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Radon Transforms of Constructible Functions
on Grassmann Manifolds
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∗

Abstract

P. Schapira studied Radon transforms of constructible functions and obtained a
formula related to an inversion formula. We generalize this formula to more compli-
cated cases including Radon transformations between any Grassmann manifolds. In
particular, we give an inversion formula for the Radon transformation and characterize
images of Radon transforms of characteristic functions of Schubert cells.

§1. Introduction

A constructible function φ on a real analytic or complex manifold X is a
Z-valued function which is constant along a stratification. We can choose a
stratification according to the problem under consideration, so we work with
subanalytic stratifications here.

In [11], P. Schapira defined Radon transforms of constructible functions.
This is a kind of integral transformations. We consider the following diagram:

S

��
�f �

�
g
�

X Y.

Here X and Y are real analytic or complex manifolds, S is a locally closed
subanalytic subset of X × Y , and f and g are real or complex analytic maps,
respectively. Then we can define the Radon transform RS(φ) of a constructible
function φ on X by

RS(φ) =
∫

g

f∗φ.
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552 Yutaka Matsui

In [11], P. Schapira obtained a formula for RS in general situation. This
formula gives an inversion formula for Radon transforms of constructible func-
tions from a real projective space to its dual in the case where the whole di-
mension is odd. Here inversion means left inverse. We can, that is, reconstruct
a constructible function φ on the projective space from its Radon transform
RS(φ). As a result, we can reconstruct the original subanalytic set K from
the knowledge of the topological Euler numbers χ(K ∩ H) for all affine hyper-
planes H.

Many mathematicians have been working on topological Radon transfor-
mations. Topological Radon transforms of constructible sheaves were dealt with
in [2] and topological Radon transforms of constructible functions were dealt
with in [3], [4], [13]. They considered Radon transformations from a projective
space to a Grassmannian and obtained many results.

In this paper, we study these topological Radon transforms of constructible
functions from X = Fn+1(p) to Y = Fn+1(q). We denote it by R(n+1;p,q).
Here Fn+1(p) is the Grassmann manifold, that is, the set of all p dimensional
subspaces in an n+1 dimensional vector space. Moreover, we consider not only
real cases but also complex cases. We obtain the following main results.

First we prove an inversion formula for the Radon transformation R(n+1;p,q)

(Theorem 3.1 in this paper).

Theorem 1.1. We consider the case where p < q. We obtain an inver-
sion formula for R(n+1;p,q) if either one of the following conditions are satisfied;

(i) p + q ≤ n + 1 under the complex Grassmann case,

(ii) p + q ≤ n + 1 and q − p is even under the real Grassmann case.

We concretely construct an inversion transformation R−1 as a left inverse
in Section 3.2. We remark that the assumption (2.4) of Schapira’s formula is
not satisfied in the case where p is not equal to 1. So our situation is more
general. Moreover we prove the following inverse theorem (Theorem 4.1):

Theorem 1.2. In the case where p + q = n + 1, an inversion formula
obtained in Theorem 1.1 is the inverse formula for R(n+1;p,q).

Namely, we show that R−1 is also right inverse.
Second we characterize the images of Radon transforms of characteristic

functions of Schubert cells of the Grassmannian (Theorem 5.1).
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Theorem 1.3. Let α ∈ Λp,n−p.

(i) In the complex case, we have

R(n+1;p,q)(1Ω◦
α
) =




∑
α̂⊂β̂

1Ω◦
β

for p ≤ q,

∑
α̂⊃β̂

1Ω◦
β

for p ≥ q,

where β̂ ranges through sequences in Λq,n containing (or contained by) α̂.

(ii) In the real case, we have

R(n+1;p,q)(1Ω◦
α
) =




∑
α̂⊂β̂

(−1)cα̂,β̂1Ω◦
β

for p ≤ q,

∑
α̂⊃β̂

(−1)cβ̂,α̂1Ω◦
β

for p ≥ q,

where β̂ ranges through sequences in Λq,n containing (or contained by) α̂.

Here Λp,q is the set of the complement of Young diagrams and Ω◦
α is the

Schubert cell corresponding to α ∈ Λp,q. For precise definitions of the sequence
α̂ and the constant cα̂,β̂ , see Section 5; the sequence α̂ depends on α ∈ Λp,q

and the constant cα̂,β̂ only depends on α, β ∈ Λp,q.
The plan of this paper is as follows.
We first recall basic properties of Grassmann manifolds, constructible func-

tions and Schapira’s formula in general case in Section 2.
In Section 3, we construct an inversion formula for R(n+1;p,q) in each Grass-

mann case. In Section 3.1, we modify Schapira’s formula in general case under
the almost same assumptions as Schapira’s. This gives an inversion formula
for the Radon transformation RS (Proposition 3.2). We can apply this for-
mula to the Radon transformation R(n+1;1,q) (Proposition 3.3). Moreover,
in Section 3.2 we concretely construct an inversion transformation R−1 for
R(n+1;p,q) (p �= 1) by modifying the kernel function of this inversion transfor-
mation under suitable conditions of p and q (Theorem 3.1).

In Section 4, we prove that an inversion transformation R−1 constructed
as a left inverse in Section 3.2 is right inverse in the case where p + q = n + 1.
This show that the Radon transformation R(n+1;p,n+1−p) is the non-trivial
isomorphism between CF (Fn+1(p)) and its dual CF (Fn+1(n+1−p)) (Theorem
4.1). Here CF (X) is the set of constructible functions on X.
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In Section 5, we calculate the images of Radon transforms of characteristic
functions of Schubert cells. We characterize these images by Young diagrams.

We have some remarks on this topics.
The meaning of our integration is not usual one but topological one based

on the Euler-Poincaré indices of slices. On the other hand, in [8], T. Kakehi
constructed an inversion formula for Radon transforms of C∞-functions on
Fn+1(p). In spite of the difference of definition of Radon transforms, the suf-
ficient condition under which we obtain an inversion formula in both cases
coincide with each other; namely in the real Grassmann case only when q−p is
even, we obtain both inversion formulas. It would be interesting to investigate
the reason why the condition coincides. Moreover, in [7], recently, E. Grinberg
and B. Rudin constructed an inversion formula of Radon transforms of C∞-
functions on Fn+1(p) for any p, q. We might construct an inversion formula for
our topological Radon transformation in the real Grassmann case where q − p

is odd.
Moreover, in [12], we have succeeded in proving of Hergason’s support

theorem for Radon transforms of constructible functions .
Finally, the author would like to thank Professor Kiyoomi Kataoka of

University of Tokyo and Professor Kiyoshi Takeuchi of University of Tsukuba
for several useful discussions and advice.

