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Abstract

We present a complete characterization of the classes of ultradifferentiable func-
tions that are holomorphically closed. Moreover, we show that any class holomorphi-
cally closed is also closed under composition (now without restrictions on the number
of variables). In this case, we also discuss continuity and differentiability properties
of the non-linear superposition operator g → f ◦ g.

§0. Introduction

It is a well-known fact that the composition of two C∞ (respectively ana-
lytic) functions is again C∞ (resp. analytic). Mainly motivated by the study
of (the regularity of) elementary solutions of linear partial differential opera-
tors with constant coefficients, several intermediate classes of functions between
real analytic and C∞ functions have been introduced and studied during the
last century, and hence it is natural to investigate whether these new classes
of functions, known as classes of ultradifferentiable functions, are closed by
composition. The first result in this direction seems to be due to M. Gevrey,
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who introduced a scale of intermediate spaces, the so-called Gevrey classes, and
showed that the composition of two functions in a given class remains in the
same class.

A class F of real or complex valued functions is said to be inverse closed
if 1/f remains in the class whenever f is in the class and it does not vanish,
and it is said to be holomorphically closed if F ◦ f ∈ F for every f ∈ F and for
each function F which is holomorphic on a complex neighborhood of the range
of f.

The problem of characterizing the Denjoy-Carleman classes which were in-
verse closed, or equivalently holomorphically closed, was posed by P. Malliavin
[19]. In the non-quasianalytic setting and for 2π-periodic functions the problem
was solved by W. Rudin [27], and later extended to general Denjoy-Carleman
classes on R by Boman and Hörmander [6].

Similar results were obtained by Roumieu [26], who studied conditions
on a sequence (Np)p∈N in order to guarantee that f ◦ g ∈ E{Mp} provided
that f ∈ E{Mp}, g ∈ E{Np} and E{Np} ⊂ E{Mp} with continuous inclusion. In
particular, taking Np = p!, he showed that f ◦ g ∈ E{Mp} if f ∈ E{Mp} and g

is real-analytic. Then, he was able to define N−dimensional manifolds of class
(Np)p∈N and also functions of class (Mp)p∈N on these manifolds.

More recently Siddiqui and Ider [29] studied the inverse closed spaces of
ultradifferentiable function of Roumieu type (with uniform bounds on R and
without requiring logarithmic convexity for the defining sequence), and Bruna
[9] considered the same problem for some classes of Beurling type. Using almost
analytic extensions, Petzsche and Vogt [25] showed that the classes of ultra-
differentiable functions considered by Björck [3] are holomorphically closed.
Almost analytic extensions were the main tool used by Dynkin [11] to show
that several classes of smooth functions were closed by composition. We also
refer to [1, 2], where some results concerning the continuity of the non-linear
superposition operator are included.

We will present a complete characterization of the classes of ultradifferen-
tiable functions on the real line that are holomorphically closed. Our approach
to the classes of ultradifferentiable functions is the one of Braun, Meise and
Taylor [8]. In particular, our result applies to the most relevant cases consid-
ered by Komatsu [16]. As follows from our results, the behaviour of a given
non-quasianalytic class of Beurling type with respect to the problem of being
holomorphically closed is similar to that of the corresponding class of Roumieu
type. Moreover, we show that any class holomorphically closed is also closed
under composition (now without restrictions on the number of variables). In
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this case, we also discuss differentiability properties of the non-linear superpo-
sition operator g → f ◦ g.

§1. Preliminaries

First we introduce the spaces of functions and most of the notation that
will be used in the sequel. All definitions are taken from [8].

Definition 1.1. Let ω : [0,∞[→ [0,∞[ be a continuous function which
is increasing and satisfies ω(0) = 0 and ω(1) > 0. Then ω is called a weight
function if it satisfies the following conditions:

(α) ω(et) ≤ L(1 + ω(t)) for some L ≥ 1 and for all t > 0.

(β)
∫ ∞

1

ω(t)
t2

dt < ∞.

(γ) log(t) = o(ω(t)) as t tends to ∞.

(δ) ϕ : t → ω(et) is convex.

A weight ω is equivalent to a sub-additive weight if, and only if, ω has
property

(α0) ∃C1 ∃t0 > 0 ∀λ ≥ 1 ∀t ≥ t0 :

ω(λt) ≤ λC1ω(t).

The above condition should be compared with [25, p. 19] and [23, Lemma 1].
The Young conjugate of ϕ is defined by ϕ∗(x) = supy>0{xy − ϕ(y)}.

Definition 1.2. Let ω be a weight function and let Ω be an open set
in RN . We define,

E(ω)(Ω) := {f ∈ C∞(Ω) :‖ f ‖K,λ< ∞, for every K ⊂⊂ Ω, and everyλ > 0},

and

E{ω}(Ω) := {f ∈ C∞(Ω) : for every K ⊂⊂ Ω, there exists λ > 0 such that

‖ f ‖K,λ< ∞},

where

‖ f ‖K,λ:= sup
x∈K

sup
α∈Nn

0

| f (α)(x) | exp
(
−λϕ∗

(
| α |
λ

))
.



�

�

�

�

�

�

�

�

402 Carmen Fernández and Antonio Galbis

E(ω)(Ω) is endowed with its natural Fréchet topology, while E{ω}(Ω) is a
projective limit of (LB) spaces.

