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Abstract

We study the theory of scattering for the Maxwell-Schrödinger system in the
Coulomb gauge in space dimension 3. We prove in particular the existence of modified
wave operators for that system with no size restriction on the magnetic field data in
the framework of a direct method which requires smallness of the Schrödinger data,
and we determine the asymptotic behaviour in time of solutions in the range of the
wave operators.

§1. Introduction

This paper is devoted to the theory of scattering and more precisely to the
construction of modified wave operators for the Maxwell-Schrödinger system
(MS)3 in 3 + 1 dimensional space time. That system describes the evolution
of a charged nonrelativistic quantum mechanical particle interacting with the
(classical) electromagnetic field it generates. It can be written as follows:

i∂tu = −(1/2)∆Au + A0u

��A0 − ∂t (∂tA0 + ∇ · A) = |u|2
��A + ∇ (∂tA0 + ∇ · A) = Im u∇Au.

(1.1)
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Here u and (A, A0) are respectively a complex valued function and an IR3+1

valued function defined in space time IR3+1, ∇A = ∇ − iA , ∆A = ∇2
A and

�� = ∂2
t − ∆ is the d’Alembertian in IR3+1. We shall consider that system

exclusively in the Coulomb gauge ∇·A = 0. In that gauge, one can replace the
system (1.1) by a formally equivalent one in the following standard way. The
second equation of (1.1) can be solved for A0 by

A0 = −∆−1|u|2 = (4π|x|)−1 ∗ |u|2 ≡ g(|u|2)(1.2)

Substituting (1.2) into the first and last equations of (1.1) yields the new system{
i∂tu = −(1/2)∆Au + g(|u|2)u
��A = P Im u∇Au

(1.3)

where P = 1l−∇∆−1∇ is the projector on divergence free vector fields, together
with the Coulomb gauge condition ∇ · A = 0 which is formally preserved by
the evolution. From now on we restrict our attention to the system (1.3).

The (MS)3 system is known to be locally well posed in sufficiently regular
spaces [11], [12] and to have global weak solutions in the energy space [9] in
various gauges including the Coulomb gauge. However that system is so far
not known to be globally well posed in any space.

A large amount of work has been devoted to the theory of scattering for
nonlinear equations and systems centering on the Schrödinger equation, in par-
ticular for nonlinear Schrödinger (NLS) equations, Hartree equations, Klein-
Gordon-Schrödinger (KGS), Wave-Schrödinger (WS) and Maxwell-Schrödinger
(MS) systems. As in the case of the linear Schrödinger equation, one must dis-
tinguish the short range case from the long range case. In the former case,
ordinary wave operators are expected and in a number of cases proved to exist,
describing solutions where the Schrödinger function behaves asymptotically like
a solution of the free Schrödinger equation. In the latter case, ordinary wave
operators do not exist and have to be replaced by modified wave operators in-
cluding a suitable phase in their definition. In that respect, the (MS)3 system
(1.1) belongs to the borderline (Coulomb) long range case, because of the t−1

decay in L∞ norm of solutions of the wave equation. Such is the case also
for the Hartree equation with |x|−1 potential, for the Wave-Schrödinger system
(WS)3 in IR3+1 and for the Klein-Gordon-Schrödinger system (KGS)2 in IR2+1.

The construction of modified wave operators for the previous long range
equations and systems has been tackled by two methods. The first one was
initiated in [13] on the example of the NLS equation in IR1+1 and subsequently
applied to the NLS equation in IR2+1 and IR3+1 and to the Hartree equation [1],
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to the (KGS)2 system [14], [15], [16], [17], to the (WS)3 system [18] and to the
(MS)3 system [19], [21]. That method is rather direct, starting from the original
equation or system. It will be sketched below. It is restricted to the (Coulomb)
limiting long range case, and requires a smallness condition on the asymptotic
state of the Schrödinger function. Early applications of the method required
in addition a support condition on the Fourier transform of the Schrödinger
asymptotic state and a smallness condition of the Klein-Gordon or Maxwell field
in the case of the (KGS)2 or (MS)3 system respectively [14], [21]. The support
condition was subsequently removed for the (KGS)2 and (MS)3 system and the
method was applied to the (WS)3 system without a support condition, at the
expense of adding a correction term to the Schrödinger asymptotic function
[15], [18], [19]. The smallness condition of the KG field was then removed for
the (KGS)2 system, first with and then without a support condition [16], [17].
Finally the smallness condition on the wave field was removed for the (WS)3
system, without a support condition or a correction term to the Schrödinger
asymptotic function [8].

In the present paper, we extend the results of our previous paper [8] from
the (WS)3 system to the (MS)3 system in the Coulomb gauge (1.3). In partic-
ular we prove the existence of modified wave operators without any smallness
condition on the magnetic potential A, and without a support condition or a
correction term on the asymptotic Schrödinger function. In addition, in the
same spirit as in [8], we treat the problem in function spaces that are as large
as possible, namely with regularity as low as possible. As a consequence, we
require only a much lower regularity of the asymptotic state than in previous
works.

For completeness and although we shall not make use of that fact in the
present paper, we mention that the same problem for the Hartree equation
and for the (WS)3 and (MS)3 system can also be treated by a more complex
method where one first applies a phase-amplitude separation to the Schrödinger
function. The main interest of that method is to remove the smallness condition
on the Schrödinger function, and to go beyond the Coulomb limiting case for
the Hartree equation. That method has been applied in particular to the (WS)3
system and to the (MS)3 system in a special case [4], [5], [6].

We now sketch briefly the method of construction of the modified wave
operators initiated in [13]. That construction basically consists in solving
the Cauchy problem for the system (1.3) with infinite initial time, namely
in constructing solutions (u, A) with prescribed asymptotic behaviour at infin-
ity in time. We restrict our attention to time going to +∞. That asymptotic
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behaviour is imposed in the form of suitable approximate solutions (ua, Aa)
of the system (1.3). The approximate solutions are parametrized by data
(u+, A+, Ȧ+) which play the role of (actually would be in simpler e.g. short
range cases) initial data at time zero for a simpler evolution. One then looks
for exact solutions (u, A) of the system (1.3), the difference of which with the
given asymptotic ones tends to zero at infinity in time in a suitable sense, more
precisely, in suitable norms. The wave operator is then defined traditionally
as the map Ω+ : (u+, A+, Ȧ+) → (u, A, ∂tA)(0). However what really matters
is the solution (u, A) in the neighbourhood of infinity in time, namely in some
interval [T,∞), and we shall restrict our attention to the construction of such
solutions. Continuing such solutions down to t = 0 is a somewhat different
question, connected with the global Cauchy problem at finite times, which we
shall not touch here, especially since the (MS)3 system is not known to be
globally well posed in any function space.

The construction of solutions (u, A) with prescribed asymptotic behaviour
(ua, Aa) is performed in two steps.

Step 1. One looks for (u, A) in the form (u, A) = (ua +v, Aa +B) with ∇·Aa =
∇ · B = 0. The system satisfied by the new functions (v, B) can be written as{

i∂tv = −(1/2)∆Av + g(|u|2)v + G1 − R1

��B = G2 − R2
(1.4)

where G1 and G2 are defined by{
G1 = iB · ∇Aa

ua + (1/2)B2ua + g
(
|v|2 + 2 Reuav

)
ua

G2 = P Im (v∇Av + 2v∇Aua) − PB|ua|2
(1.5)

and the remainders are defined by{
R1 = i∂tua + (1/2)∆Aa

ua − g
(
|ua|2

)
ua

R2 = ��Aa − P Im ua∇Aa
ua.

(1.6)

It is technically useful to consider also the partly linearized system for functions
(v′, B′) {

i∂tv
′ = −(1/2)∆Av′ + g(|u|2)v′ + G1 − R1

��B′ = G2 − R2.
(1.7)

The first step of the method consists in solving the system (1.4) for (v, B), with
(v, B) tending to zero at infinity in time in suitable norms, under assumptions
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on (ua, Aa) of a general nature, the most important of which being decay as-
sumptions on the remainders R1 and R2. That can be done as follows. One
first solves the linearized system (1.7) for (v′, B′) with given (v, B) and initial
data (v′, B′)(t0) = 0 for some large finite t0. One then takes the limit t0 → ∞
of that solution, thereby obtaining a solution (v′, B′) of (1.7) which tends to
zero at infinity in time. That construction defines a map φ : (v, B) → (v′, B′).
One then shows by a contraction method that the map φ has a fixed point.
That first step will be performed in Section 2.

Step 2. The second step of the method consists in constructing approximate
asymptotic solutions (ua, Aa) satisfying the general estimates needed to perform
Step 1. With the weak time decay allowed by our treatment of Step 1, one can
take the simplest version of the asymptotic form used in previous works [6],
[19], [21]. Thus we choose

ua = MD exp(−iϕ)w+(1.8)

where

M ≡ M(t) = exp(ix2/2t),(1.9)

D(t) = (it)−n/2D0(t), (D0(t)f)(x) = f(x/t),(1.10)

ϕ is a real phase to be chosen below and w+ = Fu+. We furthermore choose
Aa in the form Aa = A0+A1 where A0 is the solution of the free wave equation
��A0 = 0 given by

A0 = cos ωtA+ + ω−1 sin ωtȦ+(1.11)

where ω = (−∆)1/2, and where

A1(t) =
∫ ∞

t

dt′(ωt′)−1 sin(ω(t′ − t))P x|ua(t′)|2.(1.12)

Substituting (1.8) into (1.12) yields

A1(t) = t−1D0(t)Ã1(1.13)

where

Ã1 =
∫ ∞

1

dν ν−3ω−1 sin(ω(ν − 1))D0(ν)P x|w+|2.(1.14)

In particular Ã1 is constant in time. We finally choose ϕ by imposing

ϕ(1) = 0, ∂tϕ = t−1
(
g(|w+|2) − x · Ã1

)
(1.15)
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so that

ϕ = (�n t)
(
g(|w+|2) − x · Ã1

)
.(1.16)

We shall show in Section 3 that the previous choice fulfils the condi-
tions needed for Step 1, under suitable assumptions on the asymptotic state
(u+, A+, Ȧ+).

In order to state our results we introduce some notation. We denote by F

the Fourier transform, by < ·, · > the scalar product in L2 and by ‖ · ‖r the
norm in Lr ≡ Lr(IR3), 1 ≤ r ≤ ∞ and we define δ(r) = 3/2 − 3/r. For any
nonnegative integer k and for 1 ≤ r ≤ ∞, we denote by W k

r the Sobolev spaces

W k
r =

u : ‖u; W k
r ‖ =

∑
α:0≤|α|≤k

‖∂α
x u‖r < ∞


where α is a multiindex, so that Hk = W k

2 . We shall need the weighted Sobolev
spaces Hk,s defined for k, s ∈ IR by

Hk,s =
{

u : ‖u; Hk,s‖ = ‖(1 + x2)s/2(1 − ∆)k/2u‖2 < ∞
}

so that Hk = Hk,0. For any interval I, for any Banach space X and for any q,
1 ≤ q ≤ ∞, we denote by Lq(I, X) (resp. Lq

loc(I, X)) the space of Lq integrable
(resp. locally Lq integrable) functions from I to X if q < ∞ and the space of
measurable essentially bounded (resp. locally essentially bounded) functions
from I to X if q = ∞. For any h ∈ C([1,∞), IR+), non increasing and tending
to zero at infinity and for any interval I ⊂ [1,∞), we define the space

X(I) =
{

(v, B) : v ∈ C(I, H2) ∩ C1(I, L2),(1.17)

‖ (v, B); X(I) ‖ ≡ Sup
t∈I

h(t)−1
(
‖ v(t); H2 ‖ + ‖ ∂tv(t) ‖2 + ‖ v; L8/3(J, W 1

4 ) ‖

+ ‖ B; L4(J, W 1
4 ) ‖ + ‖ ∂tB; L4(J, L4) ‖

)
< ∞

}
where J = [t,∞) ∩ I.

