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Low Rank Cohomology of the Classifying
Spaces of Gauge Groups over 3-manifolds
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Shizuo KaAJr*

Abstract

The purpose of this paper is to calculate the cohomology of the function space
Map(M, BG) for degree less than or equal to 3, where G is a simply connected compact
Lie group and M is a closed orientable 3-manifold. The calculation enables us to
obtain a simple proof and an improvement of the result [4, Theorem 1.2].

81. Introduction

Let GG be a simply connected compact Lie group and M a closed orientable
3-manifold. Since BG is 3-connected, any principal G-bundles over M are
trivial. Then we call the gauge group of the trivial G-bundle over M the gauge
group over M and denote it by G. It is well-known that

BG ~ Map(M, BG)

([2]). The cohomology of BG in low dimensions is considered in [4] by making
use of the Eilenberg-Moore spectral sequence.

Theorem 1.1 [4, Theorem 1.2].  Suppose that Torz(Z/2,R) = 0. Let
G be a simply-connected compact Lie group such that the integral cohomology
of BG is torsion free and let M be a closed orientable 3-manifold. We denote
H(Map(M, BG); R) by H. Then there exists a short ezact sequence

0— H(M;R* &R* o H' @ H> % H? — (R/2R)*" — 0,
where a|gigp> is the cup product, r = rankH*(BG) and s = rankH®(BG).

Moreover H' is a free R-module for any R, and H? is also free if R is a PID.
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The purpose of this paper is to refine Theorem 1.1 and to give a simple
proof. We determine the integral cohomology of H*(Map(M, BG))(i < 3)
without the assumption that H*(BG) is torsion free. It is known that G is the
direct product of simply connected compact simple Lie groups ([6]). Then we
reduce Theorem 1.1 to the case that G is a simply connected compact simple
Lie group and obtain

Theorem 1.2.  Let G be a simply connected compact simple Lie group
and M a closed orientable 3-manifold. We denote H'(Map(M, BG)) by H".
Then we have

z i=0
i ) HNOPG) i=1
| =y () i=2

HY(02G) @ Hy(M) @ Hy(M) & H¥(Q2G) i =3.

Moreover, the cup product H* @ H> — H3 maps H' @ H? isomorphically onto
the direct summand H'(Q2G) @ Ho(M) C H®.

Remark. Let G be a simply connected compact simple Lie group. We
here describe the integral cohomology H*(Q%G) for * < 3.

Table 1. H*(Q2G)

type of G
HY{(Q*G) | A4/(1>2) C(I1>1) otherwise
1=1 Z Z Z
1=2 0 0 0
i =3 Z zZ/2 0

g

Remark.  Since the inclusion of the 1-skeleton \/9715’1 —RP%# ... #RP>
induces an isomorphism on mod p cohomology for each odd prime p, Theorem
1.1 in [4] is easily shown without the assumption that H*(G) is p-torsion free
by [5, Proposition 4.2] and [3, Ch. VI, Proposition 7.1].
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§2. Approximation of G by Infinite Loop Spaces

Let G be a simply connected compact Lie group. In this section we ap-
proximate G by an infinite loop space in low dimensions.

It is known that G is the direct product of simply connected compact
simple Lie groups. Since simply connected compact simple Lie groups are
classified by their Lie algebras as A;, B;,C;, D;(I > 1), E;(1 = 6,7,8), F4, Go, we
give an approximation to each type.

Proposition 2.1. Let G be a simply connected compact simple Lie
group. Then there exist an infinite loop space B and a 7-equivalence t : BG —
B.

Proof. First we note that there are the following correspondence in low
ranks ([6]):

Ay =By =C1, By =0y, Dy =A; x Ay, D3 = As.

Therefore we have only to consider the types A;(I > 2),B;(I > 3),Ci(l >
1),D;(1 > 4), E;(I =6,7,8), Fy and Ga. In the case where G is of type 4;(1 > 2),
there exists a 7-equivalence BG — BSU induced by the inclusion G — SU.
Similarly in the case where G is of type C;(I > 1), there exists a 7T-equivalence
BG — BSp. For G otherwise, we have m;(G) =0 (i = 1,2,4,5) ([6]). Then

a representative of a generator of H*(BG;Z) = 7Z is a T-equivalence BG —
K(Z,4). O

Corollary 2.1. Let M be a 3-dimenstonal complex. Then we have
H(Map(M,B)) = H(Map(M, BG)) (i < 3) , where B is as in Proposition 2.1.

Proof. Let Map,(X,Y) denote the space of basepoint preserving maps
from X to Y, where X,Y are based spaces.
We consider the following commutative diagram

me(Map, (M, BG)) M08, 0 (\ap, (M, B))

g N

s

[S* A M, BG] e [S* A M, B.