The elements of E(ω)(Ω) (resp. E{ω}(Ω)) are called ω-ultradifferentiable
functions of Beurling (resp. Roumieu) type. We write E∗(Ω), where ∗ can be
either (ω) or {ω}.We put

D∗(K) = {f ∈ E∗(Ω) : suppf ⊂ K}

and
D∗(Ω) := ind

j→
D∗(Kj)

where (Kj)j∈N denotes a fundamental sequence of compact sets of Ω.

We mention that ω(t) := |t|1/d (d > 1) are weight functions satisfying
property (α0) and that the corresponding Roumieu class is the Gevrey class
with exponent d.

From now on, the elements in E∗(Ω) will be, in general, real valued and
we will write E∗(Ω; C) for complex valued functions. We will denote by H(U)
the space of holomorphic functions on an open subset U ⊂ C and by A(R) the
space of real analytic functions.

§2. The One Variable Case

The aim of this section is to characterize, in terms of the weight function
ω, the classes of ultradifferentiable functions on the real line which are holo-
morphically closed. For some spaces of ultradifferentiable functions of Beurling
type, this was done by Bruna [9]. Petzsche and Vogt [25] showed that this is
the case for both the Beurling and the Roumieu case if the weight function is
(equivalent to a) sub-additive, using almost analytic extensions.

Our next proposition is an easy application of the Faà di Bruno formula.

Proposition 2.1. Let us assume that ω satisfies (α0) and let f, g ∈
E∗(R) be given. Then f ◦ g ∈ E∗(R). Moreover,

(1) In the case ∗ = {ω} : For every λ > 0 and C1 > 0 there exist µ > 0 and
C2 > 0 such that the condition ‖ g ‖K,2λ≤ C1 implies ‖ f ◦ g ‖K,µ≤ C2 ‖
f ‖g(K),λ .

(2) In the case ∗ = (ω) : For every m ∈ N and C1 > 0 there exist 	 ∈ N and
C2 > 0 such that the condition ‖ g ‖K,m≤ C1 implies ‖ f ◦ g ‖K,m≤ C2 ‖
f ‖g(K),� .
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Proof. We fix a compact subset K ⊂ R and we take λ > 0 and C1 > 0
such that

sup
x∈K

|g(j)(x)| ≤ C1 exp
(

2λϕ∗
(

j

2λ

))
, j = 0, 1, . . . .

We apply the Faà di Bruno formula (see e.g. [17, 1.3.1]) to get

(f ◦ g)(n)(x) =
∑ n!

k1! . . . kn!
f (k)(g(x))

(
g′(x)

1!

)k1

. . .

(
g(n)(x)

n!

)kn

where the sum is extended over all (k1, . . . , kn) such that k1+2k2+· · ·+nkn = n

and k := k1 + · · · + kn.

From the convexity of ϕ∗ one easily gets that

exp
(

2λϕ∗
(

j

2λ

))
≤ Dλ exp

(
λϕ∗

(
j − 1

λ

))
and hence∣∣∣∣g(j)(x)

j!

∣∣∣∣kj

≤
(

C1
e2λϕ∗( j

2λ )

j!

)kj

≤ (CλDλ)kj

(
eλϕ∗( j−1

λ )

(j − 1)!

)kj

.

Since ω satisfies condition (α0) we can assume, without loss of generality, that
ω is sub-additive ([25, 1.1]). In this case, the sequence aj := 1

j! exp(λϕ∗( j
λ))

satisfies

ajak ≤ aj+k(2.1)

(see [13, Lemma 3.3]). Consequently∣∣∣∣g(j)(x)
j!

∣∣∣∣kj

≤ (C1Dλ)kj
eλϕ∗(

(j−1)kj
λ )

((j − 1)kj)!
.

Since
∑n

j=1(j − 1)kj = n−k we have, after applying 2.1 once again and taking
Bλ := C1Dλ,

n∏
j=1

∣∣∣∣g(j)(x)
j!

∣∣∣∣kj

≤ (Bλ)k eλϕ∗( n−k
λ )

(n − k)!

for all x ∈ K.

(a) The Roumieu case ∗ = {ω}.
We can assume λ small enough so that

C :=‖ f ‖g(K),λ< +∞.
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Then
|(f ◦ g)(n)(x)| ≤ C

∑
n!

k1!...kn!e
λϕ∗( k

λ )(Bλ)k eλϕ∗( n−k
λ

)

(n−k)!

≤ C(Bλ)n
∑

k!
k1!...kn!e

λϕ∗( n
λ )

= CBn
λeλϕ∗( n

λ )2n−1,

using the fact that
∑

k!
k1!...kn! = 2n−1 and ϕ∗(n−k

λ ) + ϕ∗( k
λ) ≤ ϕ∗(n

λ ). We now
consider s ∈ N such that (2Bλ)n ≤ ens and we take L ≥ 1 as in (α). Then, for
µ := λL−s we obtain [14, 1.1.18]

λϕ∗
(n

λ

)
+ ns ≤ µϕ∗

(
n

µ

)
+ µ

s∑
j=1

Lj .

Hence
|(f ◦ g)(n)(x)| ≤ C2Ceµϕ∗( n

µ )

for some C2 > 0 and for all x ∈ K, n ∈ N and we conclude that f ◦g ∈ E{ω}(R).
(b) The Beurling case ∗ = (ω).

