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Computations of Nambu-Poisson Cohomologies:
Case of Nambu-Poisson Tensors of

Order 3 on R
4

By

Nobutada Nakanishi
∗

Abstract

We compute Nambu-Poisson cohomology for Nambu-Poisson tensors of order
three which are defined on R4. In particular, we prove that Nambu-Poisson cohomol-
ogy of exact Nambu-Poisson tensors is equivalent to relative cohomology.

§1. Introduction

A Nambu-Poisson structure was given by L. Takhtajan [14] in 1994 in order
to extend Nambu mechanics defined on R3 to Nambu-Poisson mechanics defined
on an n-dimensional manifold, n ≥ 3. One of the main objects of Nambu-
Poisson geometry is to study Nambu-Poisson cohomology and its related topics.
The notion of Nambu-Poisson cohomology was first introduced by R. Ibáñez
et al. [7], and it is an extension of Poisson cohomology (or Lichnerowicz-Poisson
cohomology) on a Poisson manifold. Let (M, η) be an m-dimensional Nambu-
Poisson manifold. (See Definition 2.1 for the precise definition.) Whenever
we mention a Nambu-Poisson manifold, m is assumed to be m ≥ 3. Then a
Nambu-Poisson tensor η defines the so-called characteristic foliation, which is,
in general, a singular foliation on M . In case that η is a Nambu-Poisson tensor,
then the set of Hamiltonian vector fields becomes a Lie subalgebra of χ(M),
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324 Nobutada Nakanishi

the Lie algebra of all vector fields on M . This Lie subalgebra will be denoted
by H.

Let Ωk(M) be the space of k-forms on M, and let the order of η be n. (i.e.
η ∈ Γ (ΛnTM), where Γ (ΛnTM) is the space of cross-sections M −→ ΛnTM .)
Here m ≥ n ≥ 3, and n ≥ k. We define a mapping

�k : Ωk(M) −→ Γ (Λn−kTM)

by �k(α) = i(α)η for α ∈ Ωk(M). If k = n − 1, Ωn−1(M) has a structure of
Leibniz algebra, which is defined by

{α, β} = L�n−1(α)β + (−1)n�n(dα)β, α, β ∈ Ωn−1(M),

where L stands for the Lie derivative. The image of �n−1, which is denoted by g,

becomes a Lie subalgebra of χ(M). (See Proposition 3.1 and its explanation.)
It is clear that H is contained in g. Nambu-Poisson cohomology is a cohomology
group of a Lie algebra g having C∞(M, R) as its representation space, which is
also called Chevalley-Eilenberg cohomology of g. It will be denoted by H∗

NP .
It is easy to see that H0

NP is equal to the space of invariant functions of g.
Moreover H1

NP is deeply related to the modular class of (M, η) [7]. It will be
expected that other cohomologies H∗

NP have also some geometric meanings.
If η does not vanish anywhere on M , it is said to be regular. Then R. Ibáñez

et al. computed Nambu-Poisson cohomology of a regular Nambu-Poisson man-
ifold (M, η) [7]. If η has some singularities, it is quite difficult to compute its
Nambu-Poisson cohomology. As an example of a singular Nambu-Poisson man-
ifold, they also considered (R3, η = (x2 +y2 +z2) ∂

∂x ∧
∂
∂y ∧

∂
∂z ), and they proved

that the first Nambu-Poisson cohomology group H1
NP (R3, η) is isomorphic to R.

On the other hand, P. Monnier [9] computed Nambu-Poisson cohomology
for germs at 0 of n-vectors η = f ∂

∂x1
∧ · · · ∧ ∂

∂xn
on K

n(K = R or C), with
the assumption that f is a quasihomogeneous polynomial of finite codimension.
His results contain the result of R. Ibáñez et al., (at least in the formal case).

As the next step, it is natural to consider the case that the order of a
Nambu-Poisson tensor η is smaller than the dimension of a space on which η

is defined. In the present paper, along this concept, we will compute Nambu-
Poisson cohomology for the following three cases.

(a) Exact Nambu-Poisson tensors η of order 3 defined on R4(x, y, z, u). A
Nambu-Poisson tensor η is called exact if there is a function f such that
i(η)Ω = df for Ω = dx ∧ dy ∧ dz ∧ du.

(b) Linear Nambu-Poisson tensors of order 3 defined on R
4(x, y, z, u).
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(c) A quadratic Nambu-Poisson tensor η = (x2 + y2 + z2 + u2) ∂
∂x ∧ ∂

∂y ∧ ∂
∂z of

order 3 defined on R4(x, y, z, u).

The computation for the case (a) naturally leads us to the notion of relative
cohomology which was studied by C. A. Roche [13]. In this case, we know that
Hk

NP = Hk
rel for 0 ≤ k ≤ 2. In computing Nambu-Poisson cohomology of the

case (b), we will use the classification theorem of linear Nambu-Poisson tensors
which was proved by J-P. Dufour and N. T. Zung [3]. A part of this case is also
discussed in (a). In treating the case (c), we will take advantage of the results
of P. Monnier [9].

Here we computed Nambu-Poisson cohomology only for the case (R4, η),
where the order of η is three. But it is not so difficult to extend all the results
we have obtained here to more general situations. In fact let us consider a
Nambu-Poisson manifold (Rn, η), where the order of η is n′. We can easily see
that if n − n′ > 1, then spaces of cohomologies are, in general, greater than
those of the case n − n′ = 1. This is because that the space of g-invariant
functions becomes greater if n − n′ > 1.

The author would like to express his deep thanks to Professors T.Fukuda,
H. Sato, Y. Agaoka and G. Ishikawa for helpful and stimulating discussions.
He is also grateful to P. Monnier for valuable communications.

§2. Reviews of Nambu-Poisson Manifolds

We will review some useful results of geometry of Nambu-Poisson man-
ifolds. Details are referred to [7],[10] and [14]. Let M be an m-dimensional
C∞-manifold, and F its algebra of real valued C∞-functions on M . We denote
by Γ (ΛnTM) the space of global cross-sections η : M −→ ΛnTM . Then for
each η ∈ Γ (ΛnTM), there corresponds the bracket defined by

{f1, ..., fn} = η(df1, ..., dfn), f1, ..., fn ∈ F .

This bracket operation is an n-linear skew-symmetric map from Fn to F
which satisfies the Leibniz rule:

{f1, ..., fn−1, g1 · g2} = {f1, ..., fn−1, g1} · g2 + g1 · {f1, ..., fn−1, g2},

for all f1, ..., fn−1, g1, g2 ∈ F .
Let A =

∑
fi1 ∧ · · · ∧ fin−1 , fij

∈ F . Since the bracket operation satisfies
the Leibniz rule, we can define a vector field XA corresponding to A by the
following equation:

XA(g) =
∑

{fi1 , ..., fin−1 , g}, g ∈ F .
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Such a vector field is called a Hamiltonian vector field. The space of Hamilto-
nian vector fields is denoted by H.

Definition 2.1. η ∈ Γ (ΛnTM) is called a Nambu-Poisson tensor of
order n if it satisfies LXA

η = 0 for all XA ∈ H, where L is the Lie derivative.
Then a Nambu-Poisson manifold is a pair (M, η).

Let η(p) �= 0, p ∈ M . Then we say that η is regular at p. Now we can
state the following local structure theorem for Nambu-Poisson tensors [5],[10].

Theorem 2.1. Let η ∈ Γ (ΛnTM), n ≥ 3. If η is a Nambu-Poisson
tensor of order n, then for any regular point p, there exists a coordinate neigh-
borhood U with local coordinates (x1, ..., xn, xn+1, ..., xm) around p such that

η =
∂

∂x1
∧ · · · ∧ ∂

∂xn

on U, and vice versa.

Let (M, η) be a Nambu-Poisson manifold with volume form Ω, and m ≥
n ≥ 3. Put ω = i(η)Ω, where the right hand side is the interior product of η

and Ω. Hence ω is an (m − n)-form. The following theorem gives a necessary
and sufficient condition for η to be a Nambu-Poisson tensor. For the proof,
see [11].

Theorem 2.2. Let η ∈ Γ (ΛnTM). Then η is a Nambu-Poisson tensor
if and only if η satisfies the following two conditions around each regular point:

(a) ω is (locally) decomposable, and

(b) there exists a locally defined 1-form θ such that dω = θ ∧ ω.

§3. Nambu-Poisson Cohomology

Let (M, η) be a Nambu-Poisson manifold of order n and let k be an inte-
ger with k ≤ n. Denote by Ωk(M) the space of k-forms on M . If Λk(T ∗M)
(respectively, Λn−k(TM)) denotes the vector bundle of the k-forms (respec-
tively, (n − k)-vectors) then η induces a homomorphism of vector bundles
�k : Λk(T ∗M) → Λn−k(TM) by defining

�k(β) = i(β)η(x)
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for β ∈ Λk(T ∗
x M) and x ∈ M, where i(β) is the contraction by β. Denote also

by �k the homomorphism of F-modules from the space Ωk(M) into the space
Γ (Λn−kTM) given by

�k(α)(x) = �k(α(x))

for all α ∈ Ωk(M) and x ∈ M .
Next we define a Leibniz algebra structure on Ωn−1(M). The Leibniz

algebra on Ωn−1(M) attached to M is the bracket of (n − 1)-forms {, } :
Ωn−1(M) × Ωn−1(M) → Ωn−1(M) defined by

{α, β} = L�n−1(α)β + (−1)n�n(dα)β

for all α, β ∈ Ωn−1(M). In particular, we have that

�n−1({α, β}) = [�n−1(α), �n−1(β)]

for all α, β ∈ Ωn−1(M).
Using Theorem 2.1, the following proposition was proved by R. Ibáñez

et al. [7].

Proposition 3.1. Let (M, η) be an m-dimensional Nambu-Poisson
manifold of order n, with n ≥ 3. Then the center of the algebra (Ωn−1(M), {, })
is the F-module

ker �n−1 = {α ∈ Ωn−1(M) | �n−1(α) = 0}.

By the above proposition, we know that Ωn−1(M)/ ker �n−1 is isomorphic
to a Lie subalgebra of χ(M). This Lie algebra is often denoted by g. And F is
a (Ωn−1(M)/ ker �n−1)-module relative to the representation:

Ωn−1(M)/ ker �n−1 ×F −→ F , ([α], f) �→ [α]f = (�n−1(α))(f).

According to [7], one can define the skew symmetric-cochain complex(
C∗(Ωn−1(M)/ ker �n−1;F) =

⊕
k

Ck(Ωn−1(M)/ ker �n−1;F), ∂
)

where the space of the k-cochains Ck(Ωn−1(M)/ ker �n−1;F) consists of skew-
symmetric F-linear mappings

ck : (Ωn−1(M)/ ker �n−1) × · · · × (Ωn−1(M)/ ker �n−1) → F
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and the coboundary operator ∂ is given by

∂ck([α0], ..., [αk]) =
k∑

i=0

(−1)i(�n−1(αi))(ck([α0], ..., [̂αi], ..., [αk]))

+
∑

0≤i<j≤k

(−1)i+jck([{αi, αj}], [α0], ..., [̂αi], ..., [̂αj ], ..., [αk])

for all ck ∈ Ck(Ωn−1(M)/ ker �n−1;F), and [α0], ..., [αk] ∈ Ωn−1(M)/ ker �n−1.
Then we have ∂ ◦ ∂ = 0. The cohomology of this complex is called Nambu-
Poisson cohomology and denoted by H∗

NP (M, η).

