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Pole Structure of Topological String
Free Energy
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Yukiko Konishi
∗

Abstract

We show that the free energy of the topological string admits a certain pole struc-
ture by using the operator formalism. Combined with the results of Peng that proved
the integrality, this gives a combinatoric proof of the Gopakumar–Vafa conjecture.

§1. Introduction and Main Theorem

Recent developments in the string duality make it possible to express the
partition function and the free energy of the topological string on a toric Calabi–
Yau threefold in terms of the symmetric functions (see [AKMV]). In mathe-
matical terms, the free energy is none other than the generating function of
the Gromov–Witten invariants [LLLZ]. In this paper we treat the case of the
canonical bundle of a toric surface and its straightforward generalization.

The partition function is given as follows. Let r ≥ 2 be an integer and
γ = (γ1, . . . , γr) be an r-tuple of integers which will be fixed from here on. Let
�Q = (Q1, . . . , Qr) be an r-tuple of (formal) variables and q a variable.

Definition 1.1.

Zγ(q; �Q) = 1 +
∑

�d∈Zr
≥0,�d �=�0

Zγ
�d
(q) �Q

�d,

Zγ
�d
(q) = (−1)γ·�d

∑
(λ1,... ,λr)

λi∈Pdi

r∏
i=1

q
γiκ(λi)

2 Wλi,λi+1(q),
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174 Yukiko Konishi

where �Q
�d = Q1

d1 · · ·Qr
dr for �d = (d1, . . . , dr), Pd is the set of partitions of d,

λr+1 = λ1 and

κ(λ) =
∑
i≥1

λi(λi − 2i + 1) (λ: a partition).

For a pair of partitions (µ, ν), Wµ,ν(q) is defined as follows.

Wµ,ν(q) = (−1)|µ|+|ν|q
κ(µ)+κ(ν)

2

∑
η∈P

sµ/η(q−ρ)sν/η(q−ρ)

where P is the set of partitions and sµ/η(q−ρ) is the skew-Schur function asso-
ciated to partitions µ, η with variables specialized to q−ρ = (qi− 1

2 )i≥1.

We also define the free energy to be the logarithm of the partition function:

Fγ(q; �Q) = logZγ(q; �Q).

The logarithm should be considered as a formal power series in the variables
Q1, . . . , Qr. The coefficient of �Q

�d is denoted by Fγ
�d
(q).

The free energy is related to the Gromov–Witten invariants in the following
way. The target manifold is the total space X of the canonical bundle on a
smooth, complete toric surface S. Recall that a toric surface S is given by a
two-dimensional complete fan; its one-dimensional cones (1-cones) correspond
to toric invariant rational curves. Let rS be the number of 1-cones, �C =
(C1, . . . , CrS

) the set of the rational curves and γS the set of the self-intersection
numbers:

γS = (C2
1 , . . . , C2

r ).

For example, if S is P2, F0, F1,B2 or B3, γS is (1, 1, 1), (0, 0, 0, 0), (1, 0,−1, 0),
(0, 0,−1,−1,−1) or (−1,−1,−1,−1,−1,−1). Then the generating function of
the Gromov–Witten invariants Ng

β (X) of X = KS with fixed degree β,

Fβ(X) =
∑
g≥0

Ng
β (X)g2g−2

s ,

is exactly equal to the sum [Z1][LLZ2]:

Fβ(X) =
∑

�d;[�d·�C]=β

FγS

�d
(q)
∣∣
q=e

√
−1gs

.

Actually, in the localization calculation, each FγS

�d
(q)
∣∣
q=e

√
−1gs

is the contribu-
tion from the fixed point loci in the moduli of stable maps of which the image
curves are �d. �C (see [Z1]).
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Note that some pairs (r, γ) do not correspond to toric surfaces. One of the
simplest cases is r = 2, since for any two dimensional fan to be complete, it must
has at least three 1-cones. In this article, we also deal with such non-geometric
cases.

One problem concerning the Gromov–Witten invariants is the
Gopakumar–Vafa conjecture [GV]. (see also [BP][HST]). Let us define the
numbers {ng

β(X)}g,β by rewriting {Fβ(X)}β∈H2(X;Z) in the form below.

Fβ(X) =
∑
g≥0

∑
k;k|β

ng
β/k(X)

k

(
2 sin

kgs

2

)2g−2

.(1)

Then the conjecture states the followings.

1. ng
β(X) ∈ Z and ng

β(X) = 0 for every fixed β and g � 1.

2. Moreover, ng
β(X) is equal to the number of certain BPS states in M-theory

(see [HST] for a mathematical formulation).

By the Möbius inversion formula [BP], (1) is equivalent to∑
k;k|β

µ(k)
k

Fβ/k(X)
∣∣
gs→kgs

=
∑
g≥1

ng
β(X)

(
2 sin

gs

2

)2g−2

(2)

where µ(k) is the Möbius function. Therefore the first part is equivalent to the
LHS being a polynomial in t = −

(
2 sin gs

2

)2 with integer coefficients divided
by t.

In this article, we deal with the first part of the Gopakumar–Vafa con-
jecture. As it turns out, it holds not only for a class β ∈ H2(X; Z) but also
for each torus equivariant class �d · �C. Moreover, it also holds in non-geometric
cases.

Definition 1.2. We define

Gγ
�d
(q) =

∑
k′;k′|k

k′

k
µ
( k

k′

)
Fγ

k′ �d/k
(qk/k′

) (k = gcd(�d)).

The main result of the paper is the following theorem. We set t = (q
1
2 −

q−
1
2 )2.

Theorem 1.3. t · Gγ
�d
(q) ∈ Q[t].

Peng proved that Gγ
�d
(q) is a rational function in t such that its numerator

and denominator are polynomials with integer coefficients and the denominator
is monic [P]. So we have
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Corollary 1.4. t · Gγ
�d
(q) ∈ Z[t].

In the geometric case corresponding to X = KS , the corollary implies the
integrality of ng

β(X) and its vanishing at higher genera. This is because the
LHS of (2) is equal to ∑

�d;[�d·�C]=β

Gγ
�d
(q)
∣∣
q=e

√
−1gs

.

The organization of the paper is as follows. In Section 2, we introduce the
infinite-wedge space (Fock space) and the fermion operator algebra and write
the partition function in terms of matrix elements of a certain operator. In
Section 3, we express the matrix elements as the sum of certain quantities -
amplitudes - over a set of graphs. Then we rewrite the partition function in
terms of graph amplitudes. In Section 4, we take the logarithm of the partition
function and obtain the free energy. The key idea is to use the exponential
formula, which is the relation between log/exp and connected/disconnected
graph sums. We give an outline of the proof of the main theorem in Section 5.
Then, in Section 6, we study the pole structure of the amplitudes and finish
the proof. The rigorous formulation of the exponential formula and the proof
of the free energy appear in Appendices A and B. Appendix C contains the
proof of a lemma.

§2. Partition Function in Operator Formalism

The goal of this section is to express the partition function in terms of the
matrix elements of certain operator in the fermion operator algebra. We first
introduce the infinite wedge space [OP1] (also called the Fock space in [KNTY])
and an action of the fermion operator algebra in Subsection 2.1. Then we see
that the skew-Schur function and other quantities of partitions (|λ| and κ(λ))
are the matrix elements of operators. In Subsection 2.2, we rewrite Wµ,ν(q)
and the partition function.

§2.1. Operator formalism

In this subsection we first briefly explain notations (mainly) on partitions.
Secondly we introduce the infinite wedge space, the fermion operator algebra
and define some operators. Then we restrict ourselves to a subspace of the
infinite wedge space. We see that the canonical basis is naturally associated
to the set of partitions and that the skew-Schur function, |λ| and κ(λ) are
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Pole Structure of Topological String 177

the matrix elements of certain operators with respect to the basis. Finally we
introduce a new basis which will play an important role in the later calculations.

2.1.1. Partitions
A partition is a non-increasing sequence λ = (λ1, λ2, . . . ) of non-negative

integers containing only finitely many nonzero terms. The nonzero λi’s are
called the parts. The number of parts is the length of λ, denoted by l(λ).
The sum of the parts is the weight of λ, denoted by |λ|: |λ| =

∑
i λi. If

|λ| = d, λ is a partition of d. The set of all partitions of d is denoted by
Pd and the set of all partitions by P. Let mk(λ) = #{λi : λi = k} be the
multiplicity of k where # denotes the number of elements of a finite set. Let
aut(λ) be the symmetric group acting as the permutations of the equal parts
of λ: aut(λ) ∼=

∏
k≥1 Smk(λ). Then #aut(λ) =

∏
k≥1 mk(λ)!. We define

zλ =
l(λ)∏
i=1

λi · #aut(λ),

which is the number of the centralizers of the conjugacy class associated to λ.
A partition λ = (λ1, λ2, . . . ) is identified as the Young diagram with λi

boxes in the i-th row (1 ≤ i ≤ l(λ)). The Young diagram with λi boxes in the
i-th column is its transposed Young diagram. The corresponding partition is
called the conjugate partition and denoted by λt. Note that λt

i =
∑

k≥i mk(λ).
We define

κ(λ) =
l(λ)∑
i=1

λi(λi − 2i + 1).

This is equal to twice the sum of contents
∑

x∈λ c(x) where c(x) = j − i for the
box x at the (i, j)-th place in the Young diagram λ. Thus, κ(λ) is always even
and satisfies κ(λt) = −κ(λ).

µ∪ ν denotes the partition whose parts are µ1, . . . , µl(µ), ν1, . . . , νl(µ) and
kµ the partition (kµ1, kµ2, . . . ) for k ∈ N.

We define

[k] = q
k
2 − q−

k
2 (k ∈ Q),

which is called the q-number. For a partition λ, we use the shorthand notation

[λ] =
l(λ)∏
i=1

[λi].



�

�

�

�

�

�

�

�

178 Yukiko Konishi

2.1.2. Infinite wedge space (Fock Space)
A subset S of Z + 1

2 is called a Maya diagram if both S+ := S ∩ {k ∈
Z + 1

2 |k > 0} and S− := Sc ∩ {k ∈ Z + 1
2 |k < 0} are finite sets. The charge

χ(S) is defined by

χ(S) = #S+ − #S−.

The set of all Maya diagrams of charge p is denoted by Mp. We write a
Maya diagram S in the decreasing sequence S = (s1, s2, s3, . . . ). Note that if
χ(S) = p, si ≥ p − i + 1

2 for all i ≥ 1 and si = p − i + 1
2 for i � 1. Therefore

λ(p)(S) =
(
s1 − p +

1
2
, s2 − p +

3
2
, . . .
)

is a partition. λ(p) : Mp
∼→ P is a canonical bijection for each p where the

inverse (λ(p))−1(µ) = S (µ ∈ P) is given by

S+ =
{

µi − i +
1
2

+ p
∣∣∣1 ≤ i ≤ k

}
, S− =

{
µt

i − i +
1
2

+ p
∣∣∣1 ≤ i ≤ k

}
.

Here k = #{µi|µi = i} is the number of diagonal boxes in the Young diagram
of µ. We define

d(S) = |λ(p)(S)|.

