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Infinite Dimensionality of the Middle
L2−cohomology on Non-compact Kähler

Hyperbolic Manifolds
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Abstract

We prove that the space of L2 harmonic forms of middle degree is infinite di-
mensional on any non-compact Kähler hyperbolic manifold.

§1. Introduction

Let (M,ω) be a complete Kähler manifold of dimension n and let Hp,q
2 (M)

denote the space of L2−harmonic (p, q)−forms. In a groundbreaking paper,
Donnelly and Fefferman [8] discovered a new L2−estimate which implies the
vanishing of Hp,q

2 (M) outside of middle degree for those manifolds which have
a complete Kähler metric ω = ∂∂̄ρ with the global potential satisfying
supM |dρ|ω < ∞. Inspired by their work, Ohsawa and Takegoshi [18] proved
the remarkable L2−extension theorem. Ohsawa also found several interesting
applications of the Donnelly-Fefferman estimate, for instance, to the Hodge
theory on singular complex spaces and to the study of the Bergman metric
(cf. [16], [5] etc). The main result in [8] is Hp,q

2 (M) = 0 for p + q �= n and
dimHp,q

2 (M) = ∞ for p+q = n, associated to the Bergman metric on bounded
strongly pesudoconvex domains. A different approach of infinite dimensionality
was proposed by Ohsawa [17].

In a more geometric direction, Gromov [10] introduced a new notion of
hyperbolicity as follows. A Kähler manifold M is called Kähler hyperbolic if

Communicated by M. Kashiwara. Received March 29, 2005. Revised April 25, 2005.
2000 Mathematics Subject Classification(s): 32L10.
Supported by NSFC No. 10271089, NCET-05-0380 and 05QMX1452.

∗Department of Mathematics, Tongji University, Shanghai 200092, P. R. China.
e-mail: chenbo-yong@lycos.com

c© 2006 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



�

�

�

�

�

�

�

�

684 Bo-Yong Chen

there is a complete Kähler metric Ω which is d−bounded, i.e., ω = dη for some
1−form η with ‖η‖L∞ < ∞. Since such a metric cannot exist on compact
Kähler manifolds, Gromov called a compact Kähler manifold (M,ω) Kähler
hyperbolic if the lift of ω to the universal covering of M is d−bounded. Ex-
amples of non-compact Kähler hyperbolic manifolds include all hyperconvex
manifolds (i.e., there is a bounded C∞ strictly plurisubharmonic exhaustion
function) and those D\S where D is a bounded hyperconvex domain and S

is a complex submanifold defined in a neighborhood of D̄. Gromov proved
that the L2−cohomology vanishes outside the middle degree for non-compact
Kähler hyperbolic manifolds and the existence of L2−harmonic forms of middle
degree on the universal covering of every compact Kähler hyperbolic manifold,
associated to the lifting metric.

Using the idea of Gromov, Donnelly [6] gave a more transparent proof
of the results from [8]. He also discovered some new examples of Kähler hy-
perbolic domains with respect to the Bergman metric, for instance, bounded
pseudoconvex domains of finite type in C2 or convex domains of finite type in
Cn (cf. [7]). The L2−cohomology with respect to the Bergman metric is of
independent interest, simply because the latter is a canonical invariant metric.
Recently, the author [4] showed that the Teichmüller space with the Bergman
metric is Kähler hyperbolic (Earlier, McMullen [14] constructed a d−bounded
Kähler metric by using the Weil-Petersson metric and hyperbolic length func-
tions).

Comparing to the rather strong vanishing theorems in [8], [10], the condi-
tions for non-vanishing results seem to be less transparent. In this spirit, we
will show

Theorem 1. Let (M,ω) be a complete n−dimensional Kähler manifold
such that ω is d−bounded. Then we have

dimHp,q
2 (M) = ∞, p+ q = n.

From 0.1.B. in [10], we obtain

Corollary 1. If (M,ω) is a complete simply connected Kähler manifold
with sectional curvature bounded above by a negative constant, then

dimHp,q
2 (M) = ∞, p+ q = n.