Remark 3.1. Since a Nambu-Poisson tensor η satisfies [η, η] = 0
(Schouten bracket), we can define three cohomology spaces H0

η (M), H1
η(M)

and H2
η (M) as in the case of usual Poisson manifolds. We see that these three

spaces appear as parts of Nambu-Poisson cohomology spaces. (See [9].)

The first attempt at the computation of singular Nambu-Poisson coho-
mology was carried out by R. Ibáñez et al. In [7], they considered a Nambu-
Poisson manifold {R3, η = (x2 + y2 + z2) ∂

∂x ∧ ∂
∂y ∧ ∂

∂z}. They obtained that
H1

NP (R3, η) ∼= R.
In [9], P. Monnier studied Nambu-Poisson cohomology from slightly more

general viewpoint, which includes the case of R. Ibáñez et al. [7]. That is to say,
he computed Nambu-Poisson cohomology of Nambu-Poisson manifolds of the
form (Rn, η = f ∂

∂x1
∧ · · · ∧ ∂

∂xn
), where f is a quasihomogeneous polynomial of

finite codimension. Using his results, we compute Nambu-Poisson cohomology
of (R4, η = (x2 + y2 + z2 + u2) ∂

∂x ∧ ∂
∂y ∧ ∂

∂z ) in the last section.

§4. Computation of Nambu-Poisson Cohomology: Exact Case

§4.1. Notation and general remarks

Let F be the space of C∞-functions on R
4. Throughout this section, we

suppose that F 
 f satisfies f(0) = 0, and is of finite codimension, which means
that F/〈f〉 (〈f〉 is the ideal spanned by fx, fy, fz, fu) is a finite dimensional
vector space. Here we simply write, for example, fx for ∂f

∂x .
Let η be a Nambu-Poisson tensor of order 3 on R4(x, y, z, u). η is said to

be exact if η satisfies i(η)Ω = df, where Ω = dx∧dy∧dz∧du. Then η is written
as follows.

η = −fx
∂

∂y
∧ ∂

∂z
∧ ∂

∂u
+fy

∂

∂x
∧ ∂

∂z
∧ ∂

∂u
−fz

∂

∂x
∧ ∂

∂y
∧ ∂

∂u
+fu

∂

∂x
∧ ∂

∂y
∧ ∂

∂z
.
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A Lie subalgebra g = �2(Ω2(R4)) of χ(R4) is spanned over F by the following
six vector fields.{

X1 = fx
∂
∂y − fy

∂
∂x , X2 = fx

∂
∂z − fz

∂
∂x , X3 = fx

∂
∂u − fu

∂
∂x ,

X4 = fy
∂
∂z − fz

∂
∂y , X5 = fy

∂
∂u − fu

∂
∂y , X6 = fz

∂
∂u − fu

∂
∂z .

It is easy to see that Λ4g = 0. Hence Hk
NP = 0, for k ≥ 4.

§4.2. Relative cohomology

In this subsection, we show that Nambu-Poisson cohomology of exact
Nambu-Poisson structure is equivalent to relative cohomology which was studied
by C. A. Roche [13].

In the first half of this subsection, all objects are considered on Rs. And
we simply write Ωk for Ωk(Rs). Suppose that C∞(Rs) 
 f satisfies f(0) = 0
and is of finite codimension. That is to say, an ideal generated by coefficients
of df is of finite codimension in C∞(Rs).

First note that df ∧ Ωk is compatible with the exterior differential d: i.e.,
d(df ∧ Ωk−1) ⊂ df ∧ Ωk. Hence the linear mapping

drel : Ωk/df ∧ Ωk−1 −→ Ωk+1/df ∧ Ωk

is well-defined.

Definition 4.1. The following sequence defined on R
s is called relative

complex of f .

0 −→ Ω0 drel−→ Ω1/df ∧ Ω0 drel−→ Ω2/df ∧ Ω1 drel−→ · · · drel−→ Ωs/df ∧ Ωs−1 −→ 0.

The cohomology of complex defined above is called relative cohomlogy of
f, and is denoted by H∗

rel(f) or H∗
rel. In the above sequence, if we put I ·Ωk into

Ωk, then we have flat relative cohomology Hk
∞rel, where I denotes the space

of flat functions of F at the origin. Moreover if we consider formal differential
k-forms instead of Ωk, we have formal relative cohomology Ĥk

rel.

To state the structure of Hk
∞rel it is convenient to introduce the following

notations: For a positive small number c,

bk
+ = dimHk(X+c, R), bk

− = dimHk(X−c, R),

m∞(1) = the space of flat functions at the origin of 1-variable,

m∞
± = {h ∈ m∞(1) | h(R∓) = 0},

X±c = f−1(±c) ∩ B, where B is a small ball centered at the origin.
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Then C. A. Roche [13] proved the following theorems. All objects are
considered on Rs.

Theorem 4.1. The m∞(1)-module Hk
∞rel is isomorphic to (m∞

+ )bk
+ ×

(m∞
− )bk

− .

Theorem 4.2. There are the following mutual relations among three
cohomologies.

Hk
rel

∼= Hk
∞rel if 0 < k < s − 1

H0
rel/H0

∞rel
∼= F(1), Hs−1

rel /Hs−1
∞rel

∼= Ĥs−1
rel

∼= F(1)µ,

where F(1) is the space of formal functions of 1-variable, and µ = codim f .
F(1)µ denotes the free F(1)-module of rank µ.

In the latter half of this subsection, let us return to the case of R4. We
simply write Ωk for Ωk(R4).

Definition 4.2. We define the subspace Ik of Ωk by

Ik = {c ∈ Ωk|c(
k︷ ︸︸ ︷

g, ..., g) = 0},

for 1 ≤ k ≤ 4. Put I0 = 0.

It is clear that I4 = Ω4 since Λ4g = 0. In the rest of this subsection, we
give a characterization of Ik for k = 1, 2, 3.

Proposition 4.3. Ik = {c ∈ Ωk|c ∧ df = 0}, for 0 ≤ k ≤ 4.

Proof. In case of k = 1, put c = Adx + Bdy + Cdz + Ddu ∈ Ω1.
Then c(g) = 0 implies that fxB = fyA, fxC = fzA, fxD = fuA, fyC =
fzB, fzD = fuC, and fyD = fuB. On the other hand,

c ∧ df = (Adx + Bdy + Cdz + Ddu) ∧ (fxdx + fydy + fzdz + fudu)

= (fyA − fxB)dx ∧ dy + (fzA − fxC)dx ∧ dz + (fuA − fxD)dx ∧ du

+ (fzB − fyC)dy ∧ dz + (fuB − fyD)dy ∧ du + (fuC − fzD)dz ∧ du.

Thus we have that c(g) = 0 if and only if c ∧ df = 0.
For cases of k ≥ 2, we can prove in the same way as the case of k = 1.

Now let us recall G. de Rham’s division lemma [2]. We will explain this
lemma in the general situation, s-dimensional Euclidean space Rs. (Our case
is, of course, s = 4.)
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Definition 4.3. An element ω of Ω1 is said to possess the property of
division in Ω∗ if for any α ∈ Ωp, 1 ≤ p ≤ s− 1, which satisfies ω∧α = 0, there
exists β ∈ Ωp−1 such that α = ω ∧ β.

Definition 4.4. Let ω ∈ Ω1 and let I(ω) be the ideal of Ω0 = C∞(Rs)
spanned by the coefficients of ω. Then 0 is said to be algebraically isolated zero
of ω if Ω0/I(ω) is a finite dimensional vector space over R.

Lemma 4.4. Let ω be an element of Ω1. If 0 is algebraically isolated
zero of ω, then ω possesses the property of division.

Since f is of finite codimension in our situation, ω = df satisfies the con-
dition of Lemma 4.4. Hence by Proposition 4.3, we know that Ik = df ∧ Ωk−1

for 1 ≤ k ≤ 3.
Recall that a k-th cochain c ∈ Ck is F-linear skew-symmetric mapping

from g × · · · × g to F . The natural inclusion ι : g ↪→ χ(R4) induces the
surjective mapping φ : Ωk −→ Ck as the dual mapping of the natural inclusion
ι. Note that kerφ = Ik for 1 ≤ k ≤ 3. Then it is easy to obtain the following
proposition.

Proposition 4.5. Ck ∼= Ωk/Ik ∼= Ωk/df ∧ Ωk−1, for 1 ≤ k ≤ 3. For
k = 0, C0 = Ω0 = F , and for k = 4, C4 = 0.

Now by Proposition 4.5, we have obtained the following commutative di-
agram. In particular, note that drel : Ωk/Ik → Ωk+1/Ik+1 coincides with
∂ : Ck → Ck+1 for 0 ≤ k ≤ 2.

0 −−−−−→ Ω0 d−−−−−→ Ω1 d−−−−−→ Ω2 d−−−−−→ Ω3 d−−−−−→ Ω4 −−−−−→ 0
∥
∥
∥ π



� π



� π



� π



�

0 −−−−−→ Ω0 drel−−−−−→Ω1/I1 drel−−−−−→Ω2/I2 drel−−−−−→Ω3/I3 drel−−−−−→Ω4/df ∧ Ω3 −−−−−→ 0
∥
∥
∥

∥
∥
∥

∥
∥
∥

∥
∥
∥



�

0 −−−−−→ Ω0 ∂−−−−−→ C1 ∂−−−−−→ C2 ∂−−−−−→ C3 −−−−−→ 0

Using the above commutative diagram, we can get the following theorem.
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Theorem 4.6. Let η be the exact Nambu-Poisson tensor corresponding
to f ∈ F defined on R4, where f is of finite codimension. Then

Hk
NP

∼= Hk
rel for 0 ≤ k ≤ 2,

H3
NP

∼= H3
rel ⊕ Ω4/df ∧ Ω3,

Hk
NP = 0 for 4 ≤ k.

To compute some examples of exact Nambu-Poisson cohomology, let us
recall the results of C. A. Roche [13]. (See Theorem 4.1 and Theorem 4.2.)

Examples. Let f = xk +y2+z2+u2, k ≥ 3. Then if k is an odd positive
integer, both X+c and X−c are homeomorphic to D3, where D3 denotes a three
dimensional ball. Hence by Theorem 4.1 and Theorem 4.2, we have

H0
∞rel

∼= m∞
+ × m∞

− , H1
∞rel = 0, H2

∞rel = 0, H3
∞rel = 0.

H0
rel

∼= C∞(R+) × C∞(R−), H1
rel = 0, H2

rel = 0, H3
rel

∼= F(1)k−1.

Moreover if we use Theorem 4.6, we have

H0
NP

∼= C∞(R+) × C∞(R−), H1
NP = 0, H2

NP = 0, H3
NP

∼= F(1)k−1 ⊕ R
k−1.

On the other hand, if k is an even positive integer, then X+c is homeomorphic
to S3 and X−c = φ. Hence we have

H0
∞rel

∼= m∞
+ , H1

∞rel = 0, H2
∞rel = 0, H3

∞rel
∼= m∞

+ .

