A Similarity Degree Characterization of Nuclear C[∗]**-algebras**

By

Gilles Pisier[∗]

Abstract

We show that a C^* -algebra A is nuclear iff there is a number $\alpha < 3$ and a constant K such that, for any bounded homomorphism $u: A \to B(H)$, there is an isomorphism $\xi: H \to H$ satisfying $\|\xi^{-1}\| \|\xi\| \leq K \|u\|^{\alpha}$ and such that $\xi^{-1}u(.)\xi$ is a ∗-homomorphism. In other words, an infinite dimensional A is nuclear iff its length (in the sense of our previous work on the Kadison similarity problem) is equal to 2.

In 1955, Kadison [14] formulated the following conjecture: any bounded homomorphism u: $A \to B(H)$, from a C^{*}-algebra into the algebra $B(H)$ of all bounded operators on a Hilbert space H , is similar to a ∗-homomorphism, i.e. there is an invertible operator ξ : $H \to H$ such that $x \to \xi u(x)\xi^{-1}$ satisfies $\xi u(x^*)\xi^{-1} = (\xi u(x)\xi^{-1})^*$ for all x in A. This conjecture remains unproved, although many partial results are known (see [4], [10]). In particular, by [10], we know that u is similar to a $*$ -homomorphism iff it is completely bounded (c.b. in short) in the sense of e.g. [17] or [20] (to which we refer for background on c.b. maps). Moreover, we have

$$
||u||_{cb} = \inf{||\xi|| ||\xi^{-1}||}
$$

where the infimum runs over all invertible ξ such that $\xi u(\cdot)\xi^{-1}$ is a ∗-homomorphism. Recall that, by definition, $||u||_{cb} = \sup_{n \geq 1} ||u_n||$ where $u_n: M_n(A) \to$ $M_n(B(H))$ is the mapping taking $[a_{ij}]$ to $[u(a_{ij})]$. Thus Kadison's conjecture

2000 Mathematics Subject Classification(s): Primary 46 L06; Seconday 46L07, 46L57. ∗Partially supported by NSF grant No. 0200690.

e-mail: pisier@math.tamu.edu

c 2006 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Communicated by H. Okamoto. Received July 17, 2005.

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, U. S. A. and Universit´e Paris VI, Equipe d'Analyse, Case 186, 75252, Paris Cedex 05, France.

is equivalent to the validity of the implication $||u|| < \infty \Rightarrow ||u||_{cb} < \infty$. In [18], the author proved that if a C^* -algebra A verifies Kadison's conjecture, then there is a number α for which there exists a constant K so that any bounded homomorphism $u: A \to B(H)$ satisfies $||u||_{cb} \leq K||u||^{\alpha}$. Moreover, the smallest number α with this property is an integer denoted by $d(A)$ (and $\alpha = d(A)$) itself satisfies the property).

An analogous parameter can be defined for a discrete group G and it is proved in [18] that G is amenable iff $d(G) \leq 2$. The main result of this note is the analogous equivalence for C^* -algebras: a C^* -algebra A is nuclear (or equivalently amenable, see below) iff $d(A) \leq 2$. In [18], we could only prove a partial result in this direction.

Let A, B be C[∗]-algebras. Let $|| \cdot ||_{\alpha}$ be a C[∗]-norm on their algebraic tensor product, denoted by $A \otimes B$; as usual, $A \otimes_{\alpha} B$ then denotes the C^* -algebra obtained by completing $A \otimes B$ with respect to $|| \cdot ||_{\alpha}$. By classical results (see [24]) the set of C∗-norms admits a minimal and a maximal element denoted respectively by $\lVert \cdot \rVert_{\text{min}}$ and $\lVert \cdot \rVert_{\text{max}}$. Then A is called nuclear if for any B we have $A \otimes_{\text{min}}$ $B = A \otimes_{\text{max}} B$, or equivalently $||x||_{\text{min}} = ||x||_{\text{max}}$ for any x in $A \otimes B$. We refer the reader to [24], [15] for more information on nuclear C^* -algebras. We note in particular that by results due to Connes and Haagerup $([7], [8])$, a C^* -algebra is nuclear iff it is amenable as a Banach algebra (in B.E. Johnson's sense).

The main result of this note is as follows.

Theorem 1. The following properties of C∗-algebra A are equivalent:

- (i) A is nuclear.
- (ii) There are $\alpha < 3$ and a constant K such that any bounded homomorphism u: $A \to B(H)$ satisfies $||u||_{cb} \leq K||u||^{\alpha}$.
- (iii) Same as (ii) with $K = 1$ and $\alpha = 2$.

The implication (i) \Rightarrow (iii) is well known (see [2], [4]).

In the terminology of [18], the similarity degree $d(A)$ is the smallest α for which the property considered in (ii) above is satisfied. It is proved in [18] that $d(A)$ is always an integer identified as the smallest length of a specific kind of factorization for matrices with entries in A.

