Infinite Dimensionality of the Middle L^2 -cohomology on Non-compact Kähler Hyperbolic Manifolds

By

Bo-Yong Chen*

Abstract

We prove that the space of L^2 harmonic forms of middle degree is infinite dimensional on any non-compact Kähler hyperbolic manifold.

§1. Introduction

Let (M, ω) be a complete Kähler manifold of dimension n and let $\mathcal{H}_2^{p,q}(M)$ denote the space of L^2 -harmonic (p,q)-forms. In a groundbreaking paper, Donnelly and Fefferman [8] discovered a new L^2 -estimate which implies the vanishing of $\mathcal{H}_2^{p,q}(M)$ outside of middle degree for those manifolds which have a complete Kähler metric $\omega = \partial \bar{\partial} \rho$ with the global potential satisfying $\sup_M |d\rho|_\omega < \infty$. Inspired by their work, Ohsawa and Takegoshi [18] proved the remarkable L^2 -extension theorem. Ohsawa also found several interesting applications of the Donnelly-Fefferman estimate, for instance, to the Hodge theory on singular complex spaces and to the study of the Bergman metric (cf. [16], [5] etc). The main result in [8] is $\mathcal{H}_2^{p,q}(M) = 0$ for $p + q \neq n$ and $\dim \mathcal{H}_2^{p,q}(M) = \infty$ for p+q = n, associated to the Bergman metric on bounded strongly pesudoconvex domains. A different approach of infinite dimensionality was proposed by Ohsawa [17].

In a more geometric direction, Gromov [10] introduced a new notion of hyperbolicity as follows. A Kähler manifold M is called Kähler hyperbolic if

Communicated by M. Kashiwara. Received March 29, 2005. Revised April 25, 2005.

²⁰⁰⁰ Mathematics Subject Classification(s): 32L10.

Supported by NSFC No. 10271089, NCET-05-0380 and $05 \mathrm{QMX1452}.$

^{*}Department of Mathematics, Tongji University, Shanghai 200092, P. R. China. e-mail: chenbo-yong@lycos.com

^{© 2006} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

there is a complete Kähler metric Ω which is d-bounded, i.e., $\omega = d\eta$ for some 1-form η with $\|\eta\|_{L^{\infty}} < \infty$. Since such a metric cannot exist on compact Kähler manifolds, Gromov called a compact Kähler manifold (M, ω) Kähler hyperbolic if the lift of ω to the universal covering of M is d-bounded. Examples of non-compact Kähler hyperbolic manifolds include all hyperconvex manifolds (i.e., there is a bounded C^{∞} strictly plurisubharmonic exhaustion function) and those $D \setminus S$ where D is a bounded hyperconvex domain and S is a complex submanifold defined in a neighborhood of \overline{D} . Gromov proved that the L^2 -cohomology vanishes outside the middle degree for non-compact Kähler hyperbolic manifolds and the existence of L^2 -harmonic forms of middle degree on the universal covering of every compact Kähler hyperbolic manifold, associated to the lifting metric.

Using the idea of Gromov, Donnelly [6] gave a more transparent proof of the results from [8]. He also discovered some new examples of Kähler hyperbolic domains with respect to the Bergman metric, for instance, bounded pseudoconvex domains of finite type in \mathbb{C}^2 or convex domains of finite type in \mathbb{C}^n (cf. [7]). The L^2 -cohomology with respect to the Bergman metric is of independent interest, simply because the latter is a canonical invariant metric. Recently, the author [4] showed that the Teichmüller space with the Bergman metric is Kähler hyperbolic (Earlier, McMullen [14] constructed a d-bounded Kähler metric by using the Weil-Petersson metric and hyperbolic length functions).

Comparing to the rather strong vanishing theorems in [8], [10], the conditions for non-vanishing results seem to be less transparent. In this spirit, we will show

Theorem 1. Let (M, ω) be a complete n-dimensional Kähler manifold such that ω is d-bounded. Then we have

$$\dim \mathcal{H}_2^{p,q}(M) = \infty, \quad p+q = n.$$

From 0.1.B. in [10], we obtain

Corollary 1. If (M, ω) is a complete simply connected Kähler manifold with sectional curvature bounded above by a negative constant, then

$$\dim \mathcal{H}_2^{p,q}(M) = \infty, \quad p+q = n.$$

Let $\mathcal{T}_{g,n}$ denote the Teichmüller space of a Riemann surface of genus g and with n punctures. It is a complex manifold of dimension 3g - 3 + n. Since the Bergman metric on $\mathcal{T}_{g,n}$ is d-bounded (cf. [4]), one has **Corollary 2.** With respect to the Bergman metric,

