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On High-power Operator Inequalities
and Spectral Radii of Operators

By

Chia-Shiang LIN* and Sever Silvestru DRAGOMIR**

Abstract

For some different types of operators on a Hilbert space, we present new high-
power operator inequalities, and their corresponding operator inequalities involving
spectral radii of operators. In particular, we show that Halmos’ two operator in-
equalities, Reid’s inequality and many others hold easily. In applications we obtain a
new generalized classical Lowner inequality; and a slightly generalized Lowner-Heinz
inequality is given.

81. Introduction

As is well-known the Cauchy-Schwarz inequality is a powerful inequality
which states that the relation

(L.1) (@) [ <Illllyl

holds for every x and y in a pre-Hilbert space. Every inequality in this space
is either derived from the Cauchy-Schwarz inequality, or equivalent to it. For
recent developments on inequalities related to (1.1) see [1] and the references
therein.
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In this paper we use capital letters to denote bounded linear operators on
a complex Hilbert space H into itself, and I denotes the identity operator. A
positive operator T is written as T > O, the zero operator. We shall consider
four types of high-power operator inequalities, and their corresponding opera-
tor inequalities involving spectral radii of operators. Four types are: a positive
operator, two arbitrary operators, mixed operators, and two selfadjoint opera-
tors. Indeed, our results are motivated by Halmos’ two operator inequalities in
[3, p. 51 and 244]. He proved that if T > O, S is arbitrary and TS is selfadjoint
operators, then the following high-power operator inequality holds.

(1.2) | (TSz,z) | < (T8 z,z)(Tx,z)* ~*

for every x € H and n > 0. From this he concluded that the inequality involving
spectral radius

(1.3) | (TSz,z) | < r(S)(Tz,x)

holds, where r(S) means the spectral radius of S. It is a stronger version of a
result due to Reid [9]; Reid had || S || instead of #(S) (that »(S) < | S| is
known [3, p. 45]). Actually, we obtain some generalizations of inequalities (1.2)
and (1.3). In particular, it is shown that inequalities (1.2), (1.3), Reid’s inequal-
ity, and many others hold easily. In applications we obtain a new generalized
classical Lowner inequality, and partially generalized Lowner-Heinz inequality.
The latter, as well-known, is essential in general operator inequalities on H.

82. Results

First of all, recall that the inequality | (Tx,y) |*> < (Tz,z)(Ty,y) holds
for T > O and for all z,y € H (consider the unique positive square root of
T). In fact, it is known to be equivalent to the Cauchy-Schwarz inequality, and
this is crucial in the proof of our results. Next, we need a well known relation:
7(S) = lim,, || S™ ||/ for any operator S [3, Problem 74].

Lemma 1. LetT > O, and S and C be arbitrary operators. Also let
TS, TC, A and B be all selfadjoint operators. If n is a positive integer, then
for all x,y € H the following hold true.

1) [(Tay) [ <0 w2) (T2 Ty I, nz
(2.2) | (TSz,Cy) [*" <(TS* x,2)(Tx, )2
<(TC%"y,y)(Ty.9)*" ', n>1.
(2.3) | (Az,By) [ < (A% F2a,2)(BY F2yy) | Az P2
n—1_ n—1 n—1
|| By I*" 2l > Ny > n>2
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Proof. (2.1). We shall prove it inductively. For n = 1, | (Tz,y) |* <
(T?z,2) ||y |2 As (T%x,2)? < (TTx,Tz)(Tx,x) = (T3x,2)(Tz,x), we have

| (Ta,y) [* < (T%2,2)* ||y |* < (TP, 2)(T,2) || y |*
for n = 2. Since
(T1+2n_1x7x)2 < (TTzn_lx,Tzn_lx)(Tx,x) = (T2, 2)(Tx, z),
we obtain

2n+1

| (Tz,y) 7 < (| (Ta,y) ¥
< (T, 2) (T, 2)? |y |21 < (T 2, 2) (T, o) Y |y 27,

and the induction process is completed.

