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Abstract

In the present paper, we discuss an obstruction theory to modify equivariant
framed maps on even-dimensional compact smooth manifolds to homology equiva-
lences by equivariant surgery. In 1974, Cappell-Shaneson already developed such
obstruction theory in the nonequivariant setting. Our definition of the surgery-
obstruction group presents a new aspect of Cappell-Shaneson’s group in the nonequiv-
ariant setting and enables us to define directly the surgery obstructions of certain
framed maps that are not necessarily connected up to the middle dimension. Using
our framework defining the equivariant surgery obstruction, we prove a basic conjec-
ture related to geometric connected sums and algebraic sums of surgery obstructions.

81. Introduction

Throughout the present paper, let G be a finite group and Y a compact,
connected, oriented, smooth G-manifold of even dimension n = 2k > 6. We set

Gy = m(EG xgY),

where EG is a contractible G-CW complex with free G-action. Let ¢ denote
the canonical homomorphism Gy — G (G = 71 (BG)). The group Gy acts
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on the universal covering space Y of Y so that the projection map Y —Yis
¢-equivariant (see [4]).

Each oriented G-manifold Z determines the orientation homomorphism
wgz : G — {1,—1}. The value wz(g) at g € G is equal to 1 if and only if the
translation Z — Z by g is orientation preserving. Thus we have the orientation
homomorphisms wy : G — {1,—-1} and wg : Gy — {1,—1}. As usual, the
orientation homomorphisms wy, wg and wz ete. will be abbreviated to w if
what w means is clear from the context. Let R denote either Z or Z(,) for a
prime p, where

a
Zoy = {3 €Q| acz beN (pb)=1}.

The orientation homomorphism wyz above induces an involution pz on R[G]

such that pz(rg) = w(g)rg=! for r € R, g € G and pz(a +b) = pz(a) + pz(b)

for a, b € R|G]. In the following, the group rings R[G] and R[éy} are equipped

with the involutions py and pg, respectively. As usual, — will be used for the

involutions pg, py and pz etc. if what — means is clear from the context.
We define the singular set Yiing and the regular set Yieg of Y by

Ying = |(J Y7 and Yieg =Y N (Y U Yaing),
geG~{e}

respectively.
Let f: X — Y be a degree-one, one-connected, G-framed map satisfying
the gap condition

(GO) dim X9 < dim X/2 for all g € G \ {e},

where X is a compact, connected, oriented, smooth G-manifold of dimension
n and f is covered by a G-vector bundle map T(X) & f*n — £ for some G-
vector bundles 77 and £ over Y. Since f is one-connected, the induced map
m1(X) — m(Y) must be surjective. We give the precise definition of a G-
framed map in Section 2. Since f : X — Y is a degree-one map, the orientation
homomorphism G — {1, —1} given by X coincides with that given by Y. Set

Qx={9€CG|g>=e, g#e, dimX9=k—1},

and let (Qx)r denote the (—1)*-form parameter (see Section 3) of R[G] gen-
erated by Qx. A homomorphism

‘7:)? R (Z[éx], (_l)k? Rl (Q)’Z)Z) - (R[G]7 (_1)k7 ) (QX)R)

)
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of form rings is naturally defined. Dosing Cappell-Shaneson’s group
% (Z[Gx] — R[G])  (cf. [2])

with quadratic form parameter, we obtain an abelian group I'_1yx(Fg p)a-

Let f*1~/ denote the induced covering space on X from Y by f and let
Frovn: (@GY] (=D, = (Qp.5)z) — (RG], (-1)*, — (Qx)r)

denote the canonical homomorphism.

First, consider the case where f is k-connected. Then G x = éy and X =
f*Y. Similarly to [2], one would obtain an element ocg(f) in L ye(Fz plv (=
Liye(F oy g)a) and ocs(f) would vanish if and only if f could be converted
to an R-homology equivalence f' : X’ — Y by G-surgery on X,es. Next,
consider the case where f is not necessarily k-connected. Then we convert f
to a degree-one, k-connected, G-framed map f” : X” — Y by G-surgery on
Xieg- One would define ocs(f) in 'y (Fs )y (ot in I'_qye(Fg p)w)
to be the element ocs(f”) as was done in [2]. (Note that I'_yyx(Fgz p)v =

X",R
F(—l)k (ff*f/yR)/\ﬁ)

But this framework defining ocg(f) is not best for study of surgery prob-
lems. To observe it, take a degree-one, k-connected, G-framed map fy : Xg —
Yy such that Yy is a 2k-dimensional homology disk with nontrivial fundamental
group, such that the restriction dfy : Xy — 0Yp is the identity G-framed
map on 09Xy, hence on 9Yp, and such that for some point zo € X ~ 90X, the
restriction of fy to a small neighborhood of zq is the identity G-framed map.
Then we can consider the G-connected sum

f1 = fo#t(—idy, Us fo) : Xo#(—Y0o Uy Xo) — Yo
at the point xg (= fo(xp)). In this situation, we would conjecture

Conjecture 1.1.  The equality ocs(f1) = 20cs(fo) in I1ye(Fx gy
holds.

If we attempt to prove the conjecture within the framework above, we have
to take a degree-one, k-connected, G-framed map fo : Xo — Y which is G-
framed cobordant to f; and realize the abstract object ocg(f1) as the concrete
one ocs(f2). But it is not easy to see what fo is actually, and therefore it is
not easy to prove the conjecture within the framework above.

In order to overcome the difficulty, we shall introduce an abelian group
I'(1)x(F5 r)m as well as canonical homomorphisms

F(fl)’“(f)?,R)M - F(fl)k(ff*f/,R)MVY — /VZ[@Y]
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and
Lne(Frg gy = e (Frag gl

In addition, we shall show that the homomorphism

L (Fpeg gV = Dcnpp (Fpoy gIm

is an isomorphism (Theorem 3.1). We shall define an R-suitable, G-framed map
in Section 2 which is a slight generalization of a k-connected, G-framed map.
Each R-suitable, G-framed map f : X — Y directly determines a G-surgery
obstruction o(f) € I'_1)x(F5 g)m. We shall show the equality

o(f)zGy) = ocs(f) in T e(Frg gl
In fact, we shall prove the next theorem in this paper.

Theorem 1.1.  Let R denote either Z or Z,) for a prime p. Let f =
(f,b) be a degree-one, G-framed map consisting of f : (X,0X) — (Y,0Y) and
b:T(X)® f*n— f*¢. Assume the gap condition (GC) and the following.