We can now state our result.

Proposition 1.1. Let h(t) = t−1(2 + �n t)2 and let X(·) be defined by
(1.17). Let ua be defined by (1.8) with w+ = Fu+ and with ϕ defined by (1.16)
(1.2) (1.14). Let Aa = A0 + A1 with A0 defined by (1.11) and A1 by (1.13)
(1.14). Let u+ ∈ H3,1 ∩H1,3 with ‖ xw+ ‖4 and ‖ w+ ‖3 sufficiently small. Let
∇2A+, ∇Ȧ+, ∇2(x · A+) and ∇(x · Ȧ+) ∈ W 1

1 with A+, x · A+ ∈ L3 and Ȧ+,
x · Ȧ+ ∈ L3/2 and let ∇ · A+ = ∇ · Ȧ+ = 0.
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Then there exists T , 1 ≤ T < ∞ and there exists a unique solution (u, A)
of the system (1.3) such that (u − ua, A − Aa) ∈ X([T,∞)). Furthermore
∇(A − Aa), ∂t(A − Aa) ∈ C([T,∞), L2) and A satisfies the estimate

‖ ∇(A − Aa)(t) ‖2 ∨ ‖ ∂t(A − Aa)(t) ‖2≤ Ct−3/2(2 + �n t)2(1.18)

for some constant C depending on (u+, A+, Ȧ+) and for all t ≥ T .

Remark 1.1. The only smallness conditions bear on ‖ xw+ ‖4 and on
‖ w+ ‖3 and are required by the magnetic interaction and the Hartree in-
teraction (1.2) respectively. In particular there is no smallness condition on
(A+, Ȧ+).

Remark 1.2. The assumptions A+, x · A+ ∈ L3 and Ȧ+, x · Ȧ+ ∈ L3/2

serve to exclude the occurrence of constant terms in A+, x · A+, Ȧ+, x · Ȧ+

and of terms linear in x in A+, x · A+, but are otherwise implied by the W 1
1

assumptions on those quantities through Sobolev inequalities.

Remark 1.3. The assumptions on A+, Ȧ+ imply that ω1/2A+, ω−1/2Ȧ+

∈ H1 through Sobolev inequalities. As a consequence the free wave solution
A0 defined by (1.11) belongs to L4(IR, W 1

4 ) by Strichartz inequalities, with
∂tA0 ∈ L4(IR, L4) [3]. In particular A0 satisfies the local in time regularity of
B required in the definition of the space X(·). Furthermore ∇A+, Ȧ+ ∈ L2 and
therefore ∇A0, ∂tA0 ∈ (C ∩ L∞)(IR, L2), namely A0 is a finite energy solution
of the wave equation.

§2. The Cauchy Problem at Infinite Initial Time

In this section we perform the first step of the construction of solutions of
the system (1.3) as described in the introduction, namely we construct solutions
(v, B) of the system (1.4) defined in a neighbourhood of infinity in time and
tending to zero at infinity under suitable regularity and decay assumptions on
the asymptotic functions (ua, Aa) and on the remainders Ri. As a preliminary
to that study, we need to solve the Cauchy problem with finite initial time for
the linearized system (1.7). That system consists of two independent equations.
The second one is simply a wave equation with an inhomogeneous term and
the Cauchy problem with finite or infinite initial time for it is readily solved
under suitable assumptions on the inhomogeneous term, which will be fulfilled
in the applications. The first one is a Schrödinger equation with time dependent
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magnetic and scalar potentials and with time dependent inhomogeneity, which
we rewrite in a more concise form and with slightly different notation as

i∂tv = −(1/2)∆Av + V v + f.(2.1)

We first give some preliminary results on the Cauchy problem with finite
initial time for that equation at the level of regularity of H2. The following
proposition is a minor variation of Proposition 3.2 in [7].

Proposition 2.1. Let I be an interval, let A ∈ C(I, L4 + L∞), ∂tA ∈
L1

loc(I, L4 + L∞), V ∈ C(I, L2 + L∞), ∂tV ∈ L1
loc(I, L2 + L∞), f ∈ C(I, L2)

and ∂tf ∈ L1
loc(I, L2). Let t0 ∈ I and v0 ∈ H2. Then

(1) There exists a unique solution v ∈ C(I, H2) ∩ C1(I, L2) of (2.1) in I with
v(t0) = v0. That solution is actually unique in C(I, H1). For all t ∈ I, the
following equality holds:

‖ v(t) ‖2
2 − ‖ v0 ‖2

2=
∫ t

t0

dt′ 2 Im < v, f > (t′).(2.2)

(2) Let in addition A ∈ L2
loc(I, L∞), ∇A ∈ L1

loc(I, L∞) and V ∈ L1
loc(I, L∞).

Then for all t ∈ I, the following equality holds:

‖ ∂tv(t) ‖2
2−‖ (−(1/2)∆Av0+V v0+f) (t0) ‖2

2=
∫ t

t0

dt′ 2 Im < ∂tv, f1 > (t′)

(2.3)

where

f1 = i (∂tA) · ∇Av + (∂tV ) v + ∂tf.(2.4)

Furthermore the solution is unique in C(I, L2).

We shall make an essential use of the well-known Strichartz inequalities
for the Schrödinger equation [2], [10], [22], which we recall for completeness.
We define

U(t) = exp(i(t/2)∆).(2.5)

A pair of Hölder exponents (q, r) will be called admissible if 0 ≤ 2/q = 3/2 −
3/r ≤ 1. For any r, 1 ≤ r ≤ ∞, we define r by 1/r + 1/r = 1.
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Lemma 2.1. The following inequalities hold.
(1) For any admissible pair (q, r) and for any u ∈ L2

‖ U(t)u; Lq(IR, Lr) ‖≤ C ‖ u ‖2 .(2.6)

(2) Let I be an interval and let t0 ∈ I. Then for any admissible pairs (qi, ri),
i = 1, 2,

‖
∫ t

t0

dt′U(· − t′)f(t′); Lq1(I, Lr1) ‖≤ C ‖ f ; Lq2(I, Lr2) ‖ .(2.7)

In addition to the Strichartz inequalities for the Schrödinger equation, we
shall need special cases of the Strichartz inequalities for the wave equation [3],
[10]. Let I be an interval, let t0 ∈ I and let B(t0) = ∂tB(t0) = 0. Then

‖ B; L4(I, L4) ‖≤ C ‖ ��B; L4/3(I, L4/3) ‖,(2.8)

‖ ∇B; L4(I, L4) ‖ ∨ ‖ ∂tB; L4(I, L4) ‖≤ C ‖ ∇��B; L4/3(I, L4/3) ‖,(2.9)

Sup
t∈I

(‖ ∇B(t) ‖2 ∨ ‖ ∂tB(t) ‖2) ≤‖ ��B; L1(I, L2) ‖ .(2.10)

We now begin the construction of solutions of the system (1.4). For any
T , t0 with 1 ≤ T < t0 ≤ ∞, we denote by I the interval I = [T, t0] and
for any t ∈ I, we denote by J the interval J = [t, t0]. In all this section, we
denote by h a function in C([1,∞), IR+) such that for some λ > 0, the function
h(t) ≡ tλh(t) is non increasing and tends to zero as t → ∞, and we denote by
j, k nonnegative integers.

We shall make repeated use of the following lemma.

Lemma 2.2. Let 1 ≤ q, qk ≤ ∞(1 ≤ k ≤ n) be such that

µ ≡ 1/q −
∑

k

1/qk ≥ 0.

Let fk ∈ Lqk(I) satisfy

‖ fk; Lqk(J) ‖≤ Nk h(t)(2.11)

for 1 ≤ k ≤ n, for some constants Nk and for all t ∈ I.
Let ρ ≥ 0 such that nλ+ ρ > µ. Then the following inequality holds for all

t ∈ I

‖
(∏

k

fk

)
t−ρ; Lq(J) ‖≤ C

(∏
k

Nk

)
h(t)n tµ−ρ(2.12)



�

�

�

�

�

�

�

�

430 Jean Ginibre and Giorgio Velo

where

C =
(
1 − 2−q(nλ+ρ−µ)

)−1/q

.(2.13)

Proof. For t ∈ I, we define Ij = [t2j , t2j+1] ∩ I so that J = ∪
j≥0

Ij . We

then rewrite Lq(J) = �q
j(L

q(Ij)). We estimate

‖
(∏

k

fk

)
t−ρ; Lq(J) ‖ ≤ ‖

(∏
k

‖ fk; Lqk(Ij) ‖
)

‖ t−ρ; L1/µ(Ij) ‖ ; �q
j ‖

≤
(∏

k

Nk

)
‖ h(t2j)n(t2j)−ρ+µ; �q

j ‖

≤
(∏

k

Nk

)
h(t)nt−nλ−ρ+µ ‖ 2j(−nλ−ρ+µ); �q

j ‖

from which (2.12) follows.

Remark 2.1. In some special cases, the dyadic decomposition is not
needed for the proof of Lemma 2.2. For instance if all the qk are infinite,
one can estimate

‖ h(t)nt−ρ ‖q≤ h(t)n ‖ t−ρ−nλ ‖q(2.14)

≤ C h(t)n t−ρ−nλ+1/q = C h(t)n t−ρ+µ

by a direct application of Hölder’s inequality in J . The same situation occurs
if ρ > µ.

In order to estimate the Hartree interaction term (1.2), we shall use the
following Lemma. We recall that δ(r) = 3/2 − 3/r.

Lemma 2.3. The following estimates hold.

(1)

‖ g(v1v2)v3 ‖r4≤ C
∏

1≤i≤3

‖ vi ‖ri
(2.15)

for 0 ≤ δi = δ(ri) ≤ 1, 1 ≤ i ≤ 4,
∑

δi = 1, 0 < δ1 + δ2 < 1.

(2)

‖ g(v1v2) ‖∞≤ C ‖ v2 ‖r2

(
‖ v1 ‖r1+‖ v1 ‖r1−

)1/2(2.16)

for 0 < 3/r1 = 2 − 3/r2 ≤ 2, 1/r1± = (1 ∓ ε)/r1, ε > 0.
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Proof. Part (1) follows from the Hölder and Hardy-Littlewood-Sobolev
inequalities.
Part (2) is proved by separating |x|−1 into short and long distance parts, apply-
ing the Hölder inequality, and optimizing the result with respect to the point
of separation (see [1]).

We can now state the main result of this section.

Proposition 2.2. Let h be defined as above with λ = 3/8 and let X(·)
be defined by (1.17). Let ua, Aa, R1 and R2 be sufficiently regular (for the
following estimates to make sense) and satisfy the estimates

‖ ∂j
t∇kua(t) ‖r≤ c t−δ(r) for 2 ≤ r ≤ ∞(2.17)

and in particular

‖ ua ‖3≤ c3 t−1/2 , ‖ ∇ua ‖4 ≤ c4 t−3/4,(2.18)

‖ ∇2ua(t) ‖4 ∨ ‖ ∂t∇ua(t) ‖4≤ c t−3/4,(2.19)

‖ ∂j
t∇kAa(t) ‖∞≤ a t−1,(2.20)

‖ ∂j
t∇kR1; L1([t,∞), L2) ‖≤ r1 h(t),(2.21)

‖ R2; L4/3([t,∞), W 1
4/3) ‖≤ r2 h(t),(2.22)

for 0 ≤ j + k ≤ 1, for some constants c, c3, c4, a, r1 and r2 with c3 and c4

sufficiently small and for all t ≥ T0 ≥ 1. Then there exists T , T0 ≤ T < ∞
and there exists a unique solution (v, B) of the system (1.4) in X([T,∞)). If
in addition

‖ R2; L1([t,∞), L2) ‖≤ r2 t−1/2 h(t)(2.23)

for all t ≥ T , then ∇B, ∂tB ∈ C([T,∞), L2) and B satisfies the estimate

‖ ∇B(t) ‖2 ∨ ‖ ∂tB(t) ‖2≤ C
(
t−1/2 + t1/4h(t)

)
h(t)(2.24)

for some constant C and for all t ≥ T .

