Publ. RIMS, Kyoto Univ.
42 (2006), 691-704

A Similarity Degree Characterization of
Nuclear C*-algebras

By

Gilles PI1SIER™*

Abstract

We show that a C*-algebra A is nuclear iff there is a number o < 3 and a
constant K such that, for any bounded homomorphism w: A — B(H), there is an
isomorphism &: H — H satisfying [|€7']|||€]| < K||u||* and such that £~ u(.)¢ is a
x-homomorphism. In other words, an infinite dimensional A is nuclear iff its length
(in the sense of our previous work on the Kadison similarity problem) is equal to 2.

In 1955, Kadison [14] formulated the following conjecture: any bounded
homomorphism u: A — B(H), from a C*-algebra into the algebra B(H) of
all bounded operators on a Hilbert space H, is similar to a *-homomorphism,
i.e. there is an invertible operator £&: H — H such that x — fu(z) ! satisfies
Eu(z*)E~1 = (fu(x)¢1)* for all x in A. This conjecture remains unproved,
although many partial results are known (see [4], [10]). In particular, by [10],
we know that w is similar to a *-homomorphism iff it is completely bounded
(c.b. in short) in the sense of e.g. [17] or [20] (to which we refer for background
on c¢.b. maps). Moreover, we have

ulles = mf{JIE[HIE 1}

where the infimum runs over all invertible ¢ such that £u(-)¢ 1 is a *-homomorp-
hism. Recall that, by definition, ||u| = sup ||u,| where wu,: M,(A4) —
n>1

M, (B(H)) is the mapping taking [a;;] to [u(a;)] Thus Kadison’s conjecture
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is equivalent to the validity of the implication ||ul| < co = [Jul|s < co. In [18],
the author proved that if a C*-algebra A verifies Kadison’s conjecture, then
there is a number « for which there exists a constant K so that any bounded
homomorphism u: A — B(H) satisfies ||ullep < K||u||®. Moreover, the small-
est number « with this property is an integer denoted by d(A) (and a = d(A)
itself satisfies the property).

An analogous parameter can be defined for a discrete group G and it is
proved in [18] that G is amenable iff d(G) < 2. The main result of this note
is the analogous equivalence for C*-algebras: a C*-algebra A is nuclear (or
equivalently amenable, see below) iff d(4) < 2. In [18], we could only prove a
partial result in this direction.

Let A, B be C*-algebras. Let || |lo be a C*-norm on their algebraic tensor
product, denoted by A ® B; as usual, A ®, B then denotes the C*-algebra ob-
tained by completing A® B with respect to || ||o. By classical results (see [24])
the set of C*-norms admits a minimal and a maximal element denoted respec-
tively by ||*||min and ||||max. Then A is called nuclear if for any B we have A®min
B = A ®max B, or equivalently |||/ min = ||Z|lmax for any z in A ® B. We refer
the reader to [24], [15] for more information on nuclear C*-algebras. We note in
particular that by results due to Connes and Haagerup ([7], [8]), a C*-algebra
is nuclear iff it is amenable as a Banach algebra (in B.E. Johnson’s sense).

The main result of this note is as follows.

Theorem 1.  The following properties of C*-algebra A are equivalent:

(1) A is nuclear.

(ii) There are o < 3 and a constant K such that any bounded homomorphism
u: A— B(H) satisfies ||u]lep < K||ul|®.

(iil) Same as (i) with K =1 and o = 2.

The implication (i) = (iii) is well known (see [2], [4]).

In the terminology of [18], the similarity degree d(A) is the smallest « for
which the property considered in (ii) above is satisfied. It is proved in [18] that
d(A) is always an integer identified as the smallest length of a specific kind of
factorization for matrices with entries in A.

With this terminology, the preceding theorem means that A is nuclear iff
d(A) < 2. In the infinite dimensional case, d(A) > 1 hence A is nuclear iff
d(A) = 2.

In his work on derivations (see [4] and [5]) Erik Christensen isolated the
following property Dy for a C*-algebra. Here k is any number > 1/2. A C*-
algebra A has property Dy, if for any H, any representation 7: A — B(H), and
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any T in B(H) the derivation é7: A — B(H) defined by d7(a) = n(a)T—Tw(a)
satisfies

[07]lco < 2|07 |-
With this terminology, Theorem 1 implies the following;:

Corollary 2.  Let A be a C*-algebra. The following assertions are equiv-
alent.