(1) The restriction fQ : X@ — Y@ is q Zq)-homology equivalence for every
subgroup {e} # Q C G having g-power order such that q is a prime not
tnvertible in R.

(2) The equality x(X9) = x(Y9) holds for any g € G ~ {e}.
(3) The restriction 0f : 0X — 9Y is an R-homology equivalence.

(4) In the case R = Z, f : X" — YH js a homology equivalence for every
hyperelementary subgroup {e} # H C G or Ko(Z[G]) = 0.

Then following (I) and (II) hold:

(I) There exists an element ocs(f) in ' 1ye(Frog g)n (= D0y (Frg glm)
possessing the following properties (i)—(iii):

(i) ocs(f) is an invariant of the G-framed cobordism class of f relative
to the boundary and the singular set.

(ii)) If f : X — Y is a one-connected, R-homology equivalence then ocs(f) =
0.

(ili) If ocs(f) = 0 then one can convert f by G-surgery on Xies to a
degree-one, G-framed map f = (f',V') such that f' is a (k — 1)-
connected, R-homology equivalence, where f' : (X',0X’) — (Y,9Y)
and V' - T(X") @ f"'n— f"¢.
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(I0) If f is R-suitable (see Section 2) then there exists an element o(f) in
L' 1)x(Fz g)m having the following properties (iv)-(v):

(iv) Ifo(f) =0 and f : X — Y is £-connected for some integer  such that
1 <?¢<k—1 then one can convert f by (k — 1)- and k-dimensional
G-surgery on Xyeg to a degree-one G-framed map f' = (f',V') such
that f' : X' — Y is an {-connected, R-homology equivalence, where
o (X,0X") — (Y,0Y) and b : T(X') @ f"n — fI"€.

(v) The equality U<f)z[(~;y] = ocs(f) holds in ' 1ye(F oy pIm-

We shall verify Conjecture 1.1 in a general setting: namely, as Theorem 1.2
below. So as to take a geometric connected sum of f, f and idy, we invoke
the next.

Context 1.1. Let f = (f,b) and f' = (f', V'), where f : (X,0X) —
Y,;0Y), b : ex(R) e T(X)® f*n — f*r, [/ (X,0X') — (Y,0Y), and
Viex(R)® T(X') @ f"n — f"1, be degree-one, G-framed maps such that
T=ey(R)&T(Y)@n, 0X' =09Y and f'|ox: = idoy.

Define AX’ = (=Y) Up_y) X'. If X' =Y then AX’ is the double of
Y. As in Section 3 of [8], we define the G-framed map Af' = (Af’, AV') with
Af  AX' — Y and AV :eax (R)ST(X )@ (Af)'n — (Af)*7. Let yo € YC
be a base point located in the interior of ¥ and V,,, a G-linear slice neighborhood
of yo with a G-invariant inner product in Y. Let z1 € f~!(yo) and G xy V a
G-tubular neighborhood of Gz in X such that H = G, and V is an H-linear
slice neighborhood of z1. Suppose f|y : V — V,, is an orientation-preserving
linear isomorphism. Then, we define the connected sum X#¢ o, (G xg AX')
(= X" say) by

X" = (X \ G -Interior(D,,)) Uag-D,, (G x g (AX' N Interior(D,,))),

where D,, and D,, are the unit disks of V' and V), concerned with some
H-invariant inner-product and some G-invariant inner-product, respectively.
Allow us to regard fl|y : V — V,, as the identity map and suppose by =
idT|Vy0. Then we construct the G-connected sum

F#cw, (G xu Af') = (f#6.0, (G xug Af'),b#c .0, (G x g Ab'))

consisting of f#G ., (G xug Af') : X#6 4, (G xg AX') - Y (= f” say) and
b#G .y (Gxpg AY) i exn(R)®T(X")® f"*n — f"*r, and the G-connected sum
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F#G.2. (Gx g (=Af")) (for the details see Section 3 of [8]). There is canonically
defined an induction homomorphism

(G.q) |

Ind(H H) " L (f(Resgf)*RZ—sé/y,R

Jm = Tnn(Frg gl

(see Section 5, the last paragraph in Proof of Theorem 1.2). The next theorem
describes the geometric connected sum in terms with the algebraic induction
homomorphism.

Theorem 1.2.  Let R denote either Z or Z,) for a prime p, and let f
and f' be degree-one, one-connected, G-framed maps in Context 1.1 satisfying
the gap condition (GC) and fulfilling (1)—(4) in Theorem 1.1. Suppose that Y
and Y are R-homology equivalent to D™ and S™~' respectively, and the induced
homomorphism 7 (0Y) — w1 (Y') by the inclusion map is an isomorphism. Let
Yo €Y, Vyy, v1 € X and V be also as in Context 1.1. Then

ocs(F# . (G xar (AF) = ocs(f) + G ) oos (Res ),

where G = Gy and H = m(EG xy Y).

Applying our equivariant surgery theory, we can decide which closed
smooth manifolds can occur as the G-fixed point sets of smooth actions on
spheres for a perfect or nilpotent Oliver group G, which is discussed in [8].

The rest of the paper is organized as follows. In Section 2, we define a
G-framed normal map f, the notion of R-suitable and the (—1)*-quadratic
module «(f) associated with R-suitable f. In Section 3, we observe basic prop-
erties of A-quadratic modules over F, define the groups I'y(F)aq and T'x(F),
and discuss basic properties of the groups. In particular, we refer to an iso-
morphism from I'y(F) to the Bak group (Theorem 3.2). In Section 4, we
define the element o(f) for R-suitable f and give a cobordism-invariance the-
orem of U(f)Z[@Y] (Theorem 4.2). In Section 5, we define ocg(f) and prove
Theorems 1.1 and 1.2.

§2. R-suitable G-framed Maps and Associated Data

Let G be a finite group, R a commutative ring with unit, and X, Y com-
pact, connected, oriented, smooth G-manifolds. Unless otherwise specified, we
invoke the gap condition (GC) on X. In the case where a relevant G-map
f: X — Y is clear from the context, we denote f*Y by X. Let G and G
denote Gx and Gy, respectively. Then G acts on X and G acts on Y as well
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as X. Note that if YO # @, then G is a semidirect product of G with 7 (Y),
ie. G =G m1(Y). Since the G-action on X satisfies the gap condition, the
G-action on X and the G-action on X both fulfill the gap condition. For a
G- map f:X =Y, let My and f denote the mapping cylinder of f and the
map XY covering f, respectively. The map f is regarded as a G- -map.