Let V be an infinite dimensional linear space over C equipped with a basis
{ek}k∈Z+ 1

2
satisfying the following condition: every element v ∈ V is expressed

as v =
∑

k>m vkek with some m ∈ Z. Let V̄ = HomC(V, C) be the topological
dual space and {ēk}k∈Z+ 1

2
the dual basis: ēl(ek) = δk,l.

For each Maya diagram S = (s1, s2, s3, . . . ), |vS〉 denotes the symbol

|vS〉 = es1 ∧ es2 ∧ es3 ∧ · · · .

The infinite wedge space of charge p, Λ
∞
2

p V is the vector space over C spanned
by {|vS〉}S∈Mp

, and the infinite wedge space Λ
∞
2 V is the direct sum of the

charge p spaces (p ∈ Z):

Λ
∞
2

p V =
∏

S∈Mp

C|vS〉, Λ
∞
2 V =

⊕
p∈Z

Λ
∞
2

p V.

We define the charge operator J0 and the mass operator M on Λ
∞
2 V by

J0vS = χ(S)vS, MvS = d(S)vS .
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Since J0 and M commute, Λ
∞
2

p V decomposes into the eigenspace Λ
∞
2

p V (d) of
M with eigenvalue d:

Λ
∞
2

p V (d) =
⊕

χ(S)=p,d(S)=d

C|vS〉.

The dimension of the eigenspace is equal to the number p(d) of partitions of d.
For a Maya diagram S = (s1, s2, . . . ), we define the symbol 〈vS | by

〈vS | = . . . ∧ ēs2 ∧ ēs1 .

The dual infinite wedge space is defined by

Λ
∞
2 V̄ =

⊕
p∈Z

Λ
∞
2

p V̄ , Λ
∞
2

p V̄ =
⊕

S∈Mp

C〈vS |.

The dual pairing is denoted by 〈 | 〉:

〈vS′ |vS〉 = δS,S′ .

We set

|p〉 = ep− 1
2
∧ ep− 3

2
∧ . . . , 〈p| = . . . ∧ ēp− 3

2
∧ ēp− 1

2
.

|p〉 is called the vacuum state of the charge p. Note that every |p〉 (p ∈ Z)
corresponds to the empty partition. It is the basis of the subspace with charge
p and degree zero: Λ

∞
2

p V (0) = C|p〉.

2.1.3. Fermion operator algebra
Now we introduce the fermion operators algebra. It is the associative

algebra with 1 generated by ψk, ψ∗
k (k ∈ Z + 1

2 ), with the relations:

{ψk, ψ∗
l } = δk,l, {ψk, ψl} = {ψ∗

k, ψ∗
l } = 0

for all k, l ∈ Z+ 1
2 . Here {A, B} = AB+BA is the anti-commutator. We define

the actions of ψk, ψ∗
l on Λ

∞
2 V and Λ

∞
2 V̄ as follows:

ψk = ek∧, ψ∗
k =

∂

∂ek
(left action on Λ

∞
2 V ),

ψk =
∂

∂ēk
, ψ∗

k = ∧ēk (right action on Λ
∞
2 V̄ ).

These are compatible with the dual pairing. So any operator A of the fermion
algebra satisfies 〈vS′ |(A|vS〉) = (〈vS′ |A)|vS〉. We call it the matrix element of
A with respect to 〈vS′ | and |vS〉 and write it as

〈vS′ |A|vS〉.
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The operators ψk and ψ∗
k satisfy:

ψk|p〉 = 0(k < p), ψ∗
k|p〉 = 0(k > p),

〈p|ψk = 0(k > p), 〈p|ψ∗
k = 0(k < p).

Let us define some operators. We first define, for i, j ∈ Z + 1
2 ,

Ei,j =: ψiψ
∗
j :, : ψiψ

∗
j :=

{
ψiψ

∗
j (j > 0)

−ψ∗
j ψi (j < 0).

The commutation relation is

[Ei,j , Ek,l] = δj,kEi,l − δi,lEk,j + δi,lδj,k(θ(l < 0) − θ(j < 0))

where θ(l < 0) = 0 if l > 0 and 1 if l < 0. θ(j < 0) is defined similarly. Next
we define

C =
∑

k∈Z+ 1
2

Ek,k, H =
∑

k∈Z+ 1
2

kEk,k, F2 =
∑

k∈Z+ 1
2

k2

2
Ek,k.

These act on the state |vS〉 of charge χ(S) = p as follows:

C|vS〉 = p|vS〉, H|vS〉 =
(
d(S) +

p

2

)
|vS〉,

F2|vS〉 =
(κ(λ(p)(S))

2
+ p d(S) +

p(4p2 − 1)
24

)
|vS〉.

Since C is equal to the charge operator J0, it is also called the charge operator.
We call H the energy operator.

We define

αm =
∑

k∈Z+ 1
2

Ek−m,k (m ∈ Z \ {0}).

Since these operators satisfy the commutation relations [αm, αn] = mδm+n,0,
they are called bosons. Note that [C, αm] = 0, [H, αm] = −mαm.

The operator

Γ±(p) = exp
[∑

n≥1

pnα±n

n

]
.

is called the vertex operators where p = (p1, p2, . . . ) is a (possibly infinite)
sequence. In the later calculation, the sequence p is taken to be the power sum
functions of certain variables.
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Next we define the operator (see [OP1]) which will play an important role
later.

Ec(n) =
∑

k∈Z+ 1
2

qn(k− c
2 )Ek−c,k +

δc,0

[n]
(
(c, n) ∈ Z2 \ {(0, 0)}

)
.

This is, in a sense, a deformation of the boson αm by F2 since

Em(0) = αm (m �= 0) and qF2α−nq−F2 = E−n(n) (n ∈ N).(3)

The commutation relation is as follows

[Ea(m), Eb(n)] =



[ ∣∣∣∣∣a m

b n

∣∣∣∣∣
]
Ea+b(m + n) if (a + b, m + n) �= (0, 0)

a if (a + b, m + n) = (0, 0)

where | | in the RHS means the determinant and [ ] the q-number. Note that
the operators H,F2, αm, Γ±(p) and Ec(n) preserve the charge of a state because
they commute with the charge operator C.

2.1.4. Charge zero subspace
From here on we work only on the charge zero space Λ

∞
2

0 V .
The 〈0|A|0〉 is called the vacuum expectation value (VEV) of the operator

A and denoted by 〈A〉.
We use the set of partitions P to label the states instead of the set M0 of

Maya diagrams: for a partition λ,

|vλ〉 = eλ1− 1
2
∧ eλ2− 3

2
∧ . . . , 〈vλ| = . . . ∧ ēλ2− 3

2
∧ ēλ1− 1

2
.

|v∅〉 = |0〉, is the vacuum state and 〈v∅| = 〈0|.
With this notation, the action of the energy operator H and F2 are written

as follows:

H|vλ〉 = |λ||vλ〉, F2|vλ〉 =
κ(λ)

2
|vλ〉.(4)

One of the important points is that the Schur function and the skew Schur
function are the matrix elements of the vertex operators: let x = (x1, x2, . . . )
be variables, pi(x) =

∑
j(xj)i be the i-th power sum function and p(x) =

(p1(x), p2(x), . . . ); then

〈vλ|Γ−(p(x))|0〉 = 〈0|Γ+(p(x))|vλ〉 = sλ(x),

〈vλ|Γ−(p(x))|vη〉 = 〈vη|Γ+(p(x))|vλ〉 = sλ/η(x).
(5)
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2.1.5. Bosonic basis
For a partition µ ∈ P, we write

α±µ =
l(µ)∏
i=1

α±µi
.

This is well-defined since it is a product of commuting operators. Now we
introduce the different kind of states:

|µ〉 = α−µ|0〉, 〈µ| = 〈0|αµ (µ ∈ P).

The following relations are easily calculated from the commutation relations:

C|µ〉 = 0, H|µ〉 = |µ||µ〉, 〈µ|ν〉 = zµδµ,ν .

The set {|µ〉|µ ∈ Pd} is a basis of the degree d subspace Λ
∞
2

0 V (d) since it
consists of p(d) = dim Λ

∞
2

0 V (d) linearly independent states of energy d.

Λ
∞
2

0 V (d) =
⊕

µ∈Pd

C|µ〉.

We call the new basis {|µ〉|µ ∈ Pd} the bosonic basis and the old basis {|vλ〉|λ ∈
Pd} the fermionic basis.

The relation between the bosonic and fermionic basis is written in terms
of the character of the symmetric group. Every irreducible, finite dimensional
representation of the symmetric group Sd corresponds, one-to-one, to a par-
tition λ ∈ Pd. On the other hand, every conjugacy class also corresponds,
one-to-one, to a partition µ ∈ Pd. The character of the representation λ on the
conjugacy class µ is denoted by χλ(µ).

Lemma 2.1.

|vλ〉 =
∑

µ∈P|λ|

χλ(µ)
zµ

|µ〉 |µ〉 =
∑

λ∈P|µ|

χλ(µ)|vλ〉.

Proof. The vertex operator is formerly expanded as follows:

Γ±(p(x)) =
∑
µ∈P

pµ

zµ
α±µ.(6)

where pµ(x) =
∏l(µ)

i=1 pµi
(x). Substituting into the first equation of (5), we

obtain

sλ(x) =
∑

µ∈P|λ|

〈vλ|µ〉
pµ(x)

zµ
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Comparing with the Frobenius character formula

sλ(x) =
∑

µ∈P|λ|

χλ(µ)
pµ(x)

zµ
,(7)

we obtain 〈vλ|µ〉 = χλ(µ). Then the lemma follows immediately.

§2.2. Partition function in operator formalism

In this subsection, we first express Wµ,ν(q) in terms of the fermion operator
algebra. Then we rewrite the partition function in terms of the matrix elements
of the operator qF2 with respect to the bosonic basis.

Lemma 2.2.

Wµ,ν(q) = (−1)|µ|+|ν|
∑

η′;|η′|≤|µ|,|ν|

∑
µ′;|µ′|=|µ|−|η′|,
ν′;|ν′|=|ν|−|η′|

(−1)l(µ′)+l(ν′)

zµ′zν′zη′ [µ′][ν′]

× 〈vµ|qF2 |µ′ ∪ η′〉〈vν |qF2 |ν′ ∪ η′〉.

Proof. We rewrite the skew-Schur function in the variables x =
(x1, x2, . . . ). By (5) and (6),

sµ/η(x) =
∑

µ′;|µ′|=|µ|−|η|,
η′;|η′|=|η|

pµ′(x)
zµ′zη′

〈vµ|µ′ ∪ η′〉〈η′|vη〉.

When η = ∅, this is nothing but the Frobenius character formula (7).
The power sum function pi(x) associated to the specialized variables q−ρ

is

pi(q−ρ) = − 1
[ i ]

.

