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Abstract

Since the concept of limit order is a useful tool to study operator ideals, we
propose an analogous definition for ideals of multilinear forms. From the limit orders
of some special ideals (of nuclear, integral, r-dominated and extendible multilinear
forms) we derive some properties of them and show differences between the bilinear
and n-linear cases (n ≥ 3).

Introduction

The theory of operator ideals between Banach spaces has had a remarkable
impact in functional analysis since its development, in 1968, by Pietsch and his
school. The concept of ideal of multilinear functionals was also introduced by
Pietsch [20] in 1983 and has been developed by several authors. The ideals
of nuclear, integral or r-summing operators, for example, have found their
analogues in the multilinear setting. However, it is important to note that the
multilinear theory is far from being a translation of the linear one: it presents
very different situations and involves new techniques. In [13, 14], general results
about ideals of multilinear mappings are presented.
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In the linear theory, a tool that proved useful to study different properties
of particular ideals is the concept of limit order (see [19]). Motivated by this,
we propose an analogous definition for ideals of multilinear forms. As an appli-
cation of this new concept, we present some properties of the ideals of nuclear,
integral, r-dominated and extendible multilinear forms. We show that there
are important differences between bilinear and n-linear situations for n ≥ 3.

In the first section, we give the definitions of limit orders and show their
values for the ideals of continuous, nuclear and integral multilinear forms. The
second section deals with r-dominated multilinear forms. We compute their
limit orders and study their attainment. We show a structural difference be-
tween bilinear and n-linear mappings with n ≥ 3: on the one hand, every
r-dominated bilinear form is 2-dominated for r > 2; on the other, if n ≥ 3
there is no r0 such that for r ≥ r0, every r-dominated n-linear form is r0-
dominated. In the third section we focus on the ideal of extendible multilinear
forms. We study the existence of extendible multilinear forms which are not
nuclear (these last being trivially extendible). While every extendible bilinear
form on a space with cotype 2 is integral [7, 9], we show that this is not the
case for n-linear forms with n ≥ 3. We also improve some results in [7] for
homogeneous polynomials.

Given X, Y Banach spaces, we denote by L(X, Y ) the space of con-
tinuous linear mappings T : X → Y . If X1, . . . , Xn and Y are Banach
spaces, L(X1, . . . , Xn; Y ) denotes the space of continuous n-linear mappings
T : X1 × · · · × Xn → Y . Whenever X1 = · · · = Xn = X and Y = C, the space
of continuous n-linear mappings is simply denoted by L(nX). We are going to
deal with mappings T ∈ L(n�p). We denote by x1, . . . , xn the elements in �p.
If x is a sequence we write x = (x(k))∞k=1, with x(k) ∈ C.

Let us recall that a mapping T ∈ L(nX) is nuclear if there are sequences
(x∗

1,k)k, . . . , (x∗
n,k)k in X∗ with ‖x∗

i,k‖ ≤ 1 for all k and i = 1, . . . , n and there
is (λ(k))k ∈ �1 so that for every x1, . . . , xn ∈ X

T (x1, . . . , xn) =
∑

k

λ(k) · x∗
1,k(x1) · · ·x∗

n,k(xn).

We denote by N (nX) the space of nuclear n-linear forms on X.

A mapping T ∈ L(nX) is called integral if there exists a positive Borel-
Radon measure µ on BX∗ × · · · × BX∗ (with the weak∗-topologies) such that

T (x1, . . . , xn) =
∫

BX∗×···×BX∗

x∗
1(x1) · · ·x∗

n(xn) dµ(x∗
1, . . . , x

∗
n)
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for all x1, . . . , xn ∈ X (see [10, 4.5] and [1]). The space of integral n-linear
forms on X is denoted by I(nX).

A sequence (xn)n in a Banach space X is strongly p-summable if (‖xn‖)n

∈ �p. The space of strongly p-summable sequences is a Banach space with the
norm

‖(xn)n‖p =

(∑
n

‖xn‖p

)1/p

.