§2. Preliminaries

§2.1. A cell decomposition of Grassmann manifolds

We recall the notation and well-known results on a cell decomposition of
the Grassmann manifold, that is Schubert decomposition. For more details, we
refer to [1], [5], [6].

Definition 2.1. Let E be an n−dimensional vector space over k = R

or C, and p, q integers satisfying 1 � p � q � n. We set

(i) Fn(p) = {x | x is a linear subspace of E, whose dimension is p.},

(ii) Fn(p, q) = {(x, y) ∈ Fn(p) × Fn(q) | x ⊂ y },

(iii) Fn(q, p) = {(y, x) ∈ Fn(q) × Fn(p) | y ⊃ x },

(iv) µn(p) = χ(Fn(p)) : the topological Euler-Poincaré index of Fn(p).

We calculate µn(p) concretely in A.
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We fix a basis e1, e2, . . . , en of E. We set Vi = span[e1, e2, . . . , ei] for
i = 1, 2, . . . , n. Then we have a complete flag of vector spaces;

V1 ⊂ V2 ⊂ · · · ⊂ Vn, dimVi = i.

We recall a cell decomposition of Fn(p), which is called Schubert decom-
position.

Definition 2.2.

(i) Let λ = (a1, a2, . . . , ap) be a sequence of integers such that

n − p ≥ a1 ≥ a2 ≥ · · · ≥ ap ≥ 0.

This sequence corresponds to what is called a Young diagram with at most
p rows and n−p columns. We identify this sequence with a Young diagram.

(ii) For a Young diagram λ = (a1, a2, . . . , ap), we define its complement λc =
(b1, b2, . . . , bp) by

bj = n − p − aj for j = 1, 2, . . . , p.

(iii) For a sequence λ = (a1, a2, . . . , ap), we set

|λ| =
p∑

k=1

ak.

Definition 2.3. Let λ be a Young diagram, and λc = (b1, b2, . . . , bp) its
complement. Then we define the Schubert cell corresponding to λ by

Ω◦
λ =

{
x ∈ Fn(p)

∣∣∣∣∣ dim(x ∩ Vbi+i) = i,

dim(x ∩ Vbi+i−1) = i − 1
(1 ≤ i ≤ p)

}
.

Proposition 2.1. Let λ be a Young diagram with p rows and n − p

columns. Then we have

(i) Ω◦
λ � k|λc| = kp(n−p)−|λ|, (ii) Fn(p) =

∐
λ

Ω◦
λ.

Definition 2.4. Let λ be a Young diagram. We define the Schubert
variety for λ by

Ωλ = {x ∈ Fn(p) | dim(x ∩ Vbi+i) ≥ i, (1 ≤ i ≤ p)} ,

where λc = (b1, b2, . . . , bp). Note that Ωλ is an analytic submanifold of Fn(p).
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Proposition 2.2. Let λ be a Young diagram λ. Then we have

Ωλ =
∐
λ⊂µ

Ω◦
µ,

where µ ranges through Young diagrams containing λ as a subset.

§2.2. Constructible functions

We recall the notation and results on constructible functions without
proofs. For more details, we refer to [9].

Let X be a real analytic manifold.

Definition 2.5. A function φ : X → Z is set to be constructible if:

(i) For any m ∈ Z, φ−1(m) is subanalytic,

(ii) the family {φ−1(m)}m∈Z is locally finite in X.

We denote by CF (X) the abelian group of all the constructible functions
on X, and by C FX the sheaf U 
→ CF (U) on X.

It follows from the Hardt triangulation theorem that φ is constructible
if and only if there exists a locally finite family of compact subanalytic con-
tractible subsets {Ki}i of X such that

φ =
∑

i

ci1Ki
.

Here ci ∈ Z and 1A is the characteristic function of the subset A.

Example 1. Let Db
R−c(X) be the derived category of the category of

complexes of R-constructible sheaves and F ∈ Ob(Db
R−c(X)) (the base ring is

a field k with characteristic zero). Then its local Euler-Poincaré index

χ(F )(x) =
∑

j

(−1)jdimHj(F )x

is a constructible function.

From now on, χ denotes the local Euler-Poincaré index.
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Proposition 2.3.

(i) Let F , G ∈ Ob(Db
R−c(X)). Then we have

(a) χ(F ⊕ G) = χ(F ) + χ(G), (b) χ(F ⊗ G) = χ(F ) · χ(G).

(ii) Let F ′ → F → F ′′ +1→ be a distinguished triangle in Db
R−c(X). Then we

have

χ(F ) = χ(F ′) + χ(F ′′).

We denote by KR−c(X) the Grothendieck group of Db
R−c(X). This group

is obtained as the quotient group of the free abelian group generated by
Ob(Db

R−c(X)) under the following equivalence relations: F = F ′ + F ′′ if there

exists a distinguished triangle F ′ → F → F ′′ +1→.

Theorem 2.1 ([9, Theorem 9.7.11]). The group homomorphism in-
duced by the local Euler-Poincaré index χ

χ : KR−c(X) → CF (X)

is an isomorphism.

Next, we recall operations on constructible functions [9]. These operations
are induced by operations of KR−c(X) through the Euler-Poincaré index χ.

Definition 2.6. Let X and Y be two real analytic manifolds, and f :
Y → X a real analytic map.

(i) The inverse image: Let φ ∈ CF (X). We set

f∗φ(y) = φ(f(y)).

Note that if φ = χ(F ), then f∗φ = χ(f−1F ).

(ii) The integral: Let φ ∈ CF (X). Assume that φ is represented as φ = χ(F ) =∑
i ci1Ki

. Here F ∈ Ob(Db
R−c(X)), and {Ki} is a locally finite family of

compact subanalytic contractible subsets. Assume moreover that φ has
compact support. Then we set∫

X

φ =
∑

i

ci = χ(RΓ (X; F )).
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(iii) The direct image: Let ψ ∈ CF (Y ). Assume that f : supp(ψ) → X is
proper. Here supp(ψ) denotes a support of ψ. We set

(∫
f

ψ

)
(x) =

∫
Y

(ψ · 1f−1(x)).

Note that if ψ = χ(G) and f is proper on supp(G), then
∫

f
ψ = χ(Rf!G).

Remark 1. Let A be a locally closet subset of a manifold X. Then the
integral

∫
X

1A is not the usual integral, but a kind of topological integrals. By
Theorem 2.1 and the definition, we have the following equalities:∫

X

1A = χ(RΓ (X; kA)) = χ(RΓ (X; i!i−1kX)) = χ(RΓc(A; kA)) = χc(A).

