [(z)*,/(vi~10,)] €
B(L-(L2)) N B(LE(LY.)) with the operator norms independent of v. Then, it is
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easy to see that
I * wy initiar < Clluw|linitiar,
"lnu * Uy |||mawim S Clnuy |||maa:im-
The estimate of |7, * uy||smootn follows from
I 5 ol smootn < [[{x) ~P(vi =05 )(@)? - () (D) 2uy || 1/e 1
LY *(L2)
Lo - s+1/2
< (i 0e) - () D) | are
) P s, ()71 @) P (Da) P || e o
Lz (LT)

S Cmuu msmootlr

Therefore, we have [|n, * u, [y, < Clluy |y -
Applying Lemmas 4.2 and 5.1 to (6.1), we have

(6.12)
I = @llmazim < IV ()0 = @llmazim + CT 2| D52 (wymy 5 Oau) | 11 (12,
FOND™ (@)™t * Do)y 11305 1
<[V (#)uo = @llmazim + CT [lus[I3,.-
In virtue of Lemma 4.2, the first term in (6.12) is estimated as
(6.13) [V (t)uo — Pllmazim < IV () (w0 — ©)llmazim + IV () = llmazim
< Clluo — ¢lix+ + CT || gz

with m,n > 0 large. Thus, combining (6.12) and (6.13), we obtain (6.10). We
next prove (6.11). Applying Holder’s inequality and Lemma 3.1 to (6.2), we
have

(6.14) lvw | smootn < C”<Dr>s+1/2v(t>Kl/u0||L§O(L2T)
+CH<D$>S_1/2KV((UV — @)y * 8$“V)||L;(L2T)
JFCHRD(CP»UV)”UT(H;O)-

Note that, to obtain the estimate of R, (¢, u,) in the above inequality, we used

(D) 2GR, (0w e 13
T
S/ (D) Y2V OV (=) R (0w, | 1013, d
0

<C [ N VEnIRAe s dr
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Lemmas 3.1, 3.2 and L4 (L) C LP(L2) give

(6.15) (The first term in (6.14))
< (D) PV (1) Ko (Da)* (o — )l Lo (22,
+T1/4||<Dgc>1/2V(t)Ku<Dz>S<P||L4T(Lgo)
TV (£)(D2) 2 [(Da)*, Ko Juol| Lt 1)
< Clluo — @l gso + C¢T1/4 + C¢T1/4||uo||H;71/2,o
< Cllug — ¢l gso + C, T4,

Applying Lemmas 5.1, 6.3 (6.10) and

H|7711 * Uy |||maa:im S Clnuy |||maa:im7
luwllmazim < lluw — @lmazim + Cllel e,

"lnu * Uy |||smooth S |Hu1/H|smooth + CT1/2|||UV minitiala

we have

(6.16) (The second term in (6.14))

< Clluy = @llmasim 1w llsmootn
+Clluy = Plpazimllte — Ol maotn Nt Draeirm It Wmootn
+C TP (1 + JJuy [y, )?

< C(lluo — ¢llx= + l[uo — oll%-)
+C TP (1 + [y, ).

‘uu ‘” smooth

Also, Lemma 5.2 gives
(6.17) (The third term in (6.14)) < C,T||uy || vy -

Combining (6.14)—(6.17) and applying Lemma 6.2, we obtain (6.11). O

Proof of Proposition 6.1. Applying Lemmas 4.1, 4.2 and the nonlinear
estimates as in Lemma 5.1 to (6.1), we have

618)  lusllps sy + Bt lonasim
< Clluollx- + CTY? D3 (un, * 8y 12 13,
FOIDL) ™ (), * Dy,

< Cllullx- + CTuy 12,

”LlT(Lz)w;/ 3(Ly)
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We next apply Lemmas 3.1 and 5.2 to (6.2). Then, it follows from Lemmas 5.1
and 5.2 that

||’Uu||L%o(H;)0) + llvw llsmootn
< HUVHL;O(HQO) + CH<D$>S+1/2UV||L°°(L )
< Clluollx= + CIE ((w — @) * Ozun)|| L1 (22,
FON Ry (0 un)ll Ly (110
< Clluol|xs + Clluy = ¢llmazim U llsmootn

+Cllww = Pllmaain 12111 e ltw llsmootn + CoT? (1 + [l )

Thus, by Lemmas 6.2 and 6.3 (6.10),

(6.19) HU‘I/HL?H;‘O + luw llsmooth

< Cylluollxs + Cllluy = @llxs + lluy = @ll%) s
+C TP (1 + Jluy llyz ).

Combining (6.18) and (6.19), we have

lusllyr < Codo + Cllluo = @llx= + luo — ¢l%+) - 2040
+C,T% (14 2C,d0)>.