A sequence in a Banach space is weakly p-summable if (x∗(xn))n ∈ �p for all
x∗ ∈ X∗. The space of weakly p-summable sequences endowed with the norm

wp((xn)n) = sup
x∗∈BX∗

(∑
n

|x∗(xn)|p
)1/p

is a Banach space. These concepts can also be considered for finite sequences
(x1, . . . , xn) by means of the natural identification with (x1, . . . , xn, 0, 0, . . . ).

An operator T ∈ L(X, Y ) is absolutely r-summing if there exists C > 0
such that for any finite choice of elements x1, . . . , xn ∈ X we have

‖(T (xi))n
i=1‖r ≤ C · wr((xi)n

i=1).

We denote by Πr(X, Y ) the space of absolutely r-summing operators between
X and Y .

A map T ∈ L(X1, . . . , Xn; Y ) is said to be absolutely (s; r1, . . . , rn)-
summing (where 1

s ≤ 1
r1

+ · · ·+ 1
rn

) [2, 16] if there exists C > 0 such that for
any finite choice of elements xi

j ∈ Xj , j = 1, . . . , n, i = 1, . . . , m we have

(
m∑

i=1

‖(T (xi
1, . . . , x

i
n)‖s

)1/s

≤ C · wr1(x
i
1) · · ·wrn

(xi
n).

A map T ∈ L((X1, . . . , Xn; Y ) is said to be r-dominated [21, 17] if it is
absolutely (r/n; r, . . . , r)-summing; that is, there exists C > 0 such that for
every xi

j ∈ Xj , j = 1, . . . , n, i = 1, . . . , m,

(
m∑

i=1

‖T (xi
1, . . . , x

i
n)‖r/n

)n/r

≤ C · wr(xi
1) · · ·wr(xi

n).

We denote by Dr(nX) the space of r-dominated n-linear forms on X.
Although all the results in the article are proved for complex Banach

spaces, standard modifications can be made to obtain the real version of most
of them.
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§1. Limit Orders for Multilinear Forms

If T ∈ L(n�p), we call it diagonal if there exists a sequence α = (α(k))k

such that for all x1, . . . , xn ∈ �p we can write

T (x1, . . . , xn) =
∑

k

α(k)x1(k) · · ·xn(k).

We denote by Tα the diagonal multilinear mapping given by the sequence α.
On the other hand, the diagonal linear operator from �p to �q associated to a
sequence σ is defined by Dσ(x) = (σ(k)x(k))k.

Given a diagonal multilinear form Tα ∈ L(n�p), we consider a sequence
σ such that σ(k)n = α(k) for all k. We take the diagonal operator Dσ :
�p → �n associated to σ and define a mapping Φ : �n × · · · × �n → C by
Φ(x1, . . . , xn) =

∑
k x1(k) · · ·xn(k). The fact that T is well defined on �p

guarantees that Dσ(�p) ⊂ �n. Now, the diagonal n-linear mapping T can be
rewritten as

Tα(x1, . . . , xn) = Φ(Dσ(x1), . . . , Dσ(xn)).(1.1)

We use this decomposition several times.

Given N ∈ N, we define the n-linear form ΦN on CN by:

ΦN (x1, . . . , xn) =
N∑

k=1

x1(k) · · ·xn(k).

We recall the notion of limit order for operators ideals (see [19, Section
14.4]). Given an operator ideal A, the limit order λ(A; p, q) is the infimum over
all λ ≥ 0 such that every diagonal operator Dσ : �p → �q with σ ∈ �1/λ belongs
to A(�p, �q).