Here k is R or C, i : A → X is an inclusion morphism and χc is the topological
Euler-Poincaré index with compact supports.

Let A1, A2 be two locally closed subsets of a manifold X such that A2 ⊂
A1. Then we have distinguished triangles

CA1\A2 → CA1 → CA2

+1→,

RΓc(X; CA1\A2) → RΓc(X; CA1) → RΓc(X; CA2)
+1→ .

Therefore we have the additivity of χc;

χc(A1) = χc(A1 \ A2) + χc(A2).

By this additivity of χc, we have some examples;∫
R

1[0,1] = 1,

∫
R

1[0,1) = 0,

∫
R

1(0,1) = −1.

Proposition 2.4.

(i) The following operations are well-defined morphisms of sheaves;

(a) f∗ : f−1C FX → C FY , (b)
∫

f

: f!C FY → C FX .

(ii) Inverse and direct images have functorial properties. Precisely, if f : Y →
X and g : Z → Y are real analytic maps, then we have;

(c) g∗ ◦ f∗ = (f ◦ g)∗, (d)
∫

f◦g

=
∫

f

◦
∫

g

.
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(iii) Consider a Cartesian diagram of morphisms of real analytic manifolds:

Y ′ f ′
� X ′

�

Y

h
�

f� X.

g
�

Let ψ ∈ CF (Y ). Suppose that f is proper on suppψ. Then we have

g∗
∫

f

ψ =
∫

f ′
(h∗ψ).

§2.3. Radon transforms of constructible functions and
Schapira’s formula

We recall the definition of Radon transforms of constructible functions and
Schapira’s formula ([11]).

Let X and Y be two real analytic manifolds, and S a locally closed sub-
analytic subset of X ×Y . Denote by p1 and p2 the first and second projections
defined on X×Y , and by f and g the restrictions of p1 and p2 to S respectively:

X × Y

��
�
�
�

p1

∪ 	
	
	
	

p2




S

�����
f


g

�
X Y.

(2.1)

We assume;

p2 is proper on S̄ (the closure of S in X × Y ).(2.2)

Definition 2.7. For a φ ∈ CF (X), we set

RS(φ) =
∫

g

f∗φ =
∫

p2

1S(p∗1φ).

We call RS(φ) the Radon transform of φ.

Let S′ ⊂ Y × X be another locally closed subanalytic subset. We denote
again by p2 and p1 the first and second projections defined on Y ×X, by f ′ and
g′ the restrictions of p1 and p2 to S′, and by r the projection S ×

Y
S′ → X ×X.
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Then Schapira posed the following assumptions:

p1 is proper on S̄′ (the closure of S′ in Y × X),(2.3)

∃λ, µ ∈ Z s.t. λ �= µ and χ(r−1(x, x′)) =

{
λ (x �= x′),
µ (x = x′),

(2.4)

where χ is the topological Euler-Poincaré index. We use the same symbol χ as
the local Euler-Poincaré index.

In this paper, we refer to the assumption (2.4) as Schapira’s condition.
Under the notation above, Schapira’s formula is stated as follows.

Theorem 2.2 ([11, Theorem 3.1]). Assume (2.2), (2.3) and (2.4).
Then, for any φ ∈ CF (X), we have

RS′ ◦ RS(φ) = (µ − λ)φ +
(∫

X

λφ

)
1X .

Proof. For the convenience of readers, we recall the proof of this theorem.
Denote by h and h′ the projections from S ×

Y
S′ to S and S′ respectively.

Consider the following diagram:

S ×
Y

S′

��
�h �

�
h′

�
S X × X

r�
S′

��
�f �

�
g
���������

q1 ��
�g′

�������q2 �
�
�
f ′

�
X Y X.

Since the square

S ×
Y

S′ h′
� S′

�

S

h �
g � Y

g′
�

is of Cartesian, we have

RS′ ◦ RS(φ) =
∫

f ′
(g′∗
∫

g

(f∗φ)) =
∫

f ′◦h′
((f ◦ h)∗φ) =

∫
q2

∫
r

r∗q∗1φ

=
∫

q2

k(x, x′)q∗1φ.

Here we have

k(x, x′) =
∫

r

r∗1X×X =
∫

r

1S×
Y

S′ .
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By Schapira’s condition (2.4), we have∫
r

1S×
Y

S′ = µ1∆X
+ λ1X×X\∆X

= (µ − λ)1∆X
+ λ1X×X ,

where ∆X is the diagonal of X × X.
Since

∫
q2

1∆X
q∗1φ = φ and

∫
q2

1X×X q∗1φ =
∫

X
φ, we obtain the result.

In [11], Schapira applied this formula to correspondences of real flag man-
ifolds; that is, we consider the following diagram called the correspondence;

Fn+1(1, q)

�����
f


g

�
Fn+1(1) Fn+1(q),

(2.5)

where f and g are projections.
We set R(n+1;1,q) = RS and R(n+1;q,1) = RS′ , where S = Fn+1(1, q) and

S′ = Fn+1(q, 1). Then this situation satisfies the assumptions of Schapira’s
formula, because we have

r−1(x, x′) �
{

Fn−1(q − 2) (x �= x′),
Fn(q − 1) (x = x′).

Therefore we can apply Theorem 2.2 to this case.

Proposition 2.5 ([11, Proposition 4.1]). Consider the correspondence
(2.5). For any φ ∈ CF (Fn+1(1)), we have

R(n+1;q,1) ◦ R(n+1;1,q)(φ)

= (µn(q − 1) − µn−1(q − 2))φ + µn−1(q − 2)

(∫
Fn+1(1)

φ

)
1Fn+1(1).

In particular, if n is odd, we obtain an inversion formula for R(n+1;1,n).

§3. Inversion of Radon Transforms of Constructible Functions

We generalize (2.5); that is, we consider the following diagram:

Fn+1(p) × Fn+1(q)

��
�
�
�

p1

∪ 	
	
	
	

p2




Fn+1(p, q)

�����
f


g

�
Fn+1(p) Fn+1(q).

(3.1)

We set X = Fn+1(p), Y = Fn+1(q) and S = Fn+1(p, q).
We consider the following problems;
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(i) an inversion formula for R(n+1;1,q) in the case where n is even or q �= n,

(ii) an inversion formula for R(n+1;p,q) in the case where 1 < p and 1 < q.

Namely, we consider the reconstruction of φ from RS(φ) on Grassmann
manifolds.