Let T' 17T, and ¢ € C§°(R) sufficiently close to ug in X*. Then, we have
20,60 < C,00 + (1/2)C.00 + C, TP (1 + 20,80

Hence, for any sequence {v,} such that v,, — 0 as n — oo, liminf,, ,, T, =0
causes the contradiction. This is the proof of the first statement and (6.3) in
Proposition 6.1. We next prove (6.4). Let u, v = u, —uy and v, ,r = v, —v,r.
We see that

(6.20) uyr = =G(t)(uvpmy * Optiy) — G(E) (urr1r * Optin,)
=Gy (m — M) * Opuy,
(6.21) vy, =V ()(K, — Ky )uo
G(t)Ky/(uu w1y % Optty) — G () Ky (Uyr — @)1y % Oy,
—G(t)(Ky — K )((wy — )y * Oyuy)
—G) Ky ((wr — ) (0 — nur) * Oyuy)
—G)(Ry(p,un) — Rur (0, unr)).
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Applying Lemmas 6.1, 4.2 and the nonlinear estimates as in Lemma 5.1 to
(6.20), we have

(6.22) ||uV7V/||L%°(H;I1’a1) + ||[{(Dg)* <m>a1ul,’l,z|\Lg(L§?)

< OT(Juwllvg, + luw ) luw,olly
ACT uw v N (e — 10r) + ws vy

In order to estimate [|(n, — m./) * u,|ly; in (6.22), it suffices to show that
(@)*(Da)7 (1 — 1) * (D) =7 (2) ™ € B(Lip(LY)) N B(LE (L)),

with the operator norms bounded by C(v? + V/ﬁ), where —1 <a<1,0<0 <
6 <2and 1 <p,r < oo. Note that n,* = 2r)(vi~'d,) and write

(@) (Da)? (= 1hr) * (D)~ ()™

= V2m(z)® (i) ( T10,) = AT 0,)) (D) O ()
= V2r(7 (vi~t0,) —a(v'i"10,))(D w>_("_")
+V2r (@), (A(vi™'0,) — A1 0,))(Da) 7] (w)

u’(xal_la )+P2,;Lu( 18 )< >

Let us only consider the case a > 0 since, in this case, the multiplication of
(x)~* is bounded on L7.(L2) (LP(L”.)) and the other case a < 0 is also verified
by taking the commutator of (7j(vi~ 18 ) = H(V'i710,)) (D)~ (079 and (x)~°.
It is easy to see that Py, (z,&) € S~ with 0 < # < min{1,5 — ¢} and

1P| T < Onli(ve) —a(v'e)| )
< On(1(v€) — 1) + [a(v'€) — 1| D7)
SCN(VB +’/ﬁ)7

where, to obtain the last inequality in the above estimate, we used |7j(v€) —1| <
CvP{(€)P and [ (9¢n) (vE)| < C;vP(&)=IHP. As for Py, (2,i710,), we first
note that

oy (2,€) = f / / e~ E=EO g, (7(wC)

O~ / D (W) gy s 1y AOYC

S~ (14+6— O').
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In particular, by regarding Py(z, &) € §—(1H+5—0=0)

|Poy | 77 < On |0 (i(ve) — a(1€)) (€)== (T
< Cnlia(we) — n(/'€)|E)
< On(we) — 115 +1a('e) — 1150
< CN(I/B + V/B).
Therefore, observing the integral kernels of P;,, . (x,i718,) (j = 1,2) and not-

ing that these kernels are estimated in terms of some semi-norms of P; , .+ (z,§),
we see that

(6.23) (@) (D) (= 1) % (Da) =% (@)~ |l 3Ly L2y nBLE(LE))
< W’ +").

This implies that [[(n, — n,) * u, ly; < C(7 + V"Vlu [y, . Hence, by (6.22),
we have

(6.24) [t | ory D) (@)™ ol )

LOO(Hill'
< CTP (Juw v + v e ) v v
+C(WP + V) luy v s v
Applying Lemma 3.1 and the nonlinear estimates as in Lemmas 5.1-5.2 with s
replaced by s’ to (6.21) and making use of the estimates similar to (6.23) with
(n, — mu ) replaced by K, — K/, we see that
(6.25) [l e (grzroy + [{2) =P D)® 20l e 12
< CL(Q@ Uy, UV’) |||U‘V,V’ |||Y7’~
+CTP (L + lluwllyz + v vzl Dy
B
+Co (7 + V) L+ vy + s lly2)?,

where

L, up, wr) = luwllsmooth + lluw — @llmazim
+|||ul’|”in7aerzm |||ul’|"§mooth + |||ul" - <p|||gzazim‘|‘ul/’ " i;zfmth
with 6’ € (0,1) determined by s’ —1/2 = 6'(¢//2) + (1 — 0')(s" + 1/2 — 1/ /2)
for small ' > 0. Then, it follows from Lemmas 6.2-6.3 that, by taking ¢ close
to ug and T' > 0 small in (6.24)—(6.25),

1 B
N, llyy < 5|\|uu,w ly; + Co(” + 7).
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This completes the proof of (6.4). O
We are now in the position to prove our main result.