Ideals of multilinear forms were introduced in [20]. Now, we define the
concept of limit order for ideals of multilinear forms:

Definition 1.1. Let A be an ideal of multilinear forms. For 1 ≤ p ≤ ∞,
the limit order λn(A; p) is given by:

λn(A; p) = inf{λ : for each α ∈ �1/λ, Tα belongs to A(n�p)}

With almost the same proof as in [19, Section 14.4], we obtain alternative
expressions for λn(A; p). First, we have:

λn(A; p) = inf{λ : if α = (k−λ)k, then Tα belongs to A(n�p)}.
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Also, if A is quasi-normed and complete, then λn(A; p) is the infimum of
all λ ≥ 0 such that

‖ΦN‖A(n�N
p ) ≤ CNλ(1.2)

for all N ≥ 1, where C > 0 is a constant.

If L is the ideal of continuous multilinear forms, it is easy to check that

λn(L; p) =




0 if p ≤ n

1 − n
p if p > n

Note that in this case the limit order is attained (i.e., the infimum in
definition 1.1 is actually a minimum).

We compute now the limit orders for the ideals of nuclear and integral mul-
tilinear forms. Since nuclear and integral norms coincide in finite-dimensional
spaces, the equivalence in inequality (1.2) implies that both limit orders are
the same.

Next Lemma generalizes [7, Lemma 2.1] to n-linear forms. Since it is
proved in the same way, apart from some slight technical modifications, we
state it here without proof.

Lemma 1.1. Let T ∈ L(n�p) be nuclear.
(i) If 1 < p < n′, then (T (ek, . . . , ek))k ∈ �p′/n.
(ii) If n′ ≤ p < ∞, then (T (ek, . . . , ek))k ∈ �1.

Next Proposition is again a generalization of [7, Proposition 2.2] to any
degree. It was stated by Pietsch in [20] without proof. We present here a
different proof.

Proposition 1.1. Let Tα ∈ L(n�p) be diagonal.
(i) For 1 < p < n′, Tα is nuclear if and only if α ∈ �p′/n.
(ii) For n′ ≤ p ≤ ∞, Tα is nuclear if and only if α ∈ �1.

Proof. Since T (ek, . . . , ek) = α(k) for every k, necessity is already proved
by Lemma 1.1 for both cases. We only need to prove sufficiency in case (i). Let
us consider a decomposition of Tα as that in (1.1), but with Φ : �1×· · ·×�1 → C

and Dσ : �p → �1.
By [3, Example 7] (see also [12, Example 2.25]) Φ is integral and ‖Φ‖I = 1.

The diagonal operator Dσ is well defined; indeed, if 1 < p < n′, we have
(α(k))k ∈ �p′/n. Hence (σ(k))k ∈ �p′ and (σ(k)x(k))k ∈ �1.
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Using this decomposition we have Tα ∈ I(n�p). By [1](see also [12, Propo-
sition 2.27]), I(n�p) = N (n�p) and so Tα is nuclear.

Proceeding as in the previous proof, we obtain Tα = Φ ◦ (Dσ, . . . , Dσ) is
integral on �1 whenever σ (or equivalently α) is bounded. Moreover, with the
same proof as [7, Proposition 2.3] we can see that T is nuclear on �1 if and only
if α ∈ c0. Therefore, we have:

Proposition 1.2. Let Tα ∈ L(n�1) be diagonal. Then:
(i) Tα is integral;
(ii) Tα is nuclear if and only if α ∈ c0.

As a consequence, we obtain the limit orders:

λn(N ; p) = λn(I; p) =




n
p′ if 1 ≤ p < n′

1 if n′ ≤ p

Again, in this case the limit order is attained (if we consider, for p = 1,
�p′/n = c0 for nuclear mappings and �p′/n = �∞ for integral mappings).

§2. Diagonal r-dominated Mappings

In this section we compute limit orders for the ideal of r-dominated mul-
tilinear forms. This allows us to compare r-domination for different values of
r and to relate this with other ideals of multilinear forms.

Proposition 2.1. Let Tα ∈ L(n�p) be diagonal and Dσ its associated
diagonal operator. Then Tα is r-dominated if and only if Dσ is absolutely
r-summing.