We remark that Schapira already considered this diagram (3.1) in [11], but
he could not obtain results for these problems.

§3.1. A minor modification of Schapira’s formula

We modify Schapira’s formula. We inherit the notation from Section 2.3.

Definition 3.1. For a ψ ∈ CF (Y ), we set

R0(ψ) =
∫

p1

1Y ×X(p∗2ψ) =
∫

p1

(p∗2ψ) =
(∫

Y

ψ

)
1X .

Definition 3.2. We define the transposed set of S by

tS = {(y, x) ∈ Y × X | (x, y) ∈ S }.

In this section, we assume Schapira’s assumptions (2.2), (2.3), (2.4) and
the following assumption:

tS = S′.(3.2)

Proposition 3.1. Let φ ∈ CF (X). Then we have

R0 ◦ RS(φ) =
∫

X

(µφ)1X .

Proof. A constructible function φ is represented by φ =
∑
i

ci1Ki
, where

{Ki} is a locally finite family of compact subanalytic contractible subsets. By
the linearity of transformations, it is enough to show this formula only for a
characteristic function 1K of a compact subanalytic contractible subset K.

Since the square

X × Y
p2� Y

�

X

p1 �
aX� {pt}

aY�
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is of Cartesian, we have

R0 ◦ RS(1K) =
∫

p1

p∗2

∫
p2

(1S · p∗11K) = a∗
X

∫
aY

∫
p2

(1S · p∗11K)

= a∗
X

∫
aX

∫
p1

(1S · p∗11K).

For any φ ∈ CF (X), we have(
a∗

X

∫
aX

φ

)
(x) =

(∫
aX

φ

)
({pt}) =

∫
X

φ(x′)1a−1
X ({pt})(x

′) =
(∫

X

φ

)
1X(x).

Since the Euler-Poincaré index of

{x} × Y ∩ S � {y ∈ Y | (x, y) ∈ S}

is µ defined in (2.4), we have(∫
p1

1S · p∗11K

)
(x) =

∫
X×Y

1(({x}∩K)×Y )∩S(x′, y′) = µ1K .

Therefore we obtain the desired result.

Definition 3.3. For a ψ ∈ CF (Y ), we set

R−1(ψ) =
∫

p1

(µ1S′ − λ1Y ×X)(p∗2ψ) = µRS′(ψ) − λR0(ψ).

Proposition 3.2. Let φ ∈ CF (X). Then we have

R−1 ◦ RS(φ) = µ(µ − λ)φ.

In particular, if µ(µ − λ) is not zero, we can reconstruct the original con-
structible function φ from its Radon transform RS(φ) by dividing the last term
by this constant µ(µ − λ).

Proof. By Theorem 2.2 and Proposition 3.1, we have

R−1 ◦ RS(φ) = µRS′ ◦ RS(φ) − λR0 ◦ RS(φ) = µ(µ − λ)φ.

We apply this result to the complex or real Grassmann manifolds. We
recall the Euler-Poincaré index of the Grassmann manifold. For more detail
calculation, see A.
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In the complex case, we have

µn(p) =
(

n

p

)
.(3.3)

In the real case, we have

µn(p) =




0 (if p(n − p) is odd),
E

(n

2

)
E
(p

2

)

 (if p(n − p) is even).

(3.4)

Here E
(

n
2

)
denotes the integral part of n

2 ,
(

a
b

)
is the binomial coefficient.

We consider the correspondence (2.5). Then the assumptions (2.2), (2.3),
(2.4) and (3.2) are satisfied. We remark that

µ = µn(q − 1), λ = µn−1(q − 2).

We consider the conditions of q that µ(µ − λ) �= 0 from (3.3) and (3.4).
Therefore we can apply Proposition 3.2 to the Grassmann cases.

Proposition 3.3. We have µ(µ − λ) �= 0 if either one of the following
conditions are satisfied;

(i) q > 1 under the complex Grassmann case,

(ii) q is odd and 1 < q < n + 1 under the real Grassmann case.

In particular, then we obtain an inversion formula for R(n+1;1,q).

§3.2. Inversion formulas on Grassmann manifolds

For p < q, we consider the diagram (3.1).
We remark that Schapira’s condition (2.4) is not satisfied if 1 < p. This is

because we consider (p+1) cases according to dim(x1∩x2) to study r−1(x1, x2).
We introduce new sets in order to construct to an inversion transformation

for R(n+1;p,q).

Definition 3.4. We set

(i) Si = {(y, x) ∈ Y × X | dim(y ∩ x) = i } for i = 0, 1, . . . , p,

(ii) Zj = {(x1, x2) ∈ X × X | dim(x1 ∩ x2) = j } for j = 0, 1, . . . , p.
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Remark 2. We have

X × X =
p∐

j=0

Zj .

Consider the following diagram:

S ×
Y

Si

��
�h �

�
h′

�
S X × X

r�
Si

��
�f �

�
g
���������

q1 ��
�g′

�������q2 �
�
�
f ′

�
X Y X.

Denote by h and h′ the projections from S ×
Y

Si to S and S′ respectively.

Note that Zp = {(x1, x2) ∈ X×X | x1 = x2} and we have
∫

q2
1Zp

q∗1φ = φ.
In order to apply the same argument as in the proof of Theorem 2.2 and Section
3.1, we modify the kernel such that

∫
r
(kernel) is equal to 1Zp

.
We calculate

∫
r
1S×

Y
Si

;

(∫
r

1S×
Y

Si

)
(x1, x2) =

p∑
j=0


∫

S×
Y

Si

1r−1(x1,x2)∩r−1(Zj)


 · 1Zj

.

We consider r−1(x1, x2) ∩ S ×
Y

Si when we fix (x1, x2) ∈ Zj . We have

r−1(x1, x2) ∩ S ×
Y

Si =

{
y ∈ Fn+1(q)

∣∣∣∣∣x1 ⊂ y

dim(x2 ∩ y) = i

}
(dim(x1 ∩ x2) = j).

Here we consider conditions in the quotient space E/x1. Then we have

r−1(x1, x2) ∩ S ×
Y

Si �
{

∅ (i < j),{
y ∈ Fn+1−p(q − p)

∣∣∣dim(x ∩ y) = i − j
}

(i ≥ j)

(dimx = p − j)

=

{
∅ (i < j),

Ωi,j \ Ωi+1,j (i ≥ j),

where we set

Ωi,j = {y ∈ Fn+1−p(q − p) | dim(x ∩ y) ≥ i − j } (dimx = p − j).(3.5)

This set is nothing but a Schubert variety of Fn+1−p(q − p).
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Therefore we calculate the Euler-Poincaré index χc(Ωi,j \Ωi+1,j) with com-
pact supports. It is enough to calculate χc(Ωi,j), because we have the additivity

χc(Ωi,j \ Ωi+1,j) = χc(Ωi,j) − χc(Ωi+1,j).