Proof. We follow the sketch given in the introduction. Let T0 ≤ T < ∞
and let (v, B) ∈ X([T,∞)). In particular (v, B) satisfies

‖ v(t) ‖2≤ N0 h(t)(2.25)

‖ v; L4(J, L3) ‖ ∨ ‖ v; L8/3(J, L4) ‖≤ N1 h(t)(2.26)
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‖ B; L4(J, L4) ‖≤ N2 h(t)(2.27)

‖ ∂tv(t) ‖2≤ N3 h(t)(2.28)

‖ ∇v; L4(J, L3) ‖ ∨ ‖ ∇v; L8/3(J, L4) ‖≤ N4 h(t)(2.29)

‖ ∆v(t) ‖2≤ N5 h(t)(2.30)

‖ ∇B; L4(J, L4) ‖ ∨ ‖ ∂tB; L4(J, L4) ‖≤ N6 h(t)(2.31)

for some constants Ni, 0 ≤ i ≤ 6 and for all t ≥ T , with J = [t,∞). Further-
more from (2.25) (2.30) it follows that

‖ ∇v(t) ‖2≤ (N0N5)
1/2

h(t) ≡ N1/2 h(t)(2.32)

for all t ≥ T0. We first construct a solution (v′, B′) of the system (1.7) in
X([T,∞)). For that purpose, we take t0, T < t0 < ∞ and we solve the system
(1.7) in X(I) where I = [T, t0] with initial condition (v′, B′)(t0) = 0. Let
(v′t0 , B

′
t0) be the solution thereby obtained. The existence of v′t0 follows from

Proposition 2.1 with V = g(|u|2) and f = G1 − R1. We want to take the limit
of (v′t0 , B

′
t0) as t0 → ∞ and for that purpose we need estimates of (v′t0 , B

′
t0) in

X(I) that are uniform in t0. Omitting the subscript t0 for brevity we define

N ′
0 = Sup

t∈I
h(t)−1 ‖ v′(t) ‖2(2.33)

N ′
1 = Sup

t∈I
h(t)−1

(
‖ v′; L4(J, L3) ‖ ∨ ‖ v′; L8/3(J, L4) ‖

)
(2.34)

N ′
2 = Sup

t∈I
h(t)−1 ‖ B′; L4(J, L4) ‖(2.35)

N ′
3 = Sup

t∈I
h(t)−1 ‖ ∂tv

′(t) ‖2(2.36)

N ′
4 = Sup

t∈I
h(t)−1

(
‖ ∇v′; L4(J, L3) ‖ ∨ ‖ ∇v′; L8/3(J, L4) ‖

)
(2.37)

N ′
5 = Sup

t∈I
h(t)−1 ‖ ∆v′(t) ‖2(2.38)

N ′
6 = Sup

t∈I
h(t)−1

(
‖ ∇B′; L4(J, L4) ‖ ∨ ‖ ∂tB

′; L4(J, L4) ‖
)

(2.39)

where J = [t,∞)∩ I and we set out to estimate the various N ′
i . We also define

the auxiliary quantities

N ′
1/2 = Sup

t∈I
h(t)−1 ‖ ∇v′(t) ‖2(2.40)

Ñ ′
1/2 = Sup

t∈I
h(t)−1 ‖ ∇Av′(t) ‖2(2.41)

so that in particular N ′
1/2 ≤ (N ′

0N
′
5)

1/2.
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We shall use the notation

‖ f ; Lq(J, Lr) ‖ = ‖‖ f ‖r; Lq(J) ‖ = ‖‖ f ‖r‖q,

namely with the inner norm taken in Lr(IR3) and the outer norm taken in
Lq(J). Furthermore we shall use a shorthand notation for two important cases,
namely

‖· ; L1(J, L2)‖ =‖ · ‖+ and ‖ · ; L4/3(J, L4/3) ‖ = ‖ · ‖∗ .

We first estimate N ′
0, defined by (2.33). From (2.2) we obtain

‖ v′(t) ‖2≤‖ G1 ‖+ + ‖ R1 ‖+

with G1 defined by (1.5). We estimate

‖ B · ∇ua ‖+≤‖‖ B ‖4‖ ∇ua ‖4‖1≤ Cc4N2 h(t)

by Lemma 2.2,

‖ B · Aaua ‖+ ≤‖‖ B ‖4‖ Aa ‖∞‖ ua ‖4‖1

≤ caN2h ‖ t−7/4 ‖4/3≤ caN2t
−1 h(t),

‖ B2ua ‖+ ≤‖‖ B ‖2
4‖ ua ‖∞‖1≤ cN2

2 h2 ‖ t−3/2 ‖2≤ cN2
2 t−1 h(t)2,

‖ g(uav)ua ‖+ ≤ C ‖‖ v ‖2‖ ua ‖2
3‖1≤ Cc2

3N0 h(t)

by Lemma 2.3, part (1) and Lemma 2.2,

‖ g(|v|2)ua ‖+ ≤C ‖‖ v ‖3‖ v ‖2‖ ua ‖3‖1

≤Cc3N0N1t
1/4 h(t)2

by Lemma 2.3, part (1) and Lemma 2.2 again.
Collecting the previous estimates yields

N ′
0 ≤ C0

(
c4N2 + caN2T

−1 + c2
3N0 + cN2

2 T−1 h(T )(2.42)

+cN0N1T
−1/8h(T ) + r1

)
which is of the form

N ′
0 ≤ C0

(
c4N2 + c2

3N0 + r1 + (o(1); N0, N1, N2)
)

(2.43)

where (o(1); ·, · · · , ·) denotes a quantity depending on the variables indicated
and tending to zero as T → ∞ when those variables are fixed.
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We next estimate the Strichartz norms of v′, namely N ′
1 defined by (2.34).

By Lemma 2.1, in addition to the contribution of G1 −R1 estimated above, we
need to estimate

iA · ∇v′ + (1/2)A2v′ + g(|u|2)v′

in some Lq(J, Lr) for admissible (q, r). We estimate

‖ Aa · ∇v′ ‖+ ≤ aN ′
1/2 ‖ t−1h ‖1≤ 3aN ′

1/2 h(t),

‖ A2
av′ ‖+ ≤ a2N ′

0 ‖ t−2h ‖1≤ a2N ′
0t

−1 h(t),

‖ B · ∇v′; L8/5(J, L4/3) ‖ ≤‖‖ B ‖4‖ ∇v′ ‖2‖8/5≤ C N2 N ′
1/2h(t)h(t),

by Lemma 2.2,

‖ B2v′; L2(J, L6/5) ‖≤ C ‖‖ B ‖3/2
4 ‖ ∇B ‖1/2

4 ‖ v′ ‖2‖2≤ CN
3/2
2 N

1/2
6 N ′

0 h(t)3

by Sobolev inequalities and Lemma 2.2,

‖ g(|ua|2)v′ ‖+≤‖‖ g(|ua|2) ‖∞‖ v′ ‖2‖1≤ Cc2N ′
0 h(t)

by Lemma 2.3, part (2),

‖ g(|v|2)v′; L4/3(J, L3/2) ‖≤ C ‖‖ v ‖3‖ v ‖2‖ v′ ‖2‖4/3≤ CN0N1N
′
0t

1/2 h(t)3

by Lemma 2.3, part (1) and Lemma 2.2. The term g(uav)v′ need not be
considered because it is controlled by the previous ones.

Collecting the previous estimates yields

(2.44)

N ′
1 ≤ C1

{
c4N2 + caN2T

−1 + c2
3N0 + cN2

2 T−1 h(T ) + cN0N1T
−1/8h(T )

+
(
c2 + a2T−1 + N

3/2
2 N

1/2
6 h(T )2 + N0N1T

−1/4h(T )2
)

N ′
0 + r1

+aN ′
1/2 + N2N

′
1/2h(T )

}
which is of the form

N ′
1 ≤ C1

(
c4N2 + c2

3N0 + c2N ′
0 + aN ′

1/2 + r1(2.45)

+(o(1); N0, N1, N2, N6, N
′
0, N

′
1/2)

)
.

We now turn to the estimates of B′. We first estimate B′ in L4(J, L4), namely
we estimate N ′

2 defined by (2.35), by the use of (1.5) (2.8). For that purpose
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we estimate G2 in L4/3(J, L4/3). The linear terms in v are estimated by

‖ v∇ua ‖∗ ≤ ‖‖ v ‖2‖ ∇ua ‖4‖4/3

≤ c4N0 ‖ t−3/4h ‖4/3≤ 2c4N0 h(t),

‖ vAaua ‖∗ ≤ ‖‖ v ‖2‖ Aa ‖∞‖ ua ‖4‖4/3

≤ acN0 ‖ t−7/4h ‖4/3≤ acN0t
−1 h(t).

The linear term in B is estimated by

‖ B|ua|2 ‖∗ ≤ ‖‖ B ‖4‖ ua ‖2
4‖4/3

≤ c2N2h ‖ t−3/2 ‖2≤ c2N2t
−1 h(t).

The quadratic terms in v2 are estimated by

‖ v∇v ‖∗≤‖‖ v ‖4‖ ∇v ‖2‖4/3≤ CN1N1/2 h(t)h(t),

by Lemma 2.2,

‖ Aa|v|2 ‖∗ ≤ ‖‖ v ‖4‖ v ‖2‖ Aa ‖∞‖4/3

≤ aN0N1h ‖ t−1h ‖8/3≤ aN0N1t
−5/8 h(t)2.

The quadratic terms in Bv need not be considered because

2|vBua| ≤
∣∣B|ua|2

∣∣ +
∣∣B|v|2

∣∣ .

The cubic term B|v|2 is estimated by

‖ B|v|2 ‖∗ ≤‖ B; L4(L4) ‖ ‖ v; L3(Lr) ‖3/2‖ v; L∞(L6) ‖1/2

≤ CN2N
3/2
1 N

1/2
1/2 h(t)3

where 3 < r = 18/5 < 4 so that (3, r) is an admissible pair and that the middle
norm is controlled by N1.

Collecting the previous estimates yields

N ′
2 ≤ C2

{
c4N0 + acN0T

−1 + c2N2T
−1 + r2(2.46)

+N1N1/2h(T ) + aN0N1T
−5/8 h(T ) + N2N

3/2
1 N

1/2
1/2 h(T )2

}
which is of the form

N ′
2 ≤ C2

(
c4N0 + r2 + (o(1); N0, N1, N1/2, N2)

)
.(2.47)
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We next complete the estimates of B′ by estimating ∇B′ and ∂tB
′ in L4(J, L4),

namely we estimate N ′
6 defined by (2.39), through the use of (1.5) (2.9). For

that purpose we estimate ∇G2 in L4/3(J, L4/3). Now

∇G2 = 2P Im
(
(∇v)∇Av + (∇v)∇Aua + (∇ua)∇Av

)
(2.48)

−P (∇A)
(
|v|2 + 2 Reuav

)
− P (∇B)|ua|2 − 2PB Re ua∇ua.

The estimate of ∇G2 in L4/3(J, L4/3) proceeds exactly as that of G2 in the
same space, with one additional gradient acting on each factor in each term,
except for two facts. First because of the symmetry of the quadratic form
P Im (v1∇Av2), we can always ensure that no terms occur with two derivatives
on v or ua. Second, the quadratic terms coming from vBua have to be estimated
explicitly because they are no longer estimated by polarization. When hitting
v, and additional gradient produces a replacement of N0 by N1/2 and of N1 by
N4 in the estimates. When hitting B, it produces a replacement of N2 by N6.
When hitting ua or Aa, it only requires higher regularity of these functions,
but does not change the form of the estimates. With those remarks available,
only the terms from ∇(vBua) and from B∇|v|2 need new estimates.

