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Another Proof of
Gustafson’s C),-type Summation Formula
via ‘Elementary’ Symmetric Polynomials

By

Masahiko ITO*

Abstract

We introduce new symmetric polynomials which induce a g-difference equation
associated with a basic hypergeometric sum of type C,, investigated by Gustafson.
Using them we give another proof for Gustafson’s C,-type summation formula.

81. Introduction

In a series of the papers [5, 6, 7, 8], Gustafson established some basic
hypergeometric sums associated with Lie algebras. They are natural general-
ization of Milne’s basic hypergeometric sums [15]. The summation formulas
investigated by Gustafson are some multiple generalizations of Bailey’s g
summation formula [3]. Using terminology of Jackson integrals, one of his
formulas is rewritten as follows:
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where 0(z) := (2)00(q/2) o and

n 2n+2 )
1/2—am
ST e o,
=1 m=1 amzl o0
] 1—22 (1—z/z)(1 — zjzi)
A(z) ~=H — ]I =
=1 7' 1<j<k<n J

(For more details, see the definition of the Jackson integral in Section 3). We
call it Gustafson’s C, -type summation formula. This formula implies that the
basic hypergeometric sum represented by the left-hand side of (1) can be ex-
pressed as a product of ¢g-gamma functions.

On the other hand, Gustafson’s formula is very closely related to the fol-
lowing formula:

oo
(2) / @VD(Z)A(Z)@...qun
0 21 Zn

n & (qt ) 1_[1<I~L<I/<4(qt (n= Z)a’_la_l)oo
ooizl (qtil)oo (qt (n+i— 2)a1 Cl2 1@3 1a41)oo

=(1-9)"(q)

- i 0(&7) 0(&5/€x)0(E5€k)
g 11;[1 T & 0(amés) 1<31:£<n SHUGINDUCID)

where ¢*™ = a,,,q" =t and

H H 1/2—am qam ZZ)oo

i=1m=1 amzz)oo
x H Sl-2r (qt 25/ 2) 00 (@t 2521) 00
1<j<k<n ! <tzj/zk)oo (thZk)OQ

The formula (2) was proved by van Diejen [4], who showed it to calculate a
certain multiple Jackson integral in two ways using the formula (1), following
Gustafson’s method [6].

In [13], we introduced some new symmetric polynomials e;(z), 0 < i < n,
which we call the ‘elementary’ symmetric polynomials associated with the weight
function ®,5(z). (See [13] for the reason we call them ‘elementary’.) We found
the following relation between e;(z) and e;_1(2):

oo
/0 61(2)(I)VD(Z)A<Z)W’1

tifl(l o tn7i+1) Hi 2(1 o akaltnfi) oo
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where w, is the abbreviation for the symbol . From repeated use

of this relation, for the sum in the left-hand sizdlle of (ZQn), we can immediately
deduce its g-difference equations with respect to parameters. As a consequence,
we gave another proof of the product formula (2) as if we construct the gamma
product expression of the beta function from its difference equations and its
asymptotic behavior at infinity of parameters.

In this paper, for Gustafson’s formula case, we also found other new sym-
metric polynomials €'(z), 0 < i < n, similar to those associated with @, (z).
(See Section 4 for the definition of €}(z).) We can also obtain g-difference
equations with respect to parameters from the following theorem:

Theorem 1.1.  The following relation holds for the polynomials e((z)
and e, (z):

'S 2n+2 %)

[a@n@aem, = oy I Um0t [T ()a G,
0 — Q1042 ...042n4+2 Jo

The aim of this paper is to introduce these symmetric polynomials €}(z)
associated with ®(z) and to give another proof of the formula (1) using the
Theorem 1.1. From the previous result by the author (Lemma 3.1), the problem
is to determine the constant C' in (9). To this aim the Theorem 1.1 is used.

Throughout this paper, we use the notation (z) := [[;2,(1 — ¢"z) and
(2)N = (7)o /(qNT) 0o Where 0 < ¢ < 1.

§2. Symplectic Schur Functions y(z)

Let We,, be the Weyl group of type C,,, which is isomorphic to (Z/2Z)" xS,
where S, is the symmetric group of nth order. W, is generated by the following

transformations of the coordinates (z1, za, ..., 2,) € (C*)™
(21,22, -, 2n) — (27, 225 oy Z0),
(217227 ceey Zn) - (Zo(l)v Zg(2)s- - Zo(n)) o€ Sp.