We can calculate χc(Ωi,j) by using a cell decomposition of Ωi,j and the
Young diagram corresponding to Ωi,j . For more details, see A.

(i) If we consider complex Grassmannians, i.e. E = Cn+1, then we obtain

χc(r−1(x1, x2) ∩ r−1(Zj) ∩ S ×
Y

Si) =




0 (i < j),(
p − j

i − j

)(
n + 1 − 2p + j

q − p − i + j

)
(i ≥ j)

= : cij .

(ii) If we consider real Grassmannians, i.e. E = Rn+1, then we obtain

(−1)(q−p)(n+1−q)χc(r−1(x1, x2) ∩ r−1(Zj) ∩ S ×
Y

Si)

=




0, (i < j)∣∣∣∣∣
p−i∑
l=0

(−1)lµl+i−j−1(l)µn+1−p−i+j−l(q − p − i + j)

∣∣∣∣∣
−
∣∣∣∣∣
p−i−1∑

l=0

(−1)lµl+i−j(l)µn−p−i+j−l(q − p − i + j − 1)

∣∣∣∣∣ ,
(i > j)

µn+1−2p+j(q − p) (i = j)

= : (−1)(q−p)(n+1−q)cij .

We can unify these two cases. Note that cij is independent of the choice
of (x1, x2) in Zj . Therefore we have

(∫
r

1S×
Y

Si

)
(x1, x2) =

p∑
j=0

cij1Zj
.

Here, we denote by Cp,q the square matrix (cij)0≤i,j≤p of size (p+1). Since
this is the lower triangular matrix, we have

|detCp,q| =
p∏

j=0

µn+1−2p+j(q − p)(3.6)

in both cases. In particular it is Z-valued.
In the argument here after, we consider the case where detCp,q �= 0. We

derive the following conditions for detCp,q �= 0 from (3.3) and (3.4):
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(i) p + q ≤ n + 1 in the complex Grassmann case,

(ii) p + q ≤ n + 1 and q − p is even in the real Grassmann case.

Under the preliminaries above, we define the kernel function of an inversion
formula for R(n+1;p,q).

We obtain the equation

Cp,q




1Z0

1Z1

...
1Zp


 =




∫
r
1S×

Y
S0∫

r
1S×

Y
S1

...∫
r
1S×

Y
Sp




.

When detCp,q �= 0, we can solve this equation with respect to 1Zp
by

Cramer’s formula:

detCp,q · 1Zp
= det




c00 0 . . . 0
∫

r
1S×

Y
S0

c10 c11
. . .

...
∫

r
1S×

Y
S1

...
...

. . . 0
...

cp−1,0 cp−1,1 . . . cp−1,p−1

∫
r
1S×

Y
Sp−1

cp,0 cp,1 . . . cp,p−1

∫
r
1S×

Y
Sp




.

Definition 3.5. If detCp,q �= 0, we set

Kp,q = det




c00 0 . . . 0 1S0

c10 c11
. . .

... 1S1

...
...

. . . 0
...

cp−1,0 cp−1,1 . . . cp−1,p−1 1Sp−1

cp,0 cp,1 . . . cp,p−1 1Sp




.

Then we can define R−1(ψ) for a ψ ∈ CF (Fn+1(q)) by

R−1(ψ) =
∫

p1

Kp,q · (p∗2ψ).

The main result in this paper is:

Theorem 3.1. Consider the diagram (3.1). If detCp,q �= 0, then for
any φ ∈ CF (Fn+1(p)) we have

R−1 ◦ R(n+1;p,q)(φ) = detCp,q · φ.
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This means that we can reconstruct the original constructible function φ

from its Radon transform R(n+1;p,q)(φ) by dividing the last term by the constant
det Cp,q. In particular, we obtain an inversion formula for R(n+1;p,q) if either
one of the following conditions are satisfied;

(i) p + q ≤ n + 1 under the complex Grassmann case,

(ii) p + q ≤ n + 1 and q − p is even under the real Grassmann case.

Proof. In the same way as in the proof of Theorem 2.2, we have

R−1 ◦ R(n+1;p,q)(φ) =
∫

p1

Kp,q ·
(

p∗2

∫
p2

1S · p∗1φ
)

=
∫

q2




det




c00 0 . . . 0
∫

r
1S×

Y
S0

c10 c11
. . .

...
∫

r
1S×

Y
S1

...
...

. . . 0
...

cp−1,0 cp−1,1 . . . cp−1,p−1

∫
r
1S×

Y
Sp−1

cp,0 cp,1 . . . cp,p−1

∫
r
1S×

Y
Sp







q∗1φ

=
∫

q2

detCp,q1Zp
q∗1φ

= detCp,q · φ.

Note that
∫

q2
1Zp

q∗1φ = φ.

Remark 3. In the argument above, we consider only the case where p <

q. However, we obtain results in other cases.
When p = q, the inversion formula is trivial because R(n+1;p,q)

= idCF (Fn+1(p)).
When p > q, we have only to consider the result in the case of p < q by

the dualities of Grassmann manifolds. Namely, we obtain an inversion formula
for R(n+1;p,q) if p + q ≥ n + 1 in the complex case or if p + q ≥ n + 1 and p− q

is even in the real case.

§4. The Inverse Radon Transformation

In this section, we show the following theorem

Theorem 4.1. Let p + q = n + 1 hold. The inversion transformation
R−1 defined in Definition 3.5 gives the inverse transformation for the Radon
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transformation R(n+1;p,q). Namely, the Radon transformation R(n+1:p,q) is the
non-trivial isomorphism from CF (Fn+1(p)) to CF (Fn+1(q)) up to constant if
either one of the following conditions are satisfied;

(i) the complex case,

(ii) p + q = n + 1 and q − p is even in the real case.

Moreover, through the Euler-Poincaré index χ, the Radon transformation
gives the non-trivial isomorphism between Grothendieck groups.

First, we remark that it is enough to show that R−1 gives a right inverse
transformation of R(n+1:p,q). Moreover, in the same argument as Section 3.2,
it is enough to consider only when p < q and p + q = n + 1.

Before going into the proof of this theorem, we need some preliminaries.
We consider the diagram (3.1). We introduce the following sets similarly

to Section 3.2.