H0
rel

∼= C∞(R+), H1
rel = 0, H2

rel = 0, H3
rel

∼= (C∞(R+))k−1.

Moreover if we use Theorem 4.6, we have

H0
NP

∼= C∞(R+), H1
NP = 0, H2

NP = 0, H3
NP

∼= (C∞(R+))k−1 ⊕ R
k−1.

§5. Computation of Nambu-Poisson Cohomology: Linear Case

§5.1. Notation and general remarks

In this section we consider linear Nambu-Poisson tensors which are of
order 3 on R4(x, y, z, u). By the classification theorem of linear Nambu-Poisson
structures [3],[6], we know that there are the following four types of linear
Nambu-Poisson tensors.

(I) η = −fx
∂
∂y ∧ ∂

∂z ∧ ∂
∂u + fy

∂
∂x ∧ ∂

∂z ∧
∂

∂u − fz
∂
∂x ∧ ∂

∂y ∧ ∂
∂u + fu

∂
∂x ∧ ∂

∂y ∧ ∂
∂z ,

where f is a homogeneous quadratic function on R
4.
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(II) η = ∂
∂x ∧ ∂

∂y ∧ {(a11z + a12u) ∂
∂z + (a21z + a22u) ∂

∂u}, (aij ∈ R).

(III) ηφ = φ ∂
∂x ∧ ∂

∂y ∧ ∂
∂z , where φ is any linear function on R4.

(IV) ηψ = {px + (q − 1)y − b3z − b4u} ∂
∂y ∧ ∂

∂z ∧ ∂
∂u − {(q + 1)x + ry + a3z +

a4u} ∂
∂x ∧ ∂

∂z ∧
∂

∂u , where p, q, r, a3, a4, b3, b4 ∈ R. Put α = dψ+(x+a3z +
a4u)dy − (y + b3z + b4u)dx, where ψ = 1

2px2 + qxy + 1
2ry2. Then ηψ is

defined by i(ηψ)dx ∧ dy ∧ dz ∧ du = α.

In (IV), recall that ηψ becomes a Nambu-Poisson tensor if and only if
α ∧ dα = 0. Thus seven constants must satisfy a3b4 = a4b3, a3p + b3(q + 1)
= 0, a3(q − 1) + b3r = 0, a4p + b4(q + 1) = 0, a4(q − 1) + b4r = 0.

In considering type (II), since a matrix (aij) can be chosen to be in Jordan
form, there are five classes with nondegenerate Jordan forms (η1 ∼ η5) and two
classes with degenerate Jordan forms (η6 ∼ η7) as follows.

(i) η1 = ∂
∂x ∧ ∂

∂y ∧ {(αz + u) ∂
∂z + (αu) ∂

∂u}, α �= 0,

(ii) η2 = ∂
∂x ∧ ∂

∂y ∧ {(αz) ∂
∂z + (βu) ∂

∂u}, α �= 0, β �= 0, α �= β,

(iii) η3 = ∂
∂x ∧ ∂

∂y ∧ {(αz − βu) ∂
∂z + (βz + αu) ∂

∂u}, α �= 0 β �= 0,

(iv) η4 = ∂
∂x ∧ ∂

∂y ∧ α(z ∂
∂z + u ∂

∂u ), α �= 0,

(v) η5 = ∂
∂x ∧ ∂

∂y ∧ β(u ∂
∂z − z ∂

∂u ), β �= 0,

(vi) η6 = ∂
∂x ∧ ∂

∂y ∧ (αz) ∂
∂z , α �= 0,

(vii) η7 = ∂
∂x ∧ ∂

∂y ∧ u ∂
∂z .

A linear Nambu-Poisson tensor of type (I) is one of exact Nambu-Poisson
tensors. And this case was already considered in the previous section. Hence
in this section we will only give the results concerning nondegenerate Nambu-
Poisson tensors (i.e. f = ±x2 ± y2 ± z2 ± u2) for type (I). And here we will
mainly study the computation for type (II).

Throughout this section, we will use the following notations:

• F is the algebra of real-valued C∞ functions on R4(x, y, z, u);
• G̃ is the algebra of real-valued C∞ functions on R3(y, z, u);
• F̃ is the algebra of real-valued C∞ functions on R2(z, u);
• F(1) is the algebra of formal functions of one variable;
• χ(R4) is the Lie algebra of all vector fields on R

4;
• Ωk is the space of k-forms on R

4.
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§5.2. Computation of Nambu-Poisson cohomology of type (I)

In this subsection, we confine ourselves to nondegenerate linear Nambu-
Poisson tensors of type (I). This means that f = ±x2 ± y2 ± z2 ± u2 and it
is clear that f is of finite codimension. We get the following results by using
Theorem 4.1 of C. A. Roche [13]. We use the same notations as those of the
previous section. Let η be a linear Nambu-Poisson tensor of type (I) defined
by i(η)Ω = df . Then we get the following flat relative cohomology. In Table 1,
Di denotes an i-dimensional ball.

Table 1. Flat Relative Cohomology

f X+c X−c H0
∞rel H1

∞rel H2
∞rel H3

∞rel

x2 + y2 + z2 + u2 S3 φ m∞
+ 0 0 m∞

+

x2 + y2 + z2 − u2 S2 × D1 S0 × D3 m∞
+ × m∞

− × m∞
− 0 m∞

+ 0

x2 + y2 − z2 − u2 S1 × D2 S1 × D2 m∞
+ × m∞

− m∞
+ × m∞

− 0 0

x2 − y2 − z2 − u2 S0 × D3 S2 × D1 m∞
+ × m∞

+ × m∞
− 0 m∞

− 0

− x2 − y2 − z2 − u2 φ S3 m∞
− 0 0 m∞

−

Combining the results in Table 1 with Theorem 4.2 and Theorem 4.6, we
can compute cohomology of type (I). In computing H3

NP , note that Ω4/df∧Ω3 ∼=
R, and µ = 1. We collect the results in the following table.

Table 2. Exact Nambu-Poisson Cohomology

f H0
NP H1

NP H2
NP H3

NP

x2 + y2 + z2 + u2 C∞(R+) 0 0 C∞(R+) ⊕ R

x2 + y2 + z2 − u2 C∞(R+) × C∞(R−) × C∞(R−) 0 m∞
+ F(1) ⊕ R

x2 + y2 − z2 − u2 C∞(R+) × C∞(R−) m∞
+ × m∞

− 0 F(1) ⊕ R

x2 − y2 − z2 − u2 C∞(R+) × C∞(R+) × C∞(R−) 0 m∞
− F(1) ⊕ R

− x2 − y2 − z2 − u2 C∞(R−) 0 0 C∞(R−) ⊕ R

§5.3. Computation of Nambu-Poisson cohomology of type (II)

In this subsection, we compute Nambu-Poisson cohomology of type (II).
Denote by gi the Lie algebra corresponding to ηi, i = 1, 2, ..., 7. Recall that gi

is defined by gi = i(Ω2)ηi. Then each gi is spanned over F by several vector
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fields as follows.

g1 = 〈z ∂

∂x
, u

∂

∂x
, z

∂

∂y
, u

∂

∂y
, (αz + u)

∂

∂z
+ αu

∂

∂u
〉;

g2 = 〈z ∂

∂x
, u

∂

∂x
, z

∂

∂y
, u

∂

∂y
, αz

∂

∂z
+ βu

∂

∂u
〉;

g3 = 〈z ∂

∂x
, u

∂

∂x
, z

∂

∂y
, u

∂

∂y
, (αz − βu)

∂

∂z
+ (βz + αu)

∂

∂u
〉;

g4 = 〈z ∂

∂x
, u

∂

∂x
, z

∂

∂y
, u

∂

∂y
, z

∂

∂z
+ u

∂

∂u
〉;

g5 = 〈z ∂

∂x
, u

∂

∂x
, z

∂

∂y
, u

∂

∂y
, u

∂

∂z
− z

∂

∂u
〉;

g6 = 〈z ∂

∂x
, z

∂

∂y
, z

∂

∂z
〉;

g7 = 〈u ∂

∂x
, u

∂

∂y
, u

∂

∂z
〉.

As is easily seen, we know that

Λ4
gi = 0, for 1 ≤ i ≤ 7.

Denote by Hk
NP (ηi) the k-th cohomology group corresponding to the

Nambu-Poisson tensor ηi. Then for 1 ≤ i ≤ 7, Hk
NP (ηi) = 0 if 4 ≤ k.

For 0 ≤ k ≤ 4, Ik ⊂ Ωk is similarly defined as in the previous section (see
Definition 4.2). Then we also have Ck ∼= Ωk/Ik. First let us determine explicit
forms of all Ik. They are summarized in the following lemma.

Lemma 5.1. Let A, B, C, D, E, F be elements of F .

(a) In case of η1,

I1 = {Cdz + Ddu | (αz + u)C + αuD = 0},
I2 = {Bdx ∧ dz + Cdx ∧ du + Ddy ∧ dz + Edy ∧ du

+ Fdz ∧ du | (αz + u)B + αuC = 0, (αz + u)D + αuE = 0},
I3 = {Adx ∧ dy ∧ dz + Bdx ∧ dy ∧ du + Cdx ∧ dz ∧ du

+ Ddy ∧ dz ∧ du | (αz + u)A + αuB = 0},
I4 = Ω4.
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(b) In case of η2,

I1 = {Cdz + Ddu | αzC + βuD},
I2 = {Bdx ∧ dz + Cdx ∧ du + Ddy ∧ dz + Edy ∧ du

+ Fdz ∧ du | αzB + βuC = 0, αzD + βuE = 0},
I3 = {Adx ∧ dy ∧ dz + Bdx ∧ dy ∧ du + Cdx ∧ dz ∧ du

+ Ddy ∧ dz ∧ du | αzA + βuB = 0},
I4 = Ω4.

(c) In case of η3,

I1 = {Cdz + Ddu | (αz − βu)C + (βz + αu)D = 0},
I2 = {Bdx ∧ dz + Cdx ∧ du + Ddy ∧ dz + Edy ∧ du

+ Fdz ∧ du | (αz − βu)B + (βz + αu)C = 0,

(αz − βu)D + (βz + αu)E = 0},
I3 = {Adx ∧ dy ∧ dz + Bdx ∧ dy ∧ du + Cdx ∧ dz ∧ du

+ Ddy ∧ dz ∧ du | (αz − βu)A + (βz + αu)B = 0},
I4 = Ω4.

(d) In case of η4,

I1 = {Cdz + Ddu | zC + uD = 0},
I2 = {Bdx ∧ dz + Cdx ∧ du + Ddy ∧ dz + Edy ∧ du

+ Fdz ∧ du | zB + uC = 0, zD + uE = 0},
I3 = {Adx ∧ dy ∧ dz + Bdx ∧ dy ∧ du + Cdx ∧ dz ∧ du

+ Ddy ∧ dz ∧ du | zA + uB = 0},
I4 = Ω4.