Therefore ∑
η

sµ/η(q−ρ)sν/η(q−ρ)

=
min{|µ|,|ν|}∑

d=0

∑
η∈Pd

sµ/η(q−ρ)sν/η(q−ρ)
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=
min{|µ|,|ν|}∑

d=0

∑
µ′;|µ′|=|µ|−d,
ν′;|ν′|=|ν|−d,

λ,λ′∈Pd

(−1)l(µ′)+l(ν′)

zµ′zν′zλzλ′ [µ′][ν′]

× 〈vµ|µ′ ∪ λ〉〈vν |ν′ ∪ λ′〉
∑

η∈Pd

〈λ|vη〉〈vη|λ′〉

︸ ︷︷ ︸
=〈λ|λ′〉=zλδλ,λ′

=
∑

µ′,ν′,λ

(−1)l(µ′)+l(ν′)

zµ′zν′zλ[µ′][ν′]
〈vµ|µ′ ∪ λ〉〈vν |ν′ ∪ λ〉.

By (4), the factor q
κ(µ)+κ(ν)

2 is written as follows:

q
κ(µ)+κ(ν)

2 = 〈vµ|qF2 |vµ〉〈vν |qF2 |vν〉.

Combining the above expressions, we obtain the lemma.

Before rewriting the partition function, we explain some notations. We
use the symbols �µ, �ν,�λ to denote r-tuples of partitions. The i-th partition of �µ

is denoted by µi and µr+1 := µ1. νi, λi (1 ≤ i ≤ r + 1) are defined similarly.
We define:

l(�µ) =
r∑

i=1

l(µi), aut(�µ) =
r∏

i=1

aut(µi), z�µ =
r∏

i=1

zµi , [�µ] =
r∏

i=1

[µi].

l(�ν), l(�λ), aut(�ν), aut(�λ), z�ν , z�λ and [�ν], [�λ] are defined in the same manner.
A triple (�µ, �ν,�λ) is an r-set if it satisfies

|µi| + |λi| = |νi| + |λi+1| (1 ≤ ∀i ≤ r).

(|µi| + |λi|)1≤i≤r is called the degree of the r-set.
As the consequence of the above lemma, the partition function is written

in terms of the matrix elements.

Proposition 2.3.

Zγ
�d
(q) = (−1)γ·�d

∑
(�µ,�ν,�λ);
r-set of

degree �d

(−1)l(�µ)+l(�ν)

z�µz�νz�λ[�µ][�ν]

r∏
i=1

〈λi ∪ µi|q(γi+2)F2 |νi ∪ λi+1〉.
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Proof. Using Lemmas 2.2 and (4), we write Zγ
�d
(q) as follows.

(−1)γ·�dZγ
�d
(q) =

∑
(�µ,�ν,�η);
r-set of
degree �d

(−1)l(�µ)+l(�ν)

z�µz�νz�η[�µ][�ν]

×
r∏

i=1

( ∑
λi;|λi|=di

〈µi ∪ ηi|qF2 |vλi〉〈vλi |qγiF2 |vλi〉〈vλi |qF2 |νi ∪ ηi+1〉
)
.

The first factor in the bracket comes from Wλi−1,λi(q), the second is the factor
qγiF2 and the third comes from Wλi,λi+1(q). The bracket term is equal to

〈µi ∪ ηi|q(γi+2)F2 |νi ∪ ηi+1〉.

If we replace the letter η with λ, we obtain the proposition.

§3. Partition Function as Graph Amplitudes

In this section, we express the partition function as the sum of some am-
plitudes over possibly disconnected graphs. (The term an amplitude will be
used to denote a map from a set of graphs to a ring.)

The graph description is achieved in two steps. Firstly, in Subsections 3.2
and 3.3, we study the matrix element appeared in the partition function:

〈µ|qaF2 |ν〉 (a ∈ Z);(8)

we introduce the graph set associated to µ, ν and a and describe the matrix el-
ement as the sum of certain amplitude over the set. Secondly, in Subsection 3.4
we turn to the whole partition function; we combine these graph sets and the
amplitude to make another type of a graph set and amplitude; then we rewrite
the partition function in terms of them.

§3.1. Notations

Let us briefly summarize the notations on graphs (see [GY]).

• A graph G is a pair of the vertex set V (G) and the edge set E(G) such
that every edge has two vertices associated to it. We only deal with graphs
whose vertex sets and edge sets are finite.

• A directed graph is a graph whose edges has directions.
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• A label of a graph G is a map from the vertex set V (G) or from the edge
set E(G) to a set.

• An isomorphism between two graphs G and F is a pair of bijections V (G) →
V (F ) and E(G) → E(F ) preserving the incidence relations. An isomor-
phism of labeled graphs is a graph isomorphism that preserves the labels.

• An automorphism is an isomorphism of the (labeled) graph to itself.

• The graph union of two graphs G and F is the graph whose vertex set and
edge set are the disjoint unions, respectively, of the vertex sets V (G), V (F )
and of the edge sets E(G), E(F ). It is denoted by G ∪ F .

• If G is connected, the cycle rank (or Betti number) is #E(G)−#V (G)+1.
If G is not connected, its cycle rank is the sum of those of connected
components.

• A connected graph with the cycle rank zero is a tree and the graph union
of trees is a forest.

We also use the following notations.

• A set of not necessarily connected graphs is denoted by a symbol with the
superscript • and the subset of connected graphs by the same symbol with
◦ (e.g. G• and G◦).

• For any finite set of integers s = (s1, s2, . . . , sl),

|s| =
∑

i

si.

Note that |s| can be negative if s has negative elements.

When s has at least one nonzero element, we define

gcd(s) = greatest common divisor of {|si|, si �= 0}

where |si| is the absolute value of si.

§3.2. Graph description of VEV

By the relation (3), the matrix element (8) is rewritten as the vacuum
expectation value:

〈µ|qaF2 |ν〉 = 〈Eµl(µ)(0) · · · Eµ1(0)E−ν1(aν1) · · · E−νl(ν)(aνl(ν))〉.(9)
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Therefore, in this subsection, we consider the VEV

〈Ec1(n1)Ec2(n2) · · · Ecl
(nl)〉(10)

where

�c = (c1, . . . , cl), �n = (n1, . . . , nl)

is a pair of ordered sets of integers of the same length l. We assume that
(ci, ni) �= (0, 0) (1 ≤ ∀i ≤ l) because E0(0) is not well-defined. We also assume
that |�c| = 0 because (10) vanishes otherwise.

3.2.1. Set of graphs
When we compute the VEV (10), we make use of the commutation relation

several times. We associate to this process a graph generating algorithm in a
natural way.

0. In the computation, we start with (10); there are l Eci
(ni)’s in the angle

bracket and we associate to each a black vertex; we draw l black vertices
horizontally on R2 and assign i and (ci, ni) to the i-th vertex (counted from
the left). The picture is as follows.

� � �

1
(c1, n1)

2
(c2, n2)

l
(cl, nl)

1. The first step in the computation is to take the rightmost adjacent pair
Ea(m), Eb(n) with a ≥ 0 and b < 0 and apply the commutation relation

Ea(m)Eb(n)=Eb(n)Ea(m)+



[ ∣∣∣∣∣a m

b n

∣∣∣∣∣
]
Ea+b(m+n) (a + b, m + n) �= (0, 0)

a (a + b, m + n) = (0, 0)

On the graph side, we express this as follows.

� �

(a, m) (b, n)

= �
��
�

��

� �

(a, m)(b, n)

� �

(b, n) (a, m)

+




�
��

�
��

� �

(a, m)(b, n)

�

(a + b, m + n) �= (0, 0)

�
��

�
��

� �

(a, m)(b, n)

�

(a + b, m + n) = (0, 0)
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For other black vertices, we do as follows.

�

(c, h)

=⇒
�

�

(c, h)

(c, h)

2. Secondly, we use the following relations if applicable:

〈· · · Ea(m)〉 =

{
0 (a > 0)

〈· · · 〉 1
[m] (a = 0)

〈Eb(n) · · · 〉 = 0 (b < 0), and 〈1〉 = 1.

Accordingly, in the drawing, we do as follows.

� � �

� � �

(a, m)

⇒
{

erase the graph if a > 0

leave it untouched if a = 0

� �

� � �

�

(b, n)

⇒ erase the graph if b < 0.

3. We repeat these steps until all terms become constants. Although the
number of terms may increase at first, it stabilizes in the end and the
computation stops with finite processes.

4. Finally, we simplify the drawings:

�

�

�
(c, n)

(c, n)

(c, n)

⇒

�

�
(c, n)

(c′, n′)
�

�
�

��
�
��

�

�

� �

(0, n)

(0, n)

⇒ �
��

�
��

�

� �

(0, n)

For concreteness, we show the case of

�c = (c, c,−c,−c), �n = (0, 0, 0, d) (c > 0, d �= 0).

We will omit the labels and irrelevant middle vertices. We start with

〈Ec(0) Ec(0)E−c(0)︸ ︷︷ ︸E−c(d)〉 � � � �
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We pick the pair with the underbrace and apply the step 1:

〈Ec(0)E−c(0) Ec(0)E−c(d)︸ ︷︷ ︸〉 + c〈Ec(0)E−c(d)︸ ︷︷ ︸〉
�
��
�

��
� � � �

� � � �

�
��

�
��� �

� � � �

�

We skip the step 2 since there is no place to apply the relation. We proceed
to the step 1 again and take the commutation relation of the underbraced
pairs:

〈Ec(0)E−c(0)E−c(d)Ec(0)〉 + [cd]〈Ec(0)E−c(0)E0(d)〉 + c〈E−c(d)Ec(0)〉 + c[cd]〈E0(d)〉

�
��

�����
�

��� � � �

� � � �

�
��

�
��
�

��� � �

� � � � �
�
�

��

�
�

�
��

����
� � � �

��

�
�
�
��

�
�

��

����
� � � �

�

�

This time we apply the step 2. The first and the third term become zero. In
the second and the fourth terms, E0(d)’s are replaced by 1/[d]. The result is

[cd]
[d]

〈Ec(0)E−c(0)︸ ︷︷ ︸〉 +
c[cd]
[d]

�
��

�
��
�

��� � �

� � � � �
�

��

�
�

��

����
� � � �

�

�

Applying the step 1 again, we obtain

[cd]
[d]

〈E−c(0)Ec(0)〉 +
c[cd]
[d]

+
c[cd]
[d]

�
��

�
��

�
��

������ � �

� � � �

�
��

�
��

�
��
�

��

�

�

� � �

�

�
�
��

�
�

��

����
� � � �

�

�

The first term is zero. Hence all the terms become constants and the process is
finished. What we obtained are the two nonzero terms and the corresponding
two graphs:
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�
��

�
��

�
��
�

��

�

�

� � �

�

�
�
��

�
�

��

����
� � � �

�

�

Definition 3.1. Graph•(�c, �n) is the set of graphs generated by the
above recursion algorithm. Graph◦(�c, �n) is the subset consisting of all con-
nected graphs.

Since F ∈ Graph•(�c, �n) is the graph union of trees, we call F a VEV
forest. A univalent vertex at the highest level is called a leaf. The unique
bivalent vertex at the lowest level of each connected component is called the
root.

A VEV forest has two types of labels. The labels attached to leaves are
referred to as the leaf indices. The two component labels on every vertex v is
called the vertex-label of v and denoted by (cv, nv).