We fix m ∈ N and we find 	 ∈ N and D̃m such that

	ϕ∗
(

k

	

)
+ k log Bm ≤ D̃m + mϕ∗

(
k

m

)
for all k. Let us denote D :=‖ f ‖g(K),�. Since |f (k)(g(x))| ≤ De�ϕ∗( k

� ) for all
x ∈ K, k ∈ N0, we have (taking λ = m in the estimates above)

|(f ◦ g)(n)(x)| ≤
∑

n!
k1!...kn!De�ϕ∗( k

� )(Bm)k emϕ∗( n−k
m

)

(n−k)!

≤ DeD̃m
∑

n!
k1!...kn!e

mϕ∗( k
m ) emϕ∗( n−k

m
)

(n−k)!

≤ DC2e
mϕ∗( n

m )2n−1

for all x ∈ K, n ∈ N0 (and for some C2 > 0 depending on m). Hence f ◦ g ∈
E(ω)(R).

The use of almost analytic extensions as in [25], gives a different proof of
the above Proposition in the Roumieu setting. With the same argument we
recover [25, 3.6].

Proposition 2.2. For a weight with the property (α0), the conditions
f ∈ H(C) and g ∈ E∗(R; C) imply f ◦ g ∈ E∗(R; C).
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Now we analyze the necessity of condition (α0). According to a theorem
of Mitiagin, Zelazko and Rolewicz [20] (see also [12]), a Fréchet algebra A (over
the field K of real or complex numbers) is locally m-convex if, and only if, for
every a ∈ A and for every entire function φ(z) =

∑∞
n=0 cnzn (with coefficients

cn ∈ K), the series
∑∞

n=0 cnan converges in A. The next argument is taken
from [9].

Let us assume that the Fréchet algebra E(ω)(R; C) is holomorphically closed.
Then, by [20], E(ω)(R; C) is a locally m-convex algebra. Therefore we find a
continuous multiplicative seminorm q, positive constants C, B, a and k ∈ N

such that for each f ∈ E(ω)(R; C) and each m ∈ N,

||fm||[−1,1],1 ≤ Cq(fm) ≤ C(q(f))m ≤ C(B||f ||[−a,a],k)m

in particular, for ft(x) := eitx the inequalities above imply that

exp(ω(tm) − log(tm)) ≤ CBm exp(mkω(t)).

It easily follows that ω satisfies (α0).
In order to get a similar result for the Roumieu classes we need a differ-

ent argument since, as shown in [31], there are (non metrizable) commutative
algebras in which all entire functions operate but which are not locally multi-
plicative convex.

We observe that the Beurling class E(ω)(R; C) is contained in the Roumieu
class E{ω}(R; C). Hence, the next proposition implies that the condition (α0)
is necessary in order that the conditions h ∈ H(C) and f ∈ E∗(R; C) imply
h ◦ f ∈ E∗(R; C), ∗ being (ω) or {ω}.

For a test function ϕ ∈ D(ω)(R) we put

Pk(ϕ) := sup
t∈R

sup
j∈N0

|ϕ(j)(t)|e−kϕ∗( j
k ).

Proposition 2.3. Let ω be a weight function and let us assume that,
for any h ∈ H(Ω) and f ∈ E(ω)(R; C), the condition f(R) ⊂ Ω implies h ◦ f ∈
E{ω}(R; C). Then, ω satisfies condition (α0).

Proof. We fix an increasing sequence (tj), 0 < tj < tj+1 < 1, and, for
each j ∈ N we select ψj ∈ D(ω)[tj , tj+1], 0 ≤ ψj ≤ 1, a test function which is
constant equal to 1 on a neighborhood of bj := 1

2 (tj + tj+1).
Let us assume that ω does not satisfy property (α0). Then, there are two

increasing sequences (kn) ⊂ N and (ξn) ⊂ R such that

ω(knξn)
knω(ξn)

≥ n2
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and ξn is large enough so that
∑∞

n=1 e−nω(ξn) < 1 and

∞∑
n=1

e−ω(ξn)Pn(ψn) < +∞.

We consider an := e−nω(ξn), define fn(t) := aneiξn(t−bn), n ∈ N, and prove that
f :=

∑∞
n=1 fnψn ∈ D(ω)[0, 1]. In fact, for any m ∈ N there are C > 0 and k ∈ N

such that
Pm(fnψn) ≤ CPk(fn)Pk(ψn) , n ∈ N.

Since
Pk(fn) = |an| sup

j∈N0

|ξn|je−kϕ∗( j
k ) ≤ e−(n−k)ω(ξn)

then ∞∑
n=k+1

Pm(fnψn)≤ C
∞∑

n=k+1

e−(n−k)ω(ξn)Pn(ψn)

≤ C

∞∑
n=k+1

e−ω(ξn)Pn(ψn) < +∞.

This shows that the series
∑∞

n=1 fnψn converges to a function f ∈ D(ω)[0, 1]
and f(R) ⊂ D.