(e) In case of η5,

I1 = {Cdz + Ddu | zD − uC = 0},
I2 = {Bdx ∧ dz + Cdx ∧ du + Ddy ∧ dz + Edy ∧ du

+ Fdz ∧ du | uB − zC = 0, uD − zE = 0},
I3 = {Adx ∧ dy ∧ dz + Bdx ∧ dy ∧ du + Cdx ∧ dz ∧ du

+ Ddy ∧ dz ∧ du | uA − zB = 0},
I4 = Ω4.
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(f) In cases of η6 and η7,

I1 = Fdu,

I2 = Fdx ∧ du + Fdy ∧ du + Fdz ∧ du,

I3 = Fdx ∧ dy ∧ du + Fdx ∧ dz ∧ du + Fdy ∧ dz ∧ du,

I4 = Ω4.

Proof. Straightforward computation.

In linear cases, we also have the following commutative diagram which is
similar to that of relative cases. (Its proof is obtained as a direct consequence
of the definition of the operator ∂.)

0 −−−−→ Ω0 d−−−−→ Ω1 d−−−−→ Ω2 d−−−−→ Ω3 d−−−−→ Ω4 −−−−→ 0∥∥∥ π

� π

� π

� π

�
0 −−−−→ Ω0 ∂−−−−→ C1 ∂−−−−→ C2 ∂−−−−→ C3 ∂−−−−→ C4 −−−−→ 0

Now let us compute Nambu-Poisson cohomology for Nambu-Poisson ten-
sors ηi, 1 ≤ i ≤ 7. Recall that I4 = Ω4. This means that C4 = 0 in the above
commutative diagram. Hence we have only to compute Hk

NP (ηi) for 0 ≤ k ≤ 3.
We denote by Zk the space of cocycles and by Bk the space of coboundaries

in Ck. Clearly it holds that Bk ⊂ Zk ⊂ Ck, and by definition, Hk
NP = Zk/Bk.

Definition 5.1. We define the subspaces Z̃k and B̃k of Ωk as follows.

Z̃k = {c ∈ Ωk|dc ∈ Ik+1},
B̃k = dΩk−1.

Note that it holds Ik ⊂ Z̃k.

Proposition 5.2. Hk
NP

∼= Z̃k/(B̃k + Ik) for 1 ≤ k ≤ 3.

Proof. We first prove that π−1(Zk) = Z̃k. For c ∈ π−1(Zk), we have
0 = ∂(πc) = π(dc). Hence dc ∈ Ik+1 and this implies c ∈ Z̃k. The converse is
clear. Hence the linear mapping π : Z̃k −→ Zk is surjective. Since ker π = Ik,

we have Zk ∼= Z̃k/Ik. Next note that Bk = ∂Ck−1 = ∂(πΩk−1) = π(dΩk−1) =
πB̃k. Hence π−1(Bk) = B̃k + Ik, and Bk ∼= (B̃k + Ik)/Ik. Finally we have

Hk
NP = Zk/Bk ∼= (Z̃k/Ik)/((B̃k + Ik)/Ik) ∼= Z̃k/(B̃k + Ik).
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To compute Nambu-Poisson cohomology for linear Nambu-Poisson tensors,
the following lemma is useful. After the preparation of this paper, T. Fukuda
informed me that J. Mather [8] and T. Fukuda and S. Janeczko [4] had already
proved an analogous kind of result in a more general situation. So we omit the
proof.

Lemma 5.3. Let f(x, y, z, u) and g(x, y, z, u) be C∞-functions on R4

(x, y, z, u), and let A(z, u) and B(z, u) be linear functions of two variables z, u

such that ∂(A, B)/∂(z, u) �= 0. If f(x, y, z, u) and g(x, y, z, u) satisfy the con-
dition:

A(z, u) · f(x, y, z, u) = B(z, u) · g(x, y, z, u),(1)

then there exists a function h(x, y, z, u) ∈ C∞(R4) such that{
f(x, y, z, u) = B(z, u) · h(x, y, z, u),

g(x, y, z, u) = A(z, u) · h(x, y, z, u).
(2)

Let us begin with computing Nambu-Poisson cohomology for Nambu-
Poisson tensor η1 = ∂

∂x ∧
∂
∂y ∧{(αz+u) ∂

∂z +αu ∂
∂u}, where α �= 0. Then the cor-

responding Lie algebra g1 is spanned by 〈z ∂
∂x , u ∂

∂x , z ∂
∂y , u ∂

∂y , (αz+u) ∂
∂z +αu ∂

∂u 〉
over F . It is clear that Hk

NP (η1) = 0 for k ≥ 4 since Λ4g1 = 0.

Lemma 5.4.

(a) Put c = Adx + Bdy + Cdz + Ddu. Then c ∈ Z̃1 if and only if
Bx = Ay,

(αz + u)(Cx − Az) = αu(Au − Dx),

(αz + u)(Cy − Bz) = αu(Bu − Dy).

(b) Put c = Adx∧dy +Bdx∧dz +Cdx∧du+Ddy∧dz +Edy∧du+Fdz∧du.
Then c ∈ Z̃2 if and only if (αz +u)(Az −By +Dx) = −αu(Au −Cy +Ex).

(c) Z̃3 = Ω3.

Proof. We have only to recall that c ∈ Z̃k if and only if dc ∈ Ik+1. Then
direct computation shows the above results.
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Theorem 5.5. Let η1 = ∂
∂x ∧ ∂

∂y ∧{(αz +u) ∂
∂z +αu ∂

∂u}. Then we have

H0
NP (η1) ∼= R,

H1
NP (η1) ∼= F̃/F̃1

∼= IR2/F̃1 ∩ IR2 ,

where F̃1 = {(αz + u)h̃z + αuh̃u + 2αh̃ | h̃ ∈ F̃},
H2

NP (η1) ∼= G̃/G̃1
∼= ĨR3/G̃1 ∩ ĨR3 ,

where G̃1 = {(αz + u)g̃z + αug̃u + 2αg̃ | g̃ ∈ G̃},
Hk

NP (η1) = 0 for k ≥ 3.

In the above results, ĨR2 (resp. ĨR3) stands for the space of functions defined
on R2(z, u) (resp. R3(y, z, u)) which are flat at the origin.

Proof. Let f be an element of H0
NP (η1). Then f = f(z, u), and it holds

that (αz + u)fz + αufu = 0. The solution is f(z, u) = φ(αz−u log u
u ), where

φ is any C∞-function of 1-variable. Hence smooth solutions f(z, u) are only
constants.

For the computation of H1
NP (η1), put c = Adx + Bdy + Cdz + Ddu ∈ Z̃1.

Then by Lemma 5.4(a), there exists a function h ∈ F such that A = hx, B = hy.
Then the last two equations in (a) can be rewritten as follows.

αu(hu − D)x =(αz + u)(C − hz)x,

αu(hu − D)y =(αz + u)(C − hz)y.

Hence by Lemma 5.3, there exist k, l ∈ F , such that (C − hz)x =
αuk, (hu − D)x = (αz + u)k, (C − hz)y = αul, (hu − D)y = (αz + u)l.
Then we have

C − hz =αu

∫
kdx + φ1(y, z, u) = αu

∫
ldy + φ2(x, z, u),

hu − D =(αz + u)
∫

kdx + ψ1(y, z, u) = (αz + u)
∫

ldy + ψ2(x, z, u).

By the integrability condition, it holds that ky = lx. And we have (C −
hz)y = αu

∫
kydx+(φ1)y = αu

∫
lxdx+(φ1)y = αu(l− φ̄1(y, z, u))+ (φ1)y for

some function φ̄1(y, z, u). On the other hand, since (C − hz)y = αul, we must
have (φ1)y = αuφ̄1(y, z, u), and hence φ1(y, z, u) = αu

∫
φ̄1(y, z, u)dy+ φ̃1(z, u)

for some function φ̃1(z, u). By the same way as above, we have (hu − D)y =
(αz + u)

∫
kydx + (ψ1)y = (αz + u)

∫
lxdx + (ψ1)y = (αz + u)(l− ψ̄1(y, z, u)) +

(ψ1)y = (αz + u)l. Hence we have ψ1(y, z, u) = (αz + u)
∫

ψ̄1dy + ψ̃1(z, u)
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for some functions ψ̄1(y, z, u) and ψ̃1(z, u). Now C and D can be written as
follows.

C = hz + αu

∫
kdx + αu

∫
φ̄1dy + φ̃1(z, u),

D = hu − (αz + u)
∫

kdx − (αz + u)
∫

ψ̄1dy − ψ̃1(z, u).

Then we have

αu(Bu − Dy) = αu

(
hyu + (αz + u)

∫
kydx + (αz + u)ψ̄1 − hyu

)
= αu(αz + u)

(∫
kydx + ψ̄1

)
,

(αz + u)(Cy − Bz) = (αz + u)
(

hyz + αu

∫
kydx + αuφ̄1 − hyz

)
= αu(αz + u)

(∫
kydx + φ̄1

)
.

Since αu(Bu −Dy) = (αz + u)(Cy −Bz), we get φ̄1 = ψ̄1. Thus c ∈ Z̃1 has the
following expression.

c = Adx + Bdy + Cdz + Ddu

= hxdx + hydy +
(
hz + αu

∫
kdx + αu

∫
φ̄1(y, z, u)dy + φ̃1(z, u)

)
dz

+
(
hu − (αz + u)

∫
kdx − (αz + u)

∫
ψ̄1(y, z, u)dy − ψ̃1(z, u)

)
du

= dh + αu
(∫

kdx +
∫

φ̄1dy
)
dz + φ̃1(z, u)dz

− (αz + u)
(∫

kdx +
∫

φ̄1dy
)
du − ψ̃1(z, u)du.

Note that dh + αu
(∫

kdx +
∫

φ̄1dy
)
dz − (αz + u)

(∫
kdx +

∫
φ̄1dy

)
du is

contained in B̃1 + I1. Hence by Proposition 5.2, we can consider H1
NP (η1) as

{φ̃1(z, u)dz − ψ̃1(z, u)du | φ̃1, ψ̃1 ∈ F̃} modulo B̃1 + I1. Let A1 be the space
of 1-forms on R

2(z, u), A2 be the space of 2-forms on R
2(z, u), and B1 be the

space of exact 1-forms on R2(z, u). It is clear that A1/B1
∼= A2

∼= F̃ . We also
define the subspace C1 of A1 by

C1 = {αuh̃dz − (αz + u)h̃du | h̃ ∈ F̃}.

Note that B1 ⊂ B̃1 and C1 ⊂ I1. Then we have
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H1
NP (η1) ∼= A1/(B1 + C1)

∼= (A1/B1)/((B1 + C1)/B1)
∼= (A1/B1)/(C1/B1 ∩ C1).

Let αuh̃dz − (αz + u)h̃du be any element of B1 ∩ C1. Then h̃ has the form
(αz + u)h̃z + αuh̃u = −2αh̃. Any solution has the form h̃ = u−2φ(αz−u log u

u )
with an arbitrary function φ of 1-variable. Hence C∞-solution is only h̃ = 0,

and B1 ∩ C1 = 0. This means that C1
∼= dC1, and we know that C1 is

isomorphic to the space

F̃1 = {(αz + u)h̃z + αuh̃u + 2αh̃ | h̃ ∈ F̃}.

Let F be the space of formal functions on R2(z, u). Each element [h̃] of F is
obtained by the formal Taylor expansion of h̃ ∈ F̃ at the origin. It is easy to
see that the mapping T : h̃ −→ [h̃] is linear and surjective. The kernel of T will
be denoted by IR2 . Put

[h̃] =
∑

i,j≥0

aijz
iuj ∈ F.