With this terminology, the preceding theorem means that A is nuclear iff $d(A) \leq 2$. In the infinite dimensional case, $d(A) > 1$ hence A is nuclear iff $d(A) = 2.$

In his work on derivations (see [4] and [5]) Erik Christensen isolated the following property D_k for a C^* -algebra. Here k is any number $\geq 1/2$. A C^* algebra A has property D_k if for any H, any representation $\pi: A \to B(H)$, and

any T in $B(H)$ the derivation $\delta_T: A \to B(H)$ defined by $\delta_T(a) = \pi(a)T - T\pi(a)$ satisfies

$$
\|\delta_T\|_{cb}\leq 2k\|\delta_T\|.
$$

With this terminology, Theorem 1 implies the following:

Corollary 2. Let A be a C∗-algebra. The following assertions are equivalent.

- (i) A is nuclear.
- (ii) A satisfies property D_k for some $k < 3/2$.
- (iii) A satisfies property D_1 .

Proof. Here again the fact that (i) \Rightarrow (iii) is well known (see [2], [4]). The equivalence between the similarity problem and the derivation problem was established by Kirchberg in [16]. Refining Kirchberg's estimates, the author proved in [18] (see also [20, p. 139]) that property D_k implies that the similarity degree $d(A)$ is at most 2k. Thus (ii) \Rightarrow (i) follows from the corresponding implication in Theorem 1. \Box

The main point in Theorem 1 is (ii) \Rightarrow (i). In our previous work, we could only prove that (ii) implies that A is "semi-nuclear," i.e. that whenever a representation $\pi: A \to B(H)$ generates a semifinite von Neumann algebra, the latter is injective. In this note, we show that the semifiniteness assumption is not needed. We use the same starting point as in [18], but we feel the idea of the present proof is more transparent than the one in [18]. In particular, we will use the following result which is part of Th.2.9 in [19] (obtained independently in [6]), but the latter is inspired by and closely related to Haagerup's Th. 2.1 in [9].

Theorem 3. Let $N \subset B(H)$ be a von Neumann algebra. Then N is injective iff there is a constant C such that, for all n, if elements x_i in N (i = 1,...,n) admit a decomposition $x_i = \alpha_i + \beta_i$ with $\alpha_i, \beta_i \in B(H)$ such that $\|\sum \alpha_i^* \alpha_i\| \leq 1$ and $\|\sum \beta_i \beta_i^*\| \leq 1$, then there is a decomposition $x_i = a_i + b_i$ with $a_i, b_i \in N$ such that $\|\sum a_i^* a_i\| \leq C^2$ and $\|\sum b_i b_i^*\| \leq C^2$.

The preceding statement can be viewed as the analogue for von Neumann algebras of the characterization of amenable discrete groups obtained in [27] (see also $|1|$).

Our main (somewhat) new ingredient is as follows.

Theorem 4. Let $M \subset B(H)$ be a von Neumann algebra with a cyclic vector. Let y_1, \ldots, y_n in M' be such that for any x_1, \ldots, x_n in M we have

(1)
$$
\left\| \sum x_i y_i \right\| \le \max \left\{ \left\| \sum x_i^* x_i \right\|^{1/2}, \left\| \sum x_i x_i^* \right\|^{1/2} \right\}.
$$

Then there is a decomposition

$$
y_i = a_i + b_i
$$

with a_i, b_i in M' such that

$$
\left\|\sum a_i a_i^*\right\| \le 1 \quad and \quad \left\|\sum b_i^* b_i\right\| \le 1.
$$

Proof. We follow a well known kind of argument with roots in [9]; see also [23] and the proof of a theorem due to Kirchberg as presented in [20, §14] that we will follow closely below.

Recall that the "row and column" operator spaces $R_n \subset M_n$ and $C_n \subset M_n$ are defined by:

$$
R_n = \text{span}[e_{1i} | 1 \le i \le n]
$$
 $C_n = \text{span}[e_{i1} | 1 \le i \le n].$

Let $\Delta_n \subset C_n \oplus R_n$ be the operator space spanned by $\delta_i = e_{i1} \oplus e_{1i}$ (i = $1, 2, \ldots, n$. Our assumption means that the linear map

$$
v\colon \Delta_n\otimes_{\min} M\to B(H)
$$

defined by

$$
v\left(\sum \delta_i \otimes x_i\right) = \sum x_i y_i
$$

satisfies $||v|| \leq 1$. (Indeed, it is easy to check that the majorant in (1) is equal to $\|\sum \delta_i \otimes x_i\|_{\min}$.)

Since v is clearly a two-sided M-module map and M has a cyclic vector, it follows by [22] (and unpublished work of Haagerup) that $||v||_{cb} = ||v|| \leq 1$.