By hypothesis,

Tf : H(D) → E{ω}(R; C), h → h ◦ f

is a well-defined continuous and linear map (by the closed graph theorem [15,
5.4.1]). Since B := {zk} is a bounded set in H(D) then Tf (B) = {fk : k ∈ N}
is a bounded set in E{ω}(R; C). Since f = fn in a neighborhood of bn we have,
for some µ > 0,

sup
n∈N

sup
k∈N

sup
j∈N

|(fk
n)(j)(bn)|e−µϕ∗( j

µ ) < +∞,

which implies,
sup
n∈N

sup
k∈N

sup
j∈N

ak
n|ξnk|je−µϕ∗( j

µ ) < +∞.

As µ
2 ω(knξn) ≤ supj∈N

(
j log |knξn| − µϕ∗( j

µ )
)

, we deduce

−nknω(ξn) +
µ

2
ω(knξn) ≤ C

for some constant C > 0 and for all n ∈ N. This contradicts the selection of
(kn) and (ξn).
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§3. From one to Several Variables

In the previous section we have obtained a complete characterization of
those non-quasianalytic classes of ultradifferentiable functions which are holo-
morphically closed in terms of the weight function, and have shown that these
classes are closed by composition. Now, we want to extend this result for
higher dimensions. One could try to compute the partial derivatives of a com-
position of two functions. An explicit expression of the partial derivatives of
f ◦ g for several variables, that is a multivariate Faà di Bruno formula, is given
in [10]. However it seems too cumbersome. In this section we provide a one-
dimensional characterization of the classes of ultradifferentiable functions of
N variables, which should be compared with [11, Theorem 1] and [21]. This
permits us (in combination with tensor product techniques) to analyze a com-
position f ◦ (g1, . . . , gk), where f ∈ E∗(Rk) and g1, . . . , gk ∈ E∗(RN ). Let us
recall that, as shown independently by Bochnak [4] and Siciak [28], a C∞ func-
tion that is real analytic on every line must be real analytic.

We start with the following result which can be found in [30, p. 226].

Lemma 3.1. Let P (t) =
∑n

j=0 ajt
j be a polynomial of degree less than

or equal to n. Then,

|aj | ≤
nj

j!
max

−1≤t≤1
|P (t)|.

An induction argument gives

Lemma 3.2. Let P (x) =
∑

|α|=k aαxα, x ∈ RN , be a homogeneous
polynomial of degree k. Then

|aα| ≤ ekN max
||x||∞=1

|P (x)|.

Proof. We proceed by induction on the dimension N . For N = 1 this is
obvious. Let us assume that the lemma is true for homogeneous polynomials
on RN−1, N ≥ 2.

Now we put x = (y, t) ∈ RN−1 × R, α = (β, j), and

P (x) =
k∑

j=0

 ∑
|β|=k−j

a(β,j)y
β

 tj .

We denote M := max||x||∞=1 |P (x)| and we fix y ∈ R
N−1 with ||y||∞ = 1.
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For every −1 ≤ t ≤ 1 we have∣∣∣∣∣∣
k∑

j=0

 ∑
|β|=k−j

a(β,j)y
β

 tj

∣∣∣∣∣∣ ≤ M,

and we can apply Lemma 3.1 to get

max
||y||∞=1

∣∣∣∣∣∣
∑

|β|=k−j

a(β,j)y
β

∣∣∣∣∣∣ ≤ Mek,

and the estimate holds for each 0 ≤ j ≤ k. Since
∑

|β|=k−j a(β,j)y
β is a homo-

geneous polynomial of degree k− j in N −1 variables, we obtain by hypothesis

|a(β,j)| ≤ e(k−j)(N−1)Mek ≤ MekN

and the proof is finished.

In the next result fa,v(t) := f(a + tv), t ∈ R, and ||v||1 :=
∑N

j=1 |vj |.

Proposition 3.3. Let f ∈ D(RN ) and B := {fa,v : a ∈ RN , ||v||1 = 1}
be given. Then f ∈ D(ω)(RN ) (resp. f ∈ D{ω}(RN )) if and only if

sup
h∈B

||h||[−1,1],λ < +∞(3.2)

for every λ > 0 (resp. for some λ > 0).

Proof. Let us assume f ∈ D∗(RN ) and |f |λ < ∞, where

|f |λ := sup
x∈RN

sup
α∈NN

0

|f (α)(x)|e−λϕ∗( |α|
λ ).

We fix a ∈ RN , ||v||1 = 1 and we take ϕ := fa,v. Then

ϕ(k)(t) =
N∑

i1,...,ik=1

vi1 · · · vik
Di1...ik

f(a + tv).

Hence

|ϕ(k)(t)| ≤ |f |λ
N∑

i1,...,ik=1

|vi1 · · · vik
|eλϕ∗( k

λ ) = |f |λ eλϕ∗( k
λ ) ||v||k1 = |f |λ eλϕ∗( k

λ ),
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and
sup
|t|≤1

sup
k∈N0

|ϕ(k)(t)|e−λϕ∗( k
λ ) ≤ |f |λ

for every a ∈ R
N and v ∈ R

N with ||v||1 = 1.