For a function f(z) of z € (C*)™, the Weyl group action is defined by

wf(z) = flw™(z)) for we W

n’

and we denote by Af(z) the alternating sum over W, defined by

Af(z) = Z (sgnw) wf(z).

weWe,,
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Let P be the set of partitions defined by
P:={(A1,A\2, .., M) EZ"; A1 >N >+ > A, >0}
For A = (A1, As,...,A\y) € P, we set
Ax(z) = A(zr 202 ... 200,

The following holds for p := (n,n—1,...,2,1) € P,

®) A == [ Emioam)

2.2
i=1 1<j<k<n i<k

which is called Weyl’s denominator formula. For A = (A1, Ae, ..., \,) € P, we
define the symplectic Schur function

xa(z) == Axip(2) _ A ndotn—1, a1 +20,41)(2)
A, (2) Ann—1,..2,1)(2) ,

which occurs in Weyl’s character formula. For A = (A1, Aa, ..., \,) € P, if we
denote by m; the multiplicity of ¢ in A, i.e., m; = #{j; A\; = i}, it is convenient
to use the symbols A\ = (1™12™2. .7, ) and xa(2) = X(1mi2ma. pmr .. )(2) @8
used in the example x(2,1,1,0)(21, 22, 23, 24) = X(122) (21, 22, 23, Z4)-

We state two lemmas which will be used technically when we prove a prop-
erty of the ‘elementary’ symmetric polynomials in Section 4. Note in passing
that the number of variables for x(;i-s) and x(;) are different in the following:

Lemma 2.1.  The following holds for i =0,1,2,...,n:

i

. 0 (¢ #0),
Z(—l)jx(li—j)(zhzza ce Zn)X () (21, 22, - Znmig1) = ) (. f )
= (i=0).
Proof.  See [13]. O

Lemma 2.2.  The following holds for xx(z) and A,(z):

n

Z X(l" 7) Zlaz2a-~-;zn)X(j)<Zn+1)
7=0

A(n+1,7L,...,1)(zla 22y vy Zny Zn+1)

A(n,nfl,‘..,l)(zla B Zn)A(l) (Zn+1) '

Proof.  See [13]. O
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83. Jackson Integral of Gustafson’s C,-type

For z = (z1,29,...,2,) € (C*)™, we set
n 2n+2 —1..
ooy T T e 105
G( ) g el ! (amzi)oo
n
1—2?2 (1—z;/21)(1 — 2j25)
A = 7 J J
@ =11—= I

P
i=1 t1<j<k<n J

where ¢®™ = a,,. Weyl’s denominator formula (3) says
(4) A(z) = (-1)"A,(2) where p=(n,n—1,...,2,1) € P.

For an arbitrary £ = (£1,&2,...,&,) € (C*)", we define the ¢-shift £ — ¢¥¢ by
a lattice point v = (v1,va,...,v,) € Z", where

qllg = (qV1€17 ql/2€27 s 7qyn£ﬂ) € (C*)n

For £ = (&1,&2,.-.,&n) € (C*)™ and a function h(z) of z € (C*)", we define the
sum over the lattice Z" by

§100 [€n00 dyz1  dyzn P ,
(5) L[ ne BT e g Y )

“ “n veEL™

which we call the Jackson integral if it converges. We abbreviate the LHS of

£oo
(5) to / h(z) w,. We now define the Jackson integral whose integrand is

0
D (2)A(z) as follows:

oo
(6) (€)= / Do () A(2)m,

which converges if
|a1a2 e a2n+2| >q
and

am§i¢{ql;lEZ} for 1<m<2n+2,1<i<n.

(See [11] for the convergence condition.) We call the sum J;(&) the Jackson
integral of Gustafson’s Cy-type. The sum J;(§) is invariant under the shifts
& — q¥¢ for v e Z™.

Since (¢***)o, = 0 if k is a negative integer, for the special point

C = (a17a27‘ .. 7an717an) € (C*)”7
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it follows that
D (¢"¢)=0 if veD
where D forms the cone in the lattice Z™ defined by
D={veZ";v1 >0, 15>0,..., V1 >0 and v, >0}.

This implies that J(¢) is written as the sum over the cone D as follows:

(7) J(Q) = (1= > @a(q"O)A(g"C)

veD

We call its Jackson integral summed over D truncated. We just write

omitting oo from the integral area only if £ = (.
Let ©4(§) be the function defined by

Ty
8 O = d o(&- o0&
(8) €) [[1 70 1<E<n (&/€1)0(&56)

where 0(z) := ()00 (q/x) 0. We state a lemma for subsequent section.
Lemma 3.1. The Jackson integral J;(§) is expressed as

(9) Ja(€§) = C 6(8)

where C is a constant not depending on & € (C*)"
Proof. See [10]. O

We will discuss the constant C' later in Section 6.

§4. ‘Elementary’ Symmetric Polynomials €(z)

For i =0,1,2,3,...,n, we define the following symmetric polynomials in
terms of x(2):
i

(10) e(z) == Z(—l)jX(li—j)(21, 22y Zn) Xy (@1, G2, . . Gn i),
=0 N———

n n—i+1

which we call the ith ‘elementary symmetric polynomials associated with the
weight function ®g(z). The reason we call it ‘elementary’ is mentioned in [13].
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Lemma 4.1.  The product expression of the nth ‘elementary’ symmetric
polynomial e),(z) is the following:

a o) = [ )

Proof. Using Weyl’s denominator formula (3), we have

(12)

ﬁ (a1 —2z) 1 —a1z:)  Amrin,...1)(21, 22,05 20, 01)
a1%; Amn—1,..1)(21, -, 20) Aqy(a1)

=1

Taking 2,11 = a; at Lemma 2.2, we have

Antin 213225 ey Zns O
(13) (nt1,m,...,1) (21, 22 1)
A(n,n—l,“.,l)(zla ceey Zn)A(l)(al)
= (=1 xn-5)(21, 22, - 20)X(5) (1)
§=0
=e(2).
From (12) and (13), we have (11). O
Let = be an arbitrary real number satisfying > 0. For: =1,2,...,n+1,
we set
(14) G = (Gi1s Gizs - - -5 Gin) € (C)™,
where
G = g 1< <,
e An—j+1 if ) S] S n.