We define F to be the graph obtained from a VEV forest F by forgetting
the leaf indices. Two VEV forests F and F ′ are equivalent if F ∼= F

′
. The

set of equivalence classes in Graph•(�c, �n) and Graph◦(�c, �n)) are denoted by
Graph

•
(�c, �n) and Graph

◦
(�c, �n). A connected component T of F is called a

VEV tree. Note that T is regarded as an element of Graph
◦
(�c′, �n′) with some

(�c′�n′).
Let V2(F ) be the set of vertices which have two adjacent vertices at the

upper level. For a connected component T of F , V2(T ) is defined similarly.
L(v) and R(v) denote the upper left and right vertices adjacent to v ∈ V2(F ).

����

L(v)
� �

R(v)

�

v

A left leaf (right leaf) is a leaf which is L(v) (R(v)) of some vertex v.
We summarize the properties of the vertex labels of a VEV tree T .

1. croot =
∑

v:leaves cv = 0.

2. If a vertex v is white, (cv, nv) = (0, 0) and it is the root vertex.

3. If v is black, (cv, nv) �= (0, 0).

4. cL(v) ≥ 0 and cR(v) < 0 for v ∈ V2(T ).

5. cv = cL(v) + cR(v) and nv = nL(v) + nR(v) for v ∈ V2(T ).
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3.2.2. Amplitude
In the computation process, the birth of each black vertex v ∈ V2(F ) means

that the corresponding term is multiplied by the factor

ζv =

∣∣∣∣∣cL(v) nL(v)

cR(v) nR(v)

∣∣∣∣∣ (v ∈ V2(F )).(11)

Moreover if the vertex is the root, then the corresponding term is multiplied
by 1/[nv]. On the other hand, the birth of a white vertex v means that the
corresponding term is multiplied by the factor cL(v). Therefore we define the
amplitude A(F ) for F ∈ Graph•(�c, �n) by

A(F ) =
∏

T : VEV tree in F

A(T ),

A(T ) =



∏

v∈V2(T )[ζv]/[nroot] (nroot �= 0)

cL(root)

∏
v∈V2(T ),
v �=root

[ζv] (nroot = 0) .

(12)

From the definition of Graph•(�c, �n), it is clear that the sum of all the amplitude
A(F ) is equal to the VEV (10).

Proposition 3.2.

〈Ec1(n1)Ec2(n2) · · · Ecl
(nl)〉 =

∑
F∈Graph•(�c,�n)

A(F ).

§3.3. Matrix elements

In this subsection, we apply the result of preceding subsection to the matrix
element (8).

3.3.1. Graphs
Let µ, ν be two partitions |µ| = |ν| = d > 1, a ∈ Z.

Definition 3.3. Graph•
a(µ, ν) is the set Graph•(�c, �n) with

�c = (µl(µ), . . . , µ1,−ν1, . . . ,−νl(ν)), �n = (0, . . . , 0︸ ︷︷ ︸
l(µ) times

, aν1, . . . , aνl(ν)).

The subset of connected graphs is denoted by Graph◦
a(µ, ν). The set of equiva-

lence classes of Graph•
a(µ, ν) and Graph◦

a(µ, ν) obtained by forgetting the leaf
indices are denoted by Graph

•
a(µ, ν) and Graph

◦
a(µ, ν).
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The next proposition follows immediately from (9) and Proposition 3.2.

Proposition 3.4.

〈µ|qaF2 |ν〉 =
∑

F∈Graph•
a(µ,ν)

A(F ).

Example 3.5. Some examples of Graph•
a(µ, ν) and the amplitudes of

its elements are shown below.
µ = (µ1, µ2, µ3), ν = (d) where d = µ1 + µ2 + µ3:

a �= 0 :
�
�
��

�
�

��

�
��

��
� � � �

�

�

�

[adµ1][adµ2][adµ3]
[ad]

a = 0 :
�
�
��

�
�

��

�
��

��
� � � �

�

�

�

0

µ = ν = (c, c), a �= 0:

�
�
��

�
�

��

�
��
��

� � � �

�

�

�

�
��

�
��

�
��
�

��

� � � �

� �

�
�
��

�
�

��

����
� � � �

�

�

[ac2]2[2ac2]
[ac]

( [ac2]
[ac]

)2 ( [ac2]
[ac]

)2
µ = ν = (c, c) and a = 0.

�
��

�
��

�
��
�

��

� � � �

� �

�
�
��

�
�

��

����
� � � �

�

�

c2 c2
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§3.4. Combined amplitude

In the previous section, we have written the matrix elements as the sum
of amplitudes. In Section 2, we have expressed the partition function Zγ

�d
(q) in

terms of matrix elements. Combining these results, we obtain

Zγ
�d
(q) = (−1)γ·�d

∑
(�µ,�ν,�λ);
r-set of
degree �d

(−1)l(�µ)+l(�ν)

z�λz�µz�ν [�µ][�ν]

∑
(Fi)1≤i≤r ;

Fi∈Graph•
(γi+2)(µ

i∪λi,νi∪λi+1)

r∏
i=1

A(Fi).

Next, we will associate the each term in the RHS a new type of graph and its
amplitudes.

3.4.1. Combined forests
Let (�µ, �ν,�λ) be an r-set. We construct a new graph from an r-tuple

(F1, . . . , Fr), Fi ∈ Graph•
(γi+2)(µ

i ∪ λi, νi ∪ λi+1)

as follows.

1. Assign the label i to each Fi and make the graph union.

2. Recall that every left leaf of Fi is associated to a part of λi or µi and every
right leaf to a part of νi or λi+1 (see the remark below). Since there are
two leaves associated to λi

j (1 ≤ j ≤ l(λi)), the one in Fi−1 and the other
in Fi, join them and assign the label λi

j to the new edge.

The resulting graph W is a set of VEV forests marked by 1, . . . , r and joined
through leaves. We call W a combined forest. The new edges are called the
bridges. The label of a bridge b is denoted by h(b). Note that the number of
bridges in W is equal to l(�λ).

Remark 3.6. To be precise, every left leaf corresponds to a part of µi∪λi.
So a problem would arise if there are equal parts in µi and λi since they are
indistinguishable in µi ∪ λi. To solve it, we set the following rule. Assume µi

and λi have an equal part, say k. Then there are several left leaves with the
vertex label (k, 0). We regard the outer such leaves come from λi and the inner
leaves come from µi. For right leaves, we set the same rule; outer leaves come
from λi+1 and the inner leaves come from νi.

Definition 3.7. The set Comb•
γ(�µ, �ν,�λ) is the set of combined forests

constructed by the above procedure. The set Comb◦
γ(�µ, �ν,�λ) is the subset

consisting of all connected combined forests.
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We show some examples in the Figure 1.

�
�
�
��

�
�

�
��

�
�

� ��

�

�

��

�

� �

�
�
�
��

�
�

�
��

�
�

� ��

�

�

��

�

� �

�� ��
� �

�
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3

�
�

�

�
�
�

�
�
�

��

��

�

� � � �

�

�
�
�
��

�
�

�
��

�
�

� ��

�

�

��

�

� �

�� ��
� �

�

21

3

�
�
�
��

�
�

�
�� �� ��

�

� � � �

�

�
�
�
��

�
�

�
�� �� ��

�

� � � �

�

�� ��
� �

�

21

3

Figure 1. Examples of combined forests. The graphs shown are three of nine
elements in the set Comb•

γ(�µ, �ν,�λ) where r = 3, γi + 2 �= 0 and λ1 = (1) =
λ3, λ2 = (1, 1), µ1 = (1) = ν2, µ2 = µ3 = ν1 = ν3 = ∅. The leaf indices and the
vertex labels are omitted.
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§3.5. Combined amplitude and partition function

We first define a slightly different amplitude B. For a VEV tree T ∈
Graph

◦
a(µ, ν),

B(T ) =
A(T )
[µ][ν]

.

We define the amplitude H of a combined forest W ∈ Comb•
γ(�µ, �ν,�λ) by

H(W ) = (−1)L1(W )+L2(W )
∏

T : VEV tree in W

B(T )
∏

b;bridge

[h(b)]2

where L1(W ) = l(�µ) + l(�ν) and L2(W ) = γ · �d. Note that L1(W ) and L2(W )
are equal to:

L1(W ) = #(leaves) − 2#(bridges), L2(W ) =
∑

T : VEV tree

nroot.

H is called the combined amplitude.
Then the partition function is expressed with Comb•

γ(�µ, �ν,�λ) and H:

Proposition 3.8.

Zγ
�d
(q) =

∑
(�µ,�ν,�λ);
r-set of

degree �d

1
z�λz�µz�ν

∑
W∈Comb•

γ(�µ,�ν,�λ)

H(W ).

§4. Free Energy

In this section, we obtain the free energy as the sum over connected com-
bined forests.

It is well-known, for example in the calculation of the Feynman diagram,
that if one takes the logarithm of the sum of amplitudes over not necessarily
connected graphs, then one obtains the sum over connected graphs. More
precisely, the statement is written as follows.

log

[
1 +
∑

G∈G•

1
|Aut(G)|Ψ(G)

]
=
∑

G∈G◦

1
|Aut(G)|Ψ(G)

where G• is a set of graphs, Ψ is an amplitude on it and G◦ ⊂ G• is the subset
of connected graphs. This formula is nothing but a variation of the exponential
formula ([S], chapter 5). Therefore we call it the exponential formula.
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Of course, for the exponential formula to hold, G• and Ψ must satisfy
certain conditions. The most important are that G◦ generates G• by the graph
union operation and that Ψ is multiplicative with respect to the graph union.
The rigorous formulation of the formula will appear in Appendix A.

In view of the exponential formula, we expect that the free energy is the
sum over connected graphs. In fact, this is true.

Proposition 4.1.

Fγ
�d
(q) =

∑
(�µ,�ν,�λ);
r-set of

degree �d

1
z�λz�µz�ν

∑
W∈Comb◦

γ(�µ,�ν,�λ)

H(W ).

We delegate the proof to Appendix B.

§5. Proof of Main Theorem: Outline

We sketch the proof of Theorem 1.3 in this section.
The combined forest which is the same as a combined forest W except that

all the vertex-labels are multiplied by k ∈ N, is denote by W(k).
We first rewrite Fγ

�d
(q) as follows.

Fγ
�d
(q) =

∑
k;k|�d

∑
(�µ,�ν,�λ);
r-set of

degree �d/k;

gcd(�µ,�ν,�λ)=1

1
zk�λzk�µzk�ν

∑
W∈Comb◦

γ(�µ,�ν,�λ)

H(W(k)).

Then Gγ
�d
(q) is equal to

Gγ
�d
(q) =

∑
k;k|�d

∑
(�µ,�ν,�λ);
r-set of

degree �d/k;

gcd(�µ,�ν,�λ)=1

∑
k′;k′|k

k′

k
µ
( k

k′

) 1
zk′�λzk′�µzk′�ν

×
∑

W∈Comb◦
γ(�µ,�ν,�λ)

H(W(k′))|q→qk/k′

=
∑
k;k|d

∑
(�µ,�ν,�λ);
r-set of

degree �d/k;

gcd(�µ,�ν,�λ)=1

1

k#aut(�µ)#aut(�ν)#aut(�λ)

∑
W∈Comb◦

γ(�µ,�ν,�λ)

Gk(W ),
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where

Gk(W ) =
∑

k′:k′|k
µ
( k

k′

)
k′−l(�µ)−l(�ν)−l(�λ)+1H(W(k′))

∣∣∣
q→qk/k′ .