Therefore, by a result due to Wittstock $[26]$ (see also $[23]$), v can be extended to a two-sided M-module map \tilde{v} : $[C_n \oplus R_n] \otimes_{\min} M \to B(H)$ with $\|\tilde{v}\|_{cb} \leq 1$. Let $a_i = \tilde{v}([e_{i1} \oplus 0] \otimes 1)$ and $b_i = \tilde{v}([0 \oplus e_{1i}] \otimes 1)$. Then we have clearly $\|\sum a_i a_i^*\|^{1/2} \leq \|\tilde{v}\|_{cb} \leq 1$ and similarly $\|\sum b_i^* b_i\|^{1/2} \leq 1$. Moreover, since \tilde{v} is an M-module map, for any m in M and any z in $C_n \oplus R_n$, we must have $m.\tilde{v}(z \otimes 1) = \tilde{v}(z \otimes m) = \tilde{v}(z \otimes 1) \ldots m$ and hence $\tilde{v}(z \otimes 1) \in M'$. Thus a_i and b_i are in M' . □

Remark 1. It is easy to see that the preceding result fails without the cyclicity assumption: Just consider the case $M = \mathbb{C}$ and $M' = B(H)$ with $dim(H) = \infty$.

Remark 2. The same proof gives a criterion for a map $u: E \to M'$ defined on a subspace $E \subset A$ of a general C^* -algebra A to admit an extension $\tilde{u}: A \to M'$ with $\|\tilde{u}\|_{dec} \leq 1$. This is essentially the same as Kirchberg's [20, Th. 14.6].

Remark 3. The above Theorem 4 may be viewed as an analogue for the operator space $R_n + C_n$ of Haagerup's [9, Lemma 3.5] devoted to the operator space ℓ_1^n equipped with its maximal structure, in the Blecher-Paulsen sense (see e.g. [20, §3]). Note that while he decomposes into products, we decompose into sums.

Remark 4. Let (E_0, E_1) be a compatible pair of operator spaces in the sense of [20, §2.7]. Then Remark 2 gives a sufficient criterion for a map $u: E_0 +$ $E_1 \rightarrow M'$ to admit a decomposition $u = u_0 + u_1$ with $u_0: E_0 \rightarrow M'$ and $u_1: E_1 \to M'$ satisfying $||u_0||_{cb} \leq 1$ and $||u_1||_{cb} \leq 1$. Assume that $E_0 \subset A_0$ and $E_1 \subset A_1$, where A_0, A_1 are C^* -algebras, then this criterion actually ensures that there are extensions

$$
\tilde{u}_0
$$
: $A_0 \to M'$ and \tilde{u}_1 : $A_1 \to M'$

with $\|\tilde{u}_0\|_{dec} \leq 1$ and $\|\tilde{u}_1\|_{dec} \leq 1$. In that formulation, the converse also holds up to a numerical factor 2. Note that, in the special case of interest to us, when $E_0 = C$ and $E_1 = R$, then we can take A_0, A_1 equal to $K(\ell_2)$ (hence nuclear) so that the min and max norms are identical on $(A_0 \oplus A_1) \otimes M$.

Notation. Let $A \subset B(H)$ be any C^{*}-subalgebra. For any x_1, \ldots, x_n and y_1, \ldots, y_n in A, we denote

(2)
$$
\| (x_j) \|_{R \cap C} = \max \left\{ \left\| \sum x_j^* x_j \right\|^{1/2}, \left\| \sum x_j x_j^* \right\|^{1/2} \right\}
$$

(3)
$$
\| (y_j) \|_{R+C} = \inf \left\{ \left\| \sum \alpha_j^* \alpha_j \right\|^{1/2} + \left\| \sum \beta_j \beta_j^* \right\|^{1/2} \right\},
$$

where the infimum runs over all α_j , β_j in $B(H)$ such that $y_j = \alpha_j + \beta_j$. Note that, by the injectivity of $B(H)$, the definition of $\|(y_i)\|_{R+C}$ does not really depend on the choice of H or of the embedding $A \subset B(H)$. The corresponding fact for $\|(x_j)\|_{R\cap C}$ is obvious.

Corollary 5. Let $M \subset B(H)$ be a von Neumann algebra. Then M is injective iff there is a constant C such that, for all n, all x_1, \ldots, x_n in M and y_1, \ldots, y_n in M' , we have

(4)
$$
\left\| \sum x_i y_i \right\| \leq C \| (x_i) \|_{R \cap C} \| (y_i) \|_{R+C}.
$$

Proof. If M has a cyclic vector, then this follows immediately from Theorems 3 and 4 and the well known fact that M' is injective iff M is injective (see [25, p. 174]). Now assume that M has a finite cyclic set, i.e. there are ξ_1, \ldots, ξ_N in H such that $M\xi_1 + \cdots + M\xi_N$ is dense in H. Then the vector (ξ_1, \ldots, ξ_N) in H^N is cyclic for $M_N(M) \subset M_N(B(H))$. Moreover, it is easy to check that (4) remains true for $M_N(M)$ but with C replaced by a constant $C(N)$ (possibly unbounded when N grows). Nevertheless, by the first part of the proof it follows that $M_N(M)$ is injective and hence, a fortiori, M is injective.