The explicit expression of ; is the following:

Cl = (a"nva"ﬂfl7 ceey a2, a1)7

CQ = (x7 Ap—1,An—2, - - - 7a27a1)7

<3 = (5172, T,0p—2,0n-3,...,02, al)a
Cn = (xn_lv e 7272, ‘rval)v

Cn-‘rl = (xna xn717 B 332, $)
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530
Lemma 4.2. If1<j<i<n, then
! —
ei(zla 22503 25—1,An—j+1,An—j, - - - 7a27a1) = 0.
Proof. Since x(z) is symmetric, by definition (10), we have
/
’(Zl,Zzw- y Zj—1,An— j+17an7j,---,a2,a1)
= E X(lz ) (21,22, -+, Zj—1,An—j+1,An—j, - - -, A2, 01)
X X(k)(a1,02,~-~,an—i+1)
i
k
= (_]—) X(li*k)(ala az, ..., an7i+17 an7i+27 ceey an7j+17 219225y ijl)
k=0
X X(k)(ala az, ..., an7i+1)’

Applying Lemma 2.1, the right-hand side of the above equation is equal to 0.
This completes the proof. O

The explicit expression of Lemma 4.2 is the following:

ell(an;anfla ... aa27al) = 0;
e/z(zlaan—la o 7a27a1) :Oa
er (21,22, s 2n_1,a1) =0.

In particular,

Corollary 4.1. If1<j<i<n, thenei(¢;) =0

Proof. Tt is straightforward from the definition (14) of {; and Lemma 4.2.
O

85. Main Theorem

In this section, to specify the number of variables n, we simply use egn) (2)
and A(™ (z) instead of the ‘elementary’ symmetric polynomials ¢/(z) and Weyl’s
denominator A, (z) respectively. The symbol (n) on the right shoulder of e; or
zp) for €}(z) or A,(2).

A indicates the number of variables of z = (21, 22, . . .,
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Let 71 and o; be reflections of the coordinates z = (21, 22, . . ., 25, ) defined
as follows:

7'1:21<—>zf1,

oj:z — 2z for i=23,... n
Since the Weyl group We,, of type C,, is isomorphic to (Z/2Z)" x S, we write
(15) We, = (11,02,03,...,0n),

which means W, is generated by 71 and 04, 1 = 2,3,...,n.
For w € W, if we set

(16) Uy(z) :=

then the function U,,(z) satisfies the following property:

(17) lewz (Z) = Uw1 (Z) X wlUwz (Z)

For the generators 7y,09,03,...,0, of W¢,, from the definition of ®(z) and
(16) we have the following explicitly:

o
™ ot 0(qam' 1)
Us,(2)=1 for i=2,3,...,n

Since the function 0(x) satisfies 6(qr) = —6(z)/x, the functions U, (z) and
U,,(z) are invariant under the g-shifts & — ¢”¢ for v € Z™. Moreover, from
repeated use of the property (17), for w € W¢, the function U,(z) is also
invariant under the g¢-shifts £ — ¢”¢ for v € Z".

Let T, be the g-shift of variable z; such that T}, : 21 — ¢z1. Set

Tzl (I)G (Z)
D (2)

where T, & (2) /P (z) is written as follows by definition:

(18) V() = p(z) = T, ¢(2),

2n+2
TZI(I) _ TL-‘rl H 1_ak21

D ( ar — qz
G klkql
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oo
Lemma 5.1.  Let p(z) be an arbitrary function such that / o(z) Bq

0
(2)wy converges. The following holds for ¢(z):

oo
(19) /0 O (2) Vo(z) wg = 0.

In particular,
oo
(20) / Bo(2) AV(2) g = 0.
0
Proof. Since a Jackson integral is invariant under g-shift, it follows that

§oo oo
/0 ()8 (2w = / T 0(2) T o ()0,

so that

foo goo T.,®:(2) B
| eram - [ T o daem, =0

This implies (19) from the definition (18) of V. For w € W, we have

o (w™t€)oo
v [ wE@ Ve m = [ %) Ve,
0 0
oo

oo
= wdq (2) wVp(2) qu/o Uw(2)®s(2) wVp(z) @y

0

oo
U0 [ )Tl =,

because U, (z) is invariant under the ¢-shift z — ¢”z. If (19) holds, then

1 §o0
B w/ Qo (2)Vo(z)wy =0 for we Wg,.
0

£
/0 O (2) WV (2) wg = Un(€)

Thus, for the function AVp(z) = Z (sgnw) wVe(z), we have

weWe,,
§OO<I> AV = 500(1) \Y% =0
| w@Avee m = 2 ) [ @) uTee)m, = o

weWe,,

which completes the proof. [l



A PROOF OF GUSTAFSON’S FORMULA OF TYPE C 533

Let f(z) and g(2) be functions defined as follows:

2n+2 2n+42
f(Z) = H (am - Zl)v g(Z) = H (1 - amzl)'
For ¢ =2,3,...,n, we set
(21) fi(z) == 0if(2), gi(2) == 0ig(2)

and simply f1(2) := f(2), g1(2) := g(z). For i = 1,2,... n, the explicit forms
of fi(z) and g¢;(z) are the following:

2n+2 2n+2
(22) fi(z) = H (am —zi), gi(z) = H (1= amzi).
m=1 m=1

By definition, we have

f1(2)> 91(2)
23 T = .
( ) 1 ( ZIL+1 ZIL-‘,—l
Let 3,(2), 1 <i < n, be the function defined by
_ AVp;(2)
7.(z) = Tt
where
z _
(24) @1(2«“) = i;g_,_)l Z;L 12; 2 . Zn 6( 11)(252’2;37 .. 'aZ’rl)'
1
Proposition 5.1.  The functions g;(z) are expressed as
_ ” fk n—1 n—
(25) (0= B G A
=1 %k
where Z, = (21, Zk—1y Zktls - - -5 Zn)-

Proof. By definition (18) of V and (24), we have

f Z) = 9\%) n-1_n— n—1)~
(26) Vo) = LD mts V).
1

Then, from (15) and (23), it follows that

(@) Bil2) = AVei(2)/2
_ B —0i(e) o

n+1 71—
21

'E)AT Y (3)

> o) o[BI @) A
k=2 1
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Thus, we obtain the expression (25) by substituting (21) and the following for
(27):

sgnoy, = —1, opel™ V(@) =" V@), oA (E) = (~DFACD ().
This completes the proof. [l

On the other hand, @,;(z) are expanded as a linear combination of the
functions e;")(z)A(")(z), 0 < j <1, as we will see in Proposition 5.2 later. For
proving Proposition 5.2, we show three lemmas.

Lemma 5.2.  For ({1,45,...,4,) € Z"™, the alternating sum A(zflzéz .

2tn) has the following properties:

(29 At o) == AT )
(20) ALy = AR
Moreover

(30) A0ty o,

(31) T R S S A

Proof. Eq. (28) and (29) are straightforward from the definition of A(z*
22 zf). Eq. (30) and (31) are the consequences of (28) and (29) respectively.
1

Lemma 5.3.  Let {ro,r3,...,7,} be a sequence consisting of —1,0 or 1.
For {ra,rs,...,rn}, set 6 := #{i; 2 <i<n,r, =—1, 1,01 = 1}. Let £ be an
integer satisfying 1 < £ < n. If A(zf(zgflzgfz...zn)z§2z§3. zZ‘) # 0, then

{ra,73,...,rn} satisfies the following conditions:
(i) re=r3=-=rn_gy1 =1
(ii) If there exists i such that n — €0+ 2 <i<mn and r; = —1, then r;p1 = 1.

(iii) If there exists i such thatn —€+2 <i<n andr; =1, then r;_; = —1.

Conversely if {ra,r3,...,m0} satisfies the conditions (i), (i) and (iii), then
(32) A(zf(zgflzgfg . Zn)Ze2 255 z;) = (—1)"AL(2).
Moreover, if A(z{“"l(z;b_lng_%..zn)z§2z§3. zIL") # 0, then there exists j €

{1,2,...,n} such that {ra,rs,...,r,} satisfies the following conditions:
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(iv) g =r3=---=1;=1.
(v) If there exists i such that j +1<i<mn andr; = —1, then riyq = 1.
(vi) If there exists i such that j+1<i<mn andr; =1, then rj_1 = —1.

Conversely if {ra,73,...,m0} satisfies the conditions (iv), (v) and (vi), then
A(z{l+1(z;l lzgz 2 2 )2522’;:3 Z;n) :<_1)6A(1j)+p(z)
= (—1)5X(1j)(2’)./4p(z).

Proof. We abbreviate the left-hand side of (32) to A. First we prove the
following two claims:

(Cl) For2 <i< j<mn if A#0and r; =r;y1 =--- =r; = —1, then
Ti+1 = —1.
(C2) For2<i<j<n,if A#O0andr;=r;yy=---=r; =1,thenr;_; =1.
For (C1), if 7541 = 0 or 1, using (31), we have A = A(...z}" I J"HJ) =
0or A = A(...z;l_fJr1 Z;LHJH) = 0 respectively. For (C2), if r,_; =

0 or —1, using (31), we also have A = A(...zl 7 2072 ) = 0or A =
A( 282 ) = 0 respectively.

We prove the former part of Lemma 5.3. Suppose that A # 0.

If rp_gp1 = 0, then A = A(z{...25_, ,...) = 0 by using (31). Thus
we have r,_py1 # 0. Assume r,_py1 = —1. If ry,_yy0 = 1 or 0, then A =
Az 28 ,..) =00r A= A(. 2 1€+1sz le+2 .) = 0 respectively. If
Tn—t+2 = —1, using (C1) repeatedly, we have r,, = —1. Then A = A( ... 20) =
0 by (30). Thus we have r,,_pr1 # —1.