A G-framed map f = (f,b) is a pair consisting of a G-map [ : (X,0X) —
(Y,0Y") and a G-vector bundle isomorphism b : T(X) @ f*n — f* covering the
identity map on X for some G-vector bundles n and  over Y. If f : (X,0X) —
(Y,9Y) is of degree one, then we say that f is of degree one. Similarly, if
f:+ X — Y is an R-homology equivalence (resp. homotopy equivalence), then
f is said to be an R-homology equivalence (resp. homotopy equivalence).

Let p be a prime and f = (f,b) a degree-one, one-connected, G-framed map
such that X is of even dimension n = 2k > 6, where f : (X,0X) — (Y, 0Y).
Here the one-connectivity means that fx : m(X) — 71 (X) is surjective. Set

T(f) = w1 (MF, X).

Then II(f) is an abelian group by k& > 3, moreover a Z[é]—module since X
is one-connected. Each element x of II(f) is represented by a commutative
diagram diag(z):

st %

o

DFtL ——— Mf

with an immersion h,. By using h, : S¥ — X for each z € II(f), we get the
ordinary intersection form

pe : (f) X II(f) — Z

and hence the equivariant intersection form
p 1) x T1(f) — Z[G]

given by

x,) = Z Pe(, ailx/)a

acG
for x, 2’ € TI(f). Recall that the immersion h, extends to D¥*! — My in

diag(z). By virtue of the bundle datum b, the vector bundle T'(S*)®v(S* ¢ X)
is stably trivial. By Hirsch’s immersion-classification theorem, the ingredient
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h, of diag(x) can be chosen so that the normal bundle is trivial, moreover
such an immersion is uniquely determined up to regular homotopies. Thus, we
obtain the self-intersection form

pe :1(f) = Z/(1 = (=1)").

Let G(2) denote the set of all elements in G of order 2. If a € G(2) satisfies
dim X < k — 2, then by counting the number of appropriately signed self-
intersection points of the immersion p(, o h, set in a general position which
do not arise from self-intersection points of h,, we obtain the self-intersection
form

pa :1(f) = Z/(1 = (=1)*w(a)),
where p,) is the projection
X\ X0 = (XN X/ (),
and w is the orientation homomorphism G— {1, —1} associated with X. Set
Q=Qz (={aeG(2) | dmX" =k —1}).

Let R be a commutative ring with unit, and let (Q)z denote the (—1)*-form
parameter of R[G] generated by @: namely,

@r=(a—(-1)*a|aeG)r+(a|acQ)rCRIG)

Set - ~
G(2)s = {a € G2) | w(a) = (-1)*},

G(2)g ={a € G(2) | w(a) = —(~1)*}.
We decompose G toa disjoint union:
G={e}IG(2),IG?2),1CUC,

where C~! = {a™! | a € C'}. We set

O={e}1G(2),11(G(2),~ Q) I C.
For a € é, we set

R/(1—(-D)F)R (a=e),

R (a € G(2)s),
(a €
(

@

G(2),~ Q)

otherwise).
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Then R[G]/(Q)r is identified with €D, 5 R,. Thus a map v : II(f) — R[G]/
(Q)r can be understood as a formal sum of y, : II(f) — R,, a € Q. We define

the equivariant self-intersection form

p1(f) = ZIG)/(Q)z
by using pe, pa above for a € C:‘(?) < Q and

pa(T) = @e(2, ailx)

fora e C.

We shall define an element o (f) which will be an obstruction to converting
f by G-surgery on the regular set of X to a Z,)-homology equivalence f =
(f', ') consisting of f': (X’,0X) — (Y,0Y) and b : T(X")® f'"n — f'"¢. For
the goal, we have the following necessary conditions derived from the Smith
theory:

(S1) fP:XP -vPisa Zp)-homology equivalence for any p-subgroup P # {e},
(S2) x(X9) = x(Y9) for all g € G \ {e}.
The element o(f) will be defined for f such that

(S3) fu @ Hi(X;Zyy) — Hi(Y;Zy)) are isomorphisms for all i < k; and the
canonical map

K2 Ly @ T(f) = (Hpp1 (M, X; Zp) —) Hpr (Mg, X3 Zy)
is an epimorphism,

Since f is of degree one, the Z,)[G]-module Hy1(My, X;Zy)) is identified
with

K (X5 Zpy) = Ker[fi + Hy(X5Zp)) — Hp(Y3Zp))]
via the canonical homomorphism. Note that if f is k-connected, then

(S3) is automatically satisfied. In order to avoid difficulties caused by the
existence of boundaries, we invoke the additional condition:

S4) 0f : 0X — 9Y is a Z,-homology equivalence.
(p)

For a prime p, a G-framed map f = (f,b) is said to be Z)-suitable if f
is one-connected, of degree one, and satisfies (S1)—(S4). If f = (f,b) is
Zypy-suitable, then K (X;Zp)) is Zy) [G]-free.
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A G-framed map f = (f,b) is said to be Z-suitable if it is Z,)-suitable for
every prime p and

(S5) Ki(X;Z)=XKer[f.: H,(X;Z) — Hy(Y;Z)] is stably Z|G]-free.
If f = (f,b) is Z-suitable, then

(S3') f«: Hi{(X;Z) — H;(Y;Z) are isomorphisms for all ¢ < k; and the canonical
map
k& I(f) = (Hiy1 (M7, X5 Z) —)Hy1 (My, X5 Z)
is an epimorphism,

(S4') 9f : 90X — QY is a Z-homology equivalence.

Let R denote either Z or Z, for some prime p. If f = (f,b) is R-suitable,
then we have the equivariant intersection form

¢ : Ki(X; R) x Ki(X; R) — R[G]

compatible with ¢ above: namely,

o(r(z), k(2") = F(o(z,y))

for x, ' € TI(f), where F : Z|G] — R|G] is the canonical homomorphism.
Since ¢ is essentially the Poincaré pairing, ¢ is nonsingular, namely the adjoint
map

® : Kp(X; R) — Hompq (Kx(X; R), R[G])

given by ®(z)(y) = p(x,y) for z, y € Ki(X; R) is an isomorphism. Note that

in the special case where f is k-connected, R[G] ®;a I(f) = Ky(X; R); and
the equivariant self-intersection form

p: Kp(X; R) — R[G]/(Q)r

is induced from p, where
QR={9€eG?2)| dmXI=Fk—1}.

Definition 2.1. Let f = (f,b) be an R-suitable G-framed map as
above. Then we call the datum

a(f) = (k: 1(f) — Kr(X; R), 0, 1, ¢)

the (—1)¥-quadratic module over Fx g associated with f.
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The next lemma follows from standard arguments (see [10, 5]).