The linear terms in v are estimated by

‖ (∇v)∇ua ‖∗ ≤ 2c4N1/2 h(t),

‖ (∇v)Aaua ‖∗ ≤ acN1/2t
−1 h(t),

‖ v(∇Aa)ua + vAa∇ua ‖∗ ≤ 2acN0t
−1 h(t).

The linear terms in B are estimated by

‖ (∇B)|ua|2 ‖∗ ≤ c2N6t
−1 h(t),

‖ Bua∇ua ‖∗ ≤ c2N2t
−1 h(t).

The quadratic terms in v2 are estimated by

‖ |∇v|2 ‖∗ ≤‖ ‖ ∇v ‖4‖ ∇v ‖2‖4/3≤ CN4N1/2 h(t)h(t),

‖ (∇v)Aav ‖∗ ≤‖‖ ∇v ‖2‖ Aa ‖∞‖ v ‖4‖4/3≤ aN1/2N1t
−5/8 h(t)2,

‖ (∇Aa)|v|2 ‖∗ ≤ aN0N1t
−5/8 h(t)2.

The quadratic terms in Bv are estimated by

‖ (∇v)Bua ‖∗ ≤‖ ‖ ∇v ‖2‖ B ‖4‖ ua ‖∞‖4/3

≤ cN1/2N2h ‖ t−3/2h ‖2≤ cN1/2N2t
−1 h(t)2
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and similarly

‖ v(∇B)ua ‖∗ ≤ cN0N6t
−1 h(t)2,

‖ vB∇ua ‖∗ ≤ cN0N2t
−1 h(t)2.

The cubic terms from B|v|2 are estimated by

‖ (∇B)|v|2 ‖∗ ≤CN6N
3/2
1 N

1/2
1/2 h(t)3,

‖ Bv∇v ‖∗ ≤C ‖ B; L4(L4) ‖‖ v; L4(L3) ‖1/2‖ ∇v; L4(L3) ‖3/2

≤CN2N
1/2
1 N

3/2
4 h(t)3.

Collecting the previous estimates yields

(2.49)

N ′
6 ≤C6

{
c4N1/2 + ac(N1/2 + N0)T−1 + c2(N2 + N6)T−1 + r2 + N1/2N4h(T )

+a(N1/2 + N0)N1T
−5/8 h(T ) + c

(
N2N1/2 + N2N0 + N6N0

)
T−1 h(T )

+
(
N6N

3/2
1 N

1/2
1/2 + N2N

1/2
1 N

3/2
4

)
h(T )2

}
which is of the form

N ′
6 ≤ C6

(
c4N1/2 + r2 + (o(1); N0, N1, N1/2, N4, N2, N6)

)
.(2.50)

We now come back to the estimates of v′ and we first estimate ∂tv
′ in

L2, namely we estimate N ′
3 defined by (2.36) by using (2.3). Here however

we encounter a technical difficulty due to the fact that B a priori does not
satisfy the assumption ∇B ∈ L1

loc(I, L∞) needed in Proposition 2.1, part (2)
in order to derive (2.3). We circumvent that difficulty by first regularizing B,
introducing the associated solution v′ which then satisfies (2.3), deriving the
N ′

3 estimate for the auxiliary solution, and removing the regularization by a
limiting procedure, which preserves the estimate. Here in order not to burden
the proof with technicalities, we provide only the derivation of the estimates
from (2.3) and we refer to the proof of Proposition 3.2, part (1) in [7] for the
technical details. From (2.3) (2.4) with V = g(|u|2) and f = G1−R1, we obtain

‖ ∂tv
′ ‖2≤‖ i(∂tA) · ∇Av′+

(
∂tg(|u|2)

)
v′+∂tG1−∂tR1 ‖+ +‖ (G1 − R1)(t0) ‖2

(2.51)

with G1 defined in (1.5).
We first estimate the terms containing v′, starting with i(∂tA) · ∇Av′.

‖ (∂tAa) · ∇Av′ ‖+ ≤ ‖‖ ∂tAa ‖∞‖ ∇Av′ ‖2‖1

≤ aÑ ′
1/2 ‖ t−1h ‖1≤ 3aÑ ′

1/2 h(t),
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‖ (∂tB) · ∇v′ ‖+ ≤ ‖‖ ∂tB ‖4‖ ∇v′ ‖4‖1≤ CN6N
′
4 h(t)h(t),

‖ (∂tB) · Aav′ ‖+ ≤ ‖‖ ∂tB ‖4‖ Aa ‖∞‖ v′ ‖4‖1

≤ aN6N
′
1h

2 ‖ t−1 ‖8/3≤ aN6N
′
1t

−5/8 h(t)2,

‖ (∂tB) · Bv′ ‖+ ≤C ‖‖ ∂tB ‖4

(
‖ B ‖4‖ ∇B ‖3

4

)1/4 ‖ v′ ‖4‖1

≤CN
7/4
6 N

1/4
2 N ′

1t
1/8 h(t)3

by Lemma 2.2.
We next estimate the terms coming from (∂tg(|u|2))v′.

‖ g (ua∂tua) v′ ‖+ ≤‖‖ g (ua∂tua) ‖∞‖ v′ ‖2‖1≤ Cc2N ′
0 h(t),

‖ g (ua∂tv) v′ ‖+ ≤‖‖ g (ua∂tv) ‖∞‖ v′ ‖2‖1≤ CcN3N
′
0 h(t)2,

‖ g ((∂tua)v) v′ ‖+ ≤ CcN0N
′
0 h(t)2

by Lemma 2.3, part (2) and Lemma 2.2,

‖ g (v∂tv) v′ ‖+≤‖‖ v ‖3‖ ∂tv ‖2‖ v′ ‖3‖1≤ CN1N3N
′
1t

1/2 h(t)3

by Lemma 2.3, part (1) and Lemma 2.2.
We next estimate ∂tG1. The estimates are similar to those performed when

estimating v′ in L2, with an additional time derivative acting on each factor in
each term. This has the effect of requiring more regularity on (Aa, ua) when
that derivative hits (Aa, ua), without changing the form the estimate, and of
replacing one factor N2 by N6 when that derivative hits B and one factor N0

by N3 when that derivative hits v. Thus we obtain

‖ (∂tB) · ∇Aa
ua ‖+ ≤N6(Cc4 + act−1) h(t),

‖ B · ∂t∇Aa
ua ‖+ ≤ cN2(C + at−1) h(t),

‖ (∂tB)Bua ‖+ ≤ cN2N6t
−1 h(t)2,

‖ B2∂tua ‖+ ≤ cN2
2 t−1 h(t)2.

‖ ∂t (g(uav)ua) ‖+ ≤Cc3 (c3N3 + cN0) h(t)

‖ ∂t

(
g(|v|2)ua

)
‖+ ≤CN1 (c3N3 + cN0) t1/4 h(t)2.

We finally estimate ‖ ∂tv
′(t0) ‖2 and for that purpose we need pointwise (in

time) estimates of R1 and of B. Now from (2.21) it follows that

‖ R1(t) ‖2≤‖ ∂tR1 ‖+≤ r1 h(t)(2.52)

while from (2.27) (2.31)

‖ B(t) ‖4
4≤ 4

∫ ∞

t

dt′ ‖ B(t′) ‖3
4‖ ∂tB(t′) ‖4≤ 4N3

2 N6 h(t)4
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and therefore

‖ B(t) ‖4≤ Ñ2 h(t) ≡
√

2
(
N3

2 N6

)1/4
h(t).

We then estimate

(2.53)

‖ G1 ‖2 ≤ ‖ B ‖4 (‖ ∇ua ‖4 + ‖ Aa ‖∞‖ ua ‖4)+ ‖ B ‖2
4‖ ua ‖∞

+ ‖ g
(
|v|2 + 2 Reuav

)
‖6‖ ua ‖3

≤ cÑ2(1 + at−1)t−3/4 h(t) + cÑ2
2 t−3/2 h(t)2

+C
(
c2
3N0t

−1 h(t) + c3N
3/2
0 N

1/2
1/2 t−1/2 h(t)2

)
by Lemma 2.3 for the terms containing g and the definitions.

Collecting the previous estimates and in particular (2.52) (2.53) taken at
t0 ≥ t, we obtain

(2.54)

N ′
3 ≤C3

{
aÑ ′

1/2 + c4N6 + cN2 + ca(N6 + N2)T−1 + c2
3N3 + c2(N0 + N ′

0) + r1

+N6N
′
4h(T ) + aN6N

′
1T

−5/8 h(T ) + cN2(N6 + N2)T−1 h(T )

+c (N3 + N0)N ′
0 h(T ) + c (N3 + N0) N1T

−1/8h(T )

+N
7/4
6 N

1/4
2 N ′

1T
−1/4 h(T )h(T ) + N1N3N

′
1T

−1/4h(T )2

+cÑ2(1 + aT−1)T−3/4 + cÑ2
2 T−3/2 h(T )

+c2
3N0T

−1 + c3N
3/2
0 N

1/2
1/2 T−1/2 h(T )

}
which is of the form

N ′
3 ≤C3

(
aÑ ′

1/2 + c4N6 + cN2 + c2
3N3 + c2 (N0 + N ′

0) + r1(2.55)

+(o(1); N0, N
′
0, N1, N

′
1, N1/2, N2, Ñ2, N3, N

′
4, N6)

)
.

We next estimate ‖ ∆Av′ ‖2. From (1.7), we obtain

‖ ∆Av′ ‖ ≤ 2
(
‖ ∂tv

′ ‖2 + ‖ g(|u|2)v′ ‖2 + ‖ G1 ‖2 + ‖ R1 ‖2

)
≤ 2 (N ′

3 + r1) h(t) + 2 ‖ g(|u|2)v′ ‖2 +2 ‖ G1 ‖2 .

Furthermore

‖ g(|u|2)v′ ‖2 + ‖ G1 ‖2≤‖ g(|u|2) ‖∞‖ v′ ‖2 + ‖ G1 ‖2(2.56)

≤ cÑ2(1 + at−1)t−3/4 h(t) + cÑ2
2 t−3/2 h(t)2

+C
(
c2N ′

0t
−1h(t) + N0N1/2N

′
0 h(t)3 + c2

3N0t
−1 h(t)

+c3N
3/2
0 N

1/2
1/2 t−1/2 h(t)2

)
≡ M1 h(t)
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by Lemma 2.3 for the terms containing g and by (2.53), so that

‖ ∆Av′(t) ‖2 ≤ 2 (N ′
3 + r1 + M1) h(t)(2.57)

= 2
(
N ′

3 + r1 +
(
o(1); Ñ2, N0, N

′
0, N1/2

))
h(t).

As a consequence,

Ñ ′
1/2 ≤ (2N ′

0(N
′
3 + r1 + M1(T )))1/2(2.58)

≤
(
2N ′

0

(
N ′

3 + r1 +
(
o(1); Ñ2, N0, N

′
0, N1/2

)))1/2

.

We next estimate ‖ ∆v′(t) ‖2, namely N ′
5 defined by (2.38). From

∆Av′ = ∆v′ − 2iAa · ∇Av′ − 2iB · ∇v′ + (A2
a − B2)v′

we obtain

‖ ∆v′ ‖2 ≤ ‖ ∆Av′ ‖2 +2 ‖ Aa ‖∞‖ ∇Av′ ‖2 + ‖ Aa ‖2
∞‖ v′ ‖2

+2 ‖ B ‖4‖ ∇v′ ‖4 + ‖ B ‖2
4‖ v′ ‖∞ .