Conversely, let us assume that B satisfies the condition (3.2). Given v =
(v1, . . . , vn) and α = (α1, . . . , αn) we put vα := vα1

1 · · · vαn
n . By assumption, in

the Beurling case, for each λ there is M > 0 (there are λ, M in the Roumieu
case) such that

sup
−1≤t≤1

∣∣∣∣∣∣
N∑

i1,...,ik=1

vi1 · · · vik
Di1...ik

f(a + tv)

∣∣∣∣∣∣ e−λϕ∗( k
λ ) ≤ M

for all a ∈ RN and v ∈ RN with ||v||1 = 1. This means

sup
−1≤t≤1

∣∣∣∣∣∣
∑
|α|=k

vα k!
α!

f (α)(a + tv)

∣∣∣∣∣∣ ≤ Meλϕ∗( k
λ )

whenever a ∈ R
N and v ∈ R

N with ||v||1 = 1 in particular, taking t = 0,

sup
||v||1=1

∣∣∣∣∣∣
∑
|α|=k

vα k!
α!

f (α)(a)

∣∣∣∣∣∣ ≤ Meλϕ∗( k
λ ).

Since P (v) :=
∑

|α|=k vα k!
α!f

(α)(a) is a homogeneous polynomial of degree k in
R

N , an application of the Lemma 3.2 yields

|f (α)(a)| ≤ ekNNkMeλϕ∗( k
λ )

for a ∈ RN and |α| = k. We put λ = µL2N for the constant L ≥ 1 as in (α).
As in the proof of 2.1, it follows that [14, 1.1.18]

sup
x∈RN

sup
α∈NN

0

|f (α)(x)|e−µϕ∗( |α|
µ ) < ∞.

Corollary 3.4. Let us assume that ω satisfies (α0) and let be given
real-valued functions f ∈ E∗(R) and g ∈ E∗(RN ). Then f ◦ g ∈ E∗(RN ).

Proof. We fix χ ∈ D∗(RN ) and we consider f ◦ (χg) − f(0) ∈ D(RN ).
The proposition above implies that {(χg)a,v : a ∈ RN , ||v||1 = 1} is a

bounded set in E∗(R) and then, the proof of Proposition 2.1 gives that {(f ◦
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χg)a,v : a ∈ RN , ||v||1 = 1} is a bounded set in E∗(R). Applying again the
previous proposition we conclude that f ◦ (χg) − f(0) ∈ D∗(RN ). Since χ is
arbitrary we deduce that f ◦ g ∈ E∗(RN ).

Proposition 3.5. Let ω be a weight function satisfying (α0), let f ∈
E∗(Rk) and real valued functions g1, . . . , gk ∈ E∗(RN ) be given. Then f ◦
(g1, . . . , gk) ∈ E∗(RN ).

Proof. For every 1 ≤ j ≤ k we consider the linear and continuous operator

Cj : E∗(R) → E∗(RN ), ϕ → ϕ ◦ gj .

Let B denote the k−linear and continuous map

B : E∗(RN ) × · · · × E∗(RN ) −→ E∗(RN ), B(ψ1, . . . , ψk) = ψ1 · · ·ψk,

and ∆ : E∗(RN ) ⊗π · · · ⊗π E∗(RN ) → E∗(RN ) the induced map. Then, S :=
∆ ◦ (C1 ⊗ · · · ⊗ Ck) is a continuous and linear map

S : E∗(R) ⊗π · · · ⊗π E∗(R) −→ E∗(RN ).

Moreover, for f = ϕ1 ⊗ · · · ⊗ ϕk we have

S(f)(x) = ∆(C1ϕ1 ⊗ · · · ⊗ Ckϕk)(x)
= ϕ1(g1(x)) · · ·ϕk(gk(x))
= f(g1(x), . . . , gk(x)).

Since E∗(R)⊗π . . .k)⊗πE∗(R) is a topological vector dense subspace of E∗(Rk), [8,
8.1] we may extend S as a continuous and linear map S̃ : E∗(Rk) → E∗(RN ), and
since each f ∈ E∗(Rk) can be approximated by elements in E∗(R) ⊗π . . .k) ⊗π

E∗(R), we have that S̃(f) = f ◦ (g1, . . . , gk). In particular f ◦ (g1, . . . , gk) ∈
E∗(RN ), as desired.

Corollary 3.6. Let ω be a weight function satisfying (α0). Let Ω ⊂
RN be open. Let g1, . . . , gk ∈ E∗(Ω) be real valued functions such that g =
(g1, . . . , gk) satisfies g(Ω) ⊂ U and U ⊂ Rk is open. Then f ◦ (g1, . . . , gk) ∈
E∗(Ω) for each f ∈ E∗(U).

Proof. Fix x0 ∈ Ω and take ψ ∈ D∗(Ω) identically 1 on a neighborhood
of x0. Let χ ∈ D∗(U) be identically 1 on a neighborhood of g(x0). As we have
seen, h = (χ) ◦ (ψg) ∈ E∗(RN ). Since h and f ◦ g coincide on a neighborhood
of x0, the conclusion follows.
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Corollary 3.7. Let ω and σ be two weights such that
∫ ∞
1

ω(st)
t2 dt =

O(σ(s)) as s → ∞. If f ∈ E(σ)(Rk) (resp. E{σ}(Rk)) and g1, . . . , gk ∈ E(σ)(RN )
(resp. E{σ}(RN )) then f ◦ (g1, . . . , gk) ∈ E(ω)(RN ) (resp. E{ω}(RN )).

Proof. We put

τ (s) :=
∫ ∞

1

ω(st)
t2

dt = s

∫ ∞

s

ω(t)
t2

dt.

Then, τ is a sub-additive weight function and ω ≤ τ = O(σ). The conclusion
follows.