In the general case, let $\{\xi_i \mid i \in I\}$ be a dense subset of H. For any finite subset $J \subset I$, let H_J be the closure of

$$
\left\{\sum_{j\in J}a_j(\xi_j)\mid a_j\in M\right\}.
$$

Note that H_J is an invariant subspace for M, so that (since M is self-adjoint) the orthogonal projection $P_J: H \to H_J$ belongs to M'. Let $\pi_J(a)$ denote the restriction of a to H_J. Then $\pi_J: M \to B(H_J)$ is a normal representation, $\pi_J(M)$ admits a finite cyclic set (namely $\{\xi_i \mid i \in J\}$), and it is easy to check that our assumption (4) is still verified by $\pi_J(M)$ on H_J .

Thus, by the first part of the proof, $\pi_J(M)$ is injective. This clearly implies that the von Neumann algebra $M_J \subset B(H)$ generated by $P_J M$ and $I - P_J$ also is injective. Finally, since M is the weak-∗ closure of the directed union of the M_I 's, we conclude that M itself is injective.

Conversely, if M injective then, by Remark 5 below, (4) holds with $C = 1$. \Box

Remark 5. Let $M \subset B(H)$ be an injective von Neumann algebra, so that there is a projection $P: B(H) \to M'$ with $||P||_{cb} = 1$. Then M satisfies (4) with $C = 1$. To see this, assume $y_i \in M'$ and $||(y_i)||_{R+C} < 1$, so that $y_i = \alpha_i + \beta_i$ with $\|\Sigma \alpha_i^* \alpha_i \|^{1/2} + \|\Sigma \beta_i \beta_i^* \|^{1/2} < 1$. Then $y_i = a_i + b_i$ with $a_i, b_i \in M'$ satisfying

$$
\left\| \sum a_i^* a_i \right\|^{1/2} + \left\| \sum b_i b_i^* \right\|^{1/2} \leq \|P\|_{cb} = 1.
$$

Indeed, $a_i = P\alpha_i$ and $b_i = P\beta_i$ clearly verify this.

Then for any x_1, \ldots, x_n in M we have by Cauchy-Schwarz

$$
\left\| \sum x_i a_i \right\| \le \left\| \sum x_i x_i^* \right\|^{1/2} \left\| \sum a_i^* a_i \right\|^{1/2}
$$

and

$$
\left\| \sum b_i x_i \right\| \le \left\| \sum x_i^* x_i \right\|^{1/2} \left\| \sum b_i b_i^* \right\|^{1/2},
$$

therefore, since

$$
\left\|\sum x_i y_i\right\| \le \left\|\sum x_i a_i\right\| + \left\|\sum b_i x_i\right\|,
$$

we obtain finally

$$
\left\| \sum x_i y_i \right\| \leq \| (x_i) \|_{R \cap C} \| (y_i) \|_{R+C}.
$$

We will also use:

Theorem 6 ([18]). A unital operator algebra A satisfies property (ii) in Theorem 1 iff we have: (iv) There is a constant K' satisfying the following: for any linear map u: $A \rightarrow B(H)$ for which there are a Hilbert space K, bounded linear maps v_1, w_1 from A to $B(K, H)$ and v_2, w_2 from A to $B(H, K)$ such that

(5)
$$
\forall a, b \in A \qquad u(ab) = v_1(a)v_2(b) + w_1(a)w_2(b)
$$

we have

$$
||u||_{cb} \leq K'(||v_1|| ||v_2|| + ||w_1|| ||w_2||).
$$

Remark. Note that (5) implies that the bilinear map $(a, b) \rightarrow u(ab)$ is c.b. on $\max(A) \otimes_h \max(A)$ with c.b. norm $\leq K'(\|v_1\| \|v_2\| + \|w_1\| \|w_2\|)$. Thus, Theorem 6 follows from the case $d = 2$ of [18, Th. 4.2].

Another ingredient is the following Lemma which can be derived from [13] or from the more recent paper [21].

Lemma 7. Let E be a finite dimensional operator space and let A be $a C^*$ -algebra. Assume that E is a "maximal" operator space (equivalently that E^* is a minimal one). Then for any c.b. map u: $A \rightarrow E$ we have

$$
\forall n \ \forall a_1, \dots, a_n \in A \qquad \forall \xi_i \in E^*
$$

(6)
$$
\left| \sum \langle u(a_j), \xi_j \rangle \right| \leq C \|u\|_{cb} \left(\left\| \sum a_j^* a_j \right\|^{1/2} + \left\| \sum a_j a_j^* \right\|^{1/2} \right)
$$

$$
\cdot \sup_{x \in E} \left(\sum |\xi_j(x)|^2 \right)^{1/2}
$$

where C is a numerical constant.