Now

‖ ∇v′ ‖4 ≤C ‖ ∆v′ ‖7/8
2 ‖ v′ ‖1/8

2 ,

‖ v′ ‖∞ ≤C ‖ ∆v′ ‖3/4
2 ‖ v′ ‖1/4

2 ,

and therefore

‖ ∆v′ ‖2 ≤ (1 + ε) ‖ ∆Av′ ‖2 +(1 + ε−1) ‖ Aa ‖2
∞‖ v′ ‖2

+ε ‖ ∆v′ ‖2 +Cε ‖ B ‖8
4‖ v′ ‖2 .

Taking ε = 1/3 yields

‖ ∆v′ ‖2≤ 2 ‖ ∆Av′ ‖2 +C
(
‖ Aa ‖2

∞ + ‖ B ‖8
4

)
‖ v′ ‖2

and therefore by (2.38) (2.57)

N ′
5 ≤ 4 (N ′

3 + r1 + M1) + C
(
a2T−2 + Ñ8

2 h(T )8
)

N ′
0(2.59)

which is of the form

N ′
5 ≤ 4

(
N ′

3 + r1 + (o(1); Ñ2, N0, N
′
0, N1/2)

)
.(2.60)
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We finally estimate the Strichartz norms of ∇v′. For that purpose, by
Lemma 2.1, we have to estimate the following quantity in the sum of spaces of
the type Lq(J, Lr) for admissible pairs (q, r):

(2.61)

Q =∇
(
iA · ∇v′ + (1/2)A2v′ + g(|u|2)v′ + G1 − R1

)
= iA · ∇2v′ + i∇A · ∇Av′ + (1/2)A2∇v′ + ∇(g(|u|2)v′) + ∇G1 −∇R1.

The estimates are similar to those performed when estimating ‖ v′ ‖2 and
the Strichartz norms of v′ (see the proof of (2.42) (2.44)), with an additional
gradient acting on each factor in each term, thereby producing the replacement
of N0 by N1/2, of N ′

0 by N ′
1/2, of N ′

1/2 by N ′
5 and of N2 by N6 at suitable

places. More precisely, the terms containing v′ are estimated by

‖ Aa · ∇2v′ ‖+ ≤‖‖ Aa ‖∞‖ ∆v′ ‖2‖1≤ 3aN ′
5 h(t),

‖ ∇Aa · ∇Av′ ‖+ ≤‖‖ ∇Aa ‖∞‖ ∇Av′ ‖2‖1≤ 3aÑ ′
1/2 h(t),

‖ A2
a∇v′ ‖+ ≤‖‖ Aa ‖2

∞‖ ∇v′ ‖2‖1≤ a2N ′
1/2t

−1h(t),

‖ B · ∇2v′; L8/5(J, L4/3) ‖ ≤‖‖ B ‖4‖ ∆v′ ‖2‖8/5≤ CN2N
′
5 h(t)h(t),

‖ ∇B · ∇Av′; L8/5(J, L4/3) ‖ ≤‖‖ ∇B ‖4‖ ∇Av′ ‖2‖8/5

≤ CN6Ñ
′
1/2 h(t)h(t),

‖ B2∇v′; L2(J, L6/5) ‖ ≤ C ‖‖ B ‖3/2
4 ‖ ∇B ‖1/2

4 ‖ ∇v′ ‖2‖2

≤ CN
3/2
2 N

1/2
6 N ′

1/2 h(t)3,

‖ ∇
(
g(|ua|2)v′

)
‖+ ≤ Cc2

(
N ′

0 + N ′
1/2

)
h(t),

‖ ∇ (g(uav)v′) ; L4/3(J, L3/2) ‖ ≤ Cc
(
N0N

′
0 + N0N

′
1/2 + N1/2N

′
0

)
t1/4h(t)2,

‖ ∇
(
g(|v|2)v′

)
; L4/3(J, L3/2) ‖ ≤ CN1

(
N0N

′
1/2 + N1/2N

′
0

)
t1/2h(t)3

where we have used again Lemmas 2.2 and 2.3 in the estimates of the terms
containing g.

The terms from ∇G1 are estimated by

‖ ∇B · ∇Aaua ‖+ ≤N6

(
Cc4 + cat−1

)
h(t),

‖ B · ∇∇Aaua ‖+ ≤CcN2

(
1 + at−1

)
h(t),

‖ B2∇ua ‖+ ≤ cN2
2 t−1 h(t)2,

‖ B(∇B)ua ‖+ ≤ cN2N6t
−1 h(t)2.

‖ ∇ (g(uav)ua) ‖+ ≤Cc3

(
c3N1/2 + cN0

)
h(t),

‖ ∇
(
g(|v|2)ua

)
‖+ ≤CN1

(
c3N1/2 + cN0

)
t1/4h(t)2.
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Collecting the previous estimates yields

(2.62)

N ′
4 ≤C4

{
a

(
N ′

5 + Ñ ′
1/2

)
+ a2N ′

1/2T
−1 + c (N6 + N2)

(
1 + aT−1

)
+c2

(
N0 + N ′

0 + N1/2 + N ′
1/2

)
+ r1

+
(
N2N

′
5 + N6Ñ

′
1/2

)
h(T ) + cN2(N6 + N2)T−1 h(T )

+c
((

N1/2 + N0

)
(N1 + N ′

0) + N0N
′
1/2

)
T−1/8h(T )

+N
3/2
2 N

1/2
6 N ′

1/2h(T )2 + N1

(
N0N

′
1/2 + N1/2N

′
0

)
T−1/4h(T )2

}
which is of the form

(2.63)

N ′
4 ≤C4

(
a

(
N ′

5 + Ñ ′
1/2

)
+ c(N6 + N2) + c2

(
N0 + N ′

0 + N1/2 + N ′
1/2

)
+ r1

+(o(1); N0, N
′
0, N1, N1/2, N

′
1/2, Ñ

′
1/2, N

′
5, N2, N6)

)
.

From the previous estimates, more precisely from (2.42) (2.44) (2.46) (2.49)
(2.54) (2.59) (2.62), it follows that the N ′

i , 0 ≤ i ≤ 6 are estimated in terms
of the Ni, 0 ≤ i ≤ 6, provided T is sufficiently large. In fact (2.42) (2.46)
(2.49) provide estimates of N ′

0, N ′
2 and N ′

6. Denoting by C a general constant
depending on T and on the Ni, it follows from (2.44) (2.59) and from the
definition of N ′

1/2, Ñ ′
1/2 that

N ′
1 ≤ C

(
1 + N ′

1/2

)
, N ′

1/2 ∨ Ñ ′
1/2 ≤ C (1 + N ′

5)
1/2

, N ′
5 ≤ 4N ′

3 + C(2.64)

so that it remains only to estimate N ′
3 and N ′

4. Substituting the previous
estimates into (2.54) (2.62) yieldsN ′

3 ≤ C3N6N
′
4h(T ) + terms sublinear in N ′

3

N ′
4 ≤ 4C4N

′
3

(
a + N2h(T )

)
+ terms sublinear in N ′

3

(2.65)

which ensure the required estimate of N ′
3, N ′

4 provided T is sufficiently large
so that

4C3C4

(
a + N2h(T )

)
N6h(T ) < 1,(2.66)
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which we assume from now on. Note that the terms responsible for that
large T condition are the terms ∂tB · ∇v′ from (2.51) and A · ∇2v′ from
(2.61). No such condition was required at this stage in the simpler case of the
(WS)3 system [8]. The estimates obtained for the N ′

i are obviously uniform in
t0.

We now take the limit t0 → ∞ of (v′t0 , B
′
t0), restoring the subscript t0

for that part of the argument. Let T < t0 < t1 < ∞ and let (v′t0 , B
′
t0) and

(v′t1 , B
′
t1) be the corresponding solutions of (1.7). From the L2 norm con-

servation of the difference v′t0 − v′t1 and from (2.42), it follows that for all
t ∈ [T, t0]

‖ v′t0(t) − v′t1(t) ‖2=‖ v′t1(t0) ‖2 ≤ K0h(t0)(2.67)

where K0 is the RHS of (2.42), while from (1.7) (2.8) (2.9) (2.46) (2.49) and
the initial conditions, it follows that

(2.68)

‖ B′
t0 − B′

t1 ; L
4([T, t0], W 1

4 ) ‖ ∨ ‖ ∂t(B′
t0 − B′

t1); L
4([T, t0], L4) ‖

≤ C ‖ G2 − R2; L4/3([t0, t1], W 1
4/3) ‖≤ (K2 + K6)h(t0)

where K2 and K6 are the RHS of (2.46) and (2.49) respectively.
It follows from (2.67) (2.68) that there exists (v′, B′) ∈ L∞

loc([T,∞), L2) ⊕
L4

loc([T,∞), W 1
4 ) with ∂tB

′ ∈ L4
loc([T,∞), L4) such that (v′t0 , B

′
t0) converges

to (v′, B′) in that space when t0 → ∞. From the uniformity in t0 of the esti-
mates (2.42) (2.46) (2.49), it follows that (v′, B′) satisfies the same estimates in
[T,∞), namely that (2.43) (2.47) (2.50) hold with N ′

i defined by (2.33) (2.35)
(2.39) with I = [T,∞). Furthermore it follows by a standard compactness ar-
gument that (v′, B′) ∈ X([T,∞)) and that v′ satisfies the remaining estimates,
namely (2.45) (2.55) (2.60) (2.63) with the remaining N ′

i again defined by
(2.34) (2.36) (2.37) (2.38) with I = [T,∞). Clearly (v′, B′) satisfies the system
(1.7).

From now on, I denotes the interval [T,∞). The previous construction
defines a map φ : (v, B) → (v′, B′) from X(I) to itself. The next step consists
in proving that the map φ is a contraction on a suitable closed bounded set R
of X(I). We define R by the conditions (2.25)-(2.31) for some constants Ni and
for all t ∈ I. We first show that for a suitable choice of Ni and for sufficiently
large T , the map φ maps R into R. By (2.43) (2.45) (2.47) (2.50) (2.55) (2.60)
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(2.63), it suffices for that purpose that



(N ′
0 ≤)C0

(
c4N2 + c2

3N0 + r1 + o(1)
)
≤ N0

(N ′
1 ≤)C1

(
c4N2 + c2

3N0 + c2N ′
0 + aN ′

1/2 + r1 + o(1)
)
≤ N1

(N ′
2 ≤)C2

(
c4N0 + r2 + o(1)

)
≤ N2

(N ′
6 ≤)C6

(
c4N1/2 + r2 + o(1)

)
≤ N6

(N ′
3 ≤)C3

(
aÑ ′

1/2 + c4N6 + cN2 + c2
3N3 + c2(N0 + N ′

1) + r1 + o(1)
)
≤ N3

(N ′
4 ≤)C4

(
a

(
N ′

5 + Ñ ′
1/2

)
+ c(N6 + N2) + c2(N0 + N ′

0 + N1/2 + N ′
1/2)

+r1 + o(1)
)
≤ N4

(N ′
5 ≤)4

(
N ′

3 + r1 + o(1)
)
≤ N5

(2.69)

where we have omitted the dependence of the o(1) terms on Ni and N ′
i . We

know in addition that

N ′
1/2 ∨ Ñ ′

1/2 ≤ 2
(
N ′

0(N
′
3 + r1 + o(1))

)1/2

.(2.70)

In order to ensure (2.69), we proceed as follows. We first choose N0 and N2 by
imposing {

N0 = C0

(
c4N2 + c2

3N0 + r1 + 1
)

N2 = C2 (c4N0 + r2 + 1)
(2.71)

which is possible under the smallness condition on c3 , c4

C0

(
C2c

2
4 + c2

3

)
< 1,(2.72)

and we impose the condition that o(1) ≤ 1 in (2.43) (2.47) by taking T suffi-
ciently large (depending on N0, N2 just chosen and on N1/2, N1 to be chosen
later). This ensures the N ′