Therefore if we show

t · Gk(W ) ∈ Q[t](13)

where t = [1]2, then the proof of the theorem will be finished. This is the
subject of the next section.

Since the entire proof is quite long, let us briefly explain the main idea.
The amplitude H(W ) turns out to be a polynomial in t if W has the cycle rank
> 0 and clearly (13) holds. In the case the cycle rank is zero, H(W ) has poles.
However, the poles of H(W ) and H(W(k)) are related in some way and almost
all of them cancel in Gk(W ), leaving at most a pole at t = 0. Let us describe
the situation in the simplest case, when W does not contain a certain type of
VEV trees (VIII(W ) = ∅ in the notation of the next section), and k is odd.
Then

H(W(k)) =
gW · k(�µ)+l(�ν)+l(�λ)−1

tk
+ polynomial in t .

Here tk = [k]2 and gW is a constant determined by W . Therefore, if k is odd,

Gk(W ) =
gW

tk

∑
k′;k′|k

µ
( k

k′

)
+ polynomial in t.

(13) follows from the formula of Möbius function

∑
k′:k′|k

µ
( k

k′

)
=

{
1 (k = 1)

0 (k > 1, k ∈ N).
(14)

So the factor 1/tk in Gk(W ) vanishes unless k = 1. The proofs in other cases
are more complicated, but similar.

§6. Pole Structure

In this section, we first study poles of the amplitude B(T ) and then move
to the study of H(W ). In Subsection 6.1, we see that B(T ) is actually a function
of t = [1]2 and study its poles. Then we study H(W ) in Subsection 6.2. The
proof of the main theorem is completed at the last of this section when we give
a proof of (13).
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§6.1. B(T )

In this subsection, we study poles of the amplitudes B(T ) of a VEV tree T .
We first state the main proposition and check some examples. Next we collect
some lemmas necessary for the proof and prove the proposition.

6.1.1. Main results
We set

t = [1]2, tk = [k]2 (k ∈ N).

It is known that tk is a polynomial in t with integer coefficients [BP]

tk =
k∑

j=1

k

j

(
j + k − 1
2j − 1

)
tj ∈ Z[t].

We define m(T ) of a VEV tree T by

m(T ) = gcd(µ, ν) if T ∈ Graph
◦
a(µ, ν).

It turns out that B(T ) has poles at tm(T ) = 0.

Proposition 6.1. Let T be a VEV tree in Graph
◦
a(µ, ν).

1. There exists gT ∈ Z and fT (t) ∈ Z[t] such that

B(T )

=




gT

tm(T )
+ fT (tm(T )) (m(T ) odd or nroot/m(T ) even)

gT

tm(T )

(
1 + tm(T )/2

2

)
+ fT (tm(T )) (m(T ) even and nroot/m(T ) odd)

We remark that nroot = ad where d = |µ| = |ν|.

2. Moreover,

gT = gT(0) · m(T )l(µ)+l(ν)−1.

Here T(0) is the VEV tree which is the same as T except all the vertex-labels
is multiplied by 1/m(T ).

We will give a proof for the case m(T ) = 1 first, then the case m(T ) > 1.
Before giving a proof, let us check simple examples. Consider the VEV

forest T ∈ Graph
◦
a((d), (d)) (a �= 0) below. T has m(T ) = d.

T =

(d, 0) (−d, ad)

����
� �

�

(0, ad)
T(0) =

(1, 0) (−1, a)

����
� �

�

(0, a)
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If a = 1 and d = 3,

B(T ) =
[9]
[3]3

=
1

[3]2
(q3 + 1 + q−3) =

t3 + 3
t3

, gT = 3.

B(T(0)) =
[1]
[1]3

=
1
t
, gT(0) = 1.

Here we have used the relation

qk + q−k = tk + 2.

If a = 3 and d = 2,

B(T ) =
[12]

[6][2]2
=

1
[2]2

(q3 + q−3) =
t3 + 2

t2
=

t + 2
t2

+ t + 2, gT = 2.

B(T(0)) =
[3]

[3][1]2
=

1
t
, gT(0) = 1.

Thus the proposition holds in these examples.

6.1.2. Lemmas
We collect some lemmas on q-numbers necessary for the proof of the Propo-

sition 6.1. Here is the list indicating where these lemmas are needed.
In the proof of the k = 1 case, Lemma 6.3.4 plays the guiding role. Lem-

mas 6.4 and 6.5 are used to show that the third assumption of Lemma 6.3.4.
In the proof of the k > 1 case, we use Lemmas 6.4.2 and 6.6 together with the
result of the k = 1 case. Lemmas 6.2 and 6.3.1,2,3 are the preliminary for the
other lemmas. We remark that the proof of Lemma 6.6 is very similar to the
k = 1 case.

Let us start from some notations. For a (dummy) variable x, the ring of
polynomials with integer (rational) coefficients is denoted by Z[x] (Q[x]), the
ring of rational functions with rational coefficients by Q(x). The ring of Laurent
polynomials with integer coefficients is denoted by Z[x, x−1]. We define

Z+[x, x−1] = {f(x) ∈ Z[x, x−1]|f(x) = f(x−1)}.

This is a subring of Z[x, x−1].
We also define

L[x] =
{f2(x)

f1(x)

∣∣∣f1(x), f2(x) ∈ Z[x], f1(x) : monic
}
.

It is not difficult to see that this is a subring of Q(x) (see [P]).
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We set

t = [1]2, tk = [k]2, y = [1/2]2.

Note that t = y(y + 4). We define the relation <y in L[y] by

f1(y) <y f2(y) ⇔ ∃f3(y) ∈ Z[y], f3(0) = 1, f1(y) = f2(y)f3(y).

f1(y) <y f2(y) implies that f1(y) has poles at most where f2(y) does.

Lemma 6.2.

Z+[q, q−1] ∼= Z[t], Z+[q
1
2 , q−

1
2 ] ∼= Z[y].

Proof. We only show the first isomorphism. The proof of the second is
the same if q is replaced by q

1
2 .

⊆: An element f(q) in Z+[q, q−1] is written as follows.

f(q) = b0 +
m∑

i=1

bj(qi + q−i) = b0 +
m∑

i=1

bj(tj + 2) (bj ∈ Z),

where we have used the relation tj = qj + q−j − 2. Since tj ∈ Z[t], f(q) ∈ Z[t].
⊇: An element f(t) in Z[t] is written as follows.

f(t) =
m∑

i=0

bit
i =

m∑
i=0

bi(q + q−1 − 2)i (bj ∈ Z).

Thus f(t) ∈ Z+[q, q−1].

Lemma 6.3. Let a1, . . . , am, b1, . . . , bn be integers.

1.
∏m

i=1[ai] ∈ Z[y] ⇔ m is even.

2.
∏m

i=1[ai] ∈ Z[t] ⇔ both m and
∑m

i=1 ai are even.

3.
∏m

i=1[ai]/
∏n

i=1[bi] ∈ L[y] ⇔ m + n is even.

4. If both m + n and
∑m

i=1 ai +
∑n

i=1 bi are even and
∏m

i=1[ai]/
∏n

i=1[bi] ∈
Z[q

1
2 , q−

1
2 ], then

∏m
i=1[ai]/

∏n
i=1[bi] ∈ Z[t].

Proof. 1 and 2 follow immediately from the previous lemma.
3. If m + n is odd,

∏
[ai]/
∏

[bj ] is anti-symmetric under q → q−1. Thus it
can not be written with y. If both m and n are even, then

∏
[ai],
∏

[bj ] ∈ Z[y].
If both m and n are odd, then [1]

∏
[ai], [1]

∏
[bj ] ∈ Z[y]. Thus 3 is proved.
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4. The condition that m + n is even means that
∏

[ai]/
∏

[bj ] ∈ L[y]. The
assumption that it is a polynomial implies that l =

∑
|ai| −

∑
|bj | ≥ 0 and

that it is written as follows.∏
[ai]∏
[bj ]

=
l∑

i=0

ciq
l
2−i (ci ∈ Z, ci = cl−i).

The condition that l is even implies that
∏

[ai]/
∏

[bj ] ∈ Z+[q, q−1]. Therefore
4 follows from the previous lemma.

Recall that [λ] =
∏l(λ)

i=1 [λi] where λ is a partition.

Lemma 6.4. Let k ∈ N be a positive integer.

1. Let a ∈ N be a positive integer. Then [ka]/[a] ∈ Z[y]. Moreover if k is odd
or a is even, [ka]/[a] ∈ Z[t] and the constant term is k. If k is even and a

is odd, the remainder of [ka]/[a] by y(y + 4) is k(1 + y/2).

2. Let λ be a partition. Then [kλ]/[λ] is written as follows.

[kλ]
[λ]

=


kl(λ) + t × uk,λ(t) (k odd or |λ| even)

kl(λ)
(
1 + y

2

)
+ t × uk,λ(y) (k even and |λ| odd).

Here, if k is odd or |λ| is even, uk,λ(t) ∈ Z[t] is a polynomial of degree
(k − 1)|λ|/2 − 1, if k is even and |λ| is odd, uk,λ(y) ∈ Z[y] is a polynomial
of degree (k − 1)|λ| − 2.

Weaker statements of the lemma are written with <y in the following
simple form:

[ka]
[a]

<y k,
[kλ]
[λ]

<y kl(λ).

Proof. 1. Recall the formula (xk − 1)/(x− 1) = 1 + x + · · ·+ xk−1. Then
it is easily calculated that

[ka]
[a]

=
k−1∑
i=0

q
(k−1)a

2 −i.

If (k − 1)a is even, [ka]/[a] ∈ Z+[q, q−1]. Thus it is in Z[t]. Since t = 0 is
equivalent to q = 1, the value at t = 0 is the value at q = 1, which is k.
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If (k − 1)a is odd, [ka]/[a] ∈ Z[y]. To compute the remainder by y(y + 4),
let us write it as b1 + b2y. We compare the values at y = 0 and y = −4, or
equivalently at q

1
2 = 1 and q

1
4 =

√
−1:

b1 = k, b1 − 4b2 = −k.

Therefore the first part is proved.
2. By the result of 1, [kλ]/[λ] is in Z[y] with constant term kl(λ).
If k is odd or |λ| is even, all the three conditions of Lemma 6.3.4 are

satisfied and [kλ]/[λ] ∈ Z[t].
If k is even and |λ| is odd, there are odd number of odd parts in λ. Take one

odd part, say λ1, and denote by λ′ by the partition λ \ {λ1}. Then [kλ′]/[λ′] ∈
Z[t] with constant term kl(λ)−1. On the other hand, [kλ1]/[λ1] ∈ Z[y] and the
remainder by t = y(y+4) is k(1+y/2). Therefore the second part of the lemma
follows.

Lemma 6.5. Let a, b, c ∈ N be positive integers satisfying gcd(a, b, c) =
1. Then

[lcm(a, b, c)][gcd(a, b)][gcd(b, c)][gcd(c, a)]
[a][b][c][1]

∈ Z[t],

and the constant term is 1.

With <y, (a weaker statement of) the lemma are written as follows:

[lcm(a, b, c)]
[a][b][c]

<y
[1]

[gcd(a, b)][gcd(b, c)][gcd(c, a)]
.