(i) A is nuclear.
(ii) A satisfies property Dy for some k < 3/2.

(iil) A satisfies property Ds.

Proof. Here again the fact that (i) = (iii) is well known (see [2], [4]).
The equivalence between the similarity problem and the derivation problem
was established by Kirchberg in [16]. Refining Kirchberg’s estimates, the author
proved in [18] (see also [20, p. 139]) that property Dy implies that the similarity
degree d(A) is at most 2k. Thus (ii) = (i) follows from the corresponding
implication in Theorem 1. d

The main point in Theorem 1 is (ii) = (i). In our previous work, we
could only prove that (ii) implies that A is “semi-nuclear,” i.e. that whenever
a representation 7: A — B(H) generates a semifinite von Neumann algebra,
the latter is injective. In this note, we show that the semifiniteness assumption
is not needed. We use the same starting point as in [18], but we feel the idea of
the present proof is more transparent than the one in [18]. In particular, we will
use the following result which is part of Th.2.9 in [19] (obtained independently
in [6]), but the latter is inspired by and closely related to Haagerup’s Th. 2.1
in [9].

Theorem 3. Let N C B(H) be a von Neumann algebra. Then N is
injective iff there is a constant C' such that, for all n, if elements x; in N (i =
1,...,n) admit a decomposition x; = «; + B; with oy, 8; € B(H) such that
IS afa;|l <1 and ||>. 6867 < 1, then there is a decomposition x; = a; + b;
with a;,b; € N such that || afa;|| < C? and || bibl|| < C2.

The preceding statement can be viewed as the analogue for von Neumann
algebras of the characterization of amenable discrete groups obtained in [27]
(see also [1]).

Our main (somewhat) new ingredient is as follows.
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Theorem 4. Let M C B(H) be a von Neumann algebra with a cyclic
vector. Let y1, ...y, in M’ be such that for any x1,...,x, in M we have

(1) Hleyl < maX{HZx;‘xi szxf 1/2}.

Then there is a decomposition

1/2

)

Yi = a; + b;

with a;,b; in M’ such that
H Z a;a;"

Proof. We follow a well known kind of argument with roots in [9]; see

<1

‘g1 and Hbe

also [23] and the proof of a theorem due to Kirchberg as presented in [20, §14]
that we will follow closely below.

Recall that the “row and column” operator spaces R,, C M,, and C,, C M,
are defined by:

R, =spanfey; |1 <i<n] C, =spanfe;; |1<i<n].

Let A, € C,, ® R, be the operator space spanned by 0; = e;; @ e1; (1 =
1,2,...,n). Our assumption means that the linear map

v: Ay @min M — B(H)

defined by

v (Z 0 ® 567) = Zz,y,

satisfies ||v|| < 1. (Indeed, it is easy to check that the majorant in (1) is equal
to || X2 0i ® @il min-)

Since v is clearly a two-sided M-module map and M has a cyclic vector,
it follows by [22] (and unpublished work of Haagerup) that ||v|| = |Jv]] < 1.

Therefore, by a result due to Wittstock [26] (see also [23]), v can be ex-
tended to a two-sided M-module map ¢ : [C,, @ R,] ®min M — B(H) with
I5]lep < 1. Let a; = 9([e;1 @ 0] ® 1) and b; = 0([0 @ e1;] ® 1). Then we have
clearly |3 asa:*||"? < ||5]les < 1 and similarly |37 b;*bg||*/2
since v is an M-module map, for any m in M and any z in C,, & R,,, we must
have m.o9(z ® 1) = 9(z @ m) = 9(z ® 1).m and hence 9(z ® 1) € M’. Thus a;
and b; are in M’. O

< 1. Moreover,
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Remark 1. It is easy to see that the preceding result fails without the
cyclicity assumption: Just consider the case M = C and M’ = B(H) with
dim(H) = oo.

