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On the Morawetz—Keel-Smith-Sogge
Inequality for the Wave Equation

on a Curved Background

By

Serge Alinhac
∗

Introduction

In their paper [8], Keel, Smith and Sogge establish an improved standard
energy inequality for the wave equation, where the energy right-hand side con-
trols the energy and also

[log(2 + t)]−1/2

(∫ ∫ t

0

(1 + r)−1|∂u|2dxdt′
)1/2

.

They obtain this inequality in space dimension n = 3 using the strong Huy-
gens principle and clever cut-offs. In particular, the inequality shows that, for
energy data, the local energy of the solution in, say, r ≤ 1, is almost inte-
grable in t (and not just bounded as it is close to the light cone). Similar ideas
where introduced long ago by Morawetz [15] and have been also developed by
Mochizuki and Matsuyama [12], [14]. This improved energy inequality, which
we call Morawetz/KSS inequality from the names of the mathematicians who
found it, has been used by them to solve semilinear and quasilinear exterior
boundary value problems [8], [9]. It has been also extended to higher dimen-
sions by Metcalfe [12] and used in the context of quasilinear wave equations or
systems by Metcalfe [12] and Hidano and Yokoyama [6].

In [2] (developing an idea from [1]), we also proved an improved standard
energy inequality, in which the “good derivatives” Ti = ∂i +(xi/r)∂t are shown
to behave better close to the light cone. We display this inequality in two
slightly different settings : a pure coordinate approach, and a more geometric
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706 Serge Alinhac

approach in the spirit of Christodoulou and Klainerman [5], Klainerman and
Nicolò [10]. This inequality plays also a crucial role in the work of Lindblad
and Rodniansky [11], and in Alinhac [3], [4].

Thus it seemed interesting to us to try to obtain both inequalities on a
curved background; since many bad terms of one inequality have to be con-
trolled by good terms of the other, both inequalities have to be proved to-
gether. The remarkable fact here is that the conditions on the metric to obtain
one or the other inequality are essentially the same, thus allowing relatively
light assumptions. In this paper, using a multiplier technique in the spirit of
the original Morawetz paper [13] and of [12], [14], we present two versions (co-
ordinate and geometric) of this inequality. It turns out that very little decay of
the perturbed metric is required close to the light cone or to the t-axis, while
we still have to require rather strong decay for r >> t or inbetween the t-axis
and the light cone. We hope that this variable coefficients extension will turn
out to be useful for nonlinear problems as well.

§1. Perturbed Wave Equations : the Coordinate Approach

Let us consider an operator with real coefficients in Rn
x × Rt (n ≥ 3)

Pu ≡ ∂2
t u − Σ1≤i,j≤ngij∂2

iju + Σ0≤α≤naα∂αu,

where as usual

x0 = t, x = (x1, . . . , xn), r = |x|, x = rω, ω0 = −1,

σ = (1 + (r − t)2)1/2 =< r − t > .

In the following, we will sometimes omit the sum sign, and write for instance
gij∂2

iju instead of Σgij∂2
iju, etc. We denote

gij = δij + γij , γij = γji, c2 = Σgijωiωj = 1 + Σγijωiωj , c > 0,

and assume, for some constant 0 ≤ K < 1,

|Σγijξiξj | ≤ K|ξ|2.

For a real u we define the energy

E(u)(t) = E(t) =
∫

((∂tu)2 + |∂xu|2)dx.

We will also use the standard Lorentz fields Z

∂α, R = x ∧ ∂x, Hi = t∂i + xi∂t, S = t∂t + r∂r
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and the special derivatives

Ti = ∂i + ωi∂t, T0 = 0,

which span the tangent space to the outgoing cones r − t = C. Remark that
we have the relations

∂r = Σωi∂i, ∂i = ωi∂r − (ω ∧ R/r)i,

(t + r)(∂t + ∂r) = S + ΣωiHi, R/r = t−1ω ∧ H,

Ti = (∂i − ωi∂r) + ωi(∂t + ∂r).

These imply the pointwise estimate

|Tiu| ≤ C(1 + t + r)−1Σ|Zu|,(1.1)

while the following estimate follows from [6] (p. 118)

|∂u| ≤ Cσ−1Σ|Zu|.(1.2)

Theorem 1. Assume that the coefficients of P satisfy, for some η > 0,

|γ| ≤ C(1 + t + r)−η, |a| + |∂γ| ≤ C(1 + t + r)
1
2−η(1 + r)−1 < r − t >−1/2,

|∂2γ| ≤ C(1 + t + r)
3
2−η(1 + r)−2 < r − t >−3/2,

and, for (1 + t)/2 ≤ r ≤ 2(1 + t) and all fields Z,

|Zγ| ≤ C(1 + t)−η, |Z∂γ| ≤ C(1 + t)−
1
2−η < r − t >−1/2 .

Then, for any ε > 0, there exists Cε such that, for all t ≥ 0 and all u sufficiently
vanishing at infinity, we have the inequality

(1.3)

E(t) + Σ
∫

Dt

σ−1[log(1 + σ)]−1−ε|Tiu(x, t′)|2dxdt′

+ Σ
∫

Dt

(1 + r)−1[log(2 + r)]−1−ε|∂αu(x, t′)|2dxdt′

+ Σ
∫

Dt

1
(1 + r)

|∂iu − ωi∂ru|2dxdt′ +
∫

Dt

u2

r(1 + r)2[log(2 + r)]1+ε
dxdt′

≤ CεE(0) + Cε

∫
Dt

|Pu|
[
|∂tu| +

∣∣∣∣∂ru +
n − 1

2
u/r

∣∣∣∣
]

dxdt′

+ Cε

∫ t

0

A(t′)E(t′)dt′.
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Here, Dt is the strip
Dt = {(x, t′), 0 ≤ t′ ≤ t},

while the amplification factor A is

A(t) = |σ−1(c − 1)|L∞
x

+ |∂tc|L∞
x

+ |σ1+ε∂2
t c|L∞

x
+ |aαωα|L∞

x
.