Let Tg,n denote the Teichmüller space of a Riemann surface of genus g and
with n punctures. It is a complex manifold of dimension 3g − 3 + n. Since the
Bergman metric on Tg,n is d−bounded (cf. [4]), one has
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Corollary 2. With respect to the Bergman metric,

dimHp,q
2 (Tg,n) = ∞, p+ q = 3g − 3 + n.

Assume M is a holomorphic family of Riemann surfaces of genus g and
n–punctures over the unit polydisc ∆m in Cm. According to the celebrated Bers
simultaneous uniformization, the universal covering M̃ of M is a holomorphic
family of conformal discs over ∆m (in particular, M̃ is a domain in Cm+1),
and there is a holomorphic map f : ∆m → Tg,n, which naturally induces a
holomorphic map f̂ : M̃ → Fg,n, where Fg,n is the Bers fiber space over Tg,n,
which maps fibers to fibers. Set ω̃ = ds2∆m + f̂∗(ds2Fg,n

), where ds2∆m , ds2Fg,n

denote the Bergman metrics on ∆m, Fg,n respectively.

Corollary 3. With respect to ω̃,

dimHp,q
2 (M̃) = ∞, p+ q = m+ 1.

Proof. Since Fg,n is biholomorphic to Tg,n+1 (cf. [2]), by a similar ar-
gument as in [4], we can show that ds2Fg,n

is also d−bounded, which implies
ρ = −e−ε log KFg,n is a negative strictly plurisubharmonic exhaustion function
for sufficiently small ε > 0, where KFg,n

denotes the Bergman kernel of Fg,n.
Since

f̂∗(ds2Fg,n
) = ∂∂̄ log(KFg,n

◦ f̂)

= ∂∂̄

(
−1
ε

log(−ρ ◦ f̂)
)

≥ ε∂

(
−1
ε

log(−ρ ◦ f̂)
)
∂̄

(
−1
ε

log(−ρ ◦ f̂)
)
,

we conclude that ω̃ is a d−bounded complete Kähler metric on M̃ .

The proof of Theorem 1 is a modification of the original argument of
Donnelly-Fefferman, which turns out to be quite simple since we only use the
vanishing theorem, while in [8] the existence of L2−harmonic forms in the unit
ball and asymptotic behavior of the Bergman metric on strongly pseudoconvex
domains (cf. [9], [13]) play an essential role, even in the special case of the ball
one has to use some deep theorems such as Atiyah’s L2−index theorem [1] and
the Hirzebruch proportionality principle [11].

Vanishing theorems in [8], [10] have been extended to certain “non-elliptic”
cases in [3], [12], [15]. A typical example of those results is Cn equipped with
the Euclidean metric. Clearly, one cannot expect the existence of L2−harmonic
forms.
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§2. Proof of Theorem 1

Let (M,ω) be a complete Kähler manifold of dimension n. Let Lp,q
2 (M)

denote the Hilbert space of (p, q)−forms with respect to the norm defined by

‖ψ‖2 =
(∫

M

ψ ∧ ∗̄ψ
)1/2

where ∗̄ is the conjugate of the Hodge star operator ∗ associated to ω. Let ∂̄∗

denote the adjoint of ∂̄. The space of L2−harmonic forms is

Hp,q
2 (M) = {ψ ∈ Lp,q

2 (M) : ∂̄ψ = 0, ∂̄∗ψ = 0}.

We need the following important observation of Gromov:

Theorem (cf. [10]). Let (M,ω) be a complete Kähler manifold of di-
mension n and ω = dη where η is a bounded 1-form on M . Then every L2−form
ψ of degree p+ q �= n satisfies the inequality

‖∂̄ψ‖2
2 + ‖∂̄∗ψ‖2

2 ≥ λ2
0‖ψ‖2

2(1)

when the left hand side of the inequality exists, where λ0 is a strictly positive
constant which depends only on n = dimM and the bound on η,

λ0 ≥ constn‖η‖−1
L∞ .

Furthermore, inequality (1) is satisfied by the L2−forms of middle degree which
are orthogonal to the harmonic forms.