 $\dim \mathcal{H}_2^{p,q}(\mathcal{T}_{g,n}) = \infty, \quad p+q = 3g-3+n.$

Assume M is a holomorphic family of Riemann surfaces of genus g and n-punctures over the unit polydisc Δ^m in \mathbb{C}^m . According to the celebrated Bers simultaneous uniformization, the universal covering \tilde{M} of M is a holomorphic family of conformal discs over Δ^m (in particular, \tilde{M} is a domain in \mathbb{C}^{m+1}), and there is a holomorphic map $f: \Delta^m \to \mathcal{T}_{g,n}$, which naturally induces a holomorphic map $\hat{f}: \tilde{M} \to \mathcal{F}_{g,n}$, where $\mathcal{F}_{g,n}$ is the Bers fiber space over $\mathcal{T}_{g,n}$, which maps fibers to fibers. Set $\tilde{\omega} = ds_{\Delta^m}^2 + \hat{f}^*(ds_{\mathcal{F}_{g,n}}^2)$, where $ds_{\Delta^m}^2, ds_{\mathcal{F}_{g,n}}^2$, denote the Bergman metrics on Δ^m , $\mathcal{F}_{g,n}$ respectively.

Corollary 3. With respect to $\tilde{\omega}$,

 $\dim \mathcal{H}_2^{p,q}(\tilde{M}) = \infty, \quad p+q = m+1.$

Proof. Since $\mathcal{F}_{g,n}$ is biholomorphic to $\mathcal{T}_{g,n+1}$ (cf. [2]), by a similar argument as in [4], we can show that $ds^2_{\mathcal{F}_{g,n}}$ is also *d*-bounded, which implies $\rho = -e^{-\epsilon \log K_{\mathcal{F}_{g,n}}}$ is a negative strictly plurisubharmonic exhaustion function for sufficiently small $\epsilon > 0$, where $K_{\mathcal{F}_{g,n}}$ denotes the Bergman kernel of $\mathcal{F}_{g,n}$. Since

$$\begin{split} \hat{f}^*(ds^2_{\mathcal{F}_{g,n}}) &= \partial \bar{\partial} \log(K_{\mathcal{F}_{g,n}} \circ \hat{f}) \\ &= \partial \bar{\partial} \left(-\frac{1}{\epsilon} \log(-\rho \circ \hat{f}) \right) \\ &\geq \epsilon \partial \left(-\frac{1}{\epsilon} \log(-\rho \circ \hat{f}) \right) \bar{\partial} \left(-\frac{1}{\epsilon} \log(-\rho \circ \hat{f}) \right), \end{split}$$

we conclude that $\tilde{\omega}$ is a *d*-bounded complete Kähler metric on \tilde{M} .

The proof of Theorem 1 is a modification of the original argument of Donnelly-Fefferman, which turns out to be quite simple since we only use the vanishing theorem, while in [8] the existence of L^2 -harmonic forms in the unit ball and asymptotic behavior of the Bergman metric on strongly pseudoconvex domains (cf. [9], [13]) play an essential role, even in the special case of the ball one has to use some deep theorems such as Atiyah's L^2 -index theorem [1] and the Hirzebruch proportionality principle [11].

Vanishing theorems in [8], [10] have been extended to certain "non-elliptic" cases in [3], [12], [15]. A typical example of those results is \mathbb{C}^n equipped with the Euclidean metric. Clearly, one cannot expect the existence of L^2 -harmonic forms.

BO-YONG CHEN

§2. Proof of Theorem 1

Let (M, ω) be a complete Kähler manifold of dimension n. Let $L_2^{p,q}(M)$ denote the Hilbert space of (p, q)-forms with respect to the norm defined by

$$\|\psi\|_2 = \left(\int_M \psi \wedge \bar{*}\psi\right)^{1/2}$$

where $\bar{*}$ is the conjugate of the Hodge star operator * associated to ω . Let $\bar{\partial}^*$ denote the adjoint of $\bar{\partial}$. The space of L^2 -harmonic forms is

$$\mathcal{H}_{2}^{p,q}(M) = \{ \psi \in L_{2}^{p,q}(M) : \bar{\partial}\psi = 0, \ \bar{\partial}^{*}\psi = 0 \}.$$

We need the following important observation of Gromov:

Theorem (cf. [10]). Let (M, ω) be a complete Kähler manifold of dimension n and $\omega = d\eta$ where η is a bounded 1-form on M. Then every L^2 -form ψ of degree $p + q \neq n$ satisfies the inequality

(1)
$$\|\bar{\partial}\psi\|_2^2 + \|\bar{\partial}^*\psi\|_2^2 \ge \lambda_0^2 \|\psi\|_2^2$$

when the left hand side of the inequality exists, where λ_0 is a strictly positive constant which depends only on $n = \dim M$ and the bound on η ,

$$\lambda_0 \geq \operatorname{const}_n \|\eta\|_{L_\infty}^{-1}$$

Furthermore, inequality (1) is satisfied by the L^2 -forms of middle degree which are orthogonal to the harmonic forms.