Summarizing all the previous results we obtain

Theorem 3.8. Let ω be a weight function. The following conditions
are equivalent:

(1) ω satisfies condition (α0).

(2) For each g = (g1, . . . , gk) : Ω ⊂ RN → Rk such that gj ∈ E∗(Ω) and
g(Ω) ⊂ U ⊂ Rk and for each f ∈ E∗(U), one has f ◦ g ∈ E∗(Ω).

(3) For every g ∈ E∗(R) and f ∈ H(Ω), Ω ⊂ C open, the condition g(R) ⊂ Ω
implies f ◦ g ∈ E∗(R).

§4. The Non-linear Superposition Operator

In this section we will show that whenever composition is defined (in the
frame of ultradifferentiable functions) the non-linear superposition operator

E∗ → E∗, g → f ◦ g

is continuous. Some differentiability properties are also studied. From now on
we will assume that ω satisfies (α0).

The next Lemma follows easily from the estimates in the previous sections.
Here (Kn) denotes a fundamental sequence of compact sets in RN , pn := n

‖ · ‖Kn,n, which is a fundamental sequence of seminorms in E(ω)(RN ) and (qn)
is a fixed fundamental sequence of seminorms in E(ω)(R).

Lemma 4.1. For all k there is m such that for each C1 there exists 	

so that if f ∈ E(ω)(R) and g ∈ E(ω)(RN ) satisfies pm(g) ≤ C1, then pk(f ◦ g) ≤
q�(f).
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Proposition 4.2. The map

E(ω)(Rk) × (E(ω)(RN ))k −→E(ω)(RN )
(f, g1, . . . , gk) → f ◦ (g1, , . . . , gk)

is continuous.

Proof. Without loss of generality we assume that f is real valued. Fix
a compact convex subset K in E(ω)(RN ). By the continuity of the product in
E(ω)(RN ), given L ∈ N we find r such that

pL(h1 · · ·hk) ≤ pr(h1) · · · pr(hk).

For this r we take m as in Lemma 4.1 and C1 := maxh∈K pm(h). Applying
again the Lemma 4.1 we find 	 with

pr(f ◦ h) ≤ p�(f), ∀h ∈ K.

Let g := (g1, . . . , gk) ∈ Kk and f1, . . . fk ∈ E(ω)(R) be given and put f =
f1 ⊗ · · · ⊗ fk ∈ E(ω)(Rk). Then f ◦ g = (f1 ◦ g1) · · · (fk ◦ gk) hence

pL(f ◦ g) ≤ pr(f1 ◦ g1) · · · pr(fk ◦ gk) ≤ q�(f1) · · · q�(fk).

Define Cg : E(ω)(R) ⊗k) · · · E(ω)(R) −→ E(ω)(RN ) by Cg(f) = f ◦ g. Cg

is a linear map and by the estimates above, it is continuous. In fact, the
family {Cg : g ∈ Kk} is equicontinuous. Since E(ω)(R)⊗k) · · · E(ω)(R) is a dense
subspace of E(ω)(Rk), we conclude that {Cg : g ∈ Kk} is also equicontinuous as a
family of operators from E(ω)(Rk) to E(ω)(RN ), that is, if (r�)� is a fundamental
sequence of seminorms in E(ω)(Rk) for each m there is 	 so that

pm(f ◦ g) ≤ r�(f)

for each g ∈ Kk.

We take g := (g1, . . . , gk), h := (h1, . . . , hk) ∈ Kk, then

f(g(x)) − f(h(x)) =
k∑

j=1

(gj(x) − hj(x)) ·
∫ 1

0

(Djf ◦ αt)(x)dt

where αt(x) = h(x)+ t(g(x)− h(x)) ∈ Kk for each 0 ≤ t ≤ 1. We easily deduce
that for each L there is m:

pL(f ◦ g − f ◦ h) ≤
k∑

j=1

pm(gj(x) − hj(x)) ·
∫ 1

0

pm(Djf ◦ αt)dt

≤
k∑

j=1

r�(Djf)pm(gj − hj).
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Therefore, for a fix compact L in E(ω)(Rk) there is M so that f1, f2 ∈ L and
g, h ∈ Kk implies

pL(f1 ◦ g − f2 ◦ h) ≤ pL(f1 ◦ g − f1 ◦ h) + pL((f1 − f2) ◦ h)

≤ M

k∑
j=1

pm(gj − hj) + r�(f1 − f2).

The proof is complete since E(ω)(Rk) × (E(ω)(RN ))k is metrizable.

Next we analyze the Roumieu case.

Lemma 4.3. Let B be a bounded set in E{ω}(RN ). For each continuous
seminorm p in E{ω}(RN ) there is a continuous seminorm q in E{ω}(R) such
that p(f ◦ g) ≤ q(f) for every f ∈ E{ω}(R) and each g ∈ B.

Proof. For a fix L ⊂⊂ R
N define L̃ := {a + v : a ∈ L, ‖ v ‖1= 1}.