Remark 2.  The same proof gives a criterion for a map u: E — M’
defined on a subspace E C A of a general C*-algebra A to admit an extension
@: A — M’ with ||@l/gec < 1. This is essentially the same as Kirchberg’s [20,
Th. 14.6].

Remark 3.  The above Theorem 4 may be viewed as an analogue for the
operator space R, + C,, of Haagerup’s [9, Lemma 3.5] devoted to the operator
space £} equipped with its maximal structure, in the Blecher-Paulsen sense (see
e.g. [20, §3]). Note that while he decomposes into products, we decompose into
sums.

Remark 4.  Let (Ep, F1) be a compatible pair of operator spaces in the
sense of [20, §2.7]. Then Remark 2 gives a sufficient criterion for a map u: Ey+
E; — M’ to admit a decomposition © = ug + u; with ug: Eg — M’ and
up: By — M’ satisfying [Juglles < 1 and |Juilles < 1. Assume that Ey C Ay
and F; C Ay, where Ag, A; are C*-algebras, then this criterion actually ensures
that there are extensions

’1102 A0—>M/ and ’111: A1—>M/

with ||Golldec < 1 and ||G@1]|gec < 1. In that formulation, the converse also holds
up to a numerical factor 2. Note that, in the special case of interest to us, when
Ey = C and E; = R, then we can take Ao, A; equal to K (¢2) (hence nuclear)
so that the min and max norms are identical on (Ag ® A1) ® M.

Notation. Let A C B(H) be any C*-subalgebra. For any z1,...,x,

and yq,...,y, in A, we denote
1/2
S}

)

where the infimum runs over all «;, 5; in B(H) such that y; = a;; + ;. Note

1/2
H ’

@) o) e = max {3 a5

® I llase = inf { [ e

that, by the injectivity of B(H), the definition of ||(y;)||r+c does not really
depend on the choice of H or of the embedding A C B(H). The corresponding
fact for ||(x;)||rnc is obvious.
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Corollary 5. Let M C B(H) be a von Neumann algebra. Then M is
injective iff there is a constant C' such that, for all n, all x1,...,x, in M and
Y1, sYn in M', we have

() I> e

Proof. If M has a cyclic vector, then this follows immediately from Theo-

< Cll(@)l rrcll(yi)ll ree-

rems 3 and 4 and the well known fact that M’ is injective iff M is injective (see
[25, p. 174]). Now assume that M has a finite cyclic set, i.e. there are 1, ... &y
in H such that M& + -+ My is dense in H. Then the vector (&1,...,6N)
in HY is cyclic for My(M) C My(B(H)). Moreover, it is easy to check that
(4) remains true for My (M) but with C replaced by a constant C'(N) (possi-
bly unbounded when N grows). Nevertheless, by the first part of the proof it
follows that My (M) is injective and hence, a fortiori, M is injective.

In the general case, let {§; | i € I} be a dense subset of H. For any finite
subset J C I, let H; be the closure of

{ZjeJaj(fj) laj € M}

Note that H; is an invariant subspace for M, so that (since M is self-adjoint)
the orthogonal projection Py: H — H; belongs to M’. Let 7;(a) denote the
restriction of a to Hy. Then wy;: M — B(Hj;) is a normal representation,
7wy (M) admits a finite cyclic set (namely {&; | i € J}), and it is easy to check
that our assumption (4) is still verified by 7;(M) on H .

Thus, by the first part of the proof, 7; (M) is injective. This clearly implies
that the von Neumann algebra M; C B(H) generated by P;M and I — Py also
is injective. Finally, since M is the weak-* closure of the directed union of the
M j’s, we conclude that M itself is injective.

Conversely, if M injective then, by Remark 5 below, (4) holds with C' = 1.

1

Remark 5.  Let M C B(H) be an injective von Neumann algebra, so
that there is a projection P: B(H) — M’ with ||P||s, = 1. Then M satisfies
(4) with C = 1. To see this, assume y; € M’ and ||(y;)||r+c < 1, so that
yi = o; + B with ||Safa||V/? + [|[23:8|Y/? < 1. Then y; = a; + b; with
a;,b; € M’ satisfying

[Saial ™+ [

Indeed, a; = Pa; and b; = Pg; clearly verify this.