Proof. Let us begin by assuming that Tα is r-dominated and choose xi
1 =

· · · = xi
n−1 = xi and xi

n(k) = sg(σ(k)xi(k))xi(k). Since Tα is r-dominated

wr((xi)i)nC ≥
(

N∑
i=1

|Tα(xi, . . . , xi, xi
n)|r/n

)n/r

=


 N∑

i=1

∣∣∣∣∣
∑

k

σ(k)nxi(k)nsg(σ(k)xi(k))

∣∣∣∣∣
r/n




n/r
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=


 N∑

i=1

(∑
k

|σ(k)xi(k)|n
)r/n




n/r

=

(
N∑

i=1

‖Dσ(xi)‖r
�n

)n/r

.

This gives (
N∑

i=1

‖Dσ(xi)‖r
�n

)1/r

≤ K · wr((xi)i)

and Dσ is absolutely r-summing.
The converse is an immediate consequence of [21, Proposition 3.6].

This proposition allows us to relate limit orders of r-dominated multilinear
forms with those of absolutely r-summing operators:

Corollary 2.1. For 1 ≤ p ≤ ∞ and n ≥ 2, we have:

λn(Dr, p) = n λ(Πr, p, n)

A full classification of limit orders for r-summing operators can be found
in [19, Section 22.4]. Using this classification and the previous corollary we
obtain:

λn(Dr; p) =




n
p′ if 1 ≤ r ≤ p′ (A)

n
r if 1 ≤ p′ ≤ r ≤ n (B)

1 if p′ ≤ 2 and n ≤ r (C)

nε if 2 < p′ ≤ r and n ≤ r (D)

(2.1)

where

ε =
1
r

+

(
1
r′ − 1

p

) (
1
n − 1

r

)
1
2 − 1

r

Now we see that this limit order is attained. In other words, every di-
agonal n-linear mapping Tα, with α ∈ �1/λn(Dr ;p), is r-dominated on �p. By
Proposition 2.1, we only need to deal with limit orders of r-summing operators.
This is done in the following two propositions.
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Proposition 2.2. If 1 ≤ r ≤ p′ and q ≥ 2, then for any σ ∈ �1/λ(Πr ;p;q),

the diagonal operator Dσ : �p → �q is r-summing (i.e., the limit order is at-
tained).

Proof. In this case λ(Πr; p; q) = 1/p′. The fact that, for σ ∈ �p′ , the
operator Dσ actually takes its values in �1 allows us to factor Dσ as:

�p → �1 ↪→ �2 ↪→ �q

Since i : �1 ↪→ �2 is 1-summing it follows that Dσ is 1-summing and therefore
r-summing.

In the next proposition we follow some ideas of [11].

Proposition 2.3. If either r ≤ 2 ≤ p′ or p′ ≤ r, then for any σ ∈
�1/λ(Πr ;p;q), the diagonal operator Dσ : �p → �q is r-summing (i.e., the limit
order is attained).

Proof. We set λ0 = λ(Πr; p; q). Let Diag be the set of all diagonal op-
erators DN

σ : CN → CN , for any N ≥ 1. We define the following functions on
Diag:

A(DN
σ ) := ‖DN

σ ‖Πr(�p;�q) , B(DN
σ ) := ‖σ‖�1/λ0

.

Let us check that the functions A and B verify the conditions in [10, Lemma
34.12.1].

By the definition of limit order, for every σ ∈ �1/(λ0+ε), we have Dσ ∈
Πr(�p; �q). Since the application σ 	→ Dσ has closed graph, it is continuous. In
particular, there exists cε such that

‖DN
σ ‖Πr(�p;�q) ≤ ‖σ‖�1/(λ0+ε) ≤ cεN

ε‖σ‖�1/λ0
.