From the above we obtain r,_p41 =1if A#0. If r,_p = —1 or 0, then
A=A .25, )=00r A= A(...25 21, | ...) = 0 respectively, Thus
we have r,_, = 1. By repeated use of (C2), it follows that ry = r3 = --- =
Tn—¢+1 = 1, which is the condition (i).

Next we prove the condition (ii). Suppose r; = —1 for some ¢ with n — ¢+
2<i<mn. Ifriq =0then A= A(.. Znﬂzfﬁz) =0. If 7,41 = —1, using
(C1) repeatedly, we have r,, = —1. Then A=A(...28)=0. Thus we obtain

r;+1 = 1. This is the condition (ii).
We prove the condition (iii). Suppose r; = 1 for some ¢ with n — £+ 2 <
i<mn. Ifr,_;=0then A= A(...2]" 1”221” 2 .)=0. If r,_; =1, using

(C2) repeatedly, we have r,_syo = 1. Then A = A(zf ..zb 4 5...)=0. Thus
we obtain ;1 = —1. This is the condition (iii).
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Conversely if {ro,r3,...,7,} satisfies the conditions (i), (ii) and (iii), using
(29), it follows that

_ L n_n—1 /41 L—147rp_ry2 1+T’n

A= A(z125237 - 2, 120 _rhs .. )
— n—~_ n_n—1 Z L—147rp_r42 147,
=(—D)" A2 - 2y 1%n_pro e Zy )

n

= (1) A 2 1...21) = (=)0 AL (2).

Thus we complete the proof of the former part. Almost the same argument as

above is valid for the latter part of Lemma 5.3, and it is left to readers. O
For z = (21,29,...,2,) € (C*)™ and 0 < k < n, we define
33)  m@)i= Y (et ) (7))

1<y <ig<--<ip<n

By definition (10), the polynomials el(-n) (z) are expanded as a linear combination
of the functions x(15)(2), 0 < j <. The polynomials x(;:)(2) are expanded as
a linear combination of the functions m(")( ), 0 < j <. Thus the polynomials

el( )(z) are written in the form

where E;; = 1. For 21 = (22,23,...,2,) € (C*)"~! the polynomials egﬁzl)(%)

are also written as
n 1 n—1
(34) e M Z m{" 7V (z).
Lemma 5.4. If1</{<n, then

A( (T2 2 miV(E)) = A, ),

where cj;’s are integers satisfying cp; =0 if j <n—4{, and ¢, ;1 = (—1)n=¢,
Moreover

J
A(z{”l(z;’ 1z§ 2 2) mﬁ}”(’z})) = Z c;»'k Xar)(2)Ap(2),
k=1

where cy;’s are some integers and cjj; = 1.
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Proof. From the explicit expression (33) of mg»")(z), we have

(a2 s m V@) = A(A BT AT ) (a2 ).

A(zf
Using Lemma 5.3 we obtain Lemma 5.4. O

We now state the other expression of the function p,(2).

Proposition 5.2.  The functions ;(z) are expanded as a linear combi-

nation of the functions e§n)(z)A(”)(z), 0 <j <4, as follows:

(35) Ti(2) = Y iy el (2)AM ().
§=0

Remark 5.2.1. As we will see in Lemma 5.8 later, the coefficients c¢;;’s

except two of them vanish.

Proof. If we set

Sk = E Ay gy oo o Ay

1<igT< < <2n+2

from (22), the function f(z) — g(z) is expanded as

n+1
#1 =1

where dy = 8$p41-¢ — Sn41+¢. Using this and (26), we have

(36)  AVgi(z)= A(if (zi,;lg ) p-1-2 s, eg’jl”(a))
1
n+1 n—1_n—2 (n—1) (21))

¢t
:ngA((zlle )2y zy I zne;y
=1

n+1
=2 Z dy A(z{z?ilzgf?. . Zn egizl)(’z\l)).
=1
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From (34) and (36), it follows that

?i(2) = AVpi(2)/2

n+l 1

:ZZ@EZ{J.A(Z{Z; Lyn=2 znmg’:”(a))
=1 j=1
n— n n—1
:ZngEZ{j (zfzz L2 m ( )( ))
=1 j—l
£ S B A7 a2 Y (3,
Jj=1

Using Lemma 5.4, we have

<ZngEch]> )+ szn+lE1]Cjk X(1#)(2)Ap(2)

j=1¢=1 Jj=1k=1
(ZZM”%) s (ZdnﬂEwcﬂ)x(m( A2,
j=1¢=1 k=1 \j=k

This indicates that the functions $,;(z) are expanded as a linear combination
of the functions X(lj)(z)A(”)(z), 0 < j <. From the definition (10), the poly-
nomials x(;:)(2) are also expanded as a linear combination of the polynomials
e§n)(z), 0 < j <. Therefore we have the expression (35). This completes the

proof. O
Lemma 5.5.  The following holds for fi(2), gx(2) and ¢; € (C*)™:
fe(G)=0 if j<k<n,
lim fi(¢) =[IntPam  if k<j<n+l,
9:() =TIn2 (1 = aman-k1)  if j<k<n,
lirr%)gk(gj)zl if k<ji<n+1
Proof. 1t is straightforward from (22) and definition (14) of ¢j. O

Lemma 5.6.  The following holds for 1 < j <i+1:

(37) hm [( H 2 l+2) L:c = (—1)j_1ci}j,1.,4("_j+1)(an7j+1, cee,01).
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Proof. From (35), it follows that
j—1 i _
( H zf_l+2)@(z) =) ¢ (z1z2 C 2o e;n)(z)) (zf‘z?‘l . z;l:f” A(")(z)>.
=1
Put

(38) z=(; = (xjil,:rjfz, Ty O g1, Ay ., G2, A1),

j—1 n—j+1

Since ek (CJ) =0 if 7 < k by Corollary 4.1, we have

[(Hz” e

= kzzocik [(2122 e Zjo1 eén)(z)> (z?z;’ t Z;LJH A (2 ))} e

J

From the definition (10) of e,(c")(z) and the explicit expression (38) of (;, we

have
, | 0if k<j—1,
(40) tim [ (2122 6" (Z))chj - {1 it k=j—1.
From Weyl’s denominator formula (3) and the expression (38) of (j, it follows
(41)
iil% [(z?zg L z;l:erz A(”)(z))} o (=17 A=) (g, an).

Taking the limit # — 0 in both sides of (39) and using (40) and (41), we
obtain (37). This completes the proof. O

Lemma 5.7.  The following holds for the point (; € (C*)", j < i

[egnll)(zk)} —0 if 1<k<i.

z2=(j
Proof. 1t is straightforward from (14) and Lemma 4.2. O

Lemma 5.8.  The coefficient c;; in (35) vanishes if 1 < j <i—1. In
more details, p,(z) is expanded as

7ul2) = (cuel™ (=) + cioel” (2) ) A (2).
In particular, if i = n, the constant cpg is evaluated as

(42) cno = (=)™ ay "I (1 = a1apm).-
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Proof. From Lemma 5.6, in order to prove ¢;; =0for 1 <j <i—1,itis
sufficient to show that

13 lim [( o ”2) ] =0 if 2<j<i
(13) H = /
We now suppose 1 < j <i. By Lemma 5.7, if j <4, then

{5”1”(,{)} =0 i 1<k<i

Since the summand of B;(z) in the form (25) has the factor egle)(EkL if we
put z = (;, then we have

n

pilG) = | Ly D v g gz |
k

k=i z2=(j

Since fx(¢;) =01if 1 <j <k <n by Lemma 5.5, we have

. 2) (1) jm (1)~
@ w6 = | T Ear @)
k=i k z2=(;
Thus, if 1 < j <1, we have
-1
(45) (TT)m)] _,
I=1 /
- (2 1)
Y0 EQ (el @)
k=i k

J—

><<ZII Lan=2, .27 JH.A" D (zk))] )
2=(j

Since g (¢;) is constant if § <k <n by Lemma 5.5, for i < k < n,

(46) lim [iz(fl) ] .

z—0 .
J

is also constant. For i < k <n,

(47) lim [zfzg 22 165"11)(2,6)} =0 i 2<j<i

If i <k <n, from (38) and Weyl’s denominator formula (3), it follows that
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(48) lim [z?_lzg_z e Z;L:fH A0 (3

T— z:<j

= (=17 TAC D (@, in, G ky2, Gk ar)  if 1< G <

Combining (45), (46), (47) and (48), we obtain (43).
Next we evaluate the coefficient ¢,g. Putting ¢ =n and j = 1 in (44), we
have

— gn\Z) (n—-1),~ 1)~
@ ) = [EEE G E)]
From (13), it follows that

(n)
(n—1) /1~ (n—1) (2 \ _ A (21322""azn—1aa1)

en—l (Zn)A (Zn) - A(l)(al) )

so that
A™ ()

(n—1) 1> n—1)/2> —
e -4

Thus we have

n 9n(C) A (G1)

a1 A0 (ay)’

(50) 7 (1) = (=1)

On the other hand, from Lemma 5.6 we have

(51) Pn(C1) = eno A (G).
Comparing (50) and (51) we obtain
(=1)"gn (1)

Since ¢,,(¢1) = Hf::f(l —a1a,,) by Lemma 5.5, using A" (a;) = —a;*(1—a?)
we obtain (42). This completes the proof. O

Lemma 5.9.  The coefficient c;; in (35) is evaluated as

Ci; — 1-— ajag...a2p+2-

Proof. 1If we put

(52) z = Ci-‘rl = (Ii7xi_1a vy Ty Ay Op—ij—1y -« -, A2, a’l)

i n—i



542 MASAHIKO ITO

n (25), then

n

3,(Cis1) = {Z(l)k+1 Meng)@kﬂt("’l)@k)

k=1 2 2=Cit+1

Thus it follows that

2=Ci+1

[(ﬁzl"urz)@(z)} = S1(Ci1) + S2(Cizr)
=1

where S1(z) and S3(z) are functions defined by the following:
i

(53)  Si(2)= Y (D2 ET () g(2)

2k Rk 2k

(n—1) /~
(2122 .. 21 Zhy1---Zi €1 (Zk)

n—1_n—2 n—k+1_n—k n—i+1 n—1) /2
x(zl Zy Ty Al )(zk)),
n

(54)  Sa(2)= Y (_1)k+1ﬁﬁ...£(ﬁ)2(w>

2k 2k 2k \Zk zp "
(n—1) /~

x(z122...2zi—1€,_1 (Zk)

x (z;l*lzg*2 o A<”—1><zk)).