Proof. We may apply [13, Th. 1.4], arguing as in [18, Lemma 6.3] (using [19, Th. 17.13] to remove the exactness assumption) this yields (6) with $C = 2$. Or we may invoke [21, Th. 0.3] taking into account [21, Lemma 2.3] (to remove the exactness assumption) and then we again obtain (6) with $C = 2$. \Box

For the convenience of the reader, we reproduce here the elementary Lemma 8 from [18].

Lemma 8. Let (e_i) be the canonical basis of the operator space $\max(\ell_2)$. Let H be any Hilbert space and let X be either $B(\mathbb{C},H)$ or $B(H^*,\mathbb{C})$, or equivalently let X be either the column Hilbert space or the row Hilbert space. Then for all x_1, \ldots, x_n in X we have

$$
\left\|\sum_{1}^{n}x_{i}\otimes e_{i}\right\|_{X\otimes_{\min} \max(\ell_{2})} \leq \left(\sum \|x_{i}\|^{2}\right)^{1/2}.
$$

Proof. Assume $X = B(\mathbb{C}, H)$ or $B(H^*, \mathbb{C})$. We identify X with H as a vector space. Let (δ_m) be an orthonormal basis in H. Observe that for any finite sequence a_m in $B(\ell_2)$ we have in both cases

$$
\left\| \sum \delta_m \otimes a_m \right\|_{\min} \leq \left(\sum \|a_m\|^2 \right)^{1/2}.
$$

whence we have, for any x_1, \ldots, x_n in X,

$$
\left\| \sum x_i \otimes e_i \right\| = \left\| \sum_m \delta_m \otimes \sum_i \langle x_i, \delta_m \rangle e_i \right\|
$$

$$
\leq \left(\sum_m \left\| \sum_i \langle x_i, \delta_m \rangle e_i \right\|^2 \right)^{1/2}
$$

$$
= \left(\sum_{m,i} |\langle x_i, \delta_m \rangle|^2 \right)^{1/2} = \left(\sum_i \|x_i\|^2 \right)^{1/2}
$$

 \Box

.

Proof of Theorem 1. As we already observed, it suffices to show that (ii) implies that A is nuclear. Let $\pi: A \to B(H)$ be a representation and let $M = \pi(A)''$. Using Theorem 6 and Corollary 5, we will show that (ii) implies that M is injective. By the well known results of Choi–Effros and Connes (see [3]), this implies that A is nuclear. Since $\pi(A) \simeq A/\text{ker}(\pi)$ is a quotient of A, it obviously inherits the property (ii). Thus we may as well replace $\pi(A)$ by A: we assume $A \subset B(H)$ and let $M = A''$. It suffices to show that M is injective.

Claim. We claim that for any x_1, \ldots, x_n in M and y_1, \ldots, y_n in M' we have

(7)
$$
\left\| \sum x_j y_j \right\| \leq 4K'C \|(x_j)\|_{R \cap C} \|(y_j)\|_{R+C}.
$$

Note: It may be worthwhile for the reader to note that $\|(y_i)\|_{R+C}$ is (up to a factor 2) in operator space duality with $\|(x_i)\|_{R\cap C}$, namely if we set

$$
|||(y_j)||| = \sup \left\{ \left\| \sum x_j \otimes y_j \right\|_{\min} \right\}
$$

where the sup runs over all (x_i) in $B(\ell_2)$ such that $\|(x_i)\|_{R\cap C} \leq 1$, then we have (see e.g. $[12]$)

$$
|||(y_j)||| \le ||(y_j)||_{R+C} \le 2|||(y_j)|||.
$$

To prove (7) we introduce the operator space $E = \max(\ell_2^n)$, that is ndimensional Hilbert space equipped with its "maximal" operator space structure in the Blecher-Paulsen sense (see [20, §3]). Let us now fix an *n*-tuple (y_i) in M' such that $\|(y_i)\|_{R+C} < 1$. In addition, we fix ξ, η in the unit sphere of H. Then we define a linear map $u: M \to E$ as follows:

$$
u(x)=\sum\nolimits_j\langle xy_j\xi,\eta\rangle e_j
$$

where e_j is the canonical basis of ℓ_2^n . We will assume that $E \subset B(K)$ completely isometrically. The reader may prefer to consider instead of u, the bilinear form $(x,\xi) \to \langle u(x), \xi \rangle$ defined on $M \times E^*$ where E^* is now ℓ_2^n equipped with its "minimal" (or commutative) operator space structure obtained by embedding it isometrically into a *commutative* C^* -algebra. We will now apply Theorem 6 to u.