Definition 4.1. We set

(i) Si = {(y, x) ∈ Y × X | dim(y ∩ x) = i } for i = 0, 1, . . . , p,

(ii) Z ′
j = {(y1, y2) ∈ Y × Y | dim(y1 ∩ y2) = j + (q − p) } for j = 0, 1, . . . , p.

Remark 4. We have an inequality

q − p ≤ dim(y1 ∩ y2) ≤ q.

Moreover we have that

Y × Y =
p∐

j=0

Z ′
j .

We calculate RS ◦ R−1 similarly to Section 3.2.
Consider the following diagram:

Si ×
X

S

���
�h′ ���

h

�
Si Y × Y

r′
�

S

���
�g′ ���

f ′

�������

q′
1 ���

�f
q′

2 �
���

g
�

Y X Y.

In the same way as in the proof of Theorem 2.2, we calculate
∫

r′ 1Si×
X

S ;
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Proposition 4.1. We have(∫
r′

1Si×
X

S

)
=

p∑
j=0

cij · 1Z′
j
,

where Cp,q = (cij)0≤i,j≤p is the coefficient matrix defined in Section 3.2.

Proof.

(∫
r′

1Si×
X

S

)
(y1, y2) =

p∑
j=0


∫

Si×
X

S

1r′−1(y1,y2)∩r′−1(Z′
j)


 · 1Z′

j
.

First, we consider r′−1(y1, y2) ∩ Si ×
X

S for (y1, y2) ∈ Z ′
j .

We have

r′−1(y1, y2) ∩ Si ×
X

S =

{
x ∈ Fn+1(p)

∣∣∣∣∣ x ⊂ y1

dim(x ∩ y2) = i

}

= {x ∈ Fq(p) | dim(x ∩ y1 ∩ y2) = i}
= Ω′

i,j \ Ω′
i+1,j ,

where we denote by

Ω′
i,j = {x ∈ Fq(p) | dim(x ∩ y) ≥ i} (dim(y) = j + q − p).

This set is a Schubert variety of Fq(p).
Similarly to in Section 3.2, it is enough to calculate χc(Ω′

i,j).
Here we consider the Young diagram corresponding to Ωi,j in (3.5) and

that of Ω′
i,j .

These Young diagrams have the following shapes;

i − j q − p − i + j

p − i

i λΩi,j

i p − i

q − p − i + j

i − j λΩ′
i,j

(Figure 1)

This implies that

χc(Ωi,j) = χc(Ω′
i,j).
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Therefore we have

χc(r′−1(y1, y2) ∩ r′−1(Z ′
j) ∩ Si ×

X
S) = cij .

Finally, we show Theorem 4.1. For any ψ ∈ CF (Fn+1(q)), we have

R(n+1;p,q) ◦ R−1(ψ) =
∫

p2

1S ·
(

p∗1

∫
p1

Kp,q · p∗2ψ
)

=
∫

q′
2




det




c00 0 · · · 0
∫

r
1S0×

X
S

c10 c11
. . .

...
∫

r
1S1×

X
S

...
...

. . . 0
...

cp−1,0 cp−1,1 · · · cp−1,p−1

∫
r
1Sp−1×

X
S

cp,0 cp,1 · · · cp,p−1

∫
r
1Sp×

X
S







q′∗1 ψ

=
∫

q′
2

detCp,q1Z′
p
q′∗1 ψ

= detCp,q · ψ.

The third identity is due to the result of Section 3.2 and we remark that∫
q′
2
1Z′

p
q′∗1 ψ = ψ.

§5. The Image of Radon Transform of the Characteristic Function
on a Schubert Cell

In this section, we characterize the image of the Radon transform of the
characteristic function of a Schubert cell. We consider the correspondence (3.1).
Moreover, we take account of the complement λc of a Young diagram λ when
we study the Schubert cell in this section. We set

Λp,n−p = {(a1, a2, . . . , ap) | 0 ≤ a1 ≤ a2 ≤ · · · ≤ ap ≤ n − p.}.

This is the set of increasing sequences like λc. We denote by Ω◦
α the Schubert

cell corresponding to λ for λc = α ∈ Λp,n−p.

Definition 5.1.

(i) For an α = (a1, a2, . . . , ap) ∈ Λp,n−p, we define a new sequence α̂ ∈ Λp,n

by

α̂ = (a1 + 1, a2 + 2, . . . , ap + p).
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(ii) Let α = (a1, a2, . . . , ap) ∈ Λp,n and β = (b1, b2, . . . , bq) ∈ Λq,m for p < q.
Then we define the relation α ⊂ β if for each i (1 ≤ i ≤ p) there exists
j (1 ≤ j ≤ q) such that ai = bj . We denote by σα,β this correspondence
of numbers, that is, σα,β(i) = j.

Definition 5.2. Let α = (a1, a2, . . . , ap) ∈ Λp,n−p, β = (b1, b2, . . . , bq)
∈ Λq,n−q such that α ⊂ β. Then we set

cα,β =
p∑

k=1

σα,β(k) − k.

We characterize the image of the Radon transform of 1Ω◦
α
.

Theorem 5.1. Let α ∈ Λp,n−p.

(i) In the complex case, we have

R(n+1;p,q)(1Ω◦
α
) =




∑
α̂⊂β̂

1Ω◦
β

for p ≤ q,

∑
α̂⊃β̂

1Ω◦
β

for p ≥ q,

where β̂ ranges through sequences in Λq,n containing (or contained by) α̂.

(ii) In the real case, we have

R(n+1;p,q)(1Ω◦
α
) =




∑
α̂⊂β̂

(−1)cα̂,β̂1Ω◦
β

for p ≤ q,

∑
α̂⊃β̂

(−1)cβ̂,α̂1Ω◦
β

for p ≥ q,

where β̂ ranges through sequences in Λq,n containing (or contained by) α̂.

Proof. It is enough to consider the case where p < q and to calculate

RS(1Ω◦
α
)(y) =

∫
X

1g−1(y)∩S∩f−1(Ω◦
α).

We have

g−1(y) ∩ S ∩ f−1(Ω◦
α)

�


x ∈ Fn+1(p)

∣∣∣∣∣∣∣
x ⊂ y,

dim(x ∩ Vai+i) = i,

dim(x ∩ Vai+i−1) = i − 1
(i = 1, 2, . . . , p)


 .
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Here we fix any x ∈ Ωα. If x ⊂ y, then y have the same gaps of dimensions
of intersection with the complete flag of E as ones of x. Therefore β̂ satisfies
β̂ ⊃ α̂.