0 ≤ N0 and N ′
2 ≤ N2 parts of (2.69). Furthermore

one can replace N ′
0 by N0 in all the remaining estimates. We next impose

{
N5 = 4 (N3 + r1 + 1)

N6 = C6

(
c4(N0N5)1/2 + r2 + 1

)
= C6

(
2c4 (N0(N3 + r1 + 1))1/2 + r2 + 1

)
(2.73)

and we impose o(1) ≤ 1 in (2.50) and (2.60) by taking T sufficiently large
depending on the relevant Ni. This ensures the N ′

6 ≤ N6 part of (2.69) together
with the inequality

N ′
5 ≤ 4 (N ′

3 + r1 + 1)(2.74)
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which will ensure the N ′
5 ≤ N5 part of (2.69) as soon as the N ′

3 ≤ N3 part
holds. Furthermore, under the choices and assumptions made so far, (2.74)
implies

N ′
1/2 ∨ Ñ ′

1/2 ≤ 2 (N0(N ′
3 + r1 + 1))1/2

.(2.75)

We now substitute (2.75) into (2.44), we substitute (2.74) (2.75) into (2.62)
and we substitute the results and (2.75) again into (2.54), thereby obtaining
an estimate of the form

N ′
3 ≤ f (N ′

3, {Ni}) ≡ C3

(
2a (N0(N ′

3 + r1 + 1))1/2(2.76)

+c4C6

(
2c4 (N0(N3 + r1 + 1))1/2 + r2 + 1

)
+cN2 + c2

3N3 + 2c2N0 + r1 + o(1)
)

where f(N ′
3, {Ni}) is a positive increasing concave function of N ′

3 for fixed T

and Ni. It follows therefrom that (2.76) will imply N ′
3 ≤ N3 provided we ensure

that

N3 ≥ f (N3, {Ni}) .(2.77)

This is obtained by imposing

N3 = C3

(
2

(
a + C6c

2
4

)
(N0(N3 + r1 + 1))1/2 + c4C6(r2 + 1)(2.78)

+cN2 + c2
3N3 + 2c2N0 + r1 + 1

)
which is possible under the smallness condition C3c

2
3 < 1, and by imposing that

o(1) ≤ 1 in (2.76) by taking T sufficiently large depending on the Ni.
It is then a simple matter to choose N1 and N4 in order to ensure the

N ′
1 ≤ N1 and N ′

4 ≤ N4 parts of (2.69), since all the N ′
i in the RHS of (2.44)

and (2.62) are now under control. It suffices to choose

N1 = C1

(
c4N2 + 2c2N0 + a(N0N5)1/2 + r1 + 1

)
(2.79)

N4 = C4

(
aN5 + (a + 2c2)(N0N5)1/2 + c(N6 + N2) + 2c2N0 + r1 + 1

)
(2.80)

and to impose that o(1) ≤ 1 in (2.45) (2.63) by taking T sufficiently large
depending on the Ni (with the N ′

i in the o(1) terms being estimated by the
Ni).

We now show that the map φ is a contraction on R for a suitable norm
defined on X(I). Let (vi, Bi) ∈ R and (v′i, B

′
i) = φ((vi, Bi)), i = 1, 2. For any
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pair of functions f1, f2, we define f± = (1/2)(f1 ± f2) so that f1 = f+ + f−,
f2 = f+−f− and (fg)± = f+g± +f−g∓. In particular u+ = ua +v+, u− = v−,
A+ = Aa +B+, A− = B−, (∆A)− = −2iB− ·∇A+ , and similarly for the primed
quantities. Since R is convex and stable under φ, (v+, B+) and (v′+, B′

+) belong
to R, namely satisfy (2.25)-(2.31). Corresponding to (1.7), (v′−, B′

−) satisfies
the system

i∂tv
′
− = −(1/2)(∆A)+v′− + g(|u|2+)v′− + iB− · ∇A+(ua + v′+)

+g (2 Re (ua + v+)v−) (ua + v′+)
��B′

− = 2P Im
(
v−∇A+(ua + v+)

)
− PB−

(
|ua + v+|2 + |v−|2

)
.

(2.81)

Here however, in contrast with the case of the (WS)3 system where the
corresponding map φ can be shown to be a contraction for the whole norm of
X(I), we encounter a difficulty due to the derivative coupling in the covariant
Laplacian. In fact if D is a differential operator of order m, a straightforward
energy estimate of ‖ Dv′− ‖2 from (2.81) yields

∂t ‖ Dv′− ‖2≤‖ B− · D∇A+v′+ ‖2 + other terms

and requires therefore a control of v′+ at order m + 1, so that one can hope
to contract norms of v of degree at most one less than those occurring in the
definition of X(I). Fortunately, because of the special algebraic properties of
the equations, it turns out that the lowest two semi norms of X(I) for the
differences, namely those corresponding to N0 and N2, can be decoupled from
the higher ones and can be contracted on the bounded sets of X(I). This
follows from the fact that the symmetry of the quadratic form P Im (v1∇Av2)
has made it possible to avoid having a gradient acting on v− in the equation
for B′

− in (2.81). Thus we shall show that φ is a contraction for the pair of
semi norms 

N0 = Sup
t∈I

h(t)−1 ‖ v(t) ‖2,

N2 = Sup
t∈I

h(t)−1 ‖ B; L4([t,∞), L4) ‖ .
(2.82)

Let (N0−, N2−) and (N ′
0−, N ′

2−) be the corresponding semi norms of (v−, B−)
and (v′−, B′

−) respectively. We have to estimate (N ′
0−, N ′

2−) in terms of (N0−,

N2−). We first estimate N ′
0−. From (2.81) we obtain

‖ v′−(t) ‖2≤‖ B− · ∇A+(ua + v′+) ‖+ + ‖ g (2 Re (ua + v+) v−) (ua + v′+) ‖+ .

(2.83)
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The terms not containing v′+ are estimated as in the proof of (2.42), namely

‖ B− · ∇ua ‖+ ≤ Cc4N2− h(t),

‖ B− · Aaua ‖+ ≤ caN2−t−1 h(t),

‖ B−B+ua ‖+ ≤ cN2−N2t
−1 h(t)2,

‖ g (uav−)ua ‖+ ≤ Cc2
3N0− h(t),

‖ g (v+v−)ua ‖+ ≤ Cc3N0−N1t
1/4 h(t)2.

We next estimate the terms containing v′+.

‖ B− · ∇v′+ ‖+ ≤ ‖ ‖ B− ‖4 ‖ ∇v′+ ‖4 ‖1 ≤ C N2− N4 h(t) h(t)

by Lemma 2.2,

‖ B− · Aav′+ ‖+ ≤‖‖ B− ‖4‖ Aa ‖∞‖ v′+ ‖4‖1

≤ aN2−N1h
2 ‖ t−1 ‖8/3≤ aN2−N1t

−5/8 h(t)2,

‖ B−B+v′+ ‖+ ≤ C ‖‖ B− ‖4

(
‖ B+ ‖4‖ ∇B+ ‖3

4

)1/4 ‖ v′+ ‖4‖1

≤ C N2−(N2 N3
6 )1/4 N1 t1/8 h(t)3

by Lemma 2.2,

‖ g (uav−) v′+ ‖+ ≤C ‖‖ ua ‖3‖ v− ‖2‖ v′+ ‖3‖1≤ Cc3N0−N1t
1/4 h(t)2,

‖ g (v+v−) v′+ ‖+ ≤C ‖‖ v+ ‖3‖ v− ‖2‖ v′+ ‖3‖1≤ CN0−N2
1 t1/2 h(t)3,

by Lemma 2.3, part (1) and Lemma 2.2.
Collecting the previous estimates yields

(2.84)

N ′
0− ≤ C0

{
N2−

(
c4 + acT−1 + cN2T

−1 h(T ) + N4h(T ) + aN1T
−5/8 h(T )

+(N2N
3
6 )1/4N1T

−1/4 h(T )h(T )
)

+ N0−

(
c2
3 + cN1T

−1/8h(T )

+N2
1 T−1/4h(T )2

)}
which is of the form

N ′
0− ≤ C0

(
N2−(c4 + o(1)) + N0−(c2

3 + o(1))
)
.(2.85)

We next estimate N ′
2−. From (2.8) (2.81) we obtain

‖ B′
−; L4(J, L4) ‖≤ C

(
‖ v−∇A+(ua + v+) ‖∗ + ‖ B−(|ua|2 + |v+|2) ‖∗

)
.

(2.86)
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The linear terms are estimated as in the proof of (2.46), namely

‖ v−∇ua ‖∗ ≤ 2c4N0− h(t),

‖ v−Aaua ‖∗ ≤ acN0−t−1 h(t),

‖ B−|ua|2 ‖∗ ≤ c2N2−t−1 h(t).

The non linear terms are estimated in a slightly different way. The quadratic
terms are estimated by

‖ v−∇v+ ‖∗ ≤ ‖‖ v− ‖2‖ ∇v+ ‖4‖4/3≤ CN0−N4 h(t)h(t),

‖ v−Aav+ ‖∗ ≤ ‖‖ Aa ‖∞‖ v− ‖2‖ v+ ‖4‖4/3≤ aN0−N1t
−5/8 h(t)2,

‖ v−B+ua ‖∗ ≤ ‖‖ v− ‖2‖ B+ ‖4‖ ua ‖∞‖4/3

≤ cN0−N2h ‖ t−3/2h ‖2≤ cN0−N2t
−1 h(t)2.

The cubic terms are estimated by

‖ v−B+v+ ‖∗ ≤C ‖‖ v− ‖2

(
‖ B+ ‖4‖ ∇B+ ‖3

4

)1/4 ‖ v+ ‖4‖4/3

≤C N0−(N2N
3
6 )1/4N1t

1/8 h(t)3

by Lemma 2.2,

‖ B−|v+|2 ‖∗≤ CN2−N
3/2
1 N

1/2
1/2 h(t)3.

Collecting the previous estimates yields

(2.87)

N ′
2− ≤ C2

{
N0−

(
c4 + acT−1 + N4h(T ) + aN1T

−5/8 h(T ) + cN2T
−1 h(T )

+ (N2N
3
6 )1/4N1T

−1/4 h(T )h(T )
)

+ N2−

(
c2T−1 + N

3/2
1 N

1/2
1/2 h(T )2

) }
which is of the form

N ′
2− ≤ C2 (c4 + o(1))N0− + o(1)N2−.(2.88)

It follows from (2.85) (2.88) that the map φ is a contraction for the pair of semi
norms (N0, N2) on the set R under the smallness condition

C0

(
C2c

2
4 + c2

3

)
< 1(2.89)

and for T sufficiently large. Since the set R is closed for the norm defined by
the pair (N0, N2), it follows therefrom that the system (1.4) has a solution in
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R. This proves the existence part of Proposition 2.2. The uniqueness part
follows from (2.85) (2.88) again with N ′

i− = Ni−.
We remark at this point that the constants C0, C2 appearing in (2.89)

can be taken to be the same as in (2.72) so that the two smallness conditions
actually coincide. In fact those constants are determined by the linear terms
in the estimates, and those terms are the same in both cases. There may occur
additional, different constants coming from the non linear terms. They have
been omitted in (2.84) (2.87).

It remains to prove the last statement of Proposition 2.2 and for that
purpose we need to estimate the energy norm of B′. From (1.7) (2.10) it
follows that for all t ∈ I

‖ ∇B′(t) ‖2 ∨ ‖ ∂tB
′(t) ‖2≤‖ G2 − R2 ‖+(2.90)

where G2 is defined by (1.5). We estimate the various terms of G2 successively.
The linear terms in v are estimated by

‖ v∇ua ‖+ ≤ ‖‖ v ‖2‖ ∇ua ‖∞‖1

≤ c N0 ‖ t−3/2h ‖1≤ 2cN0t
−1/2 h(t),

‖ vAaua ‖+ ≤ ‖‖ v ‖2‖ Aa ‖∞‖ ua ‖∞‖1

≤ acN0 ‖ t−5/2h ‖1≤ acN0t
−3/2h(t).