Since we assume $\|(y_i)\|_{R+C} < 1$, we can write

$$
y_j = \alpha_j + \beta_j
$$

with $\|\Sigma\alpha_j^*\alpha_j\| < 1$ and $\|\Sigma\beta_j\beta_j^*\| < 1$. Note that, since $y_j \in M'$, for all a, b in M we have

$$
aby_j = ay_jb
$$

and hence

$$
u(ab) = V(a,b) + W(a,b)
$$

where

$$
V(a,b) = \sum \langle a\alpha_j b\xi, \eta \rangle e_j
$$

$$
W(a,b) = \sum \langle a\beta_j b\xi, \eta \rangle e_j.
$$

We now claim that we can write for all a, b in M

(8)
$$
V(a,b) = v_1(a)v_2(b)
$$
 and $W(a,b) = w_1(a)w_2(b)$

where

$$
v_1: M \to B(H \otimes K, K), \quad w_1: M \to B(H \otimes K, K)
$$

$$
v_2: M \to B(K, H \otimes K), \quad w_2: M \to B(K, H \otimes K)
$$

are linear maps all with norm ≤ 1 .

Indeed, let us set for $h \in H$, $k \in K$

$$
v_1(a)(h \otimes k) = \sum_j \langle a\beta_j h, \eta \rangle e_j k
$$

$$
w_1(a)(h \otimes k) = \langle ah, \eta \rangle k
$$

$$
v_2(b)(k) = b\xi \otimes k
$$

$$
w_2(b)(k) = \sum_j \alpha_j b\xi \otimes e_j k.
$$

Then, it is easy to check (8). Also, we have trivially

$$
||w_1(a)|| = ||a^*\eta|| \le ||a||
$$

$$
||v_2(b)|| = ||b\xi|| \le ||b||.
$$

Moreover, by Lemma 8 we have

$$
||v_1(a)||^2 \le \sum_j ||\beta_j^* a^* \eta||^2 = \left\langle \sum \beta_j \beta_j^* a^* \eta, a^* \eta \right\rangle
$$

\n
$$
\le ||a^* \eta||^2 \le ||a||^2
$$

\n
$$
||w_2(b)||^2 \le \sum_j ||\alpha_j b \xi||^2 = \left\langle \sum \alpha_j^* \alpha_j b \xi, b \xi \right\rangle
$$

\n
$$
\le ||b \xi||^2 \le ||b||^2.
$$

By Theorem 6, it follows that

$$
||u_{|A}||_{cb} \le 2K'.
$$

Since $u: M \to B(K)$ is clearly normal (i.e. $\sigma(M, M_*)$) continuous) and since A is $\sigma(M,M_*)$ dense in M, we clearly have (by the Kaplansky density theorem)

$$
||u||_{cb} = ||u_{|A}||_{cb} \le 2K'.
$$

Then by Lemma 7, applied with ξ_i biorthogonal to e_i , we have

$$
\forall n \ \forall x_1, \ldots, x_n \in M \qquad \left| \left\langle \sum x_j y_j \xi, \eta \right\rangle \right| \leq 4K'C \|(x_j)\|_{R \cap C}.
$$

Hence, taking the supremum over ξ, η and using homogeneity, we obtain the claimed inequality (7) . Then, by Corollary 5, M is injective. 口

Remark. Since Lemma 4 actually holds whenever A is an exact operator space (with C replaced by twice the exactness constant [13], [21]), the proof of Theorem 1 shows that any unital, exact (non selfadjoint) operator algebra $A \subset B(H)$ with $d(A) \leq 2$ in the sense of [18] satisfies (4) for some C.

The preceding arguments establish the following result of independent interest.

Theorem 9. A C^* -algebra A is nuclear iff for any C^* -algebra B there is a constant C such that, for all n, all x_1, \ldots, x_n in A and all y_1, \ldots, y_n in B we have

(9)
$$
\left\| \sum x_i \otimes y_i \right\|_{\max} \leq C \| (x_i) \|_{R \cap C} \| (y_i) \|_{R+C}.
$$

Proof. Let π : $A \to B(H)$ be a representation. Taking $B = \pi(A)'$ (and using the fact that the set of n-tuples (x_i) in A^{**} with $||(x_i)||_{R\cap C} \leq 1$ is the weak- $*$ closure of its intersection with $Aⁿ$, see e.g. [20, p. 303]) we see that (9) implies (4) for $M = \pi(A)''$. Since this holds for any π , we may argue as in the preceding proof (replacing π by π_J) to conclude that $\pi(A)''$ is injective, and hence that A is nuclear. Conversely, if A is nuclear it is easy to show (see Remark 5) that (9) holds with $C = 1$. \Box

Theorem 10. A C^* -algebra A is nuclear iff for any C^* -algebra B there is a constant C such that for all n, all x_1, \ldots, x_n in A and all y_1, \ldots, y_n in B we have

$$
\left\| \sum x_i \otimes y_i \right\|_{\max} \leq C \left\| \sum x_i \otimes \bar{x}_i \right\|_{\min}^{1/2} \left\| \sum y_i \otimes \bar{y}_i \right\|_{\min}^{1/2},
$$

where the min norms are relative to $A \otimes \overline{A}$ and $B \otimes \overline{B}$.