Let x ∈ Ωα, y ∈ Ωβ where α̂ ⊂ β̂. Then we can choose the basis of the
whole space E to contain the basis of y without changing the original complete
flag. y has the complete flag which is a subflag of the complete flag of E.
Namely, we define the complete flag of y by

Vb1+1 ⊂ Vb2+2 ⊂ · · · ⊂ Vbq+q

‖ ‖ · · · ‖
V ′

1 ⊂ V ′
2 ⊂ · · · ⊂ V ′

q = y.

By considering in y, the fiber above is a Schubert cell of Fq(p);

g−1(y) ∩ S ∩ f−1(Ω◦
α)

�
{

x ∈ Fq(p)

∣∣∣∣∣ dim(x ∩ Vai+i) = i,

dim(x ∩ Vai+i−1) = i − 1
(i = 1, 2, . . . , p)

}

�
{

x ∈ Fq(p)

∣∣∣∣∣
dim(x ∩ V ′

σα̂,β̂(i)) = i,

dim(x ∩ V ′
σα̂,β̂(i)−1) = i − 1

(i = 1, 2, . . . , p)

}
.

Therefore we calculate the Euler-Poincaré index with compact supports of
this Schubert cell. In the complex case, it is equal to 1. In the real case, it is
equal to (−1)cα̂,β̂ . So we obtain the desired results.

We can represent this formula by Young diagrams when p = 1, q = n.

Definition 5.3. We denote by λk the Young diagram (k) with at most
one row and n columns (0 ≤ k ≤ n). For λ = λk, we define its dual with at
most n rows and one column;

n − k

λ∗ = (1, 1, . . . , 1, 1, 0, 0, . . . , 0).

Definition 5.4. Let λ be a Young diagram with at most one row and
n columns. For a Young diagram µ with at most n rows and one column, we
set

τλ(µ) =

{
n − |λ| (for n − |λ| < |µ|),
n − |λ| − 1 (for n − |λ| ≥ |µ|).

Proposition 5.1. Let λ be a Young diagram with one row and n columns.
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(i) In the complex case, we have

R(n+1;1,n)(1Ω◦
λ
) =

∑
µ 
=λ∗

1Ω◦
µ
,(5.1)

where µ ranges through Young diagrams with at most n rows and one col-
umn which are not equal to λ∗. We can rewrite (5.1) as

R(n+1;1,n)




1Ωλ0

1Ωλ1
...

1Ωλn


 =




0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...
...

. . .
...

1 1 1 . . . 0







1Ωλ∗
0

1Ωλ∗
1

...
1Ωλ∗

n


 .

(ii) In the real case, we have

R(n+1;1,n)(1Ω◦
λ
) =

∑
µ 
=λ∗

(−1)τλ(µ)1Ω◦
µ
,(5.2)

where µ ranges through Young diagrams with at most n rows and one col-
umn which are not equal to λ∗. We can rewrite (5.2) as

R(n+1;1,n)




1Ωλ0

1Ωλ1
...

1Ωλn


=




0 (−1)n−1 (−1)n−1 · · · (−1)n−1

(−1)n−1 0 (−1)n−2 · · · (−1)n−2

(−1)n−2 (−1)n−2 0 (−1)n−3

...
...

. . .
...

1 1 1 . . . 0







1Ωλ∗
0

1Ωλ∗
1

...
1Ωλ∗

n


 .

A. The Calculation of Euler-Poincaré Indices of Schubert Varieties

In this appendix, we calculate the Euler-Poincaré indices with compact
supports of Schubert varieties straightforwardly. These calculations are ele-
mentary, but we write for the completeness of this paper. For the other more
technical calculations with characteristic classes, we refer to [6], [10].

First, we extend the definition of
(

n
p

)
by

(
n

p

)
=



(

n

p

)
(n ≥ p ≥ 0),

0 (otherwise).
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Let x be an m-dimensional subspace of E. We calculate the Euler-Poincaré
index with compact supports of the following Schubert variety:

Ωm,k := {y ∈ Fn(p) | dim(x ∩ y) ≥ k } ,

which corresponds to the Young diagram λ = (a1, a2, . . . , ap) with

aj =

{
n − p − m + k (1 ≤ j ≤ k),
0 (k + 1 ≤ j ≤ p).

We denote the Euler-Poincaré index with compact supports by χc.
First we consider complex Grassmann manifolds, i.e. E = Cn+1.

Proposition A.1. We have

µn(p) = χ(Fn(p)) =
(

n

p

)
.

Proof. We calculate the Euler-Poincaré index with compact supports of
a Schubert cell. Since C is a real 2-dimensional vector space, we have

χc(Ω◦
µ) = χc(Cp(n−p)−|µ|) = χ(Cp(n−p)−|µ|) = 1.

By Proposition 2.1, we count the number of the shortest ways which con-
nect from A to B (see Figure 2).

n − p

p

�

�

A

B

(Figure 2)

Proposition A.2. We have

χc

(
Ωm,k

)
=

m−k∑
l=0

(
n − m

p − k − l

)(
m

k + l

)
.

Proof. By the additivity of χc, we have for a Schubert variety

χc(Ωm,k) = χc


∐

λ⊂µ

Ω◦
µ


 =

∑
λ⊂µ

χc(Ω◦
µ) =

∑
λ⊂µ

1 = 
{µ | λ ⊂ µ}.

We count the number of the shortest ways which connect from A to B

through each point on the L (see Figure 3).
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����

n − p − m + k m − k

p − k

k

�

�

� � � � � �
A

B

L

λ

(Figure 3)

Next, we consider real Grassmann manifolds, i.e. E = R
n+1.

First, we calculate the Euler-Poincaré index with compact supports of a
Schubert cell. By the Poincaré duality we have

χc(Ω◦
µ) = χc(Rp(n−p)−|µ|) = (−1)p(n−p)−|µ|.

By the additivity of χc, we have for a Schubert variety

χc(Ωλ) = χc


∐

λ⊂µ

Ω◦
µ


 =

∑
λ⊂µ

χc(Ω◦
µ) =

∑
λ⊂µ

(−1)p(n−p)−|µ|

= (−1)p(n−p)
∑
λ⊂µ

(−1)|µ|.

So we count the numbers of Young diagrams; the number of Young dia-
grams containing λ with at most p rows n − p columns.

Definition A.1. We set

(i) en(p) = 


{
µ

∣∣∣∣∣ µ is a Young diagram with at most p rows
and n − p columns. |µ| is even.