We show linb S2(Ciy1) =0 first. If ¢ < k < n, from Lemma 5.5,

n—iu

2, :|Z:<i+1

is constant. If ¢ < k < n, from the explicit form (52) of (;; and the definition
(10) of €{™(z), we have

(56) lim {22_22_1(_)1 0

and
(57) lim |:2122 e Zi1 65:1;1)(Ek):| =1.
z—0 z=Cit1
If i < k < n, we also have
(58) lir% [z?ilzgfz st A("_l)(/z\k)}
T z2=Cit1

= (—1)1'.,4(”_1'_1)(an,i7 e Ok 2y Gy - - 5 Q1)
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by using (52) and Weyl’s denominator formula (3). From (54), (55), (56), (57)
and (58), we obtain lin}) S2(Civ1) = 0.
Next, we evaluate lirr%J S1(Civ1). 1 < k <, from the explicit form (52)

of (;4+1 and the definition (10) of egn)(z), we have

_ 1 if k=1
(59) lim [ﬁzjzk 1L—c-+1{ !

z—0 Lz 2k 2k 0 if 2<k<i’
and
(60) lim |:z122 oo Rk—1Rk+1 - %4 eiizl)(gk)} =1.
z—0 2=Ci+1
If 1 <k <4, we also have
(61) lim [zf—lzg—Q TRk i A<”*1>(3,€)} )
N 2=Cit1

= (_1)171"4(”71) (an—i7 cee, a2, a’l)

by using (52) and Weyl’s denominator formula (3). Thus, from (53), (59), (60)
and (61), we have

%

(62)  lim |(T]="*%)wi2)]

=1

= lim S i
e, T Ay 1(Giv1)

= (=1 A (g, az,a) T [fi(2) — 01(2)]

2=GCit1 .
Comparing (37) with (62) and using Lemma 5.5, we obtain
Ci; = — hm |:f1(Z) — gl(Z):| = 1 —aiay... a2n+2,
z—0 2=Ci+1
which completes the proof. O

Theorem 5.1. For 1 < ¢ < n, the following relation holds between
egn)(z) and e(()n)(z):

£ ) cio [ (n)

I O O g Al HOLNOF COEN
0 1t JO

In particular, if i=n, then

2n+-2
A0 (g res (1—aiag)

Cnn 1— aiag . ..Aa2n4+2
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Remark 5.1.1. In other words, from the definition (4) Theorem 5.1 is
equivalent to Theorem 1.1.

£

Proof. Since / O (2) P;(2) wy = 0 by (20) in Lemma 5.1, from Lemma
5.8, it follows that 0

oo
/ D (2) (Cn' egn)(z) + ¢o e(()n)(z))A(")(z)wq =0.
0

We therefore obtain (63). The evaluation of the coefficient —cpo/cny is given
by Lemma 5.8 and 5.9. The proof is now complete. 1

8§6. Product Formula

The aim of this section is to prove Gustafson’s C),-type formula (1).

Theorem 6.1 (Gustafson).  The constant C in the expression (9) is the
following:

H1<' i<2 +2(qa71a71)00
C=Q1-q"(qp——==
(qay "ay "‘a2n+2)00

Before proving Theorem 6.1, we have to establish g-difference equations
and asymptotic behavior for the Jackson integral of Gustafson’s C,,-type.

86.1. ¢-difference Equations
First we deduce a recurrence relation of J;(§) from Theorem 1.1.

Corollary 6.1.  Let T, be the q-shift of parameter a; such that Ty, :
a; — qay. Then

2n+2

o Hts™ (1 —arag)
Ta, Js(§) = (—ar) 1 —k a21a2 A2n+2

I (8)-

Remark 6.1.1. The parameters aj,ag,...,as,4+2 can be replaced sym-
metrically in the above equation.

Remark 6.1.2.  The shift of the parameter a; — ga; is equivalent to that
of aj — o + 1.

Proof. The function T,, J(§) is written

§oo P
Ta1 JG(&) = / M

A R A
o P(2) P (2) (z)qu—/O el (2)®a(2)A(2)my,
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because the following holds for ®;(z) by Lemma 4.1:

Moreover, from Theorem 1.1 we have

oo n 2n+2 —ana
/0 ¢ (2)Ba(2)A()my = (—ay) " [[ L= L @0) e

" ) 17&1(12...(1271_5_2
This completes the proof. O

Let TV be the ¢-shift of parameters for the special direction defined by

ay — aq" TN, a1 — anprqg ",
v az — azg "IN, nt2 = Ang2q ",
T . n . n+2
an — ang "N, gny2 — Goni2q "N
Lemma 6.1.  The following holds for the shift TN :
2
J(Q*TM]@)@mz~amnNmmﬂ%H~~®mﬂwmﬂN
G - G — — —

grAD 20 NIN/2 (gaitayt - ag,) )N

Hn+1§y<u§2n+2(qaﬁla;l)ZnN

2n+2 :
H1gj<kgn(ajak)2(n+l)N H?:l HvyZL:n+1(aiam)N

Proof.  Applying Corollary 6.1 to J;(€) repeatedly, we obtain the above
relation between J;(€) and TVNJ;(€). O