Then we have

[(αz + u)h̃z + αuh̃u + 2αh̃]

=
∑

i,j≥0

α(i + j + 2)aijz
iuj

+
∑

i≥0,j≥1

(i + 1)ai+1,j−1z
iuj ,

and we know that T (F̃) = T (F̃1) = F . This means that for any f ∈ F̃ , there
exists g ∈ F̃1 such that f − g ∈ IR2 , and it holds that F̃ = F̃1 + IR2 . Thus we
obtain that

H1
NP (η1) ∼= (A1/B1)/C1

∼= F̃/F̃1
∼= IR2/F̃1 ∩ IR2 .

For the computation of H2
NP (η1), let γ = Adx ∧ dy + Bdx ∧ dz + Cdx ∧

du + Ddy ∧ dz + Edy ∧ du + Fdz ∧ du be any element of Z̃2. Then by Lemma
5.3 and by Lemma 5.4(b), there exists a function k(x, y, z, u) ∈ F such that

Az − By + Dx = αuk,

Au − Cy + Ex = −(αz + u)k.

Then there exist two functions φ1 and φ2 of G̃ such that D and E have the
following expressions.
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D = αu

∫
kdx +

∫
Bydx −

∫
Azdx + φ1(y, z, u),

E = −(αz + u)
∫

kdx +
∫

Cydx −
∫

Audx + φ2(y, z, u).

Define a 1-form � by � = Pdx+Qdy+Rdz+Sdu. If we put Q =
∫

Adx, R =∫
Bdx, S =

∫
Cdx, then

d� =(A − Py)dx ∧ dy + (B − Pz)dx ∧ dz + (C − Pu)dx ∧ du

+
(∫

Bydx −
∫

Azdx
)
dy ∧ dz +

(∫
Cydx −

∫
Audx

)
dy ∧ du

+
(∫

Czdx −
∫

Budx
)
dz ∧ du.

Thus we have

γ = d� + d(x · dP ) +
(
αu

∫
kdx

)
dy ∧ dz +

(
−(αz + u)

∫
kdx

)
dy ∧ du

+
(
F +

∫
Budx −

∫
Czdx

)
dz ∧ du + φ1dy ∧ dz + φ2dy ∧ du.

The first five terms of γ belong to B̃2 + I2. It will be denoted by BI. Then
γ = BI +φ1dy∧ dz +φ2dy∧ du. By Proposition 5.2, we can consider H2

NP (η1)
as {φ1(y, z, u)dy ∧ dz + φ2(y, z, u)dy ∧ du|φ1, φ2 ∈ G̃} modulo B̃2 + I2. Let us
define some subspaces of the space of 2-forms on R3(y, z, u) as follows.

U2 = {φ1dy ∧ dz + φ2dy ∧ du | φ1, φ2 ∈ G̃},
V2 = {φ1dy ∧ dz + φ2dy ∧ du ∈ U2 | (φ1)u = (φ2)z},

W2 = {αug̃dy ∧ dz − (αz + u)g̃dy ∧ du | g̃ ∈ G̃}.

Moreover put
U3 = {h̃dy ∧ dz ∧ du | h̃ ∈ G̃}.

Since dU2 = U3, we know that U2/V2
∼= U3

∼= G̃. Note that V2 ⊂ B̃2 and
W2 ⊂ I2. Then we have

H2
NP (η1) ∼= U2/(V2 + W2)

∼= (U2/V2)/((V2 + W2)/V2)
∼= (U2/V2)/(W2/V2 ∩ W2).

Let αug̃dy∧dz−(αz+u)g̃dy∧du be any element of V2∩W2. Then g̃ must satisfy
the equation (αz + u)g̃z + αug̃u = −2αg̃. Any solution of this equation has
the form g̃(y, z, u) = u−2ψ(αz−u log u

u , y), where ψ is any function of 2-variables.
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Hence C∞-solution is only g̃ = 0. This means that V2 ∩ W2 = 0. We define a
subspace G̃1 of G̃ by

G̃1 = {(αz + u)g̃z + αug̃u + 2αg̃ | g̃ ∈ G̃}.

Then it is clear that W2/V2 ∩ W2 = W2
∼= G̃1. Let IR3 be the space of flat

functions at the origin defined on R3(y, z, u). By the analogous consideration
as the case of H1

NP (η1), we obtain

H2
NP (η1) ∼= G̃/G̃1

∼= IR3/G̃1 ∩ IR3 .

For the computation of H3
NP (η1), let δ = Adx∧ dy ∧ dz + Bdx∧ dy ∧ du +

Cdx ∧ dz ∧ du + Ddy ∧ dz ∧ du be any element of Z̃3 = Ω3. For this δ, put
ρ = −(

∫
Ady)dx∧dz−(

∫
Bdy)dx∧du and put λ = (C−

∫
Bzdy+

∫
Audy)dx∧

dz∧du+Ddy∧dz∧du. Then by Lemma 5.1(a), we have δ = dρ+λ ∈ B̃3 +I3.
This implies H3

NP (η1) = 0.

Remark 5.1. In computing H1
NP (η1) and H2

NP (η1), we mentioned the
last isomorphisms by using IR2 and IR3 . The same facts also hold for η2, η3

and η4.

For other Nambu-Poisson tensors ηi, 2 ≤ i ≤ 7, we can compute the
corresponding Nambu-Poisson cohomologies by using the analogous methods
as in the case of η1 except for the slight modification. So we state only the
results of computations by emphasizing the differences between the cases of
ηi, 2 ≤ i ≤ 7 and that of η1.

The results including Theorem 5.5 are summarized in the following table.
Each H∗

NP is described under “isomorphism”. For example, in η1-case, we
should read that H1

NP is “isomorphic” to F̃/F̃1.

Table 3. Nambu-Poisson Cohomology of Type (II)

cohomology H0
NP H1

NP H2
NP Hk

NP , k ≥ 3

η1 R F̃/F̃1 G̃/G̃1 0

η2 U ⊂ C∞(R) F̃/F̃2 G̃/G̃2 0

η3 R F̃/F̃3 G̃/G̃3 0

η4 R F̃/F̃4 G̃/G̃4 0

η5 C∞(R+) C∞(R+) C∞(R2
+) 0

η6 C∞(R) 0 0 0

η7 C∞(R) 0 0 0
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In the above Table 3, we used the following notations:

• U is a subspace of C∞(R);
• F̃1 = {(αz + u)h̃z + αuh̃u + 2αh̃ | h̃ ∈ F̃};
• G̃1 = {(αz + u)g̃z + αug̃u + 2αg̃ | g̃ ∈ G̃};
• F̃2 = {(α + β)h̃ + αzh̃z + βuh̃u | h̃ ∈ F̃};
• G̃2 = {αzg̃z + βug̃u + (α + β)g̃ | g̃ ∈ G̃};
• F̃3 = {(αz − βu)h̃z + (βz + αu)h̃u + 2αh̃ | h̃ ∈ F̃};
• G̃3 = {(αz − βu)g̃z + (βz + αu)g̃u + 2αg̃ | g̃ ∈ G̃};
• F̃4 = {zh̃z + uh̃u + 2h̃ | h̃ ∈ F̃};
• G̃4 = {zg̃z + ug̃u + 2g̃ | g̃ ∈ G̃};
• C∞(R+) is a subspace of C∞(R) consisting of functions which are

defined on R
+;

• C∞(R2
+) is a subspace of C∞(R2) consisting of functions whose second

variable is defined only on R+.

Remark 5.2. If we compute H∗
NP in the category of formal functions (in

short, in the formal category), we have the following results.
(1) In cases of η1, η3 and η4, then we have H1

NP = H2
NP = 0.

(2) In case of η2, put U = H0
NP . If αβ > 0, then U ∼= R. On the contrary, if

α and β are integers which satisfy αβ < 0, then U ∼= C∞(R). Let α = q/p and
β = s/r be two irreducible rational numbers with αβ < 0, and put d =L.C.M of
{p, r}. Then U is a subspace of C∞(R) generated by φ(t) = tkd, k = 0, 1, 2, ...

If β/α is a negative rational number, then H1
NP and H2

NP are infinite
dimensional in the formal category. Hence they are also infinite dimensional in
the C∞-category. If β/α is a positive rational number or an irrational number,
then H1

NP = H2
NP = 0 in the formal category.

§5.4. Computation of Nambu-Poisson cohomology of type (III)

By an easy consideration, we know that �2(Ω2) = gφ is spanned by 〈φ ∂
∂x ,

φ ∂
∂y , φ ∂

∂z 〉 over F . Moreover we know that each Ii, 1 ≤ i ≤ 4 coincides with
(f) of Lemma 5.1. Hence each Nambu-Poisson cohomology of Hk

NP (ηφ) of Type
(III) is completely isomorphic to that of Hk

NP (η6). Thus we have

Proposition 5.6. Let ηφ = φ ∂
∂x ∧ ∂

∂y ∧ ∂
∂z , where φ is a linear function

on R
4. Then we have

H0
NP (ηφ) ∼= C∞(R),

Hk
NP (ηφ) = 0, k ≥ 1.
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§5.5. Computation of Nambu-Poisson cohomology of type (VI)

We will only treat here the generic case. Namely we suppose that there
exists non-zero constant k such that b3 = ka3, b4 = ka4. Then we have
p = −k(q + 1) = −k(−kr + 2) and q − 1 = −kr. Now a Nambu-Poisson tensor
ηψ can be written as

ηψ = {(−kr + 2)x + ry + a3z + a4u}
(
k

∂

∂y
∧ ∂

∂z
∧ ∂

∂u
+

∂

∂x
∧ ∂

∂z
∧ ∂

∂u

)
.

Then the Lie algebra g corresponding to ηψ is as follows.

g =

〈
x

∂

∂x
+ kx

∂

∂y
, y

∂

∂x
+ ky

∂

∂y
, z

∂

∂x
+ kz

∂

∂y
, u

∂

∂x
+ ku

∂

∂y
,

x
∂

∂z
, y

∂

∂z
, z

∂

∂z
, u

∂

∂z
, x

∂

∂u
, y

∂

∂u
, z

∂

∂u
, u

∂

∂u

〉
.

Recall that Ik is a subspace of Ωk whose element c ∈ Ik satisfies c(g, . . . , g)
= 0.

Lemma 5.7. Let A, B, C, D, E ∈ F . Then we have

I1 ={Adx + Bdy | A + kB = 0},
I2 ={Adx ∧ dy + Bdx ∧ dz + Cdx ∧ du + Ddy ∧ dz

+ Edy ∧ du | B + kD = 0, C + kE = 0},
I3 ={Adx ∧ dy ∧ dz + Bdx ∧ dy ∧ du + Cdx ∧ dz ∧ du

+ Ddy ∧ dz ∧ du | C + kD = 0},
I4 =Ω4.

Proof. Straightforward calculation.

Theorem 5.8.