The idea of following key lemma comes from [8]:

Lemma 2. Let (M, ω) be a complete Kähler manifold of dimension nand ω is d-bounded. Let (N, g) be another complete Kähler manifold of dimension n such that $\mathcal{H}_2^{p,q}(N) \neq 0$ for p + q = n. Suppose that for any r > 0, there exist two sequences of mutually disjoint geodesic balls $B(x_j, r) \subset M$ and $B(y_j, r) \subset N$ such that the metric ω and its first derivatives are asymptotic on $B(x_j, r)$ to those of g on $B(y_j, r)$ as $j \to \infty$ by some diffeomorphisms. Then

$$\dim \mathcal{H}_2^{p,q}(M) = \infty, \quad p+q = n.$$

Proof. Since $\mathcal{H}_2^{p,q}(N) \neq 0$ for p+q = n, for any $\epsilon > 0$ there exists a $\psi \in L_2^{p,q}(N)$ such that

$$\|\bar{\partial}\psi\|_{2}^{2} + \|\bar{\partial}^{*}\psi\|_{2}^{2} < \epsilon \|\psi\|_{2}^{2}$$

686

For sufficiently large r and for all j, we have such ψ_j whose support is contained in the geodesic ball $B(y_j, r)$ of (N, g). Therefore, for every sufficiently large j we may transplant ψ_j to get a copy $\varphi_j \in C_0^{p,q}(B(x_j, r))$ such that

$$\|\bar{\partial}\varphi_{j}\|_{2}^{2} + \|\bar{\partial}^{*}\varphi_{j}\|_{2}^{2} < 2\epsilon \|\varphi_{j}\|_{2}^{2},$$

where the L^2 -norms are associated to (M, ω) . Now assume dim $\mathcal{H}_2^{p,q}(M) < \infty$. Then there exist $\varphi_{j_1}, \varphi_{j_2}, \ldots, \varphi_{j_m}$ where $j_k >> 1$ and constants c_1, \ldots, c_m with at least one non-vanishing such that

$$\varphi = \sum_{k=1}^{m} c_k \varphi_{j_k} \in (\mathcal{H}_2^{p,q}(M))^{\perp}.$$

Applying Gromov's theorem we obtain

$$\lambda_0^2 \|\varphi\|_2^2 \le \|\bar{\partial}\varphi\|_2^2 + \|\bar{\partial}^*\varphi\|_2^2 < 2\epsilon \|\varphi\|_2^2$$

since the supports of φ_{j_k} are disjoint. If we take $\epsilon < \frac{\lambda_0^2}{2}$, then $\varphi = 0$, which is absurd.

Proof of Theorem 1. We start from the unit polydisc Δ^n with the standard metric

$$\omega_0 = \sum_{j=1}^n \partial \bar{\partial} (-\log(1-|z_j|^2)).$$

For any p + q = n, it is not difficult to verify

$$\alpha = dz_1 \wedge \dots \wedge dz_p \wedge d\bar{z}_{p+1} \wedge \dots \wedge d\bar{z}_n \in \mathcal{H}_2^{p,q}(\Delta^n),$$

hence $\mathcal{H}_2^{p,q}(\Delta^n) \neq 0$. Set

$$\omega_1 = \epsilon \,\partial \bar{\partial} \{\chi(|z|)(-\log \log 1/|z|)\} + \omega_0$$

where χ is a cut-off function satisfying $\chi|_{(-\infty,1/4)} = 1$ and $\chi|_{(1/2,\infty)} = 0$. Clearly ω_1 gives a *d*-bounded complete Kähler metric on the punctured polydisc $\Delta^n \setminus \{0\}$ provided $\epsilon > 0$ small enough. Note that $\omega_1|_{\Delta^n \setminus B_{1/2}^n} = \omega_0$, and for any r > 0, $B(x,r) \subset \Delta^n \setminus B_{1/2}^n$ as $x \to \partial \Delta^n$, where $B_{1/2}^n$ denotes the Euclidean ball of radius 1/2 and B(x,r) are geodesic balls associated to ω_1 . By Lemma 2, we obtain

$$\dim \mathcal{H}_2^{p,q}(\Delta^n \setminus \{0\}) = \infty, \quad p+q = n$$

with respect to ω_1 . Now let (M, ω) be the Kähler manifold in Theorem 1. Fix a point $p \in M$ and take a coordinate polydisc Δ^n at p. Since ω is d-bounded, we can define a d-bounded complete Kähler metric on $M \setminus \{p\}$ by

$$\omega_2 = \epsilon \,\partial\partial\{\chi(|z|)(-\log\log 1/|z|)\} + \omega$$