Therefore, A(DN
σ ) ≤ cεN

εB(DN
σ ), which is the first condition in [10, Lemma

34.12.1].
The tensor product of two diagonal operators is also diagonal and the

second condition is fulfilled. For the third condition, we actually have that
B(DN

σ ⊗ DN
σ ) = B(DN

σ )2, so it is also verified.
As a consequence of [8, Corollary 1.4.5], since r ≤ 2 ≤ p′ or p′ ≤ r, there

exists a constant a > 0 such that A(DN
σ )2 ≤ aA(DN

σ ⊗ DN
σ ); hence the fourth

condition is verified.
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Therefore, by [10, Lemma 34.12.1], we have A(DN
σ ) ≤ aB(DN

σ ) for all N

and σ. By continuity, we have:

‖Dσ‖Πr(�p;�q) ≤ a‖σ‖�1/λ0

which completes the proof.

Note that to study r-dominated n-linear forms we consider q = n ≥ 2. So
we have:

Corollary 2.2. The limit order λn(Dr; p) is attained.

Let us focus now on a reciprocal property of limit orders. Our aim is to
determine if an r-dominated operator Tα is necessarily given by α ∈ �1/λn(Dr ;p).
Again, we first study the situation for linear operators:

Proposition 2.4. Suppose one of the following conditions holds:
(i) 1 ≤ r ≤ p′,
(ii) 1 ≤ p′ ≤ r ≤ n,
(iii) p′ ≤ 2 and n ≤ r.
If Dσ : �p → �n is absolutely r-summing, then σ ∈ �1/λ(Πr ;p;n).

Proof. First, we show that if Dσ is absolutely r-summing, then σ belongs
to �max(r,p′). The canonical basis (ek)k on �p is weakly p′-summing. If p′ ≤ r,
(ek)k is also weakly r-summing. Since Dσ is absolutely r-summing, (Dσ(ek))k

is r-summing and σ ∈ �r. On the other hand, if r < p′, Dσ is p′-summing and
therefore we obtain σ ∈ �p′ .

Now, if either condition (i) or (ii) holds, the limit order λ(Πr; p; n) coincide
with 1/ max(r, p′), and the conclusion follows for both cases.

The result for condition (iii) follows from [17, Theorem 4] and Proposi-
tion 2.1.

Proposition 2.1 together with Proposition 2.4 give:

Proposition 2.5. For each of the cases (A), (B) and (C) of equa-
tion (2.1), if Tα is r-dominated, then α ∈ �1/λn(Dr ;p).

Corollary 2.3. If either (A) or (B) or (C) of equation (2.1) holds:
(i) σ ∈ �1/λ(Πr,p,n) if and only if Dσ : �p → �n is absolutely r-summing.
(ii) α ∈ �1/λn(Dr,p) if and only if Tα ∈ L(n�p) is r-dominated.
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As an application of the limit orders computed above, we show a structural
difference between r-dominated bilinear and n-linear forms for n ≥ 3. First,
we have:

Remark. If X is a Banach space and r ≥ 2, then r-dominated and 2-
dominated bilinear forms on X coincide.

Proof. A bilinear form is r-dominated (r ≥ 2) if and only if it is αr′,r′-
continuous [10, Theorem 19.2]. Since r′ ≤ 2, by [10, Proposition 12.8], the
αr′,r′ tensor norm is equivalent to the w2 tensor norm. Again by [10, Theorem
19.2], a bilinear form is w2-continuous if and only if it is 2-dominated.

A natural question now is if there is an analogous result for n-linear map-
pings: is there any r0 such that for r ≥ r0, every r-dominated n-linear form
is r0-dominated? Or at least, does there exist an interval of r such that all
r-dominated n-linear mappings coincide? Both questions can be answered in
the negative. Moreover, the answer is negative even if we restrict ourselves to
diagonal n-linear mappings:

Proposition 2.6. Let n ≥ 3. Given r ≥ 1, there exists p such that, for
any s > r, there are diagonal s-dominated n-linear forms on �p which are not
r-dominated.

Proof. First, we consider r < n and take p such that p′ < r. It is enough
to prove the statement for r < s < n. In this case, λn(Dr; p) = n

r > n
s =

λn(Ds; p), which means that there are s-dominated n-linear forms on �p which
are not r-dominated.