The idea of following key lemma comes from [8]:

Lemma 2. Let (M,ω) be a complete Kähler manifold of dimension n

and ω is d−bounded. Let (N, g) be another complete Kähler manifold of di-
mension n such that Hp,q

2 (N) �= 0 for p + q = n. Suppose that for any r > 0,
there exist two sequences of mutually disjoint geodesic balls B(xj , r) ⊂ M and
B(yj , r) ⊂ N such that the metric ω and its first derivatives are asymptotic on
B(xj , r) to those of g on B(yj , r) as j → ∞ by some diffeomorphisms. Then

dimHp,q
2 (M) = ∞, p+ q = n.

Proof. Since Hp,q
2 (N) �= 0 for p + q = n, for any ε > 0 there exists a

ψ ∈ Lp,q
2 (N) such that

‖∂̄ψ‖2
2 + ‖∂̄∗ψ‖2

2 < ε‖ψ‖2
2.
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For sufficiently large r and for all j, we have such ψj whose support is contained
in the geodesic ball B(yj , r) of (N, g). Therefore, for every sufficiently large j
we may transplant ψj to get a copy ϕj ∈ Cp,q

0 (B(xj , r)) such that

‖∂̄ϕj‖2
2 + ‖∂̄∗ϕj‖2

2 < 2ε‖ϕj‖2
2,

where the L2−norms are associated to (M,ω). Now assume dimHp,q
2 (M) <∞.

Then there exist ϕj1 , ϕj2 , . . . , ϕjm
where jk >> 1 and constants c1, . . . , cm with

at least one non-vanishing such that

ϕ =
m∑

k=1

ckϕjk
∈ (Hp,q

2 (M))⊥.

Applying Gromov’s theorem we obtain

λ2
0‖ϕ‖2

2 ≤ ‖∂̄ϕ‖2
2 + ‖∂̄∗ϕ‖2

2 < 2ε‖ϕ‖2
2

since the supports of ϕjk
are disjoint. If we take ε < λ2

0
2 , then ϕ = 0, which is

absurd.
Proof of Theorem 1. We start from the unit polydisc ∆n with the stan-

dard metric

ω0 =
n∑

j=1

∂∂̄(− log(1 − |zj |2)).

For any p+ q = n, it is not difficult to verify

α = dz1 ∧ · · · ∧ dzp ∧ dz̄p+1 ∧ · · · ∧ dz̄n ∈ Hp,q
2 (∆n),

hence Hp,q
2 (∆n) �= 0. Set

ω1 = ε ∂∂̄{χ(|z|)(− log log 1/|z|)} + ω0

where χ is a cut-off function satisfying χ|(−∞,1/4) = 1 and χ|(1/2,∞) = 0.
Clearly ω1 gives a d−bounded complete Kähler metric on the punctured poly-
disc ∆n\{0} provided ε > 0 small enough. Note that ω1|∆n\Bn

1/2
= ω0, and for

any r > 0, B(x, r) ⊂ ∆n\Bn
1/2 as x→ ∂∆n, where Bn

1/2 denotes the Euclidean
ball of radius 1/2 and B(x, r) are geodesic balls associated to ω1. By Lemma
2, we obtain

dimHp,q
2 (∆n\{0}) = ∞, p+ q = n

with respect to ω1. Now let (M,ω) be the Kähler manifold in Theorem 1. Fix
a point p ∈M and take a coordinate polydisc ∆n at p. Since ω is d−bounded,
we can define a d−bounded complete Kähler metric on M\{p} by

ω2 = ε ∂∂̄{χ(|z|)(− log log 1/|z|)} + ω
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if ε is sufficiently small. Fix such a ε. Since the eigenvalues of ∂∂̄(− log log 1/|z|)
with respect to the Euclidean metric, say λ1 ≤ λ2 ≤ · · · ≤ λn, are bounded
below by

|z|−2(− log |z|)−2.

It follows that for any r > 0, the metric ω2 and its first derivatives are asymp-
totic (via normal coordinate comparison) to those of ω1 on geodesic balls (w.r.t.
ω2) B(x, r) ⊂ M\{p} ∩ ∆n\{0} as x → p. Hence the middle L2−cohomology
is non-vanishing for (M\{p}, ω2). Finally, since ω coincides with ω2 outside a
neighborhood of p, a similar argument as above shows the infinite dimension-
ality of the middle L2−cohomology for (M,ω).
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