1/2
< ”Pch =1
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Then for any xz1,...,z, in M we have by Cauchy-Schwarz
1/2 1/2
HZ%‘CM < Hzxﬂf Hzaf%
and
1/2

)

S BT

<[5

therefore, since

e

< Hzxiai

+ HZ biz;

3

we obtain finally

< [(@)llrncll (i) lr+c-

5 o

We will also use:

Theorem 6 ([18]). A unital operator algebra A satisfies property (ii) in
Theorem 1 iff we have: (iv) There is a constant K' satisfying the following: for
any linear map u: A — B(H) for which there are a Hilbert space K, bounded
linear maps vi,wy from A to B(K, H) and vy, ws from A to B(H, K) such that

(5) Va,be A u(ab) = vy (a)va(b) + wy(a)ws(b)

we have

lullee < K (lva[[[[oz]] + [[ws ]| wl])-

Remark.  Note that (5) implies that the bilinear map (a,b) — u(ab) is
c.b. on max(A) ®, max(A) with ¢.b. norm < K’(|Jv1]|||v2|| + ||w1]]||wz]]). Thus,
Theorem 6 follows from the case d = 2 of [18, Th. 4.2].

Another ingredient is the following Lemma which can be derived from [13]
or from the more recent paper [21].

Lemma 7. Let E be a finite dimensional operator space and let A be
a C*-algebra. Assume that E is a “maximal” operator space (equivalently that
E* is a minimal one). Then for any c.b. map u: A — E we have

Vn Vai,...,a, € A V¢ € BT
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(6) ‘Z@(aj),gj)‘ < Ollulles (Hza;aij i HZ aja;H1m>
(S

where C is a numerical constant.

Proof. 'We may apply [13, Th. 1.4], arguing as in [18, Lemma 6.3] (using
[19, Th. 17.13] to remove the exactness assumption) this yields (6) with C' = 2.
Or we may invoke [21, Th. 0.3] taking into account [21, Lemma 2.3] (to remove
the exactness assumption) and then we again obtain (6) with C' = 2. O

For the convenience of the reader, we reproduce here the elementary
Lemma 8 from [18].

Lemma 8.  Let (e;) be the canonical basis of the operator space max({fs).
Let H be any Hilbert space and let X be either B(C, H) or B(H*,C), or equiv-
alently let X be either the column Hilbert space or the row Hilbert space. Then

for all z1,... ,x, tn X we have

n 1/2
> oy < (il

Proof. Assume X = B(C,H) or B(H*,C). We identify X with H as a
vector space. Let (d,,) be an orthonormal basis in H. Observe that for any

X Q@minmax

finite sequence a,, in B(f3) we have in both cases

[S @ an] < (S hent?)”

whence we have, for any z1,...,z, in X,

o] - [0 i

o\ 1/2

IN

>

m

Z<xi7 6m>€i

%

1/2

1/2
= ZI(wi75m>l2 =<lew¢||2> :
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Proof of Theorem 1. As we already observed, it suffices to show that (ii)
implies that A is nuclear. Let m: A — B(H) be a representation and let
M = w(A)"”. Using Theorem 6 and Corollary 5, we will show that (ii) implies
that M is injective. By the well known results of Choi-Effros and Connes (see
[3]), this implies that A is nuclear. Since w(A) ~ A/ker(7) is a quotient of A,
it obviously inherits the property (ii). Thus we may as well replace w(A) by A:
we assume A C B(H) and let M = A”. Tt suffices to show that M is injective.

Claim. We claim that for any z1,...,z, in M and yq,...,y, in M’
we have

(7) |3 20| < 457 Cl@lancllw)linsc.