The linear term in B is estimated by

‖ B|ua|2 ‖+ ≤ ‖‖ B ‖4‖ ua ‖4‖ ua ‖∞‖1

≤ c2N2h ‖ t−3/4−3/2 ‖4/3≤ c2N2t
−3/2 h(t).

The quadratic terms in v2 are estimated by

‖ v∇v ‖+≤‖‖ v ‖4‖ ∇v ‖4‖1≤ CN1N4t
1/4 h(t)2

by Lemma 2.2,

‖ Aa|v|2 ‖+ ≤ ‖‖ Aa ‖∞‖ v ‖2
4‖1

≤ aN2
1 h2 ‖ t−1 ‖4≤ aN2

1 t−3/4 h(t)2.

The quadratic terms in Bv again need not be considered. The cubic term B|v|2
is estimated by

‖ B|v|2 ‖+ ≤C ‖ B; L4(L4) ‖‖ v; L8/3(L4) ‖5/4‖ ∇v; L8/3(L4) ‖3/4

≤CN2N
5/4
1 N

3/4
4 h(t)3.
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Collecting the previous estimates and using (2.23), we obtain

(2.91)

‖ ∇B′(t) ‖2 ∨ ‖ ∂tB
′(t) ‖2≤ C

(
cN0t

−1/2 + acN0t
−3/2 + c2N2t

−3/2

+N1N4t
1/4 h(t) + aN2

1 t−3/4 h(t) + N2N
5/4
1 N

3/4
4 h(t)2 + r2t

−1/2
)

h(t)

which proves that the solution of (1.4) constructed previously satisfies (2.24).
��

Remark 2.2. The only smallness condition on u is the condition
(2.72), coming from N0 and from its coupling with N2. The subsequent condi-
tion C3c

2
3 < 1 needed for the choice of N3 comes in fact from exactly the same

estimate as the c2
3 contribution to N ′

0, so that the latter condition is actually
the c4 = 0 special case of (2.72) and is therefore weaker than (2.72). That fact
is hidden by the use of overall constants C0 and C3 in the estimates of N ′

0 and
N ′

3.

§3. Remainder Estimates and Completion of the Proof

In this section, we first prove that the choice of asymptotic functions
(ua, Aa) made in the introduction satisfies the assumptions of Proposition 2.2
for the choice of h made in Proposition 1.1, under suitable assumptions on the
asymptotic state (u+, A+, Ȧ+). We then combine those results with Proposi-
tion 2.2 to complete the proof of Proposition 1.1.

We first supplement the definition of (ua, Aa) with some additional prop-
erties of a general character. In addition to the representation (1.13) (1.14) of
A1, we need a representation of ∂tA1. From (1.12) it follows that

∂tA1(t) = −
∫ ∞

t

dt′ cos(ω(t′ − t))t′−1Px|ua(t′)|2(3.1)

so that upon substitution of (1.8) we obtain

∂tA1(t) = t−2D0(t)
˜̃
A1(3.2)

where ˜̃
A1 = −

∫ ∞

t

dνν−3 cos(ω(ν − 1))D0(ν)Px|w+|2.(3.3)

On the other hand, from (1.13)

∇A1(t) = t−2D0(t)∇Ã1.(3.4)
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We shall need the operator

J ≡ J(t) = x + it∇.(3.5)

The asymptotic form Aa for A has been chosen in order to make R2 small. In
fact R2 can be rewritten as

R2 = ��Aa + P
(
t−1 ReuaJua + (Aa − x/t)|ua|2

)
(3.6)

and Aa has been chosen in such a way that

��Aa = P (x/t)|ua|2(3.7)

so that

R2 = P
(
t−1 Re uaJua + Aa|ua|2

)
.(3.8)

Under general assumptions on (ua, Aa), of the same type as in Proposi-
tion 2.2 (see especially (2.17) (2.20)) but not making use of their special form,
we can prove that R2 satisfies the assumptions needed for that proposition with
the choice of h required for Proposition 1.1.

Lemma 3.1. Let (ua, Aa) satisfy the estimates

‖ ua(t) ‖r ≤ ct−δ(r) for 2 ≤ r ≤ ∞,(3.9)

‖ ∇ua(t) ‖4 ≤ ct−3/4,(3.10)

‖ Jua(t) ‖2 ≤ c1(1 + �n t),(3.11)

‖ Aa(t) ‖∞ ∨ ‖ ∇Aa(t) ‖∞≤ at−1(3.12)

for all t ≥ 1. Then R2 satisfies the estimates

‖ R2; L4/3([t,∞), L4/3) ‖ ∨ ‖ ∇R2; L4/3([t,∞), L4/3) ‖(3.13)

≤ r2t
−1(1 + �n t),

‖ R2; L1([t,∞), L2) ‖ ≤ r2t
−3/2(1 + �n t)(3.14)

for some constant r2 and for all t ≥ 1.

Proof. We estimate

‖ R2(t) ‖4/3 ≤C ‖ ua ‖4

(
t−1 ‖ Jua ‖2 + ‖ Aa ‖∞‖ ua ‖2

)
≤Ct−7/4c (c1(1 + �n t) + ac)
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which implies the first estimate of (3.13) by integration,

‖ R2(t) ‖2 ≤ ‖ ua ‖∞
(
t−1 ‖ Jua ‖2 + ‖ Aa ‖∞‖ ua ‖2

)
≤ t−5/2c (c1(1 + �n t) + ac)

which implies (3.14) by integration.
In order to prove the second estimate of (3.13), we note that the quadratic

form

P Re
(
t−1v1Jv2 + Aav1v2

)
is symmetric in v1, v2, so that

∇R2 = 2 P Re
(
t−1(∇ua) Jua + Aa(∇ua)ua

)
+P (∇(Aa + x/t)) |ua|2

and therefore

‖ ∇R2 ‖4/3 ≤C
(
‖ ∇ua ‖4

(
t−1 ‖ Jua ‖2 + ‖ Aa ‖∞‖ ua ‖2

)
+

(
‖ ∇Aa ‖∞ +t−1

)
‖ ua ‖4‖ ua ‖2

)
≤Ct−7/4

(
c (c1(1 + �n t) + ac) + c2(a + 1)

)
from which the second estimate of (3.13) follows by integration.

We now turn to R1. We first skim R1 of some harmless terms. Expanding
the covariant Laplacian and using again J , we rewrite R1 as

R1 = R1,1 + R1,2(3.15)

where

R1,1 = i∂tua + (1/2)∆ua + t−1(x · A1)ua − g(|ua|2)ua,(3.16)

R1,2 = t−1(x · A0)ua − t−1Aa · Jua − (1/2)A2
aua.(3.17)

In the same way as for R2, we can show that R1,2 satisfies the assumptions
needed for Proposition 2.2 with the choice of h required for Proposition 1.1
under general assumptions on (ua, Aa) not making use of their special form.

Lemma 3.2. Let ua, Aa and A0 satisfy the estimates

‖ ∂j
t∇kua ‖2≤ c,(3.18)

‖ ∂j
t∇kJua ‖2≤ c1(1 + �n t),(3.19)

‖ ∂j
t∇kAa ‖∞≤ at−1,(3.20) ≡ (2.20)

‖ ∂j
t∇k(x · A0) ‖∞≤ a0t

−1,(3.21)
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for 0 ≤ j + k ≤ 1 and for all t ≥ 1. Then R1,2 satisfies the estimates

‖ ∂j
t∇kR1,2 ‖2≤ r1,2t

−2(1 + �n t),(3.22)

for 0 ≤ j + k ≤ 1, for some constant r1,2 and for all t ≥ 1.

Proof. We estimate

‖ R1,2 ‖2 ≤ t−2
(
(a0 + (1/2)a2)c + ac1(1 + �n t)

)
,

‖ ∇R1,2 ‖2 ≤ t−2
(
(2a0 + (3/2)a2)c + 2ac1(1 + �n t)

)
,

‖ ∂tR1,2 ‖2 ≤ idem + t−3 ((a0 + ac1(1 + �n t)) .

We now turn to R1,1. We shall need the commutation relations

∇MD = MD
(
ix + t−1∇

)
≡ MD∇̃,(3.23)

i∂tMD = MD
(
i∂t + (1/2)x2 − it−1(x · ∇ + 3/2)

)
≡ MDi∂̃t,(3.24)

JMD = iMD∇,(3.25)

(i∂t + (1/2)∆) MD = MD
(
i∂t + (2t2)−1∆

)
.(3.26)

In particular (3.23) (3.24) are taken as the definitions of ∇̃ and ∂̃t. From
the choice (1.8) of ua and from (3.26), it follows that

R1,1 = MD
(
i∂t + (2t2)−1∆ + t−1x · Ã1 − t−1g(|w+|2)

)
exp(−iϕ)w+.(3.27)

The choice (1.15) of ϕ has been taylored to cancel the two long range terms in
(3.27), so that

R1,1 = (2t2)−1MD∆ exp(−iϕ)w+.(3.28)

We now have to prove that the previous choice of (ua, Aa) satisfies the
remaining assumptions of Proposition 2.2 and of Lemmas 3.1 and 3.2. More
precisely we have to prove that (ua, Aa) satisfies the estimates (2.17) (2.19)
(2.20) (3.19) (3.21) and the analogue of (3.22) for R1,1. (Note that (3.9) (3.10)
(3.18) are special cases of (2.17) and that (3.12) is a special case of (3.20) which
is identical with (2.20)).

The contribution of A0 to Aa and to R1,2 will be taken care of by the
following general estimates of solutions of the wave equation.
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Lemma 3.3. Let A0 be defined by (1.11) and let k ≥ 0 be an integer.
Let A+ and Ȧ+ satisfy the conditions

∇2A+,∇Ȧ+ ∈ W k
1 , A+ ∈ L3, Ȧ+ ∈ L3/2.(3.29)

Then A0 satisfies the estimates{
‖ A0(t); W k

∞ ‖≤ a0t
−1

‖ ∂tA0(t); W k−1
∞ ‖≤ a0t

−1 for k ≥ 1.
(3.30)

A proof can be found in [20]. As mentioned in Remark 1.2, the assumptions
A+ ∈ L3 and Ȧ+ ∈ L3/2 serve to exclude constants in A+ and Ȧ+ and linear
terms in x in A+, but are otherwise controlled by the W k

1 assumption through
Sobolev inequalities.

We next derive some preliminary estimates of Ã1 and ˜̃
A1.

Lemma 3.4. Let k ≥ 0 be an integer. Then the following estimates
hold.

‖ ωk+1Ã1 ‖2 ∨ ‖ ωk ˜̃
A1 ‖2 ≤ (k + 1/2)−1 ‖ ωkx|w+|2 ‖2,(3.31)

‖ ωk+1(x · Ã1) ‖2 ≤ (k − 1/2)−1
(
‖ ωkx2|w+|2 ‖2(3.32)

+2 ‖ ωkx|w+|2 ‖2

)
for k ≥ 1,

‖ ∇kÃ1 ‖∞ ≤ C ‖ ωkx|w+|2; H1 ‖,(3.33)

‖ ∇k−1 ˜̃
A1 ‖∞ ≤ C ‖ ωkx|w+|2; H1 ‖ for k ≥ 1,(3.34)

‖ ∇k(x · Ã1) ‖∞ ≤ C
(
‖ ωkx2|w+|2; H1 ‖(3.35)

+ ‖ ωkx|w+|2; H1 ‖
)

for k ≥ 1.