H0
NP (ηψ) ∼= C∞(R),

H1
NP (ηψ) ∼= C∞(R2)/C∞(R),

H2
NP (ηψ) ∼= C∞(R3)/C∞(R2),

H3
NP (ηψ) ∼= F/C∞(R3),

Hk
NP (ηψ) = 0, k ≥ 4,

where F = C∞(R4).
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Proof. To compute H∗
NP (ηψ), we will use Proposition 5.2 again. The

space H0
NP (ηψ) is consisting of functions f ∈ F which are g-invariant. Hence

each f ∈ H0
NP (ηψ) must satisfy f = f(x, y) and r · fx + k · r · fy = 0 for any

linear function r on R
4. These conditions are easily lead us to the fact that

f = φ(kx− y), where φ is any C∞-function of one variable. Hence H0
NP (ηψ) ∼=

C∞(R).
Next let us compute H1

NP (ηψ). Put c = Adx + Bdy + Cdz + Ddu. Then
c ∈ Z̃1 if and only if 

Dz = Cu,

Cx − Az + k(Cy − Bz) = 0,

Dx − Au + k(Dy − Bu) = 0.

By the first equation, there exists a function h ∈ F such that C = hz, D =
hu. Substituting these equations into second and third equations, we have

∂

∂z
(hx − A + k(hy − B)) = 0,

∂

∂u
(hx − A + k(hy − B)) = 0.

Hence we know that there exists a function S(x, y) such that

A = hx + khy − kB − S(x, y).

Then c ∈ Z̃1 can be rewritten as follows.

c =(hx + khy − kB − S(x, y))dx + Bdy + hzdz + hudu

=dh + khydx − hydy − kBdx + Bdy − S(x, y)dx.

Since dh+khydx−hydy−kBdx+Bdy is an element of B̃1 +I1 by Lemma 5.7,
we have c ≡ −S(x, y)dx (mod B̃1 + I1). Moreover S(x, y)dx ∈ B̃1 if and only
if S(x, y) = S(x). Hence we finally obtain that H1

NP (ηψ) ∼= C∞(R2)/C∞(R)
by Proposition 5.2.

Next let us compute H2
NP (ηψ). By Proposition 5.2, c = Adx∧ dy + Bdx∧

dz +Cdx∧ du+Ddy∧ dz +Edy∧ du+Fdz ∧ du is contained in Z̃2 if and only
if

Bu − Cz + Fx + k(Du − Ez + Fy) = 0.

This equation is equivalent to

B + kD =
∫

(C + kE)zdu −
∫

(Fx + kFy)du + φ(x, y, z),
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for some C∞-function φ(x, y, z). Since Adx ∧ dy − kDdx ∧ dz − kEdx ∧ du +
Ddy ∧ dz + Edy ∧ du is an element of I2 by Lemma 5.7, we have

c ≡ (B + kD)dx ∧ dz + (C + kE)dx ∧ du + Fdz ∧ du (mod I2).

Thus c ∈ Z̃2 can be rewritten as follows.

c ≡
(∫

(C + kE)zdu −
∫

(Fx + kFy)du + φ(x, y, z)
)
dx ∧ dz

+ (C + kE)dx ∧ du + Fdz ∧ du (mod I2).

Put ρ = −(
∫
(C + kE)du)dx, and δ = −(

∫
Fdu)dz. Then

B̃2 
 dρ =(C + kE)dx ∧ du+
(∫

(C + kE)ydu
)
dx ∧ dy

+
(∫

(C + kE)zdu
)
dx ∧ dz,

and

B̃2 
 dδ =−
(∫

Fxdu
)
dx ∧ dz−

( ∫
Fydu

)
dy ∧ dz

+ Fdz ∧ du.

Hence

c ≡−
(∫

(C + kE)ydu
)
dx ∧ dy − k

(∫
Fydu

)
dx ∧ dz

+
(∫

Fydu
)
dy ∧ dz + φ(x, y, z)dx ∧ dz (mod B̃2 + I2).

Recall that −k(
∫

Fydu)dx∧dz+(
∫

Fydu)dy∧dz, and −(
∫

(C +kE)ydu)dx∧dy

are elements of I2. Thus c ≡ φ(x, y, z)dx∧dz ( mod B̃2+I2). φ(x, y, z)dx∧dz

is an exact 2-form if and only if φ(x, y, z) = φ(x, z). Thus we have H2
NP (ηψ) ∼=

C∞(R3)/C∞(R2).
To compute H3

NP (ηψ), put c = Adx ∧ dy ∧ dz + Bdx ∧ dy ∧ du + Cdx ∧
dz ∧ du + Ddy ∧ dz ∧ du ∈ Z̃3 = Ω3. Since Adx ∧ dy ∧ dz + Bdx ∧ dy ∧ du −
kDdx ∧ dz ∧ du + Ddy ∧ dz ∧ du is contained in I3 by Lemma 5.7, we have
c ≡ (C + kD)dx ∧ dz ∧ du (mod I3). Note that 3-form (C + kD)dx ∧ dz ∧ du

is contained in B̃3 if and only if ∂
∂y (C + kD) = 0. Then using Proposition 5.2,

we have H3
NP (ηψ) ∼= F/C∞(R3).

For k ≥ 4, it is clear that Hk
NP (ηψ) = 0, since Λkg = 0.
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§6. Computation of Nambu-Poisson Cohomology: Quadratic Case

§6.1. Notation and general remarks

In this section we compute Nambu-Poisson cohomology in the case of
quadratic Nambu-Poisson tensor. Let us consider η = (x2+y2+z2+u2) ∂

∂x∧
∂
∂y∧

∂
∂z , which is a Nambu-Poisson tensor of order 3 on R4(x, y, z, u). As usual, we
denote the Nambu-Poisson cohomology of (R4, η) by H∗

NP (R4, η). To compute
H∗

NP (R4, η), we will essentially use the result of computations of H∗
NP (R3, η′),

where η′ = (x2 + y2 + z2) ∂
∂x ∧ ∂

∂y ∧ ∂
∂z .

First of all we review an equivalent cohomology to Nambu-Poisson coho-
mology, which is due to P. Monnier [9]. Let M be an m-dimensional C∞-
manifold with a volume form Ω. For h ∈ C∞(M), we define the operator

dh : Ωk(M) −→ Ωk+1(M)

α �→ hdα − kdh ∧ α.

It is easy to prove that dh ◦ dh = 0. We denote by H∗
h(M) the cohomology

of this complex. Let η be an element of Γ (Λm(TM)). Recall that such η

becomes always a Nambu-Poisson tensor [10]. Then P. Monnier proved the
following [9].

Proposition 6.1. If we put h = iηΩ, then H∗
NP (M, η) is isomorphic to

H∗
h(M).

Remark 6.1. It is easy to see that if g is a function on M which does not
vanish on M, then the cohomologies H∗

h(M) and H∗
hg(M) are isomorphic.

Throughout this section, we will use the following notations:

• F is the algebra of real-valued C∞ functions on R4(x, y, z, u);
• F ′ is the algebra of real-valued C∞ functions on R3(x, y, z);
• χ(R4) is the F-module of vector fields on R4;
• χ′(R4) = {A ∂

∂x + B ∂
∂y + C ∂

∂z |A, B, C ∈ F};
• f = x2 + y2 + z2 + u2;
• f ′ = x2 + y2 + z2;
• Ωk =the space of k-forms on R4;
• Ω′

1 = {Adx + Bdy + Cdz|A, B, C ∈ F};
• Ω′

2 = {Ady ∧ dz + Bdz ∧ dx + Cdx ∧ dy|A, B, C ∈ F};
• Ω′

3 = {Adx ∧ dy ∧ dz|A ∈ F}.



�

�

�

�

�

�

�

�

Computations of Nambu-Poisson Cohomologies 349

If we choose Ω = dx ∧ dy ∧ dz as the volume form on R3, then we have
f ′ = iη′Ω. First we compute H∗

NP (R3, η′), which is isomorphic to H∗
f ′(R3) by

Proposition 6.1. In the formal category (i.e. all coefficients of differential forms
are formal power series), the following results were obtained by P. Monnier [9].

Proposition 6.2. In the formal case, H0
f ′ ∼= R, H1

f ′ ∼= R, H2
f ′ = 0 and

H3
f ′ ∼= R.

We want to compute H∗
f ′ in the C∞-category, and we will show that Propo-

sition 6.2 still holds even in the C∞-category. First it is clear that H0
f ′ ∼= R.

R. Ibáñez et al. [7] proved independently of P. Monnier [9] that H1
f ′ ∼= R.

Hence it only remains to compute H2
f ′ and H3

f ′ . To compute them, we use
Proposition 6.2.

Let β be a 2-cocycle. Then by definition, β satisfies f ′dβ = 2df ′∧β. Denote
by [β] the formal Taylor expansion of β at the origin. Then by Proposition 6.2,
there exists a formal 1-form [α] such that [β] = f ′d[α] − df ′ ∧ [α]. Hence
we can find a 1-form α, whose formal Taylor expansion at the origin is [α].
Put β′ = β − (f ′dα − df ′ ∧ α). Then β′ is flat (i.e. [β′] = 0) and satisfies
f ′dβ′ = 2df ′∧β′. β′

f ′2 is also flat and d( β′

f ′2 ) = 1
f ′3 (f ′dβ′−2df ′∧β′) = 0. Hence

there exists a flat 1-form α̃ such that β′

f ′2 = dα̃. Put α̃ = α′

f ′ . Then α′ is a flat

1-form, and we get β′ = f ′2dα̃ = f ′dα′ − df ′ ∧ α′. Finally we have

β = f ′d(α + α′) − df ′ ∧ (α + α′).

This means H2
f ′ = 0.

Next let us compute H3
f ′ . The space of 3-cocycles Z3

f ′ is clearly isomorphic
to F ′. And the space of 3-coboundaries B3

f ′ is isomorphic to the following space
F1.

F1 =
{

f ′
(

∂A

∂x
+

∂B

∂y
+

∂C

∂z

)
− 4(xA + yB + zC); A, B, C ∈ F ′

}
.

Lemma 6.3. Let I be the subspace of F ′ consisting of functions which
are flat at the origin. Then I ⊂ F1.

Proof. For q ∈ I, put

A = (f ′)2
∫

q

(f ′)3
dx, B = 0, C = 0.

Then f ′(∂A
∂x + ∂B

∂y + ∂C
∂z )−4(xA+yB+zC) = q. Hence we have that q ∈ F1.



�

�

�

�

�

�

�

�

350 Nobutada Nakanishi

Denote by F ′ (resp. F1) the formal algebra corresponding to F ′ (resp.
F1). Let T be a mapping from F ′ to F ′, where T (h) is the formal Taylor
expansion of h at the origin. Let π : F ′ → F ′/F1 be the canonical projection,
and put T̃ = π ◦ T . Then T̃ is a surjective linear mapping and it is clear that
ker T̃ = F1 by Lemma 6.3. Since F ′/F1

∼= R by Proposition 6.2, we get that

H3
f ′ ∼= F ′/F1

∼= F ′/F1
∼= R.

Thus we obtained the following proposition.

Proposition 6.4. In C∞-case, it still holds that H0
f ′ ∼= R, H1

f ′ ∼= R,

H2
f ′ = 0 and H3

f ′ ∼= R.

For the Nambu-Poisson tensor η = f ∂
∂x ∧ ∂

∂y ∧ ∂
∂z defined on R4, we know

that
�2(Ω2) = {fX|X ∈ χ′(R4)}.