Since B is bounded in E{ω}(RN ) there is a compact set K in R such that⋃
{g(L̃) : g ∈ B} ⊂ K. The set C := {ga,v : g ∈ B, a ∈ L, ‖ v ‖1= 1} is a

bounded set in E{ω}(R). We define C1(λ) := sup{‖ h ‖[−1,1],2λ: h ∈ C} which is
finite if λ is small enough (0 < λ ≤ λ0). Using Proposition 2.1 we find C2(λ)
and µ(λ) such that

‖ f ◦ h ‖[−1,1],µ(λ)≤ C2(λ) ‖ f ‖h([−1,1]),λ≤ C2(λ) ‖ f ‖K,λ

for all h ∈ C; that is, for every g ∈ B, every a ∈ L and ‖ v ‖= 1 we have

‖ (f ◦ g)a,v ‖[−1,1],µ(λ)≤ C2(λ) ‖ f ‖K,λ .

Therefore, it follows from (the proof of) Proposition 2.3 that there are r(λ) and
C3(λ) satisfying

‖ (f ◦ g) ‖L,r(λ)≤ C3(λ)supa∈L,‖v‖=1 ‖ (f ◦ g)a,v ‖[−1,1],µ(λ)≤ C(λ) ‖ f ‖K,λ,

(0 < λ ≤ λ0) where C(λ) = C1(λ)C2(λ), and the inequality holds for arbitrary
f ∈ E{ω}(R) and g ∈ B. Moreover the map λ → r(λ) is an increasing bijection
from ]0,∞[ onto itself.

Now, given a continuous seminorm in E{ω}(RN ) there exists a compact set
L in RN such that p is a continuous seminorm in E{ω}(L) and consequently,
p ≤ infnMn ‖ ‖L,r(1/n) for some sequence (Mn)n. It suffices to take

q := infnMnC(1/n) ‖ ‖K,1/n

to conclude.
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Theorem 4.4. For each f ∈ E{ω}(Rk) the non-linear superposition op-
erator

Tf : (E{ω}(RN ))k −→ E{ω}(RN ), (g1, . . . , gk) → f ◦ (g1, , . . . , gk)

is continuous.

Proof. Using Lemma 4.3 we may show as in the proof of Proposition 4.2
that Tf maps bounded sets into bounded sets. On the other hand, it is easy
to see that Tf is continuous if and only if Tf : (D{ω}(RN ))k −→ E{ω}(RN )
is continuous. Since D{ω}(RN ) is an LN− space with compact linking maps
(also called Silva space), by [24, 8.5.28] it is enough to see that Tf restricted
to (D{ω}(RN ))k is sequentially continuous. This follows from the fact that
bounded sets are compact and that the non-linear operator is continuous in the
C∞-setting.

Once we have seen that the composition operator is continuous whenever
it is well defined, we would like to study differentiability properties of the
operator. Unfortunately, it seems that a satisfactory differential calculus stops
at the level of Banach spaces. For instance, as it is stated in [18] “if one looks for
infinitely often differentiable mappings, then one ends up with 6 inequivalent
notions.” We will consider smooth mappings, that is

Definition 4.5 ([18]). Let E be a locally convex space. A curve c :
R → E is called differentiable if the derivative c′(t) := lims→0

1
s (c(t+ s)− c(t))

at t exists for all t. A curve c : R → E is called smooth if all the iterated
derivatives exist. If F is another locally convex space, a map f : E → F is
called smooth if it maps smooth curves in E to smooth curves in F.

As Boman [5] showed, the smooth mappings on RN in the previous sense
are exactly the usual smooth mappings.

Proposition 4.6. Let f ∈ E∗(R) be given. The map

Tf : E∗(RN ) → E∗(RN ) , g → f ◦ g

is smooth.

Proof. We put E := E∗(RN ) and we fix α ∈ C∞(R, E). We will proceed
by induction on n to show that Tf ◦ α ∈ Cn(R, E) and

(Tf ◦ α)(n)(t) =
∑ n!

k1! . . . kn!

(
f (k) ◦ α(t)

)(
α′(t)
1!

)k1

. . .

(
α(n)(t)

n!

)kn

.

(4.3)
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Let us assume n = 1 and let β(t) = f ◦ α(t). Given s, t ∈ R (s 
= t) we note
that, Propositions 4.2 and 4.4, ξ → f ′ ◦ (ξα(t) + (1 − ξ)α(s)) is a continuous
function from [0, 1] to E. Consider the vector valued integral

us :=
∫ 1

0

f ′ ◦ (ξα(t) + (1 − ξ)α(s))dξ ∈ E.

Since β(t)(x)− β(s)(x) = f(α(t)(x))− f(α(s)(x)) = (α(t)(x)−α(s)(x)) · us(x)
then

β(t) − β(s)
t − s

=
α(t) − α(s)

t − s
· us.

Since for each continuous seminorm p in E,

p(us − f ′ ◦ α(t)) ≤
∫ 1

0

p(f ′ ◦ (ξα(t) + (1 − ξ)α(s))− f ′α(t))dξ,

goes to zero as s → t, we conclude

lim
s→t

β(t) − β(s)
t − s

= (f ′ ◦ α(t))α′(t),

with convergence in the topology of E. Hence the statement is proved for n = 1.

Let us now assume that 4.3 holds for derivatives of order less than or equal to
n. After replacing f by f (k), we have already proved that the function R → E,
t → f (k) ◦ α(t) has derivative (f (k+1) ◦ α(t))α′(t). It follows from 4.3 that
Φ : t → (Tf ◦ α)(n)(t) is derivable. In order to evaluate the derivative we fix
x ∈ RN and we put γ : R → R, γ(t) := 〈δx, α(t)〉 = α(t)(x). We now observe
that

〈δx, Φ(t)〉=
∑

n!
k1!...kn!f

(k)(γ(t))
(

γ′(t)
1!