Proof. It is known (see [19, (2.12)]) that $\|\Sigma x_i \otimes \bar{x}_i\|_{\min}^{1/2} \leq \| (x_i) \|_{R \cap C}$. Thus, arguing as above, we find that for any representation π : $A \rightarrow B(H)$ the von Neumann algebra $M = \pi(A)''$ satisfies the following: if y_1, \ldots, y_n in M' are such that $\|\Sigma y_i \otimes \bar{y}_i\|_{\min} < 1$, then there are a_i, b_i in M' with $y_i = a_i + b_i$ such that $\|\sum a_i^* a_i\|^{1/2} < C$ and $\|\sum b_i b_i^*\|^{1/2} < C$. By [19, Th. 2.9], this ensures that M' is injective, and hence A is nuclear. \Box

Remark 6. Note however that by [11] the inequality

$$
\left\| \sum x_i \otimes \bar{x}_i \right\|_{\max}^{1/2} \le C \left\| \sum x_i \otimes \bar{x}_i \right\|_{\min}^{1/2}
$$

characterizes the weak expectation property, which is strictly more general than nuclearity.

Remark. It would be nice to know exactly which families of pairs of operator spaces in duality (F_n, F_n^*) can be used instead of $F_n = R_n \cap C_n$ or $F_n = O H_n$ to characterize nuclearity (or injectivity) analogously to the above Theorems 9 and 10 (note that $F_n = R_n$ or $F_n = C_n$ obviously do not work).

We will say that a function $f: \mathbb{N} \to \mathbb{R}_+$ is "slowly growing" if, for any $\varepsilon > 0$, there is a constant C_{ε} such that $f(n) \leq C_{\varepsilon} n^{\varepsilon}$ for all $n \geq 1$.

The rest of the paper is devoted to a technical refinement, based on the following observation: assume that in Theorem 3 the constant C depends on n, i.e. $C = C(n)$ but that it is "slowly growing". Then N is injective.

Indeed, as for Theorem 3, this observation follows from the same argument as for [19, Th. 2.9], itself based on [9]. Recall Haagerup's characterization of finite injective von Neumann algebras $([9, Lemma 2.2])$: N is finite and injective iff for any n-tuple (u_i) of unitaries and any central projection p in N we have

(10)
$$
n = \|\sum pu_i \otimes \overline{pu_i}\|.
$$

Actually, for this to hold it suffices that there exists a slowly growing function $C(n)$ such that for any *n*-tuple (u_i) of unitaries and any central projection p in N we have

(11)
$$
n \leq C(n) \|\sum p u_i \otimes \overline{pu_i}\|.
$$

Indeed, if we set $t = \sum p u_i \otimes \overline{pu_i}$ and if we apply the preceding inequality to $(t^*t)^m$, take the m-th root and let m go to infinity, then we find that (11) implies (10) (a similar trick appears in [9, Lemma 2.2]). Given that this is true, the above observation can be deduced, first in the case when N is semifinite,

and then in the general case, from the finite case by the same basic reasoning as in [9].

The following theorems are then easy to obtain in the same way as above.

Theorem 11. The following properties of a C^* -algebra are equivalent.

- (i) A is nuclear.
- (ii) There is a slowly growing function $C: \mathbb{N} \to \mathbb{R}_+$ such that for any n and any C^* -algebra B we have:
- (12)

$$
\forall (x_i) \in A^n \quad \forall (y_i) \in B^n \qquad \left\| \sum x_i \otimes y_i \right\|_{\max} \leq C(n) \|(x_i)\|_{R \cap C} \|(y_i)\|_{R+C}.
$$

- (iii) There is a slowly growing function $C: \mathbb{N} \to \mathbb{R}_+$ such that for any n and any C^* -algebra B , we have:
- (13)

$$
\forall (x_i) \in A^n \quad \forall (y_i) \in B^n
$$

$$
\left\| \sum x_i \otimes y_i \right\|_{\max} \leq C(n) \left\| \sum x_i \otimes \bar{x}_i \right\|_{\min}^{1/2} \left\| \sum y_i \otimes \bar{y}_i \right\|_{\min}^{1/2}.
$$