If r ≥ n, let us choose p such that 2 < p′ ≤ r. For s ≥ r, we have

λn(Ds; p) = n

(
1
s + ( 1

s′ −
1
p )( 1

n− 1
s )

1
2−

1
s

)
. Differentiating and taking into account

that 1 ≤ p < 2 and n ≥ 3, we obtain ∂λn(Ds;p)
∂s = (p−2)(n−2)

p(s−2)2 < 0. Therefore,
λn(Ds; p) is strictly decreasing on s for s ≥ r and this completes the proof .

Although the classes of r and s-dominated diagonal multilinear forms are
different for r �= s, in some particular cases many of them coincide. We present
some examples in the following corollary. Stronger results can be found on [17,
Theorems 16 and 17].

Corollary 2.4. Let Tα ∈ L(n�p) be diagonal. Then,
(i) If p ≥ 2 and r ≥ n, Tα is r-dominated if and only if it is n-dominated.
(ii) If 1 ≤ r ≤ p′, Tα is r-dominated if and only if it is 1-dominated.
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Proof. It follows from Corollary 2.3 and the fact that in both cases the
limit order does not depend on r.

Let us now relate the concepts of domination, nuclearity and integrality
for multilinear mappings. Meléndez and Tonge [17, Theorem 2] showed that
every diagonal n-linear form on �1 is 1-dominated. Proposition 1.2 states that
they are also integral. On the other hand, since integral multilinear forms are
ε-continuous, it is easy to see that they are necessarily n-dominated. Therefore,
we can combine Proposition 2.5 and Proposition 1.1 to obtain:

Corollary 2.5. Let Tα ∈ L(n�p) be diagonal. Then,
(i) For p = 1, Tα is 1-dominated and integral.
(ii) For p > 1, Tα is n-dominated if and only if Tα is nuclear.

§3. Extendible n-linear Mappings

A mapping T ∈ L(X1, . . . , Xn; Y ) is called extendible (see e.g. [6, 7,
15]) if for all Banach spaces Z1, . . . , Zn such that each Xj is contained in Zj ,
there exists T̃ ∈ L(Z1, . . . , Zn; Y ) that extends T . The extendible norm of an
extendible multilinear form is defined as

‖T‖e = inf{c > 0 : for all Zi ⊇ Xi there is an extension of T

to Z1 × · · · × Zn with norm ≤ c}.

First examples of extendible multilinear mappings are nuclear mappings.
If X is a Banach space and T ∈ L(nX) is extendible, then it can be clearly

extended to some C(K) space. An application of Grothendieck’s multilinear
inequality gives that if T is extendible then T is absolutely (1; 2, . . . , 2)-summing
(see [5] and also [18, Corollary 2.5] for a formulation more akin to our approach).
Using this fact we can give a following generalization of [7, Proposition 2.4] to
any degree n ≥ 2.

Proposition 3.1. Let Tα ∈ L(n�p) diagonal with 2 ≤ p ≤ ∞. Then Tα

is extendible if and only if Tα is nuclear.

Proof. If Tα is extendible, then it is absolutely (1; 2, . . . , 2)-summing and,
for any xi

1, . . . , x
i
n ∈ �p with i = 1, . . . , N ,

N∑
i=1

|Tα(xi
1, . . . , x

i
n)| ≤ C · w2((xi

1)i) · · ·w2((xi
n)i).



�

�

�

�

�

�

�

�

518 D. Carando, V. Dimant and P. Sevilla-Peris

We choose now xi
1 = · · · = xi

n = ei. Since 2 ≤ p, the sequence (ei)i is weakly
2-summable in �p; therefore

N∑
i=1

|α(i)| ≤ C · w2((ei)i)n ≤ K

for every N . Hence (α(k))k ∈ �1 and, by Proposition 1.1, Tα is nuclear.