Lemma 2.1.  Let R denote Z or Zy). Let £ be an integer such that
1<l<k—1. Let X be a compact, oriented, smooth G-manifold of dimension
n = 2k > 6 satisfying the gap condition (GC) and let f = (f,b) be an (-
connected, R-suitable G-framed map consisting of f : (X,0X) — (Y,9Y) and

b:T(X)® f*n — f*€. If there exists a finitely generated Z[G)-submodule
L C II(f) such that

(1) ¢(L,L) = {0} and u(L) = {0},
(2) (k(L))g is a stably free Z|G)-direct summand of Ky(X; R), and
(3) the submodule
{z € Kp(X;R) | p(x,r(2)) = 0 for all 2’ € L}
coincides with (k(L)) g,

then one can perform G-surgery on X,e, of dimension k —1 and k so that the
resulting f' = (f',b') is an (-connected, R-homology equivalence.

The submodule L above is referred to as a pre-Lagrangian (or presubkernel)

of a(f).

83. Extended Cappell-Shaneson’s Group

Let A be a ring with unit. A map — : A — A is called an involution
ifT=1a+b=a+0band ab = ba are satisfied for all a, b € A. A ring
homomorphism ¢ : A — A’ is said to be locally epic if for arbitrary (finitely

many) elements af,...,a,, of A’ there exists a unit uw € A’ such that all

» Ym

ual,...,ua,, lie in ¥ (A). If moreover one can take the u above in ¥(A), then
1) is said to be strongly locally epic. For example, the canonical homomorphism
Z — Z) is strongly locally epic. Unless otherwise stated, we assume each
module (over A say) is finitely generated (over A). Let M and M’ be modules
over A and A’, respectively. A t-homomorphism h : M — M’ is said to be
locally epic if for arbitrary z,..., 2/ in M’  there exists a unit u € A’ such
that all uz!,...,uz!, lie in h(M).

Let A =1 or —1. An additive subgroup A of A is called a A\-form parameter
if the following conditions are satisfied:

(1) {a—Xa|ac A} CAC{ac A|a=—-)a},
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(2) aAa C A for all a € A.

The datum (A, —, A\, A) is referred to as a form ring. A homomorphism (or
morphism)
(Aa ) )‘7 A) - (Ala ) )‘7 A/)

of form rings is a ring homomorphism 1 : A — A’ such that 1 preserves the
involution and the form parameter: namely, Wa) = ¢(a) for all @ € A and
PY(A) C A

Let F: (A, — A\, A) — (4, —, A\, A) be a homomorphism such that 7 : A —
A is locally epic.

A A-quadratic module o over F is a tuple (k : H — H, @, u, ) such that

(1) H is a finitely generated A-module,
(2) H is a finitely generated stably free A-module,
(3) k is a locally epic F-homomorphism,
(4) ¢: Hx H— A is a biadditive map,
(5) p: H— A/A is a map,
(6) ¢: Hx H— Ais a biadditive map,
satisfying
(Q1) plaz,d's’) = d'plz, ),

(Q2) p(x,2') = Ap(a’, x),

(Q3) w(z,2) = plx) + Au(x),
(Q4) p(x +a') — p(x) — p(a’) = p(z,2") mod A,
(Q5) p(az) = ap(x)a,

(Q6) the adjoint map
& : H —» Homg(H, B);

D(y)(Y) = ey, y)

S

is bijective,
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(Q7) ¢(k(z), k(z') = F(o(z,2)),
foralla,a’ € A, z, 2’ € H,y,y € H.

A typical example of a A-quadratic module over F is the A-hyperbolic plane

H<A) = ('7 tH Hﬂ, $o, /”‘07@)
which is given as follows:

(1) H is a free A-module with basis {z1,22} and H is a free A-module with
basis {y1,y2},

(2) v(z1) =y1, v(@2) = v2,

(3) o1, 21) =0, po(z1,22) = 1, @o(w2,22) =0,
(4) po(x1) =0, po(w2) =0,

(5) wo(y1,y1) =0, wo(y1,92) = 1, po(y2,y2) = 0.

A X-quadratic module over F isomorphic to
H(A™)=H(A) L--- 1 H(A) (the orthogonal sum)

is called a A-hyperbolic module.

Let « = (k: H— H,p,u, E) be a A-quadratic module over F. We mean
by —a the A-quadratic module (x : H — H, —p, —pu, —¢) over F. A finitely
generated A-submodule L of H is called a pre-Lagrangian (or presubkernel) if

the following conditions are satisfied:

(1) »(L, L) = {0} and p(L) = {0}.
(2) (k(L))a is a stably free A-direct summand of H.

(3) Thesubmodule {y € H | ¢(y,y") =0 (Vy' € (L))} coincides with (x(L))4.

A A-quadratic module over F is called a null module if it admits a pre-
Lagrangian. Clearly, a A-hyperbolic module is a null module.

Lemma 3.1. Let a = (k : H — H,p,p,¢) be a A-quadratic module
over F and K an A-submodule of H such that k(H) = k(K). Then o L —( is
a null module, where = (k|x : K — H,p|kxx, pili, ) and L stands for the
orthogonal sum.
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Proof. The submodule L = {(z,z) € H® K | x € K} is a pre-Lagrangian
of a L —0. O

Corollary 3.1 cf. [2, Lemma 1.1].  For an arbitrary \-quadratic mod-
ule o over F, a L —a is a null module.

Lemma 3.2 cf. [2, Lemma 1.2].  For each A-quadratic module o = (k :
H — H,p,p, ) over F, there exists a A-quadratic module o/ = (' : H —
H,¢' 1/, ¢) such that H' is a free A-module and o L —a is a null module.

Proof. Since H is finitely generated over A, there exists an A-epimor-
phism f : H — H such that H' is a finitely generated free A-module. We
define the ingredients of o’ by setting k' = ko f, ¢’ =po (f X f), ' =po f.
Then L = {(f(z),z) € H® H' | x € H'} is a pre-Lagrangian of &« L —a/. O

We say that A-quadratic modules o and o’ over F are equivalent and write
a ~ o if there exists a null module 8 such that o L —a’ L 3 is a null module.
The next lemma is significant for understanding surgery theory.

Lemma 3.3 cf. 2, Lemma 1.3]. A A-quadratic module o over F is
equivalent to 0 if and only if there exists a A-hyperbolic module H(A™) such
that L H(A™) is a null module.

Proof.  This follows from the arguments in the proof of [2, Lemma 1.3]. O

Let M denote the category of A-quadratic modules over F and let A
denote the full subcategory of M consisting of a = (x : H — H, ¢, u, )
such that the induced map H4 — H from & is an isomorphism, where Hy =
A®y H. Tt is clear that A-hyperbolic modules belong to N. Each object
o= (k:H — H,opnyp) in N provides a A\-quadratic map p : H — A/A
such that p(k(r)) = [f(,u/(\:;)))] for x € H, where ,L;Z;) € A is a lifting of p(x).
Let C = M or N and let I'y(F)¢ denote the set of all equivalence classes of
A-quadratic modules over F belonging to C. Then I'y(F)¢ is an abelian group
under the addition induced by orthogonal sum. Clearly, there is a natural
homomorphism

p:IA(F)n — WO)\(A’A)v [k:H— Ev@ﬂ:uﬁi} = [ﬂ,f,,u]

where W3'(4, A) is the Bak group defined in [5, Definition 1.1]. If A = (—1)*
and the A-form parameters A and A are the minimal form parameters of A and
A, respectively, then T'y(F)ar coincides with Cappell-Shaneson’s group ng(]: )
given in [2, Chapter I, §1].
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Theorem 3.1.  The natural homomorphism v : Tx(F)xy — Ta(F)am is
an isomorphism.

Proof. TFirst, we show the injectivity of ¢. Let a be an object of A repre-
sents 0 in I'y (F) . By Lemma 3.3, there exists a A-hyperbolic module H(A™)
such that « L H(A™) is a null module. This implies that o represents 0 in
Ta(F)pr-

Next, we prove the surjectivity of ¢. Let a = (v : H — H,p, 11,0) be
an object in M. Without loss of generality, we can suppose that H is a free
A-module. Let 7 denote the canonical map H — Hy = A®4 H and oy
the induced A-quadratic module (v : H — Ha,, 1, 4) over F. Since H is
a free A-module, take a basis {y1,...,ym} of H. By multiplying a unit of
A to y; if necessary, we may assume that all y; lie in the image of k. Thus,
we can take xq,..., 2z, in H such that k(z1) = y1,...,6(Tm) = Ym. Let H’
be the free A-module with basis {z1,...,2,} and let w : H — H be the
canonical homomorphism. Define H' to be the A-submodule of H4 generated
by v(z1),...,7(xm). Since H' = H, H’, is naturally isomorphic to H'. Set

o = (v H — H', o|g s o (wxw), plgow,0aln).

Then ' is an object in N. Moreover, the A-submodule L = {(w(z),z) €
H@®H |z € H'} of H® H' is a pre-Lagrangian of o 1 —a’, and hence
a~ . O

From now on, we identify I'y (F) »r and I'y (F) 4 with each other and denote
them by T'x(F). If a = (k: H — H, @, j1, ) belongs to N, then the datum is
abbreviated to a = (H, p, p).

Proposition 3.1.  Let F: (A, — A\ A) = (A, —, M A) and F' : (A", —, A,
A — (A, —, A\ A) be locally epic homomorphisms. If ¢ : A — A’ is a locally
epic (resp. strongly locally epic) monomorphism of rings preserving the invo-
lution, Y(A) = Y(A)N A, and F = F' o4, then the canonical homomorphism
Yy : TA(F) — TA(F') is a monomorphism (resp. an isomorphism,).

Proof. We regard A as a subring of A’ via .

First, we prove the injectivity of .. It suffices to show a ~ 0 for an
arbitrary A-quadratic module o = (H,p, ) € N over F such that aar ~ 0,
where g = (Har,par, 1ar) is the A-quadratic module over F’ induced by v
from «. By Lemma 3.2, we may suppose that H is a free module over A.

By Lemma 3.3, there exists a A-hyperbolic module H(A’?) such that
aa L H(A”) is a null module. Hence ayr | H(A’®) has a pre-Lagrangian
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L'. Suppose {yi,...,ym} generates L' over A’. We regard A> C A’° and
H C Hys. Since v is locally epic, there exists an unit u of A’ such that
UYL, - -, UYm € H D A° ® A%, Let L denote the A-submodule of H & A® & A*
generated by {uyi,...,uym,}. Since A = A’ N A, L is a pre-Lagrangian of
a 1 H(A?®), hence we conclude a ~ 0.

Next, we prove the surjectivity of 1, in the strongly locally epic case.
Let 8 = (K,v,w) be a A-quadratic module over F’ in N4/ such that K is a
free A’-module. Let {y1,...,ym} be an A’-basis of K. Consider the elements
~¥(yi,y;) and wf(g\h/) in A, where 1 < 4,5 < m and c;Zyz/) are liftings of w(y;),
respectively. Then there exists an element u € A such that u is invertible in
A" and all uy(y;,y;), uw(y;) belong to A. Set x1 = uy1,...,Tm = Yy, and
let H be the A-submodule of K generated by 1, ..., 2. A A-Hermitian map
¢ : HxH — A and a A-quadratic map p : H — A/A are obtained by restricting
v and w to H x H and H, respectively. Set o = (H, ¢, ). Then 9. ([a]) is
equal to [3]. O

For a group G and a subset S of GG, we define

S52)={geS|g*=eg#e},
SQZ{QGS‘QZZQ UJ(Q)Z—A},
Se =85\ 5.

Theorem 3.2. Let G = Gxr be a finite group, C : G — G the canonical
projection, W : G — {1,-1} and w : G — {1, —1} orientation homomorphisms
with W = wo(, A = 1 or =1, and R = Z,) for a prime p. Let Q be a
conjugation-invariant subset of G(2) such that w(g) = =X\ for all g € Q and
set @ = @(2) N ¢ YQ). If the order of w is prime to p, then the canonical
homomorphism p : Tx(F) — WMNR[G],(Q)r) (cf. [5, Definition 1.1]) is an
isomorphism, where F is the canonical homomorphism

(R[G], =5 MQ)r) — (R[G], —w M (Q)R).

Proof. First, we prove the surjectivity of p. So, let ¢ be an arbitrary
element of the group W3 (R[G], (Q)r) and 8 = (H, ©, ) a A-quadratic mod-
ule representing 0. We may assume that H is a free R[G]-module and let
{y1,--.,ym} be an R[G]-basis of H. Then

Let (R[G)2™,®, M) stand for the A-hyperbolic module H(R[G]™) and let
w: R[G]*™ — R[G™™
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denote the canonical projection. Let x1,...,2,, € R[é]Qm be liftings of y1, ...,
Ym, Tespectively. Let H be the free R[G]-module with basis {z1, ...,z } and
h : H — R[G)>™ the canonical homomorphism. Define v : H — H, ¢ :
HxH — R[G), and pn: H — R[G]/(Q)r by k =woh, o =®o(hxh), and
i = M o h, respectively. Then we get the element o € T'y(F) represented by
a=(k:H— H,o,p,). Clearly, we have p(c) = g.

Next, we prove the injectivity of p. Let o € T'\(F) be an element such
that p(c) = 0. We are going to show 0 = 0. Let a = (v : H — H,p, i1, 0)
be a A-quadratic module over F representing o. Without loss of generality, we
can suppose that H = R[G]™, H = R[G]™, and & is the canonical homomor-
phism. Let {x1,...,2n} and {y1,...,ym} be the canonical bases of H and H,

respectively. Define an R[G]-homomorphism 7 : H — H by
Y
T(yi) = @i,
||

where

Yin :Zc.

cem

Note the property

(3.1) T(H) CH™.

We shall prove in Step 1 that ¢(y,y") = 0 implies ©(7(y), 7(y')) = 0, and in
Step 2 that ¢(y,y) = 0 and p(y) = 0 imply u(7(y)) = 0, where y, y' € H. Once
these were shown, we can conclude that if agg) = (H, 22 H) has a Lagrangian
L, then 7(L) is a pre-Lagrangian of «: namely, agla) ~ 0 implies o ~ 0.

Step 1. Let ¢, : H x H — R be the e-component of ¢ : H x H — R|G]:
namely,

pla.x) = Y gelw.a”'a')a
ac@
for #, 2/ € H, where e is the identity element of G. Let ¢, : R[G] — R[G]
denote the homomorphism induced from ( : G — G. By definition, we have
P(r(y), 7)) =D ¢e(r(y),a” ' 7(y))a

ae@

=S| Y elr@).atry))a

9€G \a€C1(g)

=Y 0(rW),g 'r(¥)Exg  (by (3.1)),

geqG
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and

2, y") = Gl (), 7(¥)))

= (s Z goe(T(y),gflT(y'))Eﬂg

geG

=7 elr(®).g7 ()9

geG

Hence, the equality
P

o(r(y), 7(y')) = ] ey, y')

holds for all y, ' € H. Clearly, ¢(7(y), 7(y’)) vanishes if and only if ¢(y,y’)
does.

Step 2. Suppose ¢(y,y) = 0 and u(y) = 0. By Step 1, we get p(7(y), 7(y))
= 0. Now we decompose G to a disjoint union of the form

G={e}11G(2),11G2), ICcTIC™

such that C~t = {g=! | g € C}. Set Q = {e} U (G(2) ~ Q) UC. Define the
module Ry, g € G, by

R R (g € Gy),
"\ R/2R (g€ Gy~ Q).

Then we can regard p(y) as the formal sum

wy) = 1, (g

geQ

with 1, (y) € Ry. Similarly choosing a subset 0 of G~ Q so that C(@) = 0Q,
we can write p(z) in the form

p(x) = pa()a

aeé

with e (z) € Rg.
If a € G, N O, then piq(7(y)) = 0 follows from (7 (y),a= 7 (y)) = 0.
Next, note that if p is an odd integer and a € @qﬁ Q, then R, = R/2R = 0,
and hence pq(7(y)) = 0.
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It remains to consider p,(7(y)) for a € @q N Q and p = 2. In this case, 7
is of odd order. Let g € G4. By definition, we have

p()= >  m(r(y) inR/2R
be¢=1(9)NG

= Y. mlr(y) (because p(r(y),7(y)) = 0).

be¢-1(g9)nG,

In particular, if the identity element e belongs to G, then

1, (y) = pe(T(y)),

since 7 is of odd order. This implies u.(7(y)) = 0. Suppose g € G(2),. For
b e (Hg) NG(2),, we can write b in the form b = cg with ¢ € m. Note that
g*> =e, g# e and gcg = ¢ L. If ¢ # e, then the subgroup (c, g) generated by ¢

1 u+2

and ¢ is a dihedral group. Since ¢(c*g)c ! = ¢¥T2g and

w(r(y) = pler(y)) = eu(r(y))e  (cf. (3.1)),

we obtain ucu/fzg(T(y)) = peug(7(y)) and hence e (T(y)) = pe(r(y)) for all
be ("1(g) NG(2),. Noting that |1 (g) NGyl is an odd integer, we get

1, (Yy) = g (7(y))-
Thus, we have p14(7(y)) = 0 as well as up(7(y)) =0 for b€ (~(g) N 6(2)q.
Putting all together, we have shown pu(7(y)) = 0. O

84. The G-surgery Obstruction and G-framed Cobordism
Invariance

Let X be a compact, connected, oriented, smooth G-manifold of dimension
n = 2k > 6 satisfying the gap condition (GC) and let X denote the universal
covering space of X. The group rings R[G] and R[é] over a commutative ring
R have the involutions derived from the orientation homomorphisms of X and

X, respectively (see Section 2). Let A = (—1)*. The sets
Q=0Qx (={g€G2) | dimX9 =k —1})

and
Q=Qz (={aeG?2) | dimX* =k —1})
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generate the A-form parameters (Q)x and (Q)r over R, respectively. For Z C
RCR CQ,let

fR,R’ : (R[é}v ™ (_l)kﬂ (@)R) - (RI[G]ﬂ ! (_1)ka (Q)R’)v
Frr : (RG], =, (1%, (Q)r) — (RG], -, (-1)*, (Q)r")

and

Y (RG], — (-1)F,(@Q)r) — (RG], —, (=1)*, (Q) &)

denote the canonical homomorphisms. Then by Proposition 3.1,
Yrr,  UA(FrR) — UA(Fr RY)

is an isomorphism.

From now on, let R = Z or Z, for a prime p. Let f = (f,b), where
f i (X,0X) - (Y,0Y) and b : T(X) & f*n — f*¢ be an R-suitable G-
framed map (cf. Section 2). Then a(f) = (x : II(f) — Kp(X;R), 0,1, @)
(see Definition 2.1) is a A-quadratic module over Fyz r. Here we would like to
remind readers that Fz r coincides with F TR in Section 1.

Definition 4.1.  We define the element o(f) € I'x(Fg ) to be the
equivalence class of a(f).

The element o(f) is a G-surgery obstruction in the following sense.

Theorem 4.1.  Let R and f be as above. If f is £L-connected for some
integer such that 1 < ¢ < k—1 and o(f) = 0 then one can perform G-surgery on
Xyeg of dimension k —1 and k so that the resulting G-framed map f' = (f',b')
is a degree-one, £-connected, R-homology equivalence, where [’ : (X', 0X') —
(Y,0Y) and V' : T(X') & f'"n — f/"¢.

Proof. By hypothesis, a(f) ~ 0. By Lemma 3.3, a(f) L H(A?) is a null
module for some integer s > 0. By s-iteration of ‘trivial’ (k — 1)-dimensional
G-surgery on X, for f, we obtain a degree-one, G-framed map f" = (f”,b")
such that a(f”) = a(f) L H(A®), where f” : (X",0X") — (Y,0Y) and
b T(X") @ f""n — f"*€. The resulting map f” : X" — Y is automatically
¢-connected. Then by Lemma 2.1, we can perform (k — 1)- and k-dimensional
G-surgery of f” on Xieg 80 that the resulting F = (f',V) is a degree-one,
l-connected, R-homology equivalence, where f' : (X’,0X’) — (Y,9Y) and
VT(X @ [ — e O
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Let f be as above and ( : G — G the projection map, where G= m(EGxg
X)and G =7 (EG xgY). Set

N(f)ya = ZIG) @y T(f) and Q =((Q).

Then the canonically induced homomorphism

F: (Z][G),— X\ (Q)z) — (R[G], =\, (Q)r)

from Fyz r coincides with }-f*f/ r in Section 1. In the remainder of this section,
we study the A\-quadratic module

a(f)z[@] = (ﬁz[é] : H(f)z[é] - Kk(X§ R), @Z[@]vﬂz[@]af)a

over F and its equivalence class U(f)Z[@] € ['\(F).

A G-framed cobordism relative to the boundary and the singular set be-
tween degree-one, G-framed maps f = (f,b) and f' = (f’,V') is a degree-one,
G-framed map F = (F, B) consisting of

F:(W,0W)— (IxY,0(IxY))

and
B:T(W)® F*(1(0) x ) — F*(e7(R) x &),

where I = [0, 1], satisfying the following:

(1) OW has a decomposition X_ U XoU X, with X_NX, =2, X_NX, =
0X_, Xy NXp = 0X; and (X_ N Xp) U (X4 NXp) = 9Xp such that
X_ = X by an orientation-reversing G-diffeomorphism, Xg = I x 0X
by a G-diffeomorphism, and X, = X’ by an orientation-preserving G-
diffeomorphism.

(2) F(X_) € {0} x Y, F(Xo) € (I x 8Y), F(X;) C {1} x ¥, Flx_ = [,
F|X0 :id[ ><6'f and F‘|X+ :f/.

(3) Blx_ = idsx(]R) @ b, B|X0 = idsI(R) X blox and B|X+ = idsx/(]R) e,
where the inward (resp. outward) normal bundle of X_ (resp. Xy) in W
is identified with ex (R) (resp. ex/(R)).

(4) There exist a G-neighborhood Nw of Uy (., WH in W, a G-neighborhood
Nx of UHi{e} X" in X, and a G-diffeomorphism Ny — I x Nx such that
F|NW = id] X leX and B‘NW = idsl(]R) X b|NX~
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Theorem 4.2.  Let R = 7 or Zy, for a prime p, and let f = (f,b),
f:(X,0X) — (Y,0Y), and f = (f’,b’), [ (X',0X") — (Y,0Y), be R-
suitable G-framed maps of dimension n = 2k > 6 such that X and X' satisfy
the gap condition (GC). In the case R =7, further suppose

(S6) fH : XH# — YH s a Z-homology equivalence for any nontrivial hyperele-
mentary subgroup H of G,

(S6') Ko(Z[G]) = 0.

If f and f' are G-framed cobordant relatively to the boundary and the singular
set, then

o(Fya =0 yg  in TA(F).

Proof. We prove the theorem under the assumption 0X # &. Since any
degree-one, G-framed map is G-framed cobordant relatively to the boundary
and the singular set to a degree-one, k-connected, G-framed map, it suffices
to prove the theorem in the case where f’ is k-connected. Let F = (F,B),
F:W — IxY, bea G-framed cobordism relative to the boundary and the
singular set between f and f’. By performing G-surgery on Wieg, We may
suppose that F' is k-connected. Then observe the exact sequence

- Kt (W, 0W) — K (0W) — K (W) — K (W,0W) — 0,

where the coefficient ring is R. By performing handle subtraction for suitable
G-embeddings G x (D*,S*=1) — (W, X), we can kill the homology kernel
K (W,0W). The procedure changes o(f) to a(f) & H(Z[G]*), but it does not
change the class o(f). Consequently we get the exact sequence

It follows that Ki1(W,0W) and Ky (W) are stably free R[G]-free modules (in
the case R = Z, use (S6) or (S6')). Let W denote the universal covering space
of Wand F: W — I x Y the map covermg F. The covering space X = Y
is naturally regarded as a subbpace of OW and has the form X /N where N
is a normal subgroup of G with G/N G. Let P% : X — X denote the
projection map. Let U denote the union of the mapping cylinder M, _ of

PR R and W attached along X. Let f: X — Y denote the map covering f.
Let (I x )?) uw (resp. (I x X)UW) denote the space obtained from the disjoint
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union (I X )?) Inw (resp. (I x X)II W) by canonically identifying {1} x X
with X (C OW) (resp. {1} x X with X (C OW)). Then the canonical maps

U—IxX)UW and U — (I x X)UW

are both branched coverings in general. Let OU denote the counter image of
I((I x X)UW) by the map U — (I x X)UW. Then U and U are G-spaces.
Combining the maps I x f: I x X — Y (= {0} x Y) and F, we obtain a map
U:U — IxY. Then w41 (¥|op) and m42(¥, U|sy) are Z[G]-modules. Thus,

T 1(P]or) = Image[my11(¥]or) — mhr1((¥]or)/N)]

and
Thot2(¥, Yo ) = Image([ry12(¥, ¥|or) — Tr12(P/N, (¥]or)/N)]

are Z[é]—modules. Since U/N is a smooth manifold with a bundle datum,
Tr+1((P|or)/N) has the ordinary intersection form and the self-intersection
form. Moreover, 7} (¥]sr) has the equivariant intersection form

11 Ty (Pow) X oyt (¥]ov) — Z[G]
and the equivariant self-intersection form

p1 1 (ar) — ZIG)/(Q)z.

Let o1 denote the equivariant intersection form on K (0W) over R[G]. The
canonical homomorphism

k15 Ty (Plov) — Ki(O((I x X) UW))

is locally epic. Set a1 = (k1,¢1,41,%1). Then — (f)Z[G] L oalf) ~ a.
Clearly the image of 7rk+2(\11 \I'|,9U) in m;_ (V]|pr) is a pre-Lagrangian of a.
Thus, U(f)z[g] o(f' )Z[G] in FA(]:)

If 0X = @, we reduce the proof to the case with boundary. Let yy be a
point in Y;es. Then G-acts freely on the G-orbit Gyy. Without loss of generality,
we can suppose f is transverse regular to {yo}. Since f is of degree one, the
number of points in f~1(yp) odd. Since f : X — Y is one connected, we can
modify f: X — Y by G-homotopy deformation relative to boundary so that
7 1(yo) consists of exactly one point, zg say. Similarly we may assume that f’
is transverse regular to {yo} and f’ “!yo) consists of exactly one point, xf say.
Next, we may suppose that F' : W — I xY is transverse regular to I x {yo}. Let
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L be the connected component of F~1(I x {yo}) containing x¢ and z{,. Each
connected component of F~1(I x {yo}) except L is diffeomorphic to a circle.
Thus, we can remove the circle components by one-dimensional G-surgery on
Wieg of (F, B). Removing appropriate tiny open G-tubular neighborhoods T
and T’ of G - L and Gyy from W and Y, respectively, we obtain G-framed
cobordism Fy = (Fy, By) consisting of

F() : (Wo,aW()) — (I X Yo,a(I X Yo))

and
By : T(Wo) @ Fg (e1(R) x ) — Fg(er(R) x €)

between degree-one, G-framed maps f, and f6 such that Wy = WNT, Yy = Y~
T, o(fy) = o(f) and o(fy) = o(f'). Since the relevant underlying manifolds
of these G-framed maps have boundaries, we get o(f,) = o(f5).- O

85. Proofs of Theorems 1.1 and 1.2

Let R denote either Z or Z, for a prime p. Let f = (f,b) be the G-
framed map in Theorem 1.1. In the case where f itself is R-suitable, we defined
the element o(f) € I'(_1)x(Fz r) in Definition 4.1. But in general, we can
perform G-surgery of f on X,g so that the resulting degree-one, G-framed map
fr = (fe,br)s fr @ (Xk,0Xy) — (Y,0Y), is k-connected. Then by definition,
fr is R-suitable. Thus we obtain the element o(f;) € I'(_1)x(F, ). Since
m1(EG X ¢ X},) is canonically isomorphic to G = m1(EG xgY), we can identify
f)’(},R with ff*f/,R in Section 1 as well as Z in Section 4.

Definition 5.1. We define ocs(f) € F(,l)k(}"f*{/ﬂ
o(fr)-

By Theorem 4.2, ocs(f) is defined independently of choice of f.

) to be the element

Proof of Theorem 1.1.  Let f = (f,b) be the G-framed map in Theorem 1.1
and let f; = (fx, bx) be as above.

(i) Let f' be a degree-one, G-framed map. As in the case for f, we have
a degree-one, k-connected, G-framed map f;c which is G-framed cobordant
relatively to the boundary and the singular set to f'. Then by definition,
ocs(f) = o(fy). If f is G-framed cobordant relatively to the boundary and
the singular set to f’ then f, is so to f}. By Theorem 4.2, o(f,) = o(f},) and

hence ocs(f) = ocs(f).
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(ii) Assume f is a one-connected, R-homology equivalence. Then f is R-
suitable. We immediately obtain a(f)Z[é} = 0. By Theorem 4.2, a(f)Z[é} =

o(fy). Thus ocs(f) = o(fy) = 0.

(iii) Suppose ocs(f) = 0. The equality o(f;) = 0 immediately follows.
Thus, by Theorem 4.1, we can convert f, by G-surgery on Xj,., to a (k —1)-
connected R-homology equivalence f'.

In the following (iv)—(v), we suppose f is R-suitable.

(iv) Suppose o(f) = 0 and f is f-connected. By Theorem 4.1, we can
convert f by (k — 1)- and k-dimensional G-surgery on X,eg to an ¢-connected
R-homology equivalence f'.

(v) By Theorem 4.2, o(f}) = O’(f)Z[é]. Thus we obtain ocs(f) = o(f),) =
o(fza O

Proof of Theorem 1.2. Let f and f be as in Theorem 1.2. By Theo-
rem 4.2, we can assume without loss of generality that f and f’ are k-connected.

Set
X" = X#G,le XH AX/,

"= f#c0,G xu Af,
V' =b#G.u, G xu AV,
"= f#6.2,G xu Af'.
Recall AX' = (=Y) Ug—y) X’. Thus by assumption, 71(X') = m(AX') =

m1(Y). If we forget the G-actions, X" is the ordinary connected sum of mani-
folds X and |G/H]| copies of AX'. Clearly, f” is one-connected and

Kp(X"; R) = Kp(X; R) ® Ind% Ki.(Res$ X' R).

According to the definition of the G-surgery obstruction, we have the (—1)*-
quadratic modules

a(f) = (k: 1(f) — Ki(X5 R), 0, 1, 0)
over g p (= Fj.y p in this situation) associated with f,
a(f)) = (v 1(f") = Kn(X"s R), 9", 1, ¢')
over F5 p (= Fpuy p in this situation) associated with f', and

a(f/l) — (KJH . H(f//) N K}g(X//;R),QD”,NII7SO_H)
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over Fxm p associated with f’. Then II(f" )Z[é] canonically contains

I1(f) & IndT1(Resf 1),

where R
Ind%T(Resf; f') = Z[G] @) TI(Res f).

Clearly, i
Wy (0(F) © dZ(Resfy ) = Ki(X"; R).

Let 4 denote the pair (¢,1)) consisting of the canonical homomorphisms
(U (Z[H], (_1)kv ™ (QRES%S{’/)Z) - (Z[G]7 (_1)k’ ™ (Q}?’/)Z)

and

¢ 2 (RIH], (=1)%, =, (Qresg x)r) — (RG], (=1)*, =, (Qx")R)-
As in [7], [3] (particularly, (6.3) and the definition of ¢4q prior to Lemma 12.3
in [7]), we can define the (—1)*-quadratic module 1/)#a(Resgf/) over ]-"f,*;,,R,

and denote it by Indg’i))a(Resgf’). It follows from Lemma 3.1 that a(f")Z[@]
is equivalent to 7

a(f) L Indg”fl))a(Resg ).

Thus we conclude ocs(f”) = ocs(f) + Indg’i[))ch (Res& f). O
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