Corollary 12. A von Neumann algebra M is injective iff there is a slowly growing function $C: \mathbb{N} \to \mathbb{R}_+$ such that, for any n, any mapping u: $\Delta_n \to M$ admits an extension \tilde{u} : $M_n \oplus M_n \to M$ such that

$$
\|\tilde{u}\|_{cb} \leq C(n) \|u\|_{cb}.
$$

Remark. Consider a map $u: E \to F$ between operator spaces. Let $\gamma(u) = \inf \{ ||v||_{cb} ||w||_{cb} \}$ where the infimum runs over all Hilbert spaces H and all possible factorizations $u = vw$ of u through $B(H)$ (here $v : B(H) \to F$ and $w: E \to B(H)$. Let M be a von Neumann algebra. Assume that there is a constant C so that, for any n, any $u: R_n \cap C_n \to M$ satisfies $\gamma(u) \leq C ||u||_{cb}$. Then, by the preceding Corollary, M is injective. Actually, even if $C = C(n)$ depends on n, but grows slowly when $n \to \infty$, we conclude that M is injective, and hence, a posteriori, we can factor through $B(H)$ any u that takes values in M, regardless of its domain. It seems interesting to investigate which (sequences of) operator spaces have the property that they "force" injectivity like ${R_n \cap C_n}$. One can show that ${OH_n}$ has that property too, but obviously not $\{R_n\}$ or $\{C_n\}$, since these are themselves injective !

References

- [1] Bozejko, M., Positive definite bounded matrices and a characterization of amenable groups, Proc. Amer. Math. Soc., **95** (1985), 357-360.
- [2] Bunce, J. W., The similarity problem for representations of C∗-algebras, Proc. Amer. Math. Soc., **81** (1981), 409-414.
- [3] Choi, M. D. and Effros, E., Nuclear C^* -algebras and injectivity: The general case, Indiana Univ. Math. J., **26** (1977), 443-446.
- [4] Christensen, E., On non self adjoint representations of operator algebras, Amer. J. Math., **103** (1981), 817-834.
- [5] , Near inclusions of C∗-algebras, Acta Math., **144** (1980), 249-265.
- [6] Christensen, E. and Sinclair, A., On von Neumann algebras which are complemented subspaces of B(H), J. Funct. Anal., **122** (1994), 91-102.
- [7] Connes, A., On the cohomology of operator algebras, J. Funct. Anal., **28** (1978), 248- 253.
- [8] Haagerup, U., All nuclear C∗-algebras are amenable, Invent. Math., **74** (1983), 305-319.
- [9] ______, Injectivity and decomposition of completely bounded maps, *Operator algebras* and their connections with topology and ergodic theory (Busteni, 1983), 170-222, Lecture Notes in Math., 1132, Springer, Berlin, 1985.
- [10] , Solution of the similarity problem for cyclic representations of C^* -algebras, Ann. Math., **118** (1983), 215-240.
- [11] , Self-polar forms, conditional expectations and the weak expectation property for C^* -algebras, Unpublished manuscript (1995).
- [12] Haagerup, U. and Pisier, G., Bounded linear operators between C∗-algebras, Duke Math. J., **71** (1993), 889-925.
- [13] Junge, M. and Pisier, G., Bilinear forms on exact operator spaces and $B(H) \otimes B(H)$, Geom. Funct. Anal., **5** (1995), 329-363.
- [14] Kadison, R., On the orthogonalization of operator representations, Amer. J. Math., **77** (1955), 600-620.
- [15] Kadison, R. and Ringrose, J., Fundamentals of the theory of operator algebras, Vol. II, Advanced Theory, Academic Press, New-York, 1986.
- [16] Kirchberg, E., The derivation and the similarity problem are equivalent, J. Operator Theory, **36** (1996), 59-62.
- [17] Paulsen, V., Completely bounded maps and operator algebras, Cambridge University Press, Cambridge, 2002.
- [18] Pisier, G., The similarity degree of an operator algebra, St. Petersburg Math. J., **10** (1999), 103-146.
- [19] $____\$, The operator Hilbert space *OH*, complex interpolation and tensor norms, *Mem.* Amer. Math. Soc., **122** (1996), 1-103.
- [20] $____\$, Introduction to Operator Space Theory, Cambridge Univ. Press, 2003.
- [21] Shlyakhtenko, D. and Pisier, G., Grothendieck's theorem for operator spaces, *Invent.* Math., **150** (2002), 185-217.
- [22] Smith, R. R., Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal., **102** (1991), 156-175.
- [23] Suen, C. Y., Completely bounded maps on C∗-algebras, Proc. Amer. Math. Soc., **93** (1985), 81-87.
- [24] Takesaki, M., Theory of Operator Algebras I, Springer-Verlag, New-York, 1979.
- [25] $____\$ n, Theory of Operator Algebras III, Springer-Verlag, New-York, 2002.
- [26] Wittstock, G., Ein operatorwertiger Hahn-Banach Satz. (German) [An operator-valued Hahn-Banach theorem], J. Funct. Anal., **40** (1981), 127-150.
- [27] Wysoczanski, J., Characterization of amenable groups and the Littlewood functions on free groups, Colloq. Math., **55** (1988), 261-265.