86.2. Asymptotic Behavior of Truncated Jackson Integral
Next we consider an asymptotic behavior of J;(¢).

Lemma 6.2.  The asymptotic behavior of the truncated Jackson integral
TNJ:(¢) at N — 400 is the following:

(1 _ q)n(q)go qn(n+1)(1+n+2nN)N/2
(a1a2 ... an)"N(ani1Gni2. .. a2ni2)

n
% Ha;7a17a27...7a2n+2 H e(aj/ak).
=1

1<j<k<n

TNJs(¢) ~

n(n+1)N
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Proof. We divide @ (2)A(z) into the following three parts:
D (2)A(2) = I1(2) Ia(2) I3(2)

where

:]:

Il(Z) _ Zzl—a1—a2_..4_oz2n+2 H (Zk _ Zj),

i=1 1<j<k<n

7,':1m=1

n n 2n+2 1

1 (gaz2)
_ 2 m ~i)oo

B =110 ‘Zi)<H ) UL =)

i=1 =1 v/ee m=n41 \ M/

X H (1—zjz1).

1<j<k<n

TNJ;(C) is expressed as

(6  TVLQ=(1-9" > T¥(®(a"O)A@G"0))

veD

— (1= q)" 3" TN (q"¢) TVE(¢"¢) TV (¢7C)
veD

where

n
TNI1 q C H y+(n+1)N l—a;—as——aany2+nN

i=1

H (akquk+(n+1)N _ aqujJr(nJrl)N),
1<j<k<n

X

™I (¢"¢) = [ T (aan'aiq”

i=1m=1

n n 1
N 2 2u1+2 (n+1)N
T13(¢"¢) = [H )(H (aéaiqyi+2(n+1)N)oc)

=1 =1
242 1

( ﬁ (qa;taiq ’+(2"+1)N)oo)
B! oz

TL (- a2,
1<j<k<n

X
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Eq. (64) indicates that the summand TN<<I>G(q”§)A(q”C)> of TNJ;(¢) corre-
sponding to v = (0,0,...,0) € D gives the principal term of the asymptotic
behavior of TV, (¢) at N — 400 because the point (0,0,...,0) € D is the
vertex of the cone D. Hence we have

(65) TNI(C) ~ (1 — )"TNI(C) TN () TNI3 ().

Moreover the asymptotic behavior of each TNI;(¢) at N — +oc is the following:

n
(66 TNI1 H s q(7z+1)N l—a;—ag——aopt2+nN

i=1

X

H (akq(nJrl)N 7 ajq(n+1)N)7

1<j<k<n
- (a1a2 o an)lfoqfo@fmfagn_wqn(n+1)(1+nN)N
)n(7z+1)N

n (alag N an)”zN(an+1an+2 .o Aop42

><q(nfl)n(n+1)N/2 H (ak o aj)
1<j<k<n

S ) G | QR

= 1<j<k<n
qn(n+1)(1+nN)N+(n71)n(n+1)N/2

—

(a1az ... an)"N(ani1Gni2 .. Ggppo) (DN

:ﬁazfaraz*“"”"” H (1= a5/ar)

=1 1<j<k<n
qn(n+1)(1+n+2nN)N/2

(a1a2 ... an)""N(an41ania - - agpio) P THN’

67) L) =] I1 (ean'a)oe = @% ] (4a;"a5)o0(qa; ar)ec

i=1m=1 1<j<k<n

e I el

1—a;/a
1<j<k<n il an

(68) T%(C){H(l afg? TN ><H m>

i=1 (=1

2n+2 _
y ( i_[ (amlaiq1+(2n+1)N)oo>
meat (@maigV)oo
> H (1 _ ajakq2(n+1)N)

1<j<k<n

~1 (N — +00).
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Combining (65), (66), (67) and (68), we obtain Lemma 6.2. O

§6.3. Proof of Theorem 6.1

Theorem 6.2.  The truncated Jackson integral Js(C) is evaluated as

() =(1-9"(9%

o Hn+1§u<y§2n+2(qa;1a;1)00 ﬁ a; T 0(a;/ax)
—1_-1 -1 2n+2 ,
(qal a2 o 'a2n+2)00 i=1 n::L n+1 a’am)oo 1<j<k<n (ajak')oo
Proof. 1t is straightforward from Lemma 6.1 and Lemma 6.2. |

As a consequence of Theorem 6.2, we deduce Theorem 6.1.
Proof of Theorem 6.1. The constant C' is written C' = J;(£)/O(§) by
virtue of Lemma 3.1. In particular, putting £ = ¢, from Theorem 6.2 we obtain

-1

B Jo(€) 1 an Hl<z<g<2n+2(q afl)oo
Ci@G(C)i(l a)"(9)5% (@irlay) oyl )m

because O;(&) in (8) is evaluated at £ = ¢ as

N i—ap—p——Q2ng2

0. (¢) = Ha a— b(a /ax)

i=1 m=n-+1 (amai)1§j<kgn0(ajak)

The proof of Theorem 6.1 is now complete. |
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