Proof. We check the three conditions to apply Lemma 6.3.4. The first
condition is clearly satisfied.

We write a, b, c as follows:

a = pra′, b = psb′, c = qsc′,

where p = gcd(a, b), s = gcd(b, c), r = gcd(a, c). Since gcd(a, b, c) = 1, any pair
of p, s, r, a′, b′, c′ are prime to each other.

Then

l := psra′b′c′ + p + s + r − pra′ − psb′ − src′ − 1

= p(ra′ − 1)(sb′ − 1) + s(rc′ − 1)(sb′ − 1) − (p − 1)(sb′ − 1) ≡ 0 mod 2.

Thus the second condition is also satisfied.
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To check the third condition, we write:

[lcm(a, b, c)][gcd(a, b)][gcd(b, c)][gcd(c, a)]
[a][b][c][1]

=
[psra′b′c′][p][r][s]
[pra′][psb′][src′][1]

=q−l (qpsra′b′c′ − 1)(qp − 1)(qs − 1)(qr − 1)
(qpra′ − 1)(qpsb′ − 1)(qsrc′ − 1)(q − 1)︸ ︷︷ ︸




.

The numerator of (�) has a zero of 4-th order at q = 1, double zeros at q =
e2π

√
−1j (j ∈ I1) and simple zeros at q = e2π

√
−1j (j ∈ I2) where

I1 =
{1

p
, . . . ,

p − 1
p

,
1
s
, . . . ,

s − 1
s

,
1
r
, . . . ,

r − 1
r

}
,

I2 =
{ 1

psra′b′c′
, . . . ,

psra′b′c′ − 1
psra′b′c

}
\ I1.

On the other hand, the denominator has a zero of 4-th order at q = 1, double
zeros at I1 and simple zeros at q = e2π

√
−1j (j ∈ I3) where

I3 =
{ 1

pra′ , . . . ,
pra′ − 1

pra′ ,
1

psb′
, . . . ,

psb′ − 1
psb′

,
1

src′
, . . . ,

src′ − 1
src′

}
\ I1.

Since I1 ⊆ I3, (�) is a polynomial in q. Moreover, since both the numerator
and the denominator are elements of Z[q] and monic, it is a polynomial with
integer coefficients. Therefore the third condition is satisfied. By Lemma 6.3.4,
[psra′b′c′][p][s][r]/[pra′][psb′][src′][1] ∈ Z[t].

The constant term is equal to, by Lemma 6.4.1,

[psra′b′c′]
[pra′]

∣∣∣
q=1

· [p]
[psb′]

∣∣∣
q=1

· [s]
[src′]

∣∣∣
q=1

· [r]
[1]

∣∣∣
q=1

= sb′c′ · 1
sb′

· 1
rc′

· r = 1.

Lemma 6.6. Let λ be a partition and k ∈ N. Assume they satisfy the
following conditions. 1. l(λ) ≥ 2. 2. gcd(k, λ \ λi) = 1(1 ≤ ∀i ≤ l(λ)). 3. k is
odd or |λ| is even. Then there exists wk,λ(t) ∈ Z[t] and

[kλ]
[k]2[λ]

=
kl(λ)−2

t
+ wk,λ(t).

Proof. Define pi = gcd(k, λ1, . . . , λi) (1 ≤ i ≤ l(λ)), p0 = k, ki =
gcd(k, λi+1, . . . , λl(λ)) (0 ≤ i ≤ l(λ)), kl(λ) = k. Note that gcd(λi, pi−1) = pi,
gcd(λi, ki) = ki−1 and gcd(pi−1, ki) = pl(λ) = k0 = 1 because of the second
condition.
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We write the LHS as follows.

[kλ]
[k]2[λ]

=
1

[k]2

l(λ)∏
i=1

[kλi]
[lcm(λi, pi−1, ki)]

l(λ)∏
i=1

[lcm(λi, pi−1, ki)]
[λi][pi−1][ki]

l(λ)∏
i=1

[pi−1][ki].

By Lemmas 6.5 and 6.4.1,

(RHS) <y
1

[k]2

l(λ)∏
i=1

1
[pi][ki−1]

l(λ)∏
i=1

[pi−1][ki] ·
l(λ)∏
i=1

kλi

lcm(λi, pi−1, ki)

=
1

[1]2

l(λ)∏
i=1

kλi

lcm(λi, pi−1, ki)
=

1
[1]2

× (positive integer).

Therefore [kλ][1]2/[k]2[λ] is in Z[y]. Applying Lemma 6.3.4, we find that
[kλ][1]2/[k]2[λ] ∈ Z[t]. Its constant term is [kλ]/[λ]|y=0 · [1]2/[k]2|y=0 = kl(λ)−2.

6.1.3. Proof of Proposition 6.1: Case m(T ) = 1
We first show the case m(T ) = 1.
The statement actually holds for a more general VEV tree. Let �c =

(c1, . . . , cl), �n = (n1, . . . , nl) be the pair satisfying the assumptions of the
Subsection 3.2 and gcd(�c, �n) = 1. We extend the definition of B(T ) to T ∈
Graph

◦
(�c, �n) as follows:

B(T ) =
A(T )∏l
i=1[mi]

where mi = gcd(ci, ni) (1 ≤ i ≤ l). We will show t · B(T ) ∈ Z[t].
We give a proof of the case |�n| �= 0 and omit the case |�n| = 0 since the

proof is almost the same.
Our strategy of the proof is Lemma 6.3.4. Since [1]2B(T ) is written by the

products of q-numbers:

[1]2B(T ) =
[1]2
∏

v∈V2(T )[ζv]

[|�n|]
∏l

i=1[mi]
,

it is sufficient to show the followings:

1. #V2(T ) − l − 1 ≡ 0 mod 2;

2.
∑

v∈V2(T )

ζv − |�n| −
l∑

i=1

mi ≡ 0 mod 2;

3. [1]2B(T ) ∈ Z[y]
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1. The first condition is immediately checked since #V2(T ) = l − 1.
2. Since cv = cL(v) + cR(v) and nv = nL(v) + nR(v),

ζv = cL(v)nL(v) + cR(v)nR(v) − cvnv + 2cL(v)nR(v).

Then

∑
v∈V2(F )

ζv − |�n| −
l∑

i=1

mi mod 2

≡
l∑

i=1

cini − |�n| −
l∑

i=1

mi − |�c| mod 2 (∵ |�c| = 0)

≡
l∑

i=1

[
m2

i (c
′
i − 1)(n′

i − 1) + mi(mi − 1)(c′i + n′
i) − mi(mi − 1)

]
mod 2

≡ 0 mod 2

where c′i, n
′
i are defined by ci = mic

′
i and ni = min

′
i for 1 ≤ i ≤ l.

3. Let us introduce some notations. For a vertex v,

�cv = {ci ∈ �c| the i-th leaf is a descendent of v},
�nv = {ni ∈ �n| the i-th leaf is a descendent of v},
pv = gcd(�cv, �nv), kv = gcd(�c \ �cv, �n \ �nv, |�n|).

pv, kv’s satisfy the following relations. (For a, b ∈ N, a|b means b is divisible by
a.)

pv, kv| gcd(cv, nv), pL(v), pR(v), kv|ζv,

gcd(pR(v), kv) = kL(v), gcd(pL(v), kv) = kR(v),

pi-th leaf = mi, kroot = |�n|, gcd(pv, kv) = kleaf = proot = 1.

Note that the last identities are the consequence of the assumption gcd(�c,
�v) = 1.

Now we decompose the amplitude B(T ) as follows.

B(T ) =
∏

v∈V2(T )

[ζv]
[lcm(kv, pL(v), pR(v))]︸ ︷︷ ︸

(a)

∏
v∈V2(T )

[lcm(kv, pL(v), pR(v))]
[kv][pL(v)][pR(v)]︸ ︷︷ ︸

(b)

×
∏

v∈V2(T )

[kv][pL(v)][pR(v)]

︸ ︷︷ ︸
(c)

· 1

[|�n|]
∏l

i=1[mi]︸ ︷︷ ︸
(d)

.
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Since kv, pL(v), pR(v) divide ζv, so does lcm(kv, pL(v), pR(v)). By Lemma 6.4.1,

(a) <y

∏
v∈V2(T )

ζv

lcm(kv, pL(v), pR(v))
=: gT ∈ Z.

We apply Lemma 6.5 to (b). Note that the assumption is satisfied since
gcd(kv, pL(v), pR(v)) = 1.

(b) <y

∏
v∈V2(T )

[1]
[kL(v)][kR(v)][pv]

= [1]#V2(T ) · 1
[proot]

·
∏

v:leaf

1
[kv]

·
∏

v∈V2(T )
v �=root

1
[pv][kv]

=
1

[1]2
∏

v∈V2(T ),
v �=root

1
[pv][kv]

.

We have used [kleaf] = [proot] = [1] and #V2(T ) = #(leaves) − 1.
The factor (c) is rewritten as follows:

(c) = [kroot] ·
∏

v:leaf

[pv] ·
∏

v∈V2(T )
v �=root

[pv][kv] = [|�n|] ·
l∏

i=1

[mi]
∏

v∈V2(T ),
v �=root

[pv][kv].

Thus all the factors except 1/[1]2 cancel and we obtain

B(T ) <y
gT

[1]2
.

Thus we find that [1]2B(T ) ∈ Z[y]. All the assumptions of Lemma 6.3.4 are
checked and the m(T ) = 1 case is proved.

6.1.4. Proof of Proposition 6.1: case m(T ) > 1
Next we give a proof in the case m(T ) > 1. Here T is a VEV tree in

Graph
◦
a(µ, ν) with |µ| = |ν| = d. For simplicity of the writing, let us set

k = m(T ) = gcd(µ, ν).
B(T ) is written in terms of B(T(0)) as follows.

B(T ) =
[kµ′][kν′]
[k]2[µ′][ν′]

∣∣∣
q→qk︸ ︷︷ ︸

(a′)

· [kad′]
[ad′]

∣∣∣
q→qk︸ ︷︷ ︸

(b′)

×
(
[1]2B(T(0))

)∣∣∣
q→qk2︸ ︷︷ ︸

(c′)

where µ′, ν′ and d′ are defined by µ = kµ′, ν = kν′ and d = kd′.
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We will apply Lemma 6.6 to the factor (a′) by substituting λ′ ∪ µ′ into λ.
Let us check the assumptions. The first and the third are clearly satisfied since
l(µ′) + l(ν′) ≥ 2 and |µ′| + |ν′| = 2d′. The second assumption is also satisfied
since if we assume otherwise, then it contradicts with |µ′| = |ν′|. Therefore by
the lemma, there exists wk,µ′∪ν′(t) ∈ Z[t] such that

(a′) =
kl(µ)+l(ν)−2

tk
+ wk,µ′∪ν′(tk).

By Lemma 6.4, the factor (b′) is written as follows.

(b′) =
[kad′]
[ad′]

∣∣∣
q→qk

=


k + tk × uk,(d′)(tk) (k odd or ad′ even)

k
(
1 + tk/2

2

)
+ tk × uk,(d′)(tk/2) (k even and ad′ odd)

where, in both cases, uk,(d′) is a polynomial in one variable with integer coeffi-
cients.