�2(Ω2) is denoted by g, which is isomorphic to Ω2/ ker �2. Note also that
Ω2/ ker �2 is isomorphic to Ω′

2. g is, of course, a Lie subalgebra of χ(R4).
Since H0

NP (R4, η) = {g ∈ F| Xg = 0 for all X ∈ g}, it is clear that
H0

NP (R4, η) ∼= C∞(R).
In computing Nambu-Poisson cohomology, we use Proposition 6.4. To do

this, we need the formal Taylor expansion of a function A ∈ F with respect
to the variable u, which is denoted by Ā. In other words, three variables x, y

and z are regarded as parameters. And we say that Ā is the u-formal Taylor
expansion of A. This terminology will be also used for differential forms and
vector fields. Thus we can express Ā (similarly B̄ and C̄) as follows.

Ā = a0 + ua1 + u2a2 + · · · ,

B̄ = b0 + ub1 + u2b2 + · · · ,

C̄ = c0 + uc1 + u2c2 + · · · ,

(3)

where ak, bk, ck ∈ F ′.
To compute Hk

NP (R4, η), k ≥ 1, let us define a linear mapping d′ : F → Ω′
1

by

d′g =
∂g

∂x
dx +

∂g

∂y
dy +

∂g

∂z
dz.

This operator d′ is naturally extended to a linear mapping from Ω′
k to Ω′

k+1.
Moreover we define d′f : Ω′

k → Ω′
k+1 by

d′f (α) = fd′α − kd′f ∧ α, α ∈ Ω′
k.
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Then d′f ◦ d′f = 0, and we denote by H∗
d′

f
the cohomology space with respect to

d′f .
If we define b : χ′(R4) → Ω′

2 by b(X) = i(X)dx ∧ dy ∧ dz, then we ob-
tain that �2(b(X)) = fX and that �2({b(X), b(Y )}) = [�2(b(X)), �2(b(Y ))] =
[fX, fY ].

Following the similar method of P. Monnier [9], if φ : Ck(Ω′
2,F) → Ω′

k is
defined by

φ(ck)(X1, . . . , Xk) = ck(b(X1), . . . , b(Xk)), X1, . . . , Xk ∈ χ′(R4),

then φ is a linear isomorphism and we can prove the following.

Proposition 6.5. The following diagram is commutative.

Ck(Ω′
2,F)

φ−−−−→ Ω′
k

∂

� �d′
f

Ck+1(Ω′
2,F) −−−−→

φ
Ω′

k+1

Hence H∗
NP (R4, η) ∼= H∗

d′
f
.

Proof. We prove only for the case k = 1. For c ∈ C1(Ω′
2,F), put φ(c) = α.

For any X, Y ∈ χ′(R4), we can directly get

{b(X), b(Y )} = f · b([X, Y ]) − (Xf) · b(Y ) + (Y f) · b(X),

from the definition of the bracket {, } on Ω′
2. Using this equation, we have

φ(∂c)(X, Y ) = (∂c)(b(X), b(Y ))

= fX · c(b(Y )) − fY · c(b(X)) − c({b(X), b(Y )})
= fX · α(Y ) − fY · α(X) − c(f · b([X, Y ])

+ (Xf) · b(Y ) − (Y f) · b(X))

= fX · α(Y ) − fY · α(X) − fα([X, Y ])

− (Xf) · α(Y ) + (Y f) · α(X)

= f · d′α(X, Y ) − (d′f ∧ α)(X, Y )

= (d′fα)(X, Y ) = (d′f ◦ φ(c))(X, Y ).

Thus φ ◦ ∂ = d′f ◦ φ.
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§6.2. Computation of H1
NP (R4, η)

In this subsection, we compute H1
NP (R4, η). In order to do this, we have

only to compute H1
d′

f
by Proposition 6.5. The space of 1-coboundaries, which

is denoted by B′
1, is the set of 1-forms fd′g, g ∈ F . Let Z ′

1 be the space of
1-cocycles. Then for α = Adx + Bdy + Cdz ∈ Ω′

1, α is an element of Z ′
1 if

and only if fd′α = d′f ∧ α. This equation is equivalent to the following three
equations. 

f ·
(∂B

∂x
− ∂A

∂y

)
= 2xB − 2yA,

f ·
(∂C

∂y
− ∂B

∂z

)
= 2yC − 2zB,

f ·
(∂A

∂z
− ∂C

∂x

)
= 2zA − 2xC.

(4)

Note that the u-formal Taylor expansion of α is written as ᾱ = α0 +uα1 +
u2α2+ · · · , where αp = apdx+bpdy+cpdz, ap, bp, cp ∈ F ′. And three equations
(4) induce the u-formal Taylor expansions. Comparing constant terms with
respect to u in them, we have

f ′ ·
(∂b0

∂x
− ∂a0

∂y

)
= 2xb0 − 2ya0,

f ′ ·
(∂c0

∂y
− ∂b0

∂z

)
= 2yc0 − 2zb0,

f ′ ·
(∂a0

∂z
− ∂c0

∂x

)
= 2za0 − 2xc0.

(5)

These three equations (5) essentially appeared in computing H1
NP (R3, η′ =

f ′ ∂
∂x ∧ ∂

∂y ∧ ∂
∂z ). By Proposition 6.4, H1

NP (R3, η′) is isomorphic to R. The
generator of H1

NP (R3, η′) is df ′ and this means that there exist a real number
k0 and a function g0 ∈ F ′ such that

a0 = k0 · 2x + f ′ · ∂g0

∂x
,

b0 = k0 · 2y + f ′ · ∂g0

∂y
,

c0 = k0 · 2z + f ′ · ∂g0

∂z
.

(6)

Since α0 = a0dx + b0dy + c0dz, we obtain that α0 = k0df
′ + f ′dg0. Similarly

if we compare the coefficients of u in the u-formal Taylor expansions, we can
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get α1 = k1df
′ + f ′dg1, where k1 ∈ R and g1 ∈ F ′. But if we compare the

coefficients of u2, the situation is slightly different. In fact, we have

f ′ ·
(∂b2

∂x
− ∂a2

∂y

)
+

(∂b0

∂x
− ∂a0

∂y

)
= 2xb2 − 2ya2,

f ′ ·
(∂c2

∂y
− ∂b2

∂z

)
+

(∂c0

∂y
− ∂b0

∂z

)
= 2yc2 − 2zb2,

f ′ ·
(∂a2

∂z
− ∂c2

∂x

)
+

(∂a0

∂z
− ∂c0

∂x

)
= 2za2 − 2xc2.

(7)

These equations (7) can be rewritten as follows.

f ′
(∂(b2 − ∂g0

∂y )

∂x
−

∂(a2 − ∂g0
∂x )

∂y

)
= 2x

(
b2 −

∂g0

∂y

)
− 2y

(
a2 −

∂g0

∂x

)
,

f ′
(∂(c2 − ∂g0

∂z )
∂y

−
∂(b2 − ∂g0

∂y )

∂z

)
= 2y

(
c2 −

∂g0

∂z

)
− 2z

(
b2 −

∂g0

∂y

)
,

f ′
(∂(a2 − ∂g0

∂x )
∂z

−
∂(c2 − ∂g0

∂z )
∂x

)
= 2z

(
a2 −

∂g0

∂x

)
− 2x

(
c2 −

∂g0

∂z

)
.

(8)

Thus we can apply Proposition 6.4 to (8), and we have that there exist a real
number k2 and g2 ∈ F ′ such that

a2 −
∂g0

∂x
= k2 · 2x + f ′ ∂g2

∂x
,

b2 −
∂g0

∂y
= k2 · 2y + f ′ ∂g2

∂y
,

c2 −
∂g0

∂z
= k2 · 2z + f ′ ∂g2

∂z
.

(9)

Hence α2 = k2df
′ + f ′dg2 + dg0. By the same methods, we know that each

αp, (p ≥ 3) has the form αp = kpdf
′ + f ′dgp + dgp−2, where kp ∈ R and

gp−2, gp ∈ F ′. These mean that ᾱ has the following expression. Note that
df ′ = d′f and that f ′ + u2 = f .

ᾱ = (k0 + k1u + k2u
2 + · · · )d′f + f · d′(g0 + ug1 + u2g2 + · · · ).

To obtain the final result, we need the following lemma, which is a gener-
alization of E. Borel theorem. This will be proved in the analogous way as
K. Abe and K. Fukui, Lemma 4.4 [1]. (See also R. Narasimhan [12], §1.5.2
and §1.5.3.) We put �r = (x, y, z, u) and |�r| =

√
x2 + y2 + z2 + u2. Then a

function F (�r) ∈ C∞(R4) is said to be m-flat as a function of u at (x, y, z, 0) if
∂α

∂uα F (x, y, z, 0) = 0 for α ≤ m.
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Lemma 6.6. For each integer p ≥ 0, let cp(x, y, z) ∈ C∞(R3). Then
there exists G(�r) ∈ C∞(R4) such that the partial derivatives with respect to the
last variable of G at any point (x, y, z, 0) ∈ R4 are

∂pG

∂up
(x, y, z, 0) = p!cp(x, y, z) p ≥ 0.

Proof. Let Tm(�r) =
∑m

p=0 cp(x, y, z)up for �r ∈ R
4. Let H(�r) ∈ C∞(R4)

such that H(�r) = 0 for |�r| ≤ 1/2, H(�r) = 1 for |�r| ≥ 1 and H(�r) ≥ 0 for any
�r ∈ R4. For a positive number δ, put

gδ(�r) = H
(�r

δ

)
(Tm+1(�r) − Tm(�r)).

Clearly gδ ∈ C∞(R4) and vanishes near 0. Moreover Tm+1 − Tm is m-flat as
a function of u at any point (x, y, z, 0). Hence as in the proof of Lemma 1.5.2
[12], there exists a positive number δm such that

m∑
p=0

1
p!

∣∣∣ ∂p

∂up
(gδm

− (Tm+1 − Tm))(�r)
∣∣∣ < 2−m.

Put gm = gδm
. If we define

G = T0 +
∞∑

m=0

(Tm+1 − Tm − gm),

then as in the proof of Lemma 1.5.3 [12], we get that the function G is the
desired function.

By Lemma 6.6, we obtain that there exist a C∞-function k(u) and a C∞-
function g(x, y, z, u) such that k(u) = k0 +k1u+k2u

2 + · · · , and g(x, y, z, u) =
g0 + ug1 + u2g2 + · · · . Put α′ = k(u)d′f + fd′g, and put α − α′ = αf . Then
αf is a 1-cocycle and it satisfies αf = 0 (u-flat 1-form). Let k1(u) be a flat
function of one variable u. Then (αf − k1(u)d′f)/f is a well-defined 1-form on
R4, and it satisfies

d′
(αf − k1(u)d′f

f

)
=

1
f2

(fd′αf − d′f ∧ (αf − k1(u)d′f)) = 0.

Hence, as is easily seen, there exists a flat function g̃(x, y, z, u) such that (αf −
k1(u)d′f)/f = d′g̃. And we obtain that α ∈ Z ′

1 has the following form:

α = αf + α′ = (k(u) + k1(u))d′f + fd′(g + g̃).
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α is, by definition, cohomologous to (k(u) + k1(u))d′f . Moreover l(u)d′f is
contained in B′

1 if and only if l(u) is a flat function at u = 0. In fact, note that in
this case l(u) log f is a C∞-function and it holds that l(u)d′f = fd′(l(u) log f) ∈
B′

1. Thus we obtain that H1
NP (R4, η) is isomorphic to R[[u]], which is the space

of formal power series of one variable u.