(2.2). As T is positive and both T'S and T'C are selfadjoint, we see that
S*TS = (TS)*S = TS? And by induction we get (S*)'TS? = TS, i =
1,2,.... Similarly, (C*)'TC* = TC?%, i =1,2,.... It follows, for n = 1, that

| (T'Sz,Cy) |* < (TSz, Sx)(TCy, Cy) = (TS%x,z)(TC?y,y).
Since (TS z,2)2 < ((S*)2"TS?" 2, 2)(Tx,z) = (TS?" " x,2)(Tx, x), we have

|2n+1

| (T'Sz,Cy) < (TS 2,2)*(Tw,x)* ~2(TC* y,y)*(Ty, y)* 2
< (TS 2, 2)(Ta, )" "N TC*" "y, y)(Ty, y)*" .

This proves, by induction, the inequality (2.2).
(2.3). Since | (Ax, By) |> < (A%z,2)(B%y,y),

| (Az, By) |' < (A%,2)*(B%,y)?
< (A%, A%)(B%, B%) ||« |P]| y |2 = (A*z,2)(By,y) || = |2l y |

for n = 2. Note that A2 > O as A is selfadjoint, and
(A" 420, )2 = (A2A%" g, 2)? < (A¥"F22,2) || Az |2,
and similarly for B2 > O. Therefore,
[(Az, By) 7" < (4720, 2) (B> 2y, ) || A" 2] By |« 7w 7,

and (2.3) holds by induction, and the proof of Lemma 1 is now completed. [
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Theorem 1. Let T > O, and S and C be arbitrary operators. Also let
TS, TC, A and B be all selfadjoint operators. If n is a positive integer, then
for all x,y € H the following hold true.

(2.4) | (Tz,y) > <r(T)(Tz,z) ||y |I”.

(25) | (TSz,Cy) | <r(S)r(C)(Ta, ) *(Ty,y)"/>.

(2.6) | (T'Sz,Cx) | <r(S)r(C)(Tz,z).

(2.7) | (Az, By) [> <r(A)r(B) | Az ||| By |||z Iy || -

Proof. (2.4). The inequality (2.1) in Lemma 1 gives
n—1_ n
| (T, y) e 1 (T, )y |12

Taking the 2"~ !-th root of both sides of the inequality above yields

2n71

“<TinT

1 n—1 1 2 — 1
| (Te,y) P<IT 77| T o7 || 2 |7 (Tz,2)' "7 |y 1%,

and passing to the limit as n — oo we have the desired conclusion.
(2.5). Note that (2.2) in Lemma 1 yields

n n n n—1_ n—1_
[(TSz, Cy) [ < T PS> I [l = Py I (Tw,2)*> ~HTy,)*

which implies, by taking the 2"-th root,

| (T'Sz,Cy) |

<|| T |77 || 82" ||==|| ¢

1 1

Y |y |7 (T ) (Ty, )7

Thus, we have the inequality (2.5) after passing to the limit as n — co.
(2.6) follows by setting y = x in (2.5) above.
(2.7). The inequality (2.3) in Lemma 1 gives

n n—1 n—1__ n—1
| (Az, By) " <[ AP A* [ A= 2 BIPII B> |

n—1_ n—1 n—1
< || By [P 2 a 2y 2

The next step is taking the 2"~ !-th root, and then passing to the limit as
n — oo; the same as we did many times before. This proves Theorem 1. 1

By a well-known result, if E is a normal operator (selfadjoint operator,
in particular) on a complex Hilbert space, then r(E) =] E || [10, Theorem
6.2-E]. Thus, the proofs of (2.4) and (2.7) in Theorem 1 are easy. However,
each of our proof is a consequence of taking the limit of a high-power operator
inequality, and does not rely on the result above. It should be pointed out that
inequalities (2.2) and (2.5) are generalizations of Halmos’ inequalities (1.2) and
(1.3), respectively.
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83. Applications

The classical Lowner-Heinz inequality was initiated in [7] and established
in [8], which is a basic tool in theory of operator inequalities on H. More
precisely, the inequality P* > Q“ holds if P > @Q > O, where « € [0, 1]. There
are known examples showing that the inequality does not hold in general if
a > 1. The proof of the inequality was neither elementary nor short. It should
be mentioned here that Furuta gave an excellent and useful generalization of
the Lowner-Heinz inequality in [2], and is called the Furuta inequality in the
literature. There is a classical characterization of the Lowner-Heinz inequality,
namely P2 > Q'/2 holds if P > Q > O, which is known as the Léwner
inequality. The inequality will be generalized later without relying on the
Lowner inequality itself. First of all we have a partially generalized Lowner-
Heinz inequality next.