One may still ask if there are extendible multilinear forms on �p (with
2 ≤ p ≤ ∞) which are not nuclear. By Proposition 3.1, one must look for them
outside the class of diagonal multilinear forms. We devote some lines to answer
this question. Since we also answer some questions posed in [7] for homogeneous
polynomials, we state our results both in multilinear and polynomial settings.

In [7, Example 1.3] examples of extendible non nuclear 2-homogeneous
polynomials on �p are presented for p > 4. A refinement of the proof shows
that the same construction works for p > 2 (answering a question posed in that
article). Indeed, we define

tN =
1√
N

N∑
j,k=1

e−2πi jk
N ej ⊗ ek ∈ �N

p ⊗ �N
p

and AN ∈ L(2�N
p ) by

AN (x, y) =
1√
N

N∑
j,k=1

e2πi jk
N x(j)y(k).(3.1)

From [10, Exercise 4.3] we get ‖tN‖ε ≤ N1/p−1/2 and then

N = |AN (tN )| ≤ ‖AN‖N ‖tN‖ε ≤ ‖AN‖N N1/p−1/2.

Therefore, ‖AN‖N ≥ N3/2−1/p and the result follows just as in [7, Example
1.3].

Note that the symmetric bilinear form associated to this example is also
extendible and not nuclear. In order to conclude that there are extendible n-
linear forms (and n-homogeneous polynomials) which are not nuclear for any
degree n ≥ 2 we need the following:

Lemma 3.1. (i) Let T ∈ L(nX) be an n-linear form and x∗ ∈ X∗.
Then T is nuclear if and only if x∗T ∈ L(n+1X) is nuclear.
(ii) Let P : X → C be an n-homogeneous polynomial and x∗ ∈ X∗. Then P is
nuclear if and only if x∗P is nuclear.
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Proof. We only show (ii) since (i) is much simpler. If P is nuclear, the
polynomial x∗P is clearly nuclear. Now we assume that x∗P is nuclear and fix
x0 ∈ X with x∗(x0) = 1. We consider a mapping ξ : P(n+1X) → P(n+1X)
defined in [4] by

ξ(Q)(x) = Q(x) − Q(x − x∗(x)x0)

for x ∈ X. Then

ξ(x∗P )(x) = (x∗P )(x) − (x∗P )(x − x∗(x)x0)

= x∗(x)P (x)− (x∗(x) − x∗(x)x∗(x0))P (x − x∗(x)x0) = (x∗P )(x)

and ξ(x∗P ) = x∗P . Now, since x∗P is a nuclear (n + 1)-homogeneous poly-
nomial, a representation x∗(x)P (x) =

∑
k x∗

k(x)n+1 can be found satisfying∑
k ‖x∗

k‖n+1 < ∞. Applying ξ to this representation we get

x∗(x)P (x) =
∞∑

k=1

ξ((x∗
k)n+1)(x) =

∞∑
k=1

(
x∗

k(x)n+1 − (x∗
k(x) − x∗(x)x∗

k(x0))n+1
)

=
∞∑

k=1

x∗
k(x)n+1 −

n+1∑
j=0

∞∑
k=1

(
n + 1

j

)
x∗

k(x)j(−1)n+1−jx∗(x)n+1−jx∗
k(x0)n+1−j

= −
∞∑

k=1

n∑
j=0

(
n + 1

j

)
x∗

k(x)j(−1)n+1−jx∗(x)n+1−jx∗
k(x0)n+1−j

= x∗(x)
(
−

∞∑
k=1

n∑
j=1

(
n + 1

j

)
x∗

k(x)j(−1)n+1−jx∗(x)n−jx∗
k(x0)n+1−j

)
.

The last expression gives a representation of P that satisfies
∞∑

k=1

n∑
j=1

(
n + 1

j

)
‖x∗

k‖j‖x∗‖n−j |x∗
k(x0)|n+1−j

≤
( ∞∑

k=1

‖x∗
k‖n+1

)
 n∑

j=1

(
n + 1

j

)
‖x∗‖n−j‖x0‖n+1−j


 < ∞.