It is understood here that the L∞ norms in the definition of A are taken only
for (1 + t)/2 ≤ r ≤ 2(1 + t).

Proof. In the whole paper, we will distinguish the three regions

I = {r ≤ (1 + t)/2}, II = {(1 + t)/2 ≤ r ≤ 2(1 + t)}, III = {r ≥ 2(1 + t)}.

We use ε > 0 to denote any strictly positive number, which may vary from one
line to another.

1. We have to revisit the proof of Theorem 1 of [2], since the assumptions
on γ are now weaker. We have, with p = b(r − t),

2epPu∂tu = ∂t[ep((∂tu)2 + gij(∂iu)(∂ju))] + Σ∂i(. . . ) + epQ,

Q = b′gijTiuTju − ∂tγ
ijTiuTju + 2Tiγ

ijTju∂tu + 2aiTiu∂tu

+(∂tu)2[−2Tiγ
ijωj + ∂tγ

ijωiωj − 2aαωα − b′γijωiωj ].

We choose here b′(s) = C0 < s >−1 [log(1+ < s >)]−1−ε.
a. In region I,

|a| + |∂γ| + |b′γ| ≤ C(1 + r)−1(1 + t)−ε,

so that∫
I

epQdxdt′ ≥
∫

I

epb′gijTiuTjudxdt′ − C

∫
I

|∂u|2
1 + r

(1 + t′)−εdxdt′.

b. In region III,

|a| + |∂γ| + |b′γ| ≤ C(1 + r)−1−ε,

so that∫
III

epQdxdt′ ≥
∫

III

epb′gijTiuTjudxdt′ − C

∫
III

(1 + t′)−1−ε|∂u|2dxdt′.

c. In region II, with a small ε′ to be chosen later,

(|a| + |∂γ|)|Tu∂u| ≤ Cε′σ−1−ε(Tu)2 + (C/ε′)(1 + t)−1−ε(∂u)2.
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On the other hand, |Tγ| ≤ C(1 + t)−1−ε, hence finally for ε′ > 0 small enough∫
II

epQ ≥ (1/2)
∫

II

epgijTiuTjudxdt′ − C

∫
II

(1 + t′)−1−ε|∂u|2dxdt′.

Putting together the three inequalities, we obtain

E(t) +
∫

Dt

σ−1[log(1 + σ)]−1−ε|Tu|2dxdt′ ≤ Cε

{
E(0) +

∫
Dt

|Pu||∂tu|dxdt′

+
∫

I

|∂u|2
1 + r

(1 + t′)−εdxdt′ +
∫ t

0

(1 + t′)−1−εE(t′)dt′ +
∫ t

0

A1(t′)E(t′)dt′
}

,

with

A1(t) = |∂tc| + |aαωα| + |σ−1(c − 1)|.

2. We turn now to the Morawetz type argument yielding the additional
inside control. We compute∫

Dt

Puζ

(
r∂ru +

n − 1
2

u

)
dxdt′

for some ζ = ζ(r) to be chosen. For simplicity, we give the proof only for
n = 3, the case n ≥ 4 being exactly similar and yielding slightly better terms.
Integrating by parts as usual, we find

Puζr∂ru = ∂t(rζ∂tu∂ru) + Σ∂i(. . . )

+ (rζ)[∂jγ
ij∂iu∂ru − (1/2)(∂rγ

ij)∂iu∂ju + aα∂αu∂ru]

+ (1/2)(3ζ + rζ ′)(∂tu)2 − (1/2)(ζ − rζ ′)gij∂iu∂ju − rζ ′gij∂iu(∂ju − ωj∂ru).

Similarly, we find

Puζu = ∂t(ζu∂tu) + Σ∂i(. . . ) + ζ[−(∂tu)2 + gij∂iu∂ju + uaα∂αu] + Du2,

where

2D = −(1/r)(rζ)′′ − ζ∂2
ijγ

ij − 2ζ ′ωj∂iγ
ij(2.4)

+ (ζ ′/r)(γijωiωj − Σγii) − ζ ′′γijωiωj .

Adding the two expressions, after some rearrangements, we obtain

Puζ(r∂ru + u) = ∂t[(rζ)(∂tu)(∂ru + u/r)] + Σ∂i(. . . ) + Du2 + (1/2)(rζ)′(2.5)

× [(∂tu)2 + gij∂iu∂ju] − rζ ′gij(∂iu − ωi∂ru)(∂ju − ωj∂ru)

− rζ ′γij∂ruωi(∂ju − ωj∂ru) + (rζ)

× [∂jγ
ij∂iu∂ru − (1/2)∂rγ

ij∂iu∂ju + aα∂αu∂ru] + ζuaα∂αu.
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3. We choose now

ζ(r) = (1/r)
∫ r

0

f(2 + s)ds, f(σ) = σ−1(log σ)−1−ε.

It is easy to check the following properties of ζ:

i) ζ > 0, rζ ≤ C,

ii) ζ ′ < 0, (1/C)(1 + r)−2 ≤ −ζ ′ ≤ C(1 + r)−2,

iii) ζ ′′ > 0, (1/C)(1 + r)−3 ≤ ζ ′′ ≤ C(1 + r)−3,

iv) (rζ)′′