Theorem 2. If P > @Q > O, both P*C and C*Q% are selfadjoint for
some operator C' and a € [0, %], then

(3.1) r(C)P* > C*Q°.

Proof. We show that the generalized Halmos’ inequality (2.6) in Theo-
rem 1 implies the required inequality. We may assume without loss of generality
that P is invertible, then P~*Q?**P~% < I, Because the condition P > Q > O
implies that P?* > Q?* > O for « € [0, 3] by the Léwner-Heinz inequality.
Let S = P~Q%. Then SS* = P~ *Q?**P~® < I, i.e., S is a contraction.
Next, let T = P* > O, then C*T'S = C*Q*. As both P*“C' and C*Q“ are
selfadjoint by assumption (thus, T > O, and both T'S and T'C are selfadjoint),
it follows from the inequality | (T'Sz, Cx) | < r(S)r(C)(Tx,x) which is (2.6) in
Theorem 1 that

(C*Q%x,x) <r(S)(r(C)Px,z) < (r(C)P%zx,x)
for every x € H, and we have (3.1). O

Remark that we use both the Lowner-Heinz inequality and the inequality
(2.6) to prove Theorem 2. However, the next result is a generalized Lowner
inequality without using the Lowner inequality itself.

Corollary 1. If P > Q > O, both PY/2C and C*Q'/? are selfadjoint
for some operator C, then

(3.2) r(C)PY2 > C*QY/2.
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Proof. The inequality (3.2) is obtained by letting o = 1/2 in the proof of
Theorem 2. O

The next result shows different high-power operator inequalities.

Corollary 2. IfP > Q > O, both P*C and C*Q% are selfadjoint for
some operator C and « € |0, %}, then, for all x,y € H, we have

(33) | (C*Q%x,y) " < (PU(P=0Q) ,a)(Px,x)®" ~{(P*C¥y,y)
X(Po‘y,y)ril_l, n > 1.

(3.4) [ (C*Q%x,y) | <r(C)(Px,x)' /2 (Py,y)'/>.

(3.5) (C*Qo‘x,x)Qn < (PO‘(P_O‘QO‘)QHQ:,w)(Po‘x,x)2n_2
x(PO‘C’znx,x), n > 1.

(36) | (Qz,y) " < (PUPTQ™) w,2)(Px,x)?"
x(Po‘y,y)Qn_l, n>1.

(3.7) | (Q%x,x) |2" < (PO‘(P_O‘QO‘)QHQ:,x)(Po‘x,x)2n_1, n>1.

Proof. In the inequalities (2.2) and (2.5) in section 1 let T = P* > O
and S = P7*Q“. Then S is a contraction, T'S and T'C' are selfadjoint as in the
proof of Theorem 2; and inequalities (3.3) and (3.4), respectively, follow. (3.5)
follows by setting y = « in (3.3) above. Finally, (3.6) and (3.7) are particular
cases of (3.3) and (3.5), respectively, where C' = I. O

For the next result let E = U | E | be the polar decomposition of the
operator F with U the partial isometry, and | E | the positive square root of
the positive operator E* F.

Corollary 3. LetT > O and TS be a selfadjoint operator. Then the
following are equivalent.

(38) (| TS |z,z) | <|| S || (Tx,x) for everyx € H,;
(3.9) | (TSz,z) |<|| S| (Tx,x) for every x € H (Reid’s inequality);
(3.10) PYV2>Q? ifP>Q >0 (Lowner inequality).

Proof. We use a familiar relation that — | A |[< A <| A | holds if A is
selfadjoint. In other words, | (Az,x) |< (| A | x,x) for every € H. Hence,
(3.8) implies (3.9).

(3.9)=(3.10). In the proof of Theorem 2 let C' = I, o = 3 and use the
inequality | (T'Sz,Cz) | <|| S ||| C || (Tx, ) instead of (2.6).
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(3.10)=(3.8). Since S/ || S || is a contraction, i.e., SS* <|| S ||? I, we

have

O < (TS)>=TS(TS)* =TSS*T <|| S ||> T2

It follows that | TS |<|| S || T and we have (3.8). O

Finally, we remark that the equivalence of the Reid’s inequality and the

Lowner-Heinz inequality has been pointed out in [11].
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