§6.3. Computation of H2
NP (R4, η)

We will compute H2
NP (R4, η). By Proposition 6.5, we will compute H2

d′
f
.

Every computation proceeds in the analogous way as the case of H1
d′

f
. The

space of 2-coboundaries B′
2 is, by definition, the set of 2-forms d′fγ = fd′γ −

d′f ∧ γ, γ ∈ Ω′
1. Let Z ′

2 be the space of 2-cocycles. Then for β = Ady ∧ dz +
Bdz∧dx+Cdx∧dy ∈ Ω′

2, β is an element of Z ′
2 if and only if fd′β = 2d′f ∧β.

This is equivalent to

f ·
(∂A

∂x
+

∂B

∂y
+

∂C

∂z

)
= 4(xA + yB + zC).(10)

The u-formal Taylor expansion (with respect to u) of β is written as β̄ =
β0+uβ1+u2β2+· · · , where βp = apdy∧dz+bpdz∧dx+cpdx∧dy, ap, bp, cp ∈ F ′.
Then the equation (10) has the u-formal Taylor expansion.

Comparing constant terms in it, we have

f ′ ·
(∂a0

∂x
+

∂b0

∂y
+

∂c0

∂z

)
= 4(xa0 + yb0 + zc0).(11)

This is equivalent to df ′β0 = 0 for β0 = a0dy ∧ dz + b0dz ∧ dx + c0dx ∧ dy.
Recall that H2

NP (R3, η′) = 0 by Proposition 6.4. In other words, if df ′β0 = 0,

then β0 must be a coboundary. This means that we can find a 1-form α0 such
that β0 = f ′dα0 − df ′ ∧ α0.

Comparing the coefficients of u, we can also find a 1-form α1 such that
β1 = f ′dα1 − df ′ ∧ α1. Moreover if p ≥ 2 we can find p-form αp such that
βp = f ′dαp − d′f ∧ αp + dαp−2. The u-formal Taylor expansion of β is as
follows.

β̄ =
∞∑

p=0

upβp

=
∞∑

p=0

up(f ′dαp − d′f ∧ αp) +
∞∑

p=0

up+2dαp
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=
∞∑

p=0

up(f ′dαp − df ′ ∧ αp + u2dαp)

=
∞∑

p=0

up(fdαp − d′f ∧ αp)

= fd′
( ∞∑

p=0

upαp

)
− d′f ∧

( ∞∑
p=0

upαp

)
.

Put α̂ =
∑∞

p=0 upαp. Then β̄ = fd′α̂ − d′f ∧ α̂. By Lemma 6.6, there exists a
1-form α′ ∈ Ω′

1 such that ᾱ′ = α̂. Put β′ = fd′α′ − d′f ∧ α′. Then β̄ = β̄′ and
hence if we put β̃ = β −β′, then β̃ is a flat 2-form of Ω′

2. Moreover it is easy to
see that fd′β̃ = 2d′f ∧ β̃, which means β̃ ∈ Z ′

2. Then by the same method as
the proof of H2

f ′ = 0 (C∞-case), we can prove that there exists a flat 1-form
α2 such that β̃ = fd′α2 − d′f ∧ α2. Hence β has the following form:

β = β′ + β̃ = fd′(α′ + α2) − d′f ∧ (α′ + α2),

and thus β ∈ B′
2. Hence we get H2

NP (R4, η) = 0.

§6.4. Computation of H3
NP (R4, η)

Let Z ′
3 be the space of 3-cocycles. Since Ω′

4 = 0, it holds that Z ′
3 = Ω′

3.
Hence Z ′

3 is isomorphic to F . Let B′
3 be the space of 3-coboundaries. Then

every element of B′
3 is written as

d′fβ = fd′β − 2d′f ∧ β

= {f
(∂A

∂x
+

∂B

∂y
+

∂C

∂z

)
− 4(xA + yB + zC)}dx ∧ dy ∧ dz,

where β = Ady ∧ dz + Bdz ∧ dx + Cdx ∧ dy is an arbitrary element of Ω′
2.

Put B = {f(∂A
∂x + ∂B

∂y + ∂C
∂z ) − 4(xA + yB + zC)|A, B, C ∈ F}. Then, by

Proposition 6.5, H3
NP (R4, η) is isomorphic to F/B.

Lemma 6.7. Put I = {h ∈ F|∂ph
∂up (x, y, z, 0) = 0, p ≥ 0}. i.e., each

element h of I is u-flat. Then I ⊂ B.

Proof. For h ∈ I, it is clear that h/f3 is an element of F . Put A =
f2

∫
h
f3 dx, B = 0 and C = 0. Then we have

f
(∂A

∂x
+

∂B

∂y
+

∂C

∂z

)
− 4(xA + yB + zC) = h.

Hence h ∈ B.
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Put F̂ = {Ā|A ∈ F} and B̂ = {Ā|A ∈ B}. We also denote by F ′
0 the

subspace of functions g(x, y, z) ∈ F ′ with g(0, 0, 0) = 0.

Proposition 6.8. F̂ /B̂ ∼= R[[u]].

Proof. For any element g = f(∂A
∂x + ∂B

∂y + ∂C
∂z ) − 4(xA + yB + zC) ∈ B,

its u-formal Taylor expansion is

B̂ 
 ḡ = f
(∂Ā

∂x
+

∂B̄

∂y
+

∂C̄

∂z

)
− 4(xĀ + yB̄ + zC̄)

=
∞∑

p=0

[
up

{
f ′
(∂ap

∂x
+

∂bp

∂y
+

∂cp

∂z

)
− 4(xap + ybp + zcp)

}
+ up+2

(∂ap

∂x
+

∂bp

∂y
+

∂cp

∂z

)]
.

Put gp = f ′
(

∂ap

∂x + ∂bp

∂y + ∂cp

∂z

)
− 4(xap + ybp + zcp) and hp = ∂ap

∂x + ∂bp

∂y + ∂cp

∂z

for non-negative integer p. Then every ḡ ∈ B̂ has the following expression.

ḡ = (g0 + u2h0) + u(g1 + u2h1) + · · · + up(gp + u2hp) + · · · .

First recall that H3
NP (R3, η′) ∼= R by Proposition 6.4. Hence for any non-

negative integer p, it holds that

{gp | ap, bp, cp ∈ F ′} = F ′
0.

If we put Wp = {gp+u2hp | ap, bp, cp ∈ F ′}, then ḡ is contained in W0+uW1+
· · · + upWp + · · · . Note that hp is not completely determined by gp. To show
this precisely, let us consider the following linear partial differential equation
with three unknown functions a, b, c ∈ F ′ :

(∗) f ′
(∂a

∂x
+

∂b

∂y
+

∂c

∂z

)
− 4(xa + yb + zc) = 0.

We define a subspace F ′′
0 of F ′ by

F ′′
0 =

{∂a

∂x
+

∂b

∂y
+

∂c

∂z
| a triplet (a, b, c) is a solution of (∗)

}
.

Since (a, b, c) is a solution of the differential equation (∗), there exist three
functions A, B, C ∈ F ′ such that

a = f ′(Cy − Bz) + 2(zB − yC),

b = f ′(Az − Cx) + 2(xC − zA),

c = f ′(Bx − Ay) + 2(yA − xB).

(12)
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Recall that this fact is equivalent to H2
f ′ = 0. Put h = ∂a

∂x + ∂b
∂y + ∂c

∂z . If h is an
element of F ′′

0 , then it is clear that h vanishes at the origin and hence h ∈ F ′
0.

Thus F ′′
0 becomes a subspace of F ′

0.
Let gp have the following two expressions:

gp = f ′
(∂ap

∂x
+

∂bp

∂y
+

∂cp

∂z

)
− 4(xap + ybp + zcp)

= f ′
(∂a′

p

∂x
+

∂b′p
∂y

+
∂c′p
∂z

)
− 4(xa′

p + yb′p + zc′p)

for two triplets (ap, bp, cp) and (a′
p, b

′
p, c

′
p). Then we have

f ′
(∂(ap − a′

p)
∂x

+
∂(bp − b′p)

∂y
+

∂(cp − c′p)
∂z

)
−4{x(ap − a′

p) + y(bp − b′p) + z(cp − c′p)} = 0.

Hence

hp − h′
p =

∂(ap − a′
p)

∂x
+

∂(bp − b′p)
∂y

+
∂(cp − c′p)

∂z

is an element of F ′′
0 , where h′

p = ∂a′
p

∂x + ∂b′p
∂y + ∂c′p

∂z . Then it is easy to see that
hp + F ′′

0 , which denotes a coset of hp in F ′/F ′′
0 , is uniquely determined by gp.

And each Wp has the following expression:

Wp = {gp + u2(hp + F ′′
0 ) | gp ∈ F ′

0}.

Let φp : Wp −→ F ′
0 be a surjective linear mapping defined by φp(gp + u2(hp +

F ′′
0 )) = gp. It is clear that φp is well-defined and that gp = 0 means hp ∈ F ′′

0 .
Hence Wp/u2F ′′

0
∼= F ′

0, and we have Wp
∼= F ′

0 + u2F ′′
0 . Now B̂ becomes as

follows. (Recall that F ′′
0 is a subspace of F ′

0.)

B̂ = W0 + uW1 + u2W2 + · · · + upWp + · · ·
∼= (F ′

0 + u2F ′′
0 ) + u(F ′

0 + u2F ′′
0 ) + u2(F ′

0 + u2F ′′
0 )

+ · · · + up(F ′
0 + u2F ′′

0 ) + · · ·
= F ′

0 + uF ′
0 + u2F ′

0 + · · · + upF ′
0 + · · ·

= R[[u]]F ′
0.

Since

F̂ = F ′ + uF ′ + u2F ′ + · · ·
= (R + F ′

0) + u(R + F ′
0) + u2(R + F ′

0) + · · ·
= R[[u]] ⊕ R[[u]]F ′

0,

we obtain that F̂ /B̂ ∼= R[[u]].
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Let T : F → F̂ be a linear mapping defined by T (A) = Ā. For any
q ∈ T−1(B̂), there exists Q ∈ B̂ such that T (q) = Q. On the other hand, since
T (B) = B̂, there exists q1 ∈ B such that T (q1) = Q. Hence q − q1 ∈ I. By
Lemma 6.7, we have q ∈ B, and hence T−1(B̂) = B. Thus by Proposition 6.8,

F/B ∼= F̂ /B̂ ∼= R[[u]].

Now we summarize the results obtained in this section.

Theorem 6.9. Let η = (x2 + y2 + z2 + u2) ∂
∂x ∧ ∂

∂y ∧ ∂
∂z be a Nambu-

Poisson tensor on R4(x, y, z, u). Then

H0
NP (R4, η) ∼= C∞(R),

H1
NP (R4, η) ∼= R[[u]],

H2
NP (R4, η) = 0,

H3
NP (R4, η) ∼= R[[u]],

Hk
NP (R4, η) = 0, k ≥ 4.
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