BO-YONG CHEN

if ϵ is sufficiently small. Fix such a ϵ . Since the eigenvalues of $\partial \overline{\partial} (-\log \log 1/|z|)$ with respect to the Euclidean metric, say $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, are bounded below by

 $|z|^{-2}(-\log|z|)^{-2}.$

It follows that for any r > 0, the metric ω_2 and its first derivatives are asymptotic (via normal coordinate comparison) to those of ω_1 on geodesic balls (w.r.t. ω_2) $B(x,r) \subset M \setminus \{p\} \cap \Delta^n \setminus \{0\}$ as $x \to p$. Hence the middle L^2 -cohomology is non-vanishing for $(M \setminus \{p\}, \omega_2)$. Finally, since ω coincides with ω_2 outside a neighborhood of p, a similar argument as above shows the infinite dimensionality of the middle L^2 -cohomology for (M, ω) .

Acknowledgement

The author would like to express gratitude to Professor T. Ohsawa for his interest in this work. He also thanks the referee's comments which make the paper more readable.

References

- Atiyah, M. F., Elliptic operators, discrete groups, and Von Neumann algebras, Astérisque, No. 32-33 (1976), 43-72.
- [2] Bers, L., Fiber spaces over Teichmüller spaces, Acta. Math., 130 (1973), 89-126.
- [3] Cao, J. and Xavier, F., Kähler parabolicity and the Euler number of compact manifolds of non-positive sectional curvature, *Math. Ann.*, **319** (2001), 483-491.
- [4] Chen, B. Y., The Bergman metric on Teichmüller space, Internat. J. Math., 15 (2004), 1085-1091.
- [5] Diederich, K. and Ohsawa, T., An estimate of the Bergman distance on pseudoconvex domains, Ann. of Math., 141 (1995), 181-190.
- [6] Donnelly, H., L² cohomology of pseudoconvex domains with complete Kähler metric, Michigan Math. J., 41 (1994), 433-442.
- [7] $\underline{\qquad}$, L^2 cohomology of the Bergman metric for weakly pseudoconvex domains, *Illinois J. Math.*, **41** (1997), 151-160.
- [8] Donnelly, H. and Fefferman, C., L² cohomology and index theorem for the Bergman metric, Ann. of Math., 118 (1983), 593-618.
- [9] Fefferman, C., The Bergman kernel and biholomorphic mappings of pseudoconvex domains, *Invent. Math.*, 26 (1974), 1-65.
- [10] Gromov, M., Kähler hyperbolicity and L²-Hodge theory, J. Differential Geom., 33 (1991), 263-292.
- [11] Hirzebruch, F., Automorphe Formen und der Satz von Riemann-Roch, Symp. Int. Topologia Algebraica, 129-144, Mexico, 1958.
- [12] Jost, J. and Zuo, K., Vanishing theorems for L²-cohomology on infinite coverings of compact Kähler manifolds and applications in algebraic geometry, *Comm. Anal. Geom.*, 8 (2000), 1-30.
- [13] Klembeck, P. F., Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded strongly pseudoconvex sets, *Indiana Univ. Math. J.*, 27 (1978), 275-282.

688

- [14] McMullen, C. T., The moduli space of Riemann surfaces is Kähler hyperbolic, Ann. of Math., 151 (2000), 327-357.
- [15] McNeal, J. D., L² harmonic forms on some complete Kähler manifolds, Math. Ann., 323 (2002), 319-349.
- [16] Ohsawa, T., Cheeger-Goresky-MacPherson conjecture for varieties with isolated singularities, Math. Z., 206 (1991), 219-224.
- [17] _____, On the infinite dimensionality of the middle L^2 cohomology of complex domains, Publ. RIMS, Kyoto Univ., **25** (1989), 499-502.
- [18] Ohsawa, T. and Takegoshi, K., On the extension of L^2 holomorphic functions, *Math. Z.*, **195** (1987), 197-204.