From the result of the m(T ) = 1 case, (c′) ∈ Z[tk2 ] ⊂ Z[tk] with the
constant term gT(0) . Thus the m(T ) > 1 case is proved. This completes the
proof of the proposition.

§6.2. Poles of combined amplitudes

We study the pole of the combined amplitude and finish the proof of the
main theorem by showing (13): tGk(W ) ∈ Q[t].

As it turns out, the pole structure of H(W ) of W ∈ Comb◦
γ(�µ, �ν,�λ) depends

on the cycle rank β(W ) and k = gcd(�µ, �ν,�λ). We first see that if W has the
cycle rank > 0, then H(W ) is a polynomial in t and if W has the cycle rank
zero, H(W ) has a simple pole at tk = 0. Then we prove the more detailed pole
structure in the latter case. We also prove (13).

6.2.1.
Proposition 6.7. Let (�µ, �ν,�λ) be an r-set and k = gcd(�µ, �ν,�λ). Let

W ∈ Comb◦
γ(�µ, �ν,�λ) be a connected combined forest.

1. If β(W ) = 0, then tkH(W ) ∈ Z[t].

2. If β(W ) > 1, then H(W ) ∈ Z[t].

Proof. We write the combined amplitude as follows.

H(W ) = (−1)L1(W )+L2(W )
∏

T : VEV tree in W

B(T ) ·
∏

b: bridges in W

th(b).
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Since every B(T ) has poles at tm(T ) = 0, the first factor has poles at

{tm(T ) = 0| T : VEV tree in W}.

On the other hand the second factor has zeros at

{th(b) = 0| b: bridges in W}.

Do the poles cancel with the zeros? Note that if a bridge b is incident to a
VEV tree T , then the zeros of th(b) cancel the poles of tm(T ) because m(T ) is a
divisor of h(b). Therefore the question is whether it is possible to couple every
VEV tree in W with at least one of its incident bridges.

The answer is yes if β(W ) > 0. Therefore H(W ) is a polynomial in t. As
an example, consider the first graph in Figure 1. The cycle rank is two in this
case. Let T1, T2, T3 denote the VEV trees and b1, b2, b3 the bridges as depicted
below. (For simplicity, we contract each VEV tree to a vertex.)

�
��

�
��

� �

�

T1 T2

T3

b1

b2

b3b4

(15)

If we take the coupling (T3, b3), (T2, b1, b2), (T1, b4), we could easily see
that the pole of B(T3) is canceled by the zeros of th(b3) etc.

If the cycle rank β(W ) is zero, the answer to the question is no. However,
if we pick one VEV tree T , then it is possible to couple every other VEV tree
with one of its incident bridges. As an example, consider the combined forest
in the Figure 2. For simplicity, we contract VEV trees to a vertex as before
(see below).

���

�
��

�

�

�

�

T2 T3

T4

T1

b1

b2
b3

(16)

If we pick T4 and choose the pairing (T1, b3), (T2, b1), (T3, b2), then we could
easily see that the pole of B(T1) cancel with the zeros of th(b3), etc, and that only
the pole of B(T4) remains. Moreover, the choice of a VEV tree T is arbitrary.
Therefore H(W ) has poles at most⋂

T : VEV tree in W

{tm(T ) = 0} = {tgcd(m(T ),T :VEV tree in W )) = 0}

= {t(gcd(�µ,�ν,�λ)) = 0} = {tk = 0}.

Therefore tkH(W ) is a polynomial in t.
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�
�

�

�
�
�

�
�
�

��

��

�

� � � �

�

�
�
�
��

�
�

�
��

�
�

� ��

�

�

��

�

� �

�� ��
� �

�

21

3

b3 b2

b1

T1 T2 T3

T4

Figure 2. A combined forest in Comb•
γ(�µ, �ν,�λ) where r = 3, γi + 2 �= 0 and

λ1 = (1) = λ3 = λ2 = (1), µ1 = (1) = µ2 = ν1 = ν2, µ3 = ν3 = ∅. The cycle
rank is zero.

The integrality of the coefficients follows from Lemma 6.3.4.

6.2.2.
We study the property of the case β(W ) = 0 in more details. For conve-

nience, we define the following two relations.

• The relation ∼Z in the ring L[t] is defined by

u1(t) ∼Z u2(t) ⇔ u1(t) − u2(t) ∈ Z[t].

• The relation ∼Q in the ring Q(t) is defined by

u1(t) ∼Q u2(t) ⇔ u1(t) − u2(t) ∈ Q[t].

Both u1(t) ∼Z u2(t) and u1(t) ∼Q u2(t) imply that u1(t) and u2(t) has the
same poles.

Proposition 6.8. Let (�µ, �ν,�λ) be an r-set such that gcd(�µ, �ν,�λ) = 1.
Let W ∈ Comb◦

γ(�µ, �ν,�λ) be a connected combined forest with the cycle rank
β(W ) = 0.

1. If k is an odd positive integer,

H(W(k)) ∼Z kl(�µ)+l(�ν)+l(�λ)−1H(W )|t→tk
.
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2. If k is an even positive integer,

H(W(k)) ∼Z (−1)L2(W )kl(�µ)+l(�ν)+l(�λ)−1H(W )|t→tk

∏
T∈V TI(W )

(
1+

tm(T )k/2

2

)
.

V TI(W ) denotes the set of VEV trees in W such that both m(T ) and nroot

are odd.

3.

Gk(W ) ∼Q

{
0 (k > 2)

const./t (k = 1, 2).

As we have seen in Section 5, the main Theorem 1.3 follows directly from
the third statement.

Before giving a proof, let us check the proposition in simple examples.
Consider the combined forest in Figure 2 (and also see (16)) with γ1 = γ2 =
γ3 = −1. In this case l(�µ) + l(�ν) + l(�λ) = 7. VEV trees of type I are T1, T2, T4.
All VEV tree have m(Ti) = 1. The amplitude of W is equal to

H(W ) =
1

[1]2
=

1
t
.

As a check for the odd k case, take k = 3. The amplitude of W(3) is

36

t3
+ 37 + 3511t3 + 335 · 13t3

2 + 3352t3
3 + 3217t3

4 + 19t3
5 + t3.

As an example for the even k, we take k = 2. The amplitude of W(2) is

26(1 + t
2 )2

t2
+ 32 + 96t + 86t2 + 41t3 + 10t4 + t5.

Therefore the first and the second of the proposition hold. It is easy to see that
the third statement also holds in these cases.

Proof. 1 and 2. Since the pole structure of B(T ) depends on m(T ) and
nroot (Proposition 6.1), we separate VEV trees in W into three types:

V TI(W ) = {T : VEV tree|m(T ) odd and nroot/m(T ) odd},
V TII(W ) = {T : VEV tree|nroot/m(T ) even},

V TIII(W ) = {T : VEV tree|m(T ) even and nroot/m(T ) odd}.
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The combined amplitude H(W ) is written as follows.

H(W ) ∼Z (−1)L1(W )+L2(W )
∏

b:bridge

th(b)(17)

×
∏

T :VEV tree

gT

tm(T )
·
∏

T∈VIII (W )

(
1 +

tm(T )/2

2

)
.

Consider the amplitude of W(k). If k is odd,

V TI(W(k)) ∼= V TI(W ), V TII(W(k)) ∼= V TII(W ),

V TIII(W(k)) ∼= V TIII(W ).

If k is even,

V TI(W(k)) = ∅, V TII(W(k)) ∼= V TII(W ),

V TIII(W(k)) ∼= V TI(W ) ∪ V TIII(W ).

Thus we have

H(W(k))∼Z (−1)L1(W )+kL2(W )k#(leaves)−#(trees)(18)

×
∏

b:bridge in W

tkh(b) ·
∏

T :VEV tree in W

gT

tkm(T )

×



∏

T∈VIII (W )

(
1 + tkm(T )/2

2

)
(k:odd)∏

T∈VI (W )∪VIII (W )

(
1 + tkm(T )/2

2

)
(k:even)

Given that β(W ) = #(bridges)−#(trees) + 1 = 0, #(bridges) = l(�λ) and that
#(leaves) = l(�µ) + l(�ν) + 2l(�λ),

k#(leaves)−#(trees) = kl(�µ)+l(�ν)+l(�λ)−1.

Comparing (17) and (18), we obtain the first and the second statements.
3. In the proof of the third statement, the key formula is the formula for

the Möbius function (14).
(i) k is odd. Since the divisors of k are all odd,

Gk(W ) ∼Q H(W )|q→qk

∑
k′;k′|k

µ
( k

k′

)
=

{
H(W ) (k = 1)

0 (k > 1)

Therefore this case follows from the previous proposition.
(ii) k is divisible by 4. If we write k = 4k0 (k0 ≥ 1), every divisor k′ of

k is written as 4k′′, 2k′′, k′′ with a divisor k′′ of k0. For k′ = k′′, the Möbius
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function µ(k/k′) is zero since k/k′ contains 22. For k′ = 4k′′, 2k′′, we could
write the result of Proposition 6.8.2 as

H(W(k′)) ∼Q H(W(2))|q→qk′/2

(k′

2

)l(�µ)+l(�ν)+l(�λ)−1

Therefore

Gk(W ) ∼Q

(
2−l(�µ)−l(�ν)−l(�λ)+1H(W(2))|q→qk/2

∑
k′;k′|k

µ
( k

k′

)
= 0.

This proves the case 4|k.
(iii) k = 2k0 where k0 > 1 is an odd positive integer. Note that any divisor

of k is written as either k′ or 2k′ with a divisor k′ of k0. Therefore

Gk(W ) ∼Q

(
2−l(�µ)−l(�ν)−l(�λ)+1H(W(2))|q→qk/2 −H(W )|q→qk

) ∑
k′;k′|k0

µ
( k

k′

)
= 0.

(iv) k = 2.

G2(W ) ∼Q −H(W )|t→t(t+4)

(
1 + (−1)L2(W )

∏
T∈V TI(W )

(1 +
tm(T )

2
)
)

Since #V TI(W ) ≡
∑

T nroot ≡ L2(W ) mod 2, the k = 2 case follows from the
next lemma.

Lemma 6.9. Let m1, m2, . . . , ml be positive odd integers. Then

(−1)l+1 +
∏l

i=1(1 + tmi

2 )
t + 4

∈ Q[t].

Proof. To show the lemma, we only have to show that the denominator
has zero at t = −4. At t = −4, or equivalently at q

1
2 =

√
−1, tmi

= (q
1
2 )2mi +

(q
1
2 )−2mi − 2 = −4. Thus the denominator is zero at t = −4 and the lemma is

proved.

This completes the proof of the Proposition 6.8.

Appendix A. Exponential Formula

In this appendix, we formulate the exponential formula used in Section 4.
First, we present the conditions for a graph set.



�

�

�

�

�

�

�

�

Pole Structure of Topological String 213

Definition A.1. A G-set is a set of (labeled) graphs G• together with
a family of subsets, {G•

d}d≥1, satisfying the following conditions.

1. G• =
∐

d≥1 G•
d.

2. If G ∈ G•
d and G′ ∈ G•

d′ , then G ∪ G′ ∈ G•
d+d′ .