Note: It may be worthwhile for the reader to note that ||(y;)||r+c is (up to a
factor 2) in operator space duality with ||(z;)|| rnc, namely if we set

Ml =suw {3 w5 0w}

where the sup runs over all (z;) in B({3) such that ||(z;)||rnc < 1, then we
have (see e.g. [12])

DI < Il r+re < 2[l[(y)II

To prove (7) we introduce the operator space F = max(¢3), that is n-
dimensional Hilbert space equipped with its “maximal” operator space struc-
ture in the Blecher-Paulsen sense (see [20, §3]). Let us now fix an n-tuple (y;)
in M’ such that ||(y;)||r+c < 1. In addition, we fix £, 7 in the unit sphere of
H. Then we define a linear map u: M — FE as follows:

u(x) ==j£:j<wyy£7n>€j

where e; is the canonical basis of 5. We will assume that E C B(K) completely

isometrically. The reader may prefer to consider instead of u, the bilinear form

(x,8) — (u(x),&) defined on M x E* where E* is now ¢4 equipped with its “min-

imal” (or commutative) operator space structure obtained by embedding it iso-

metrically into a commutative C*-algebra. We will now apply Theorem 6 to u.
Since we assume |[|(y;)| r+c < 1, we can write

yj = +05;

with [[Yaja;l| < 1 and [[¥3;8;| < 1. Note that, since y; € M’, for all a,b in
M we have

aby; = ay;b
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and hence
u(ab) = V(a,b) + W(a,b)
where
V(a,b) = _{a0;bg, ne;
W(a,b) =Y (aB;bé,n)e;.
We now claim that we can write for all a,b in M
(8) V(a,b) =vi(a)va(b) and W(a,b) = wi(a)ws(b)
where

v: M- BH®K,K), wy: M— BHQK,K)
ve: M — B(K,H®K), ws: M — B(K,H®K)

are linear maps all with norm < 1.
Indeed, let us set for h € H, k € K

vi(a)(h@ k) = Z (aBjh, n)ejk

wi(a)(h @ k) = (ah, n)k

va(b)(k) = bE @ k
)=

ws(D)(k) =D b ek
Then, it is easy to check (8). Also, we have trivially

[wi(a)]| = lla™nl] < [lal
[o2 (D) = 6]} < [[0]]-

Moreover, by Lemma 8 we have

low(@)* < 3 185a*nl> = (3 8,850 n,a"n)

< [la*n]* < llal®

w2 )P < 37 flagbg* = (3 ajabe, be)

< [[b€lf* < lb]>.
By Theorem 6, it follows that

||U|Ach § QK/.



A SIMILARITY DEGREE CHARACTERIZATION OF NUCLEAR C*-ALGEBRAS 701

Since u: M — B(K) is clearly normal (i.e. o(M, M,) continuous) and since A
is o(M, M,) dense in M, we clearly have (by the Kaplansky density theorem)

[ulles = llujalles < 2K,

Then by Lemma 7, applied with &; biorthogonal to e;, we have

Vn Vzi,...,on € M ‘<ijyj£,n>‘ <AK'C|(x) | rrc-

Hence, taking the supremum over &, 7 and using homogeneity, we obtain the
claimed inequality (7). Then, by Corollary 5, M is injective. ]

Remark.  Since Lemma 4 actually holds whenever A is an exact operator
space (with C replaced by twice the exactness constant [13], [21]), the proof
of Theorem 1 shows that any unital, exact (non selfadjoint) operator algebra
A C B(H) with d(A) <2 in the sense of [18] satisfies (4) for some C.

The preceding arguments establish the following result of independent
interest.

Theorem 9. A C*-algebra A is nuclear iff for any C*-algebra B there
is a constant C' such that, for all n, all x1,...,x, in A and all y1,...,yn in B
we have

©) (DELE”

Proof. Let m: A — B(H) be a representation. Taking B = 7(A)’ (and
using the fact that the set of n-tuples (z;) in A** with ||(z;)||rnc < 1 is the
weak-* closure of its intersection with A™, see e.g. [20, p. 303]) we see that

SOl racl @)l r+e-

(9) implies (4) for M = w(A)”. Since this holds for any m, we may argue as
in the preceding proof (replacing m by m;) to conclude that w(A)” is injective,
and hence that A is nuclear. Conversely, if A is nuclear it is easy to show (see

Remark 5) that (9) holds with C' = 1. O

Theorem 10. A C*-algebra A is nuclear iff for any C*-algebra B there
is a constant C such that for all n, all T1,...,x, in A and all y1,...,yn in B
we have