Proof of Theorem 1.1. By Proposition 6.1 (6.3), there exist a function
u € Yr and a sequence {u,, } such that

lim u,, =u weakly-* in L (H2Y) and L3 (HS11),

n—oo

lim <x>_p<D$>s+1/2ul,n = <m>_"<Dw>s+1/2u weakly in Lflﬂ/E(LQT)7
n—oo

lim (D, )*(z)* u,, = (D,)"{x)**u weakly-x in L2(L5).

Note that, in the above convergence, we identify L5°(H320) (resp. L5°(HZ121),
L2(L%)) with the dual of LL.(H;*°) (vesp. Li(Hsv~1), L2(LL)). Further-
more, (6.4) implies that lim,,_, u,, = wstrongly in Y. Thus, the nonlinearity
Uy, Ny, * Oy, tends to ud,u, for instance, in L (L2) and u satisfies

(6.26) Oyu + Hmf)ﬁu +udu=0 in L%o(H;—zﬁo).
Following the transformation as in section 2, we can write

(6.27) u=V(t)ug — G(t)ud,u,
(6.28) v=V(t)Koug — G(t)Ko((u — $)0zu) — GRo(p,u),

where ¢ is arbitrary C§°-function, v = Kou, Ky is the pseudo-differential op-
erator of the symbol like

x

Kol,€) = exp ( pa—ue) [

2 ¢l o
and Ro(&, u) = Kmﬁ@xu + [Ko,Haaﬂu

Continuity in time. We next prove u € C([0,7]; HS° N H:1). To this
end, we use (6.27). Since V(t)ug € C([0,T]; H:?), it sufficies to show that
G(t)ud,u € C([0,T]; H:C). Write

@(y)dy) ,

t+h t
/ V(t+h—7)udyudr — / V(t — T)udyudr
0 0

t+h t
= / V(t+ h — m)udgudr + (V(h) —I) / V(t — T)udyudr
¢ 0
= Il(t, h) + Ig(t, h)
By Lemma 3.1, we have

ID3Iy(t, Rl L2 < CIDE 2 (udpu) |2 (L2261 -
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Therefore, Lebesgue’s convergence theorem yields limy_q I7(¢,h) = 0. Since
t
Lemma 3.1 also yields / V (t —T)udyudr € H?, the strong continuity of V(¢)

in L2 gives limy,_o Ig(t70h) = 0. Thus, u € C([0,T]; H?). The continuity of u
in H3v* follows by referring to Lemma 4.1.

Uniqueness in Y7. Let ug, us € Y be the solutions to (6.27) with the same
initial data ug. Note that u; (j = 1,2) satisfies

Uj = V(t)uo — G(t)ujﬁzuj,

vj =V (t)Kouo — G(t)Ko((uj — £)0pu;) — G(t)Ro(4, uj).
Let Yio,n) = {u(t, 2); [|ully,,,, < oo}, where

el vig,y = llull o o,y + @) =P (D) * 172
+ [{D2)" () ull L2 (Lo [0,n))-

ull e (oo,

Applying the analogy to derive Proposition 6.1 (6.3) and taking & € C§°(R)
close to ug and h > 0 sufficiently small, we have [lu1 — uz[ly,,, < 0 ie.,
u1(t) = ua(t) on 0 < t < h. By similar argument, we have u;(t) = uz(t) on
0<t<h+Hh for some h' > 0. Thus, the solution is unique in Yr.

Stability. Let u’ be the solution to (6.26) with uj € X* as initial data.
Then, applying the similar argument for Proposition 6.1 to (6.27) and (6.28)
with the common ¢ € C§°(R) close to ug in X*, we see that

|||u/ - u”'YT/ < CHUIO - UOHXS + M(Tlv 2 u,7 U)|||U/ - U|||YT,7

where

~ 0 -0
M(T', @, 4, u) = [/ lsmooth + Nullsmooth + Nt | Smootn 14 lvaim

~ 8
+llu = Bllmazim + CaT" (1 + 'l + llully;.)
for some 6 € (0,1). By Lemma 6.3, M(T", ¢, ,u) is estimated as
M(T', &, v, u) < C(|lug — Bl x= + [luo — $llx-)
/8/
+CET" (L4 1 Iy, + lullyy )™,

where ', N > 0 and Cz > 0 may diverge as ¢ — ug in X°. If u is sufficiently
close to ug, then, by taking ¢ € C§° close to ug and 7" > 0 small enough, we
can make M (T’ @, v, u) small. This implies Theorem 1.1(ii). O
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