3. Every connected component Gi of G ∈ G• is also an element of G•.

4. If G and G′ are two elements in G•, then G and G′ are not isomorphic.

5. Every G•
d (d ≥ 1) is a finite set.

If G ∈ G•
d, the degree of G is d and is denoted by d(G).

Remark A.2. The conditions 2 and 3 together with the condition 4 imply
that the decomposition of a graph into connected components:

G = G1 ∪ . . . ∪ Gl �→ {G1, . . . , Gl}

gives a one-to-one correspondence

G•
(l)

∼−→ SP lG◦,

where G•
(l) ⊂ G• is the subset consisting of graphs with l connected components

and SP lG◦ is the l-th symmetric product of G◦, the subset consisting of all
connected graphs.

Next we set the condition for an amplitude. We recall the definition of a
graded ring. A graded ring is a commutative associative ring R together with a
family (Rd)d≥0 of subgroups of the additive group of R, such that R = ⊕d≥0Rd

and Rd · Rd′ ⊆ Rd+d′ for all d, d′ ≥ 0.

Definition A.3. Let (G•,R, Ψ) be a triple of a G-set, a graded ring and
a grading preserving map Ψ : G → R. It is a triple of graph amplitude (GA
triple) if the map Ψ is multiplicative with respect to the graph union:

Ψ(G ∪ G′) = Ψ(G) · Ψ(G′) (∀G, G′ ∈ G•).

Let (G•, R, Ψ) be a GA triple and G◦
d ⊂ G•

d be the subset of connected
graphs. By the finiteness assumption 5 of the G-set, the following sums over
G•

d and G◦
d are well-defined elements of R:∑

G∈G•
d

1
#aut(G)

Ψ(G),
∑

G∈G◦
d

1
#aut(G)

Ψ(G).

These are related by the relation:



�

�

�

�

�

�

�

�

214 Yukiko Konishi

Proposition A.4.

1 +
∑
d≥1

∑
G∈G•

d

1
#aut(G)

Ψ(G)xd = exp

[∑
d≥1

∑
G∈G◦

d

1
#aut(G)

Ψ(G)xd

]

as formal power series in x.

We call this the exponential formula since it is a variation of the exponential
formula ([S], chapter 5).

Proof. Expanding the RHS, we obtain

1 +
∑
d≥1

xd

(∑
l≥1

∑
{(Gi,ni)}1≤i≤l;

Gi∈G◦,ni∈N;
∑l

i=1 nid(Gi)=d

1
n1! . . . nl!

l∏
i=1

( Ψ(Gi)
#aut(Gi)

)ni

)
︸ ︷︷ ︸

∗

.

As we mentioned in Remark A.2, each {(G1, n1), . . . , (Gl, nl)}uniquely corre-
sponds to the graph

G =
l⋃

i=1

Gi ∪ · · · ∪ Gi︸ ︷︷ ︸
ni times

,

and (∗) is exactly the same as the contribution of G to the LHS, as we now
explain. The number of automorphisms of such G is

#aut(G) =
l∏

i=1

ni!
(
#aut(G)

)ni .

The amplitude Ψ(G) is the product of Ψ(Gi)ni (1 ≤ i ≤ l) because of the
multiplicativity of Ψ. Therefore the contribution of G to the LHS and (∗) are
the same.

Appendix B. Proof of Free Energy

We give a proof of Proposition 4.1 by using the exponential formula. All
we have to do is to define a suitable GA triple. We first construct a G-set.

For a combined forest W , we define W to be the graph obtained by forget-
ting all leaf indices. Two combined forests W and W ′ are equivalent if W ∼= W

′
.

The set of equivalence classes in Comb•(�µ, �ν,�λ) and Comb◦(�µ, �ν,�λ) are denoted
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by Comb
•
(�µ, �ν,�λ) and Comb

◦
(�µ, �ν,�λ). Let us define

Comb
•
γ(d) =

∐
|�d|=d

∐
(�µ,�ν,�λ)
r-set of
degree �d

Comb
•
γ(�µ;�ν;�λ) (d ≥ 1),

Comb
•
γ =
∐
d≥1

Comb
•
γ(d).

The set Comb
•
γ clearly satisfies the conditions 1,3,4,5 of the G-set. It also

satisfies the second condition, because

Comb
•
γ(�µ, �ν,�λ) =

∐
k≥1

∐
{(�µj ,�νj ,�λj)}1≤j≤k∈Dk(�µ,�ν,�λ)

Comb
◦
γ(�µ1, �ν1, �λ1) × · · · × Comb

◦
γ(�µk, �νk, �λk)

where Dk is the set of all partitions of (�µ, �ν,�λ) into k parts {(�µj , �νj , �λj)}1≤j≤k

such that every part is an r-set.
Secondly, we define the amplitude Ψ of G ∈ Comb

•
γ(�µ, �ν,�λ) so that it

satisfies

1
#aut(G)

Ψ(G) =
∑

W : combined forest
W=G

1
z�µz�νz�λ

H(W ) �Q
�d

where �d is the degree of the r-set (�µ, �ν,�λ). Solving this, we have

Ψ(G) = #aut(G) · N(W )
1

z�µz�νz�λ

H(W ) �Q
�d (W such that W = G)

where N(W ) is the number of combined forests equivalent to W .
It is easy to see that Ψ is a grade preserving map to the ring R = Q(t)[[�Q]].

To check the multiplicativity of Ψ, we need to know N(W ). Since N(W ) is
equal to the number of ways to assign leaf indices to W , it consists of two
factors. The one is the number of ways to distribute the leaf indices to VEV
trees in W ; we define the partitions λ(T, T ′), µ(T ), ν(T ) for a VEV tree T, T ′

in W by:

λ(T, T ′) = {h(b)| b is a bridge joining T , T ′},
µ(T ) = {cv| v is a left leaf of T , not incident to a bridge},
ν(T ) = {cv| v is a right leaf of T , not incident to a bridge};
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then there are

#aut(�µ) #aut(�ν) #aut(�λ)
|aut(W )|

∏
T �=T ′ #aut(λ(T, T ′))

∏
T #aut(µ(T )) #aut(ν(T ))

ways to distribute the leaf indices to VEV trees. The other factor is the number
of ways to assign the leaf indices in each VEV tree. It is the same as the number
of (connected) combined forests equivalent to T which we write as N ′(T ).

Therefore

N(W ) =
#aut(�µ) #aut(�ν) #aut(�λ)

|aut(W )|

× 1∏
T �=T ′ #aut(λ(T, T ′))

∏
T

N ′(T )
#aut(µ(T )) #aut(ν(T ))︸ ︷︷ ︸




The factor (�) is multiplicative. Non-multiplicative factors cancel with those
of z�µ, z�ν , z�λ and #aut(W ):

#aut(G) · N(W )
z�µz�νz�λ

=
r∏

i=1

( l(µi)∏
j=1

µi
j ·

l(νi)∏
j=1

νi
j ·

l(λi)∏
j=1

λi
j

)−1

× (�).

This is multiplicative and so are H(W ) and �Q
�d. Thus we finished the check of

the multiplicativity of Ψ and (Comb
•
γ , R, Ψ) is a GA triple.

With the GA triple, the partition function is expressed as

Zγ(q; �Q) = 1 +
∑

G∈Comb
•
γ

1
#aut(G)

Ψ(G).

Therefore we apply the exponential formula and obtain the free energy:

Fγ(q; �Q) =
∑

G∈Comb
•
γ

1
#aut(G)

Ψ(G)

=
∑
�d�=�0

Q
�d
∑

(�µ,�ν,�λ);
r-set of
degree �d

1
z�λz�µz�ν

∑
W∈Comb◦

γ(�µ,�ν,�λ)

H(W ).

Since Fγ
�d
(q) is the coefficient of �Q

�d, this implies the Proposition 4.1.
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Appendix C.

In the proof of Proposition 6.8, we have claimed the existence of a certain
coupling between VEV trees and bridges in a combined forest W . If we make
the simpler graph Ŵ by contracting every VEV tree in W to a vertex, then
the coupling is the same as that of vertices and edges in Ŵ (see, for example,
Figure 2 and (16)). Then the existence of such coupling follows if we apply the
next lemma to Ŵ .

Lemma C.1. Let Γ be a connected graph without self-loops (a self loop
is an edge that joins a single vertex to itself).

1. If the cycle rank β(Γ) is zero, then for all v ∈ V (Γ), there exists a map
ϕv : E(Γ) → V (Γ) satisfying the following conditions; ϕv(e) is either of the
incident vertices; |ϕ−1

v (v′)| = 1 for v′ �= v; |ϕ−1
v (v)| = 0. We call ϕv an

edge-map of v.

2. If the cycle rank β(Γ) > 1, then there exists ϕ : E(Γ) → V (Γ) satisfying the
following two conditions; ϕ(e) is either of the incident vertices; |ϕ−1(v)| ≥ 1
for all v ∈ V (Γ). We call ϕ an edge-map of Γ.

Proof. Firstly, we make a (finite) sequence (Γi)i≥0 as follows.

1. Γ0 = Γ.

2. Assume Γi is given. Then pick one vertex vi ∈ V (Γi). (This choice is
completely arbitrary.) Γi+1 is the graph obtained by deleting vi and all of
its incident edges.

3. Repeat the step 2 until we obtain the graph consisting only of vertices.
Note that this process ends after at most #V (Γ) steps.

We write the sequence as follows.

Γ = Γ0 −→ Γ1 −→ · · · −→ Γn = (vertices)

As examples, consider the figures in (15)(16). We can take the following se-
quences:

�
��

�
��

� �

�

v0 v1

v2

−→ �
��

�

�

−→
�

,

���

�
��

�

�

�

�

v1

v0

−→
�

�

�

−→
�

�.

(19)
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Now, by induction, we will construct a map

ϕi : E(Γi) → V (Γi)

such that ϕi(e) is one of the endpoints of an edge e.

1. We define ϕn to be the empty map since there is no edges in Γn.

2. Next assume that ϕi+1 is given. If an edge e ∈ E(Γi) is not incident to vi,
it has the corresponding edge e′ in Γi+1. We define

ϕi(e) = ϕi+1(e′)

If an edge e ∈ E(Γi) is incident to vi, we define{
ϕi(e) = vi if ϕ−1

i+1(v) �= ∅
ϕi(e) = v if ϕ−1

i+1(v) = ∅

where v is the other endpoint of e.

Thus we obtain ϕ0 : E(Γ) → V (Γ). If Γ has the cycle rank > 0, ϕ0 is its edge-
map. If the cycle rank is zero, ϕ0 is an edge-map of v0. We make an edge-map
of other vertex v ∈ V (Γ) as follows. We take the path v = v(0) → v(1) → · · ·
where e(i) = ϕ−1

vi
(v(i)) and v(i+1) is the other endpoint of e(i):

�
�
�

� �

� �

v = v(0) v(1)

v(2)

e(0)

e(1)
v0

Since the cycle-rank is zero, this path arrives at v0 at some time. Define

ϕv(e) =

{
ϕ0(e) if e is not on the path

v(i+1) if e = e(i).

Then ϕv is an edge-map of v. This completes the proof.

The examples of coupling given after (15) and (16) were constructed in
this way from (19).
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