Since the second row is an isomorphism for £ < 3 and a surjection for k = 4
by J.H.C. Whitehead theorem, we see that Map,(Id,t) : Map, (M, BG) —
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Map, (M, B) is a 4-equivalence. Consider the following commutative diagram
of evaluation fibrations

Map, (M, BG) —— Map(M, BG) —— BG
Map*(Id,t)l Map(ld,t)l tl
Map*(M,B) - Map(M7B) — B

Since Map, (Id,t) is a 4-equivalence and ¢ is a T-equivalence, it follows that
Map(Id,t) : Map(M, BG) — Map(M, B) is a 4-equivalence. O

83. Proof of Theorem 1.2

Let G be a simply connected compact simple Lie group. By Proposition
2.1 there exists an infinite loop space B and a 7-equivalence ¢t : BG — B. Since
B is a homotopy group, we have a homotopy equivalence

Map(M,B) ~ Map,(M,B) x B

(- £ F(),
where * denotes the basepoint of M. Since the infinite loop space B is 3-
connected, the inclusion map Map, (M, B) — Map(M, B) induces the isomor-

phism on homology for degree less than or equal to 3. Then we compute
H*(Map, (M, B)) to determine H*(Map(M, B)).

Proposition 3.1.  We have
H*(Map,(M,B)) = ) H'(Map,(M* B)) @ H (2°B)
itj=k

for k < 3, where M? is the 2-skeleton of M.

Proof. Since a closed orientable 3-manifold is parallelizable, the top cell
of M is split off stably ([1]). Actually by Freudenthal suspension theorem the
top cell of M is split off after double suspension. Then we have

Map, (M, B) ~ Map, (M, Q*B?B))
~ Map, (¥?M, B*B)
~ Map, (X2M? v S5 B?B)
(M?v S3,B)
~ Map, (M?,B) x Q°B.

~ Map,
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Since H*(2®B) (k < 3) is either 0 or Z, the proof is completed by Kiinneth
Theorem. O

To compute H*(Map,(M?,B)) (i < 3) we need the following technical
lemma. Let X,Y,Z be based spaces and f : X — Y be a based map. We
denote by f# the induced map Map, (f, Id) : Map, (Y, Z) — Map, (X, Z).

Lemma 3.1.  Let X be a based space such that there is a (p+q + 1)-
equivalence g : X — K(Z,p+ q) and let f : \/l SP — \/™ SP be a based map.
Suppose (f#)* : HI(II'QPX) — HI(TI™OPX) is represented by a matriz A for
a certain basis. Then fy : Hp(\/l SP) — H,(\/™ SP) is also represented by A
for a suitable basis.

Proof. Since g, : [SPT, X] — [SPT4, K(Z,p + q)] is an isomorphism, we
have the following commutative diagram

Hy(ITMQPX ) —— 7y (I QP X ) =——=[\/™ SP+9, X] ——— HP+a(\)™ 5p+a)
hur

(f#)*l (f#)*l l (qu%

H (I X) —— 7,(IIOPX) ——— [\ sP+e, X] —=— Hrta(\/! gpta),
hur

where hur is the Hurewicz homomorphism. Since QP X — K(Z,q) is a (¢ + 1)-

equivalence, the proof is completed by taking the dual. O
0 i=1
Proposition 3.2.  H'(Map,(M? B)) =< Hy(M) i=
H1 (M) 1=

%

Proof. We have the following cofibration sequence \/' S RN Vst =
M? — \/l 52, where f is the attaching map of 2-cells of M and i is the inclusion.
Then we have the fibration

12 2 i* m
'02B — Map, (M2, B) -2 I™OB.

We consider the Leray-Serre spectral sequence (E,,d,) of the fibration above.
Since EY? = HP(II™OB) @ HY(II'Q?B), B is 3-connected and H*(B) = Z,
the non-trivial differential d, : EP? — EPT™I="t1 (p 4+ ¢ < 4) occurs only
when r = 3 and (p,q) = (0,2). Then we obtain H'(Map, (M? B)) = 0. Next
we determine ds : ES? — E3° to compute H'(Map, (M2, B)) (i = 2,3). We
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consider the commutative diagram
Vst _ VAR o V' s2
/| ! | &l
VISt s VTS s VT D —— S,

where j is the inclusion. Applying Map,( ,B) to above, we have the following
commutative diagram

#
ImOB «— Map,(M2,B) «—— II'Q’B

1 e
mmOB 2 [mPQOB) «——— IMmOB,

where the second row is the product of the path space fibrations of QB.
Comparing the Leray-Serre spectral sequence of fibrations above, we obtain
ds = 7(Sf)#* + B9? — E2° where 7 : H2(II™O2B) — H3(II™QB) is the
transgression.

Let A be a matrix which represents ((Xf)#)*: H?(II'Q?B) — H?(II™Q?B).
By Lemma 3.1, (Xf). : Hy(\/' $2) — Hy(\/™ S2) is represented by A and so is
fu: Hi(V'SY) — Hy (V™ SY). Then we have the exact sequence

l m
0 — Hy(M?) — Hy (\/ Sl> A H <\/ 51> — Hy(M?) — 0.
Since H;(M?) = H;(M) (i < 2), we have

H?(Map, (M?,B)) =Ker{ds : By — E3"} 2= KerA = Hy(M),
H®(Map, (M?,B)) =Coker{ds : Ey* — E3°} = CokerA = H,(M).

O

Proof of Theorem 1.2. By Corollary 2.1, Proposition 3.1 and Proposition
3.2, Theorem 1.2 is proved. O
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