)k1

. . .
(

γ(n)(t)
n!

)kn

= (f ◦ γ)(n)(t).

Finally, an application of Fàa di Bruno formula gives 4.3 for n + 1.

If the composition operator is defined by a real analytic function we may
expect a better behavior.

Definition 4.7 ([18]). Let E be a locally convex space. A curve α :
R → E is called weakly real analytic or simply real analytic if u ◦ α is a real
analytic function for every u ∈ E′, and we write α ∈ A(R, E).

A curve α : R → E is called topologically real analytic, and we write
α ∈ At(R, E), if for every t ∈ R there are ε > 0 and aj ∈ E such that
α(s) =

∑∞
j=0 aj(s − t)j for |s − t| < ε and the series converges in E.
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If F is another locally convex space, a map f : E → F is called (topo-
logically) real analytic if it maps (topologically) real analytic curves in E to
(topologically) real analytic curves in F.

In the next lemma we do not assume that the class E∗(R) is closed by
composition.

Lemma 4.8. Let f ∈ A(R) (resp. f ∈ H(C)) be given and we consider
φ : R → E∗(R) given by φ(t) := f(· + t). Then φ ∈ A(R, E∗(R))(resp. φ ∈
At(R, E∗(R))).

Proof. Fix µ ∈ E ′
∗(R) and denote K := suppµ. For some ε > 0 the

function f admits an holomorphic extension to the open set Ωε := {z ∈
C | d(z, K) < ε}. We fix 0 < δ < ε

2 . Then, for every |z| < δ, f(·+ z) ∈ H∞(Ωδ)

and the series
∑∞

n=0
f(n)(·)

n! zn converges to f(· + z) in H∞(Ωδ). Consequently,

U := Ωδ ∩R satisfies K ⊂ U and
∑∞

n=0
f(n)(·)

n! tn converges to f(·+ t) in E(ω)(U)
for every |t| < δ. From where it follows

〈µ, φ(t)〉 =
∞∑

n=0

〈µ, f (n)〉
n!

tn

for |t| < δ. The same argument shows that µ ◦ φ(t) is real-analytic in a neigh-
borhood of any point.

If f is an entire function, we already know that φ is weakly analytic, and
from the Cauchy inequalities it is easy to see that for every compact interval I

in R and every continuous seminorm q in E(ω)(R) and each m ∈ N we have

sup
t∈I

sup
j∈N

q(φ(j)(t))
j!mj

< ∞,

and we use [7, Proposition 10] to conclude. In the Roumieu case, we have that
E(ω)(R) ↪→ E{ω}(R) continuously and continuous linear operators are topologi-
cally real analytic.

Proposition 4.9. Let f ∈ A(R) be given and assume that E∗(R) is
closed by composition. Then, the map

Tf : E∗(RN ) → E∗(RN ) , g → f ◦ g

is real-analytic. If f is an entire function, then Tf is topologically real analytic.
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Proof. Put E := E(∗)(RN ) and fix α ∈ A(R, E). We have to show that
β := Tf ◦ α ∈ A(R, E). We already proved that β ∈ C∞(R, E) and for every
continuous seminorm p in E there is a continuous seminorm q in E such that

p(β(n)(t)) ≤
∑ n!

k1! . . . kn!
q
(
f (k) ◦ α(t)

)(
q(α′(t))

1!

)k1

. . .

(
q(α(n)(t))

n!

)kn

.

We denote vm(j) := 1
mj and we fix a compact interval I ⊂ R. We apply [7,

Proposition 10] to find m ∈ N (which depends on q in the weakly analytic
case and which does not depend on q if α topologically real analytic) with the
property

sup
t∈I

sup
j∈N

q(α(j)(t))
j!

vm(j) ≤ C < +∞.

Since {α(t) : t ∈ I} is a bounded set in E, by Lemmas 4.1 or 4.3 there is a
continuous seminorm r on E such that

q(f (k) ◦ α(t)) ≤ r(f (k))

for all k ∈ N and t ∈ I. We apply Lemma 4.8 (since φ(n)(0) = f (n)) and [7,
Proposition 10] to find m large enough so that

sup
k∈N

r(f (k))
k!

vm(k) ≤ D < +∞.

Here m is independent of r if f is entire. Hence, for every t ∈ I, we have

p(β(n)(t))≤
∑ n!

k1! . . . kn!
(Dmkk!)(Cm)k1 . . . (Cmn)kn

= D
∑ n!

k1! . . . kn!
mkk!Ckmn.

Here we used that k1 + · · · + kn = k and k1 + · · · + nkn = n. Consequently

p(β(n)(t))
n!

vm(n)≤D
∑ n!

k1! . . . kn!
(mC)k

≤D(2mC)n.

We finally take 	 ∈ N, 	 > 2m2C and we obtain

sup
t∈I

sup
n∈N

p(β(n)(t))
n!

v�(n) ≤ D,

where 	 depends on the seminorm if α ∈ A(R, E) and f is real-analytic, whereas
	 is independent on the seminorm in case α ∈ At(R, E) anf f is an entire
function. We apply again [7, Proposition 10] to finish the proof.
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