}
,

(ii) on(p) = 


{
µ

∣∣∣∣∣ µ is a Young diagram with at most p rows
and n − p columns. |µ| is odd.

}
.

Proposition A.3. We have

(i) en(p) =
1
2

{(
n

p

)
+ µn(p)

}
, (ii) on(p) =

1
2

{(
n

p

)
− µn(p)

}
,

where µn(p) is the Euler index of the real Grassmann manifold Fn(p).

Proof. By Definition A.1, we have

en(p) − on(p) = µn(p), en(p) + on(p) =
(

n

p

)
.
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�
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Proposition A.4. We have

µn(p) = χ(Fn(p)) =




0 (if p(n − p) is odd),
E

(n

2

)
E
(p

2

)

 (if p(n − p) is even).

(A.1)

Here E
(

n
2

)
denotes the integral part of n

2 ,
(

a
b

)
is the binomial coefficient.

Proof. We show this proposition by induction on p.
In the case where p = 1, we have (A.1) for all n ≥ 1 from

on(1) = E
(n

2

)
, en(1) = E

(
n + 1

2

)
.

In the cases where p > 1, we consider the following four cases.

(i) p is odd, n is even.

For each Young diagram λ, we consider λc. Since the number of total
boxes with at most p rows n − p columns is odd, we have the equality
on(p) = en(p), i.e. µn(p) = 0. This proves (A.1) in the case of (i).

In the following cases, we count the number of boxes in a Young diagram
by dividing the cases according to the number of boxes in the first row.

(ii) p is odd, n is odd. Since n − p is even, we have

on(p) = on−1(p − 1) + en−2(p − 1) + on−3(p − 1) + · · · + ep(p − 1),

en(p) = en−1(p − 1) + on−2(p − 1) + en−3(p − 1) + · · · + op(p − 1) + 1.

Therefore we have

µn(p) = µn−1(p − 1) − µn−2(p − 1) + µn−3(p − 1) − · · · − µp(p − 1) + 1

=
n−1∑

k=p−1

(−1)k




E

(
k

2

)

E

(
p − 1

2

)

 =




E

(
n − 1

2

)

E

(
p − 1

2

)

 =


E

(n

2

)
E
(p

2

)

 .

(iii) p is even (= 2q), n is even (= 2m). Since n − p is even, we have

on(p) = on−1(p − 1) + en−2(p − 1) + on−3(p − 1) + · · · + ep(p − 1),

en(p) = en−1(p − 1) + on−2(p − 1) + en−3(p − 1) + · · · + op(p − 1) + 1.
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Therefore we have

µn(p) = µn−1(p − 1) − µn−2(p − 1) + µn−3(p − 1) − · · · − µp(p − 1) + 1

=




E

(
n − 1

2

)

E

(
p − 1

2

)

− 0 +




E

(
n − 3

2

)

E

(
p − 1

2

)

+ · · · − 0 + 1

=
m−1∑

k=q−1

(
k

q − 1

)
=
(

m

q

)
=


E

(n

2

)
E
(p

2

)

 .

(iv) p is even (= 2q), n is odd (= 2m + 1). Since n − p is odd, we have

on(p) = en−1(p − 1) + on−2(p − 1) + en−3(p − 1) + · · · + ep(p − 1),

en(p) = on−1(p − 1) + en−2(p − 1) + on−3(p − 1) + · · · + op(p − 1) + 1.

Therefore we have

µn(p) =−µn−1(p − 1) + µn−2(p − 1) − µn−3(p − 1) − · · · − µp(p − 1) + 1

=−0 +




E

(
n − 2

2

)

E

(
p − 1

2

)

− 0 + · · · − 0 + 1

=
m−1∑

k=q−1

(
k

q − 1

)
=
(

m

q

)
=


E

(n

2

)
E
(p

2

)

 .

Proposition A.5. We have

χc

(
Ωm,k

)
=




(−1)p(n−p)

∣∣∣∣∣
m−k∑
l=0

(−1)lµl+k−1(l)µn−k−l(p − k)

∣∣∣∣∣ (k ≥ 1),

(−1)p(n−p)µn(p) (k = 0).

Proof. We set eoj
n(p) =

1
2

{(
n

p

)
+ (−1)jµn(p)

}
.
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Then we have

(−1)p(n−p) · χc

(
Ωm,k

)

=




∣∣∣∣∣
m−k∑
l=0

eol−1
l+k−1(l)on−k−l(p − k) + eol

l+k−1(l)en−k−l(p − k)

−eol
l+k−1(l)on−k−l(p − k) − eol−1

l+k−1(l)en−k−l(p − k)

∣∣∣∣∣
(k ≥ 1),

µn(p) (k = 0)

=



∣∣∣∣∣
m−k∑
l=0

(−1)lµl+k−1(l)µn−k−l(p − k)

∣∣∣∣∣ (k ≥ 1),

µn(p) (k = 0) .

n − p − m + k m − k

p − k

k − 1

1

�

�

A

B

M

λ λ1

λ2

(Figure 4)

Here, λ1 is a Young diagram with k rows and m − k columns. Further λ2 is a
Young diagram with p − k rows and n − p columns.

For example, if k(m− k) is even, we count the number of Young diagrams
which have even boxes in λ1 and odd boxes in λ2. We divide our problem
into cases where diagrams have m − k − j boxes at M from the left (0 ≤
j ≤ m − k). If j is even, the number of Young diagrams that we count is
ek−1+j(k− 1)× on−k−j(p−k). If j is odd, the number of Young diagrams that
we should count is ok−1+j(k − 1) × on−k−j(p − k) (see Figure 4).

At the end of this appendix, we calculate χc(Ωm,0)− χc(Ωm,1) in another
way, which plays an important role in Section 3.2.

Proposition A.6. We have

χc(Ωm,0) − χc(Ωm,1) = (−1)p(n−p)µn−m(p).

Proof. We denote by eλ
p (n) (resp. oλ

p (n)) the number of Young diagrams
containing λ with p rows and n − p columns whose number of boxes is even
(resp. odd).
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Then for the Young diagram λ = (n − p − m + 1, 0, . . . , 0), we have

(−1)p(n−p){χc(Ωm,0) − χc(Ωm,1)} = µn(p) − (eλ
p(n) − oλ

p (n))

= (ep(n) − eλ
p(n)) − (op(n) − oλ

p (n))

= eλ′

p (n) − oλ′

p (n)

= µn−m(p),

where λ′ = (n − p − m, 0, . . . , 0) (see Figure 5).

n − p − m + 1 m − 1

p − 1

1 λ

(Figure 5)
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