Proof. (3.31) follows immediately from (1.14) and (3.3). From (1.14) and
from the commutation relation

[x; P ] = −2ω−2∇

it follows that

x·Ã1 =
∫ ∞

1

dν ν−2ω−1 sin(ω(ν − 1))D0(ν)
{
P · (x ⊗ x)|w+|2−2ω−2∇ · x|w+|2

}(3.36)
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so that

‖ ωk+1x · Ã1 ‖2 ≤
∫ ∞

1

dν ν−2
(
‖ ωkD0(ν)x2|w+|2 ‖2

+ 2(ν − 1) ‖ ωk+1D0(ν)ω−1x|w+|2 ‖2

)
≤

∫ ∞

1

dν ν−1/2−k
(
‖ ωkx2|w+|2 ‖2 +2 ‖ ωkx|w+|2 ‖2

)
which implies (3.32). Finally (3.33)–(3.35) follow from (3.31) (3.32) and from
the fact that Ḣ1 ∩ Ḣ2 ⊂ L∞.

As an immediate corollary, we obtain the following estimates of A1 and
∂tA1.

Corollary 3.1. The following estimates hold.

‖ A1(t) ‖∞≤ C ‖ w+; H2,1 ‖2 t−1,(3.37)

‖ ∂tA1(t) ‖∞ ∨ ‖ ∇A1(t) ‖∞≤ C ‖ w+; H2,1 ‖2 t−2.(3.38)

Proof. The result follows from (1.13) (3.2) (3.4) and from (3.33) (3.34).

We next derive the remaining estimates of ua and of R1,1. The following
proposition is slightly stronger than needed.

Proposition 3.1. Let ua be defined by (1.8) with w+ = Fu+ and with
ϕ defined by (1.16) (1.2) (1.14) and let R1,1 be given by (3.28). Let u+ ∈
H3,1 ∩ H1,3. Then the following estimates hold for some constants c, c1 and
r1,1, for 0 ≤ j + k ≤ 1 and for all t ≥ 1:

‖ ∂j
t∇kua(t) ‖r≤ c t−δ(r) for 2 ≤ r ≤ ∞.(3.39) ≡ (2.17)

In particular

‖ ua(t) ‖3 ≤‖ w+ ‖3 t−1/2,(3.40)

‖ ∇ua(t) ‖4 ≤
(
‖ xw+ ‖4 +O(t−1�n t)

)
t−3/4.(3.41)

‖ ∂j
t∇k+1ua(t) ‖r ≤ ct−δ(r) for 2 ≤ r ≤ 6,(3.42)

‖ ∂j
t∇kJua(t) ‖r ≤ c1(1 + �n t)t−δ(r) for 2 ≤ r ≤ 6,(3.43)

‖ ∂j
t∇kR1,1(t) ‖2 ≤ r1,1t

−2(1 + �n t)2.(3.44)
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Proof. From the commutation relations (3.23) (3.24), it follows that for
any differential operator Z

‖ ∂j
t∇kMDZ exp(−iϕ)w+ ‖r= t−δ(r) ‖ ∂̃j

t ∇̃kZ exp(−iϕ)w+ ‖r .(3.45)

From (1.8) (3.28) and from the commutation relation (3.25), it follows that in
order to derive (3.39)–(3.44) we have to estimate norms of the type

‖ ∂̃j
t ∇̃kZ exp(−iϕ)w+ ‖r

for 0 ≤ j + k ≤ 1, for suitable choices of Z and r, and with suitable r-
independent time behaviour. The relevant choices are

Z = 1, 2 ≤ r ≤ ∞ for (3.39)
Z = ∇̃or∇, 2 ≤ r ≤ 6 for (3.42) (3.43),
Z = t−2∆, r = 2 for (3.44).

Expanding ∂̃j
t ∇̃k according to the definitions (3.23) (3.24) and omitting the

commutators of derivatives with powers of x and t which generate terms of
lower order, we are led to estimate norms of the type ‖ Z exp(−iϕ)w+ ‖r for
the following choices of Z, r:

Z = 1, x, t−1∇, x2, ∂t, t
−1x · ∇ with 2 ≤ r ≤ ∞ for (3.39),

Z = x, x2, t−1x∇, x3, x∂t, t
−1x2∇, t−1∇, t−2∇2, t−1∂t∇, t−2x∇2

with 2 ≤ r ≤ 6 for (3.42),
Z = ∇, x∇, t−1∇2, x2∇, ∂t∇, t−1x∇2 with 2 ≤ r ≤ 6 for (3.43),
Z = ∆, x∆, t−1∇∆, x2∆, ∂t∆, t−1x∇∆ with r = 2 for (3.44),

where we have omitted an overall t−2 factor in the last case.
We expand the derivatives acting on exp(−iϕ)w+ by the Leibnitz rule and

we estimate the expressions thereby obtained by the Hölder inequality. For
that purpose we need some control of ϕ. From Lemma 2.3 it follows easily
that for w+ ∈ H3, ∇g(|w+|2) ∈ H4 and in particular ∇kg(|w+|2) ∈ L∞ for
0 ≤ k ≤ 3. Together with Lemma 3.4, this provides an estimate of ‖ ∂j

t∇kϕ ‖r

for j = 0, 1, for k = 1, 2 and r = ∞ and for k = 3 and r = 6. With that
information available, we apply the Hölder inequality according to the following
rules:

(i) all the explicit powers of x are attached to w+. In addition, whenever there
appears a factor ∂tϕ (with no space derivative), one power x is extracted
from the Ã1 part of ∂tϕ and attached to w+ (since Ã1 belongs to L∞ but
a priori ∂tϕ does not).
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(ii) The x amputated contribution of ∂tϕ generated by rule (i) and all the
factors ∂j

t∇kϕ with k = 1, 2 are estimated in L∞. The factors ∇3ϕ are
estimated in L6 (in fact in H1). Such factors occur only from the t−1xs∇∆
terms in the proof of (3.44).

(iii) The previous rules generate norms of the type ‖ xs∇kw+ ‖r for w+. Those
norms are estimated by H1 norms of the same quantities for 2 < r ≤ 6 and
by H2 norms for 6 < r ≤ ∞.

(iv) The time dependence of the various terms follows from the explicit t de-
pendence of the operators Z of the previous list, together with the fact
that ‖ ∂j

t∇kϕ ‖r generates a factor t−1 for j = 1 and a factor �n t for
j = 0.

With the previous rules available, the proof reduces to an elementary book
keeping exercise, which will be omitted. We simply remark that the dominant
terms as regards w+ have x3∇, x2∇2 and x∇3 which are exactly controlled by
the assumption w+ ∈ H1,3 ∩ H3,1, equivalent to the assumption u+ ∈ H3,1 ∩
H1,3. As regards the time dependence, the dominant terms come from xs∇ϕ

in the proof of (3.43) thereby generating a factor �n t, and from xs∆ exp(−iϕ)
in the proof of (3.44), generating xs|∇ϕ|2 and therefore a factor (�n t)2.

Finally (3.40) is the special case j = k = 0, Z = 1, r = 3 of (3.45), while
(3.41) follows from the estimate

‖ ∇ua(t) ‖4≤
(
‖ xw+ ‖4 + t−1 (‖ ∇w+ ‖4 + ‖ ∇ϕ ‖∞‖ w+ ‖4)

)
t−3/4.(3.46)

We can now complete the proof of Proposition 1.1.

Proof of Proposition 1.1. It suffices to show that the assumptions
of Proposition 2.2 are satisfied for the choice h(t) = t−1(2 + �n t)2 made in
Proposition 1.1. Now the assumptions (2.17) (2.19) follow from (3.39) (3.42)
of Proposition 3.1, the assumption (2.20) follows from Lemma 3.3 and Corol-
lary 3.1. The assumption (2.21) follows from Lemma 3.2 as regards R1,2 and
from (3.44) of Proposition 3.1 as regards R1,1. The assumptions (3.11) of
Lemma 3.1 and (3.19) of Lemma 3.2 are special cases of (3.43). The assump-
tion (3.21) of Lemma 3.2 follows from Lemma 3.3 and from the fact that if A0 is
a solution of the free wave equation ��A0 in the Coulomb gauge ∇·A0 = 0, with
initial data (A+, Ȧ+), then also x · A0 is a solution of the free wave equation,
namely ��(x ·A0) = 0, with initial data (x ·A+, x · Ȧ+). Finally the assumptions
(2.22) (2.23) follow from Lemma 3.1.
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The smallness conditions needed for Proposition 2.2 bear on c3 and c4.
Now from (3.40), c3 =‖ w+ ‖3 while from (3.41) or (3.46)

c4 =‖ xw+ ‖4 +O
(
T−1

0 �n T0

)
.

Since the estimates are used only for t ≥ T , one can replace T0 by T in that
expression, and the last term can be made arbitrarily small by taking T suffi-
ciently large, so that the smallness condition of c4 reduces to the smallness of
‖ xw+ ‖4.

Remark 3.1. The regularity assumptions on u+ or w+ could be some-
what weakened. The strongest assumptions come from the ∆w+ term in R1,1

and from the x3, x∇2 and x2∇ operators Z in the estimate of ∂t∇ua. On the
one hand the ∆w+ term in R1,1 could be eliminated by the choice

w(t) = U(1/t)∗w+

at the expense of generating either a more complicated and less explicit ϕ or
additional terms in R2. On the other hand, we have obtained on L6 estimate
of ∂t∇ua whereas an L4 estimate was sufficient. Only a minor weakening of
the assumptions on u+ could be achieved along those lines, and we shall not
press that point any further.
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[6] , Long range scattering and modified wave operators for the Maxwell-Schrödinger
system I. The case of vanishing asymptotic magnetic field, Comm. Math. Phys., 236
(2003), 395-448.

[7] , Scattering theory for the Schrödinger equation in some external time dependent
magnetic fields, J. Differential Equations, 215 (2005), 108-177.

[8] , Long range scattering for the Wave-Schrödinger system with large wave data
and small Schrödinger data, Hokkaido Math. J., in press.

[9] Guo, Y., Nakamitsu, K., Strauss, W., Global finite energy solutions of the Maxwell-
Schrödinger system, Comm. Math. Phys., 170 (1995), 181-196.



�

�

�

�

�

�

�

�

Scattering for Maxwell-Schrödinger 459

[10] Keel, M., Tao, T., Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
[11] Nakamitsu, K., Tsutsumi, M., The Cauchy problem for the coupled Maxwell-Schrödinger

equations, J. Math. Phys., 27 (1986), 211-216.
[12] Nakamura, M., Wada, T., Local wellposedness for the Maxwell-Schrödinger equations,

Math. Ann., 332 (2005), 565-604.
[13] Ozawa, T., Long range scattering for nonlinear Schrödinger equations in one space di-

mension, Comm. Math. Phys., 139 (1991), 479-493.
[14] Ozawa, T., Tsutsumi, Y., Asymptotic behaviour of solutions for the coupled Klein-

Gordon-Schrödinger equations, in Spectral and Scattering Theory and Applications,
Adv. Stud. Pure Math., 23 (1994), 295-305.

[15] Shimomura, A., Wave operators for the coupled Klein-Gordon-Schrödinger equations in
two space dimensions, Funkcial. Ekvac., 47 (2004), 63-82.

[16] , Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two
space dimensions, J. Math. Sci. Univ. Tokyo, 10 (2003), 661-685.

[17] , Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two
space dimensions II, Hokkaido Math. J., 34 (2005), 405-433.

[18] , Modified wave operators for the coupled Wave-Schrödinger equations in three
space dimensions, Discrete Contin. Dyn. Syst., 9 (2003), 1571-1586.

[19] , Modified wave operators for Maxwell-Schrödinger equations in three space di-
mensions, Ann. Henri Poincaré, 4 (2003), 661-683.
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