And P is nuclear.

Lemma 3.1, [7, Proposition 2.7] and the example above allow us to state
the following:

Proposition 3.2. Let p > 2.
(i) For all n ≥ 2, there are extendible non nuclear n-linear mappings on �p.
(ii) For all n ≥ 2, there are extendible non nuclear n-homogeneous polynomials
on �p.



�

�

�

�

�

�

�

�

520 D. Carando, V. Dimant and P. Sevilla-Peris

Now we turn back our attention to diagonal multilinear forms and limit or-
ders. Let E denote the ideal of extendible multilinear forms. From [7, Corollary
1.4, Proposition 2.4], we have

λ2(E , p) = λ2(N , p) for 1 ≤ p ≤ ∞.

Moreover, Proposition 3.1 implies

λn(E , p) = λn(N , p) for 2 ≤ p ≤ ∞.

Now we show that this equality does not hold for every p if n ≥ 3. More
precisely, if (2(n− 1))′ < p < 2, we have that λn(E , p) < λn(N , p). This shows
that, unlike the bilinear case, for n ≥ 3 there are diagonal extendible n-linear
forms which are not nuclear in some �p.

Lemma 3.2. λn(E , p) ≤ 1
2 + 1

p′ for all p.

Proof. We begin by considering, for each N ∈ N, ξN : �N
p → �N

∞ defined
by

ξN (x) =

(
N∑

s=1

e−2πi sk
N x(s)

)N

k=1

.

Using Hölder’s inequality we get

‖ξN (x)‖�N
∞

= sup
1≤k≤N

∣∣∣∣∣
N∑

s=1

e−2πi sk
N x(s)

∣∣∣∣∣
≤ sup

1≤k≤N

(
N∑

s=1

∣∣∣e−2πi sk
N

∣∣∣p′
)1/p′

‖x‖�N
p

= N1/p′
‖x‖�N

p
.

Hence ‖ξN‖ ≤ N1/p′
.

We consider the bilinear mapping AN given by equation (3.1), but acting
on �N

∞ × �N
∞. This mapping satisfies ‖AN‖ ≤ N [10, Exercise 4.3]. Inspired by

this we define now SN ∈ L(n�N
∞) by

SN (x1, . . . , xn) =
N∑

j,k=1

e2πi jk
N x1(j)x2(k) · · ·xn(k)

which satisfies ‖SN‖ =
√

N‖AN‖ ≤ N
√

N .
Now, the n-linear form ΦN : �N

p ×· · ·×�N
p → C given by ΦN (x1, . . . , xn) =∑N

k=1 x1(k) · · ·xn(k) can be written as

ΦN (x1, . . . , xn) =
1
N

SN (ξN (x1), x2, . . . , xn).
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Therefore, by the metric extension property of �N
∞, the extendible norm of ΦN

satisfies

‖ΦN‖E(n�N
p ) ≤

1
N

‖SN‖E(n�N
∞)‖ξN‖ =

1
N

‖SN‖ ‖ξN‖ ≤ N1/2+1/p′
.

By the equivalence given in equation (1.2), we obtain the desired inequality.

Corollary 3.1. If (2(n−1))′ < p < 2, then λn(E , p) < λn(N , p). Thus,
for (2(n − 1))′ < p < 2 there are extendible diagonal multilinear forms on �p

which are not nuclear.

Proof. For n′ ≤ p < 2, 1/2 + 1/p′ < 1 = λn(N , p) and for (2(n − 1))′ <

p < n′, 1/2 + 1/p′ < n
p′ = λn(N , p).

Remark. If X is a Banach space with cotype 2, every extendible bilinear
form (and 2-homogeneous polynomial) on X is integral [7, 9]. For (2(n−1))′ <

p < 2, nuclear and integral multilinear forms coincide on �p (and also nuclear
and integral polynomials). Therefore, Corollary 3.1 shows that the result for
cotype 2 spaces cannot be extended to degrees greater than 2.
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