1/2 1/2

. )
min

HZ%@)% SCHZIH@@: Zyi®gi

where the min norms are relative to A®Q A and B® B.

max min
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Proof. Tt is known (see [19, (2.12)]) that ||Zz; ® ai‘z||r1n/§1 < @)l rne-
Thus, arguing as above, we find that for any representation 7: A — B(H) the
von Neumann algebra M = 7(A)” satisfies the following: if y1,... ,y, in M’
are such that || Zy; ® ¥i|lmin < 1, then there are a;,b; in M’ with y; = a; + b;
such that |[Sala;]|'/? < C and ||Sb;b]|*/? < C. By [19, Th. 2.9], this ensures
that M’ is injective, and hence A is nuclear. O

Remark 6.  Note however that by [11] the inequality

HZ-%@SEZ‘ SCHZI‘Z(@S@

characterizes the weak expectation property, which is strictly more general than

1/2 1/2

max min

nuclearity.

Remark. It would be nice to know exactly which families of pairs of
operator spaces in duality (F,, F¥) can be used instead of F;,, = R, N C,, or
F,, = OH,, to characterize nuclearity (or injectivity) analogously to the above
Theorems 9 and 10 (note that F,, = R, or F,, = C,, obviously do not work).

We will say that a function f: N — R, is “slowly growing” if, for any
e > 0, there is a constant C. such that f(n) < C.n® for all n > 1.

The rest of the paper is devoted to a technical refinement, based on the
following observation: assume that in Theorem 3 the constant C' depends on
n, i.e. C'= C(n) but that it is “slowly growing”. Then N is injective.

Indeed, as for Theorem 3, this observation follows from the same argument
as for [19, Th. 2.9], itself based on [9]. Recall Haagerup’s characterization of
finite injective von Neumann algebras ([9, Lemma 2.2]): N is finite and injective
iff for any n-tuple (u;) of unitaries and any central projection p in N we have

(10) n=|>" pu; @ pul|.

Actually, for this to hold it suffices that there exists a slowly growing function
C(n) such that for any n-tuple (u;) of unitaries and any central projection p in
N we have

(11) n < Oy pui © |-

Indeed, if we set t = > pu; ® pu; and if we apply the preceding inequality
to (¢*t)™, take the m-th root and let m go to infinity, then we find that (11)
implies (10) (a similar trick appears in [9, Lemma 2.2]). Given that this is true,
the above observation can be deduced, first in the case when N is semifinite,
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and then in the general case, from the finite case by the same basic reasoning
as in [9].
The following theorems are then easy to obtain in the same way as above.

Theorem 11.  The following properties of a C*-algebra are equivalent.
(i) A is nuclear.

(ii) There is a slowly growing function C: N — Ry such that for any n and
any C*-algebra B we have:

(12)

V) e A" V) e B |V weu| < Cml@)lrnclw)lrc

max

111 Th616 1S a SZowly g7 szng unctzon C Ii i R Such that o1 a/ny n a/nd
+
any O —algeb7 a B, we ha/Ue.

1/2 1/2

Zyi@)yi

< C(n) HZ T @ Ty

max min min

Corollary 12. A wvon Neumann algebra M is injective iff there is a
slowly growing function C: N — Ry such that, for any n, any mapping
u: A, — M admits an extension u: M, & M, — M such that

[@ller < C(n)lulep-

Remark. Consider a map u: £ — F between operator spaces. Let
y(u) = inf{]|v||ep||w|lcp} where the infimum runs over all Hilbert spaces H
and all possible factorizations u = vw of u through B(H) (herev: B(H) — F
and w: E — B(H)). Let M be a von Neumann algebra. Assume that there is
a constant C so that, for any n, any v : R, NC, — M satisfies v(u) < C||ul|cb.
Then, by the preceding Corollary, M is injective. Actually, even if C = C(n)
depends on n, but grows slowly when n — oo, we conclude that M is injective,
and hence, a posteriori, we can factor through B(H) any u that takes values
in M, regardless of its domain. It seems interesting to investigate which (se-
quences of ) operator spaces have the property that they “force” injectivity like
{R, N C,}. One can show that {OH,} has that property too, but obviously
not {R,} or {C,}, since these are themselves injective !
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