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Abstract

For some different types of operators on a Hilbert space, we present new high-
power operator inequalities, and their corresponding operator inequalities involving
spectral radii of operators. In particular, we show that Halmos’ two operator in-
equalities, Reid’s inequality and many others hold easily. In applications we obtain a
new generalized classical Löwner inequality; and a slightly generalized Löwner-Heinz
inequality is given.

§1. Introduction

As is well-known the Cauchy-Schwarz inequality is a powerful inequality
which states that the relation

| (x, y) | ≤ ‖ x ‖ ‖ y ‖(1.1)

holds for every x and y in a pre-Hilbert space. Every inequality in this space
is either derived from the Cauchy-Schwarz inequality, or equivalent to it. For
recent developments on inequalities related to (1.1) see [1] and the references
therein.
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In this paper we use capital letters to denote bounded linear operators on
a complex Hilbert space H into itself, and I denotes the identity operator. A
positive operator T is written as T ≥ O, the zero operator. We shall consider
four types of high-power operator inequalities, and their corresponding opera-
tor inequalities involving spectral radii of operators. Four types are: a positive
operator, two arbitrary operators, mixed operators, and two selfadjoint opera-
tors. Indeed, our results are motivated by Halmos’ two operator inequalities in
[3, p. 51 and 244]. He proved that if T ≥ O, S is arbitrary and TS is selfadjoint
operators, then the following high-power operator inequality holds.

| (TSx, x) |2
n

≤ (TS2n

x, x)(Tx, x)2
n−1(1.2)

for every x ∈ H and n ≥ 0. From this he concluded that the inequality involving
spectral radius

| (TSx, x) | ≤ r(S)(Tx, x)(1.3)

holds, where r(S) means the spectral radius of S. It is a stronger version of a
result due to Reid [9]; Reid had ‖ S ‖ instead of r(S) (that r(S) ≤ ‖ S ‖ is
known [3, p. 45]). Actually, we obtain some generalizations of inequalities (1.2)
and (1.3). In particular, it is shown that inequalities (1.2), (1.3), Reid’s inequal-
ity, and many others hold easily. In applications we obtain a new generalized
classical Löwner inequality, and partially generalized Löwner-Heinz inequality.
The latter, as well-known, is essential in general operator inequalities on H.

§2. Results

First of all, recall that the inequality | (Tx, y) |2 ≤ (Tx, x)(Ty, y) holds
for T ≥ O and for all x, y ∈ H (consider the unique positive square root of
T ). In fact, it is known to be equivalent to the Cauchy-Schwarz inequality, and
this is crucial in the proof of our results. Next, we need a well known relation:
r(S) = limn ‖ Sn ‖1/n for any operator S [3, Problem 74].

Lemma 1. Let T ≥ O, and S and C be arbitrary operators. Also let
TS, TC, A and B be all selfadjoint operators. If n is a positive integer, then
for all x, y ∈ H the following hold true.

| (Tx, y) |2
n

≤ (T 1+2n−1
x, x)(Tx, x)2

n−1−1 ‖ y ‖2n

, n ≥ 1.(2.1)

| (TSx, Cy) |2
n

≤ (TS2n

x, x)(Tx, x)2
n−1−1(2.2)

×(TC2n

y, y)(Ty, y)2
n−1−1, n ≥ 1.

| (Ax, By) |2
n

≤ (A2n−1+2x, x)(B2n−1+2y, y) ‖ Ax ‖2n−1−2(2.3)

× ‖ By ‖2n−1−2‖ x ‖2n−1
‖ y ‖2n−1

, n ≥ 2.
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Proof. (2.1). We shall prove it inductively. For n = 1, | (Tx, y) |2 ≤
(T 2x, x) ‖ y ‖2. As (T 2x, x)2 ≤ (TTx, Tx)(Tx, x) = (T 3x, x)(Tx, x), we have

| (Tx, y) |4 ≤ (T 2x, x)2 ‖ y ‖4 ≤ (T 3x, x)(Tx, x) ‖ y ‖4

for n = 2. Since

(T 1+2n−1
x, x)2 ≤ (TT 2n−1

x, T 2n−1
x)(Tx, x) = (T 1+2n

x, x)(Tx, x),

we obtain

| (Tx, y) |2
n+1

≤ [| (Tx, y) |2
n

]2

≤ [(T 1+2n−1
x, x)(Tx, x)2

n−1−1 ‖ y ‖2n

]2 ≤ (T 1+2n

x, x)(Tx, x)2
n−1 ‖ y ‖2n+1

,

and the induction process is completed.
(2.2). As T is positive and both TS and TC are selfadjoint, we see that

S∗TS = (TS)∗S = TS2. And by induction we get (S∗)iTSi = TS2i, i =
1, 2, . . . . Similarly, (C∗)iTCi = TC2i, i = 1, 2, . . . . It follows, for n = 1, that

| (TSx, Cy) |2 ≤ (TSx, Sx)(TCy, Cy) = (TS2x, x)(TC2y, y).

Since (TS2n

x, x)2 ≤ ((S∗)2nTS2n

x, x)(Tx, x) = (TS2n+1
x, x)(Tx, x), we have

| (TSx, Cy) |2
n+1

≤ (TS2n

x, x)2(Tx, x)2
n−2(TC2n

y, y)2(Ty, y)2
n−2

≤ (TS2n+1
x, x)(Tx, x)2

n−1(TC2n+1
y, y)(Ty, y)2

n−1.

This proves, by induction, the inequality (2.2).
(2.3). Since | (Ax, By) |2 ≤ (A2x, x)(B2y, y),

| (Ax, By) |4 ≤ (A2x, x)2(B2y, y)2

≤ (A2x, A2x)(B2y, B2y) ‖ x ‖2‖ y ‖2 = (A4x, x)(B4y, y) ‖ x ‖2‖ y ‖2

for n = 2. Note that A2 ≥ O as A is selfadjoint, and

(A2n−1+2x, x)2 = (A2A2n−1
x, x)2 ≤ (A2n+2x, x) ‖ Ax ‖2,

and similarly for B2 ≥ O. Therefore,

|(Ax, By) |2
n+1

≤ (A2n+2x, x)(B2n+2y, y) ‖ Ax‖2n−2‖ By ‖2n−2‖ x ‖2n

‖ y ‖2n

,

and (2.3) holds by induction, and the proof of Lemma 1 is now completed.
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Theorem 1. Let T ≥ O, and S and C be arbitrary operators. Also let
TS, TC, A and B be all selfadjoint operators. If n is a positive integer, then
for all x, y ∈ H the following hold true.

| (Tx, y) |2 ≤ r(T )(Tx, x) ‖ y ‖2 .(2.4)

| (TSx, Cy) | ≤ r(S)r(C)(Tx, x)1/2(Ty, y)1/2.(2.5)

| (TSx, Cx) | ≤ r(S)r(C)(Tx, x).(2.6)

| (Ax, By) |2 ≤ r(A)r(B) ‖ Ax ‖ ‖ By ‖ ‖ x ‖ ‖ y ‖ .(2.7)

Proof. (2.4). The inequality (2.1) in Lemma 1 gives

| (Tx, y) |2n ≤‖ T ‖ ‖ T 2n−1 ‖ ‖ x ‖2 (Tx, x)2
n−1−1 ‖ y ‖2n

.

Taking the 2n−1-th root of both sides of the inequality above yields

| (Tx, y) |2 ≤‖ T ‖
1

2n−1 ‖ T 2n−1 ‖
1

2n−1 ‖ x ‖
2

2n−1 (Tx, x)1−
1

2n−1 ‖ y ‖2,

and passing to the limit as n → ∞ we have the desired conclusion.
(2.5). Note that (2.2) in Lemma 1 yields

|(TSx, Cy) |2
n

≤‖ T ‖2‖ S2n

‖‖ C2n

‖‖ x ‖2‖ y ‖2 (Tx, x)2
n−1−1(Ty, y)2

n−1−1,

which implies, by taking the 2n-th root,

| (TSx, Cy) |
≤‖ T ‖

1
2n−1 ‖ S2n

‖ 1
2n ‖ C2n

‖ 1
2n ‖ x ‖

1
2n−1 ‖ y ‖

1
2n−1 (Tx, x)

1
2−

1
2n (Ty, y)

1
2−

1
2n .

Thus, we have the inequality (2.5) after passing to the limit as n → ∞.
(2.6) follows by setting y = x in (2.5) above.
(2.7). The inequality (2.3) in Lemma 1 gives

| (Ax, By) |2n ≤‖ A ‖2‖ A2n−1 ‖ ‖ Ax ‖2n−1−2‖ B ‖2‖ B2n−1 ‖
× ‖ By ‖2n−1−2‖ x ‖2n−1+2‖ y ‖2n−1+2 .

The next step is taking the 2n−1-th root, and then passing to the limit as
n → ∞; the same as we did many times before. This proves Theorem 1.

By a well-known result, if E is a normal operator (selfadjoint operator,
in particular) on a complex Hilbert space, then r(E) = ‖ E ‖ [10, Theorem
6.2-E]. Thus, the proofs of (2.4) and (2.7) in Theorem 1 are easy. However,
each of our proof is a consequence of taking the limit of a high-power operator
inequality, and does not rely on the result above. It should be pointed out that
inequalities (2.2) and (2.5) are generalizations of Halmos’ inequalities (1.2) and
(1.3), respectively.
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§3. Applications

The classical Löwner-Heinz inequality was initiated in [7] and established
in [8], which is a basic tool in theory of operator inequalities on H. More
precisely, the inequality Pα ≥ Qα holds if P ≥ Q ≥ O, where α ∈ [0, 1]. There
are known examples showing that the inequality does not hold in general if
α > 1. The proof of the inequality was neither elementary nor short. It should
be mentioned here that Furuta gave an excellent and useful generalization of
the Löwner-Heinz inequality in [2], and is called the Furuta inequality in the
literature. There is a classical characterization of the Löwner-Heinz inequality,
namely P 1/2 ≥ Q1/2 holds if P ≥ Q ≥ O, which is known as the Löwner
inequality. The inequality will be generalized later without relying on the
Löwner inequality itself. First of all we have a partially generalized Löwner-
Heinz inequality next.

Theorem 2. If P ≥ Q ≥ O, both PαC and C∗Qα are selfadjoint for
some operator C and α ∈ [0, 1

2 ], then

r(C)Pα ≥ C∗Qα.(3.1)

Proof. We show that the generalized Halmos’ inequality (2.6) in Theo-
rem 1 implies the required inequality. We may assume without loss of generality
that P is invertible, then P−αQ2αP−α ≤ I, Because the condition P ≥ Q ≥ O

implies that P 2α ≥ Q2α ≥ O for α ∈ [0, 1
2 ] by the Löwner-Heinz inequality.

Let S = P−αQα. Then SS∗ = P−αQ2αP−α ≤ I, i.e., S is a contraction.
Next, let T = Pα ≥ O, then C∗TS = C∗Qα. As both PαC and C∗Qα are
selfadjoint by assumption (thus, T ≥ O, and both TS and TC are selfadjoint),
it follows from the inequality | (TSx, Cx) | ≤ r(S)r(C)(Tx, x) which is (2.6) in
Theorem 1 that

(C∗Qαx, x) ≤ r(S)(r(C)Pαx, x) ≤ (r(C)Pαx, x)

for every x ∈ H, and we have (3.1).

Remark that we use both the Löwner-Heinz inequality and the inequality
(2.6) to prove Theorem 2. However, the next result is a generalized Löwner
inequality without using the Löwner inequality itself.

Corollary 1. If P ≥ Q ≥ O, both P 1/2C and C∗Q1/2 are selfadjoint
for some operator C, then

r(C)P 1/2 ≥ C∗Q1/2.(3.2)



�

�

�

�

�

�

�

�

396 Chia-Shiang Lin and Sever Silvestru Dragomir

Proof. The inequality (3.2) is obtained by letting α = 1/2 in the proof of
Theorem 2.

The next result shows different high-power operator inequalities.

Corollary 2. If P ≥ Q ≥ O, both PαC and C∗Qα are selfadjoint for
some operator C and α ∈ [0, 1

2 ], then, for all x, y ∈ H, we have

| (C∗Qαx, y) |2
n

≤ (Pα(P−αQα)2
n

x, x)(Pαx, x)2
n−1−1(PαC2n

y, y)(3.3)

×(Pαy, y)2
n−1−1, n ≥ 1.

| (C∗Qαx, y) | ≤ r(C)(Pαx, x)1/2(Pαy, y)1/2.(3.4)

(C∗Qαx, x)2
n

≤ (Pα(P−αQα)2
n

x, x)(Pαx, x)2
n−2(3.5)

×(PαC2n

x, x), n ≥ 1.

| (Qαx, y) |2
n

≤ (Pα(P−αQα)2
n

x, x)(Pαx, x)2
n−1−1(3.6)

×(Pαy, y)2
n−1

, n ≥ 1.

| (Qαx, x) |2
n

≤ (Pα(P−αQα)2
n

x, x)(Pαx, x)2
n−1, n ≥ 1.(3.7)

Proof. In the inequalities (2.2) and (2.5) in section 1 let T = Pα ≥ O

and S = P−αQα. Then S is a contraction, TS and TC are selfadjoint as in the
proof of Theorem 2; and inequalities (3.3) and (3.4), respectively, follow. (3.5)
follows by setting y = x in (3.3) above. Finally, (3.6) and (3.7) are particular
cases of (3.3) and (3.5), respectively, where C = I.

For the next result let E = U | E | be the polar decomposition of the
operator E with U the partial isometry, and | E | the positive square root of
the positive operator E∗E.

Corollary 3. Let T ≥ O and TS be a selfadjoint operator. Then the
following are equivalent.

(| TS | x, x) | ≤ ‖ S ‖ (Tx, x) for every x ∈ H;(3.8)

| (TSx, x) | ≤ ‖ S ‖ (Tx, x) for every x ∈ H (Reid’s inequality);(3.9)

P 1/2 ≥Q1/2 if P ≥ Q ≥ O (Löwner inequality).(3.10)

Proof. We use a familiar relation that − | A | ≤ A ≤| A | holds if A is
selfadjoint. In other words, | (Ax, x) |≤ (| A | x, x) for every x ∈ H. Hence,
(3.8) implies (3.9).

(3.9)⇒(3.10). In the proof of Theorem 2 let C = I, α = 1
2 and use the

inequality | (TSx, Cx) | ≤ ‖ S ‖ ‖ C ‖ (Tx, x) instead of (2.6).
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(3.10)⇒(3.8). Since S/ ‖ S ‖ is a contraction, i.e., SS∗ ≤‖ S ‖2 I, we
have

O ≤ (TS)2 = TS(TS)∗ = TSS∗T ≤‖ S ‖2 T 2.

It follows that | TS |≤‖ S ‖ T and we have (3.8).

Finally, we remark that the equivalence of the Reid’s inequality and the
Löwner-Heinz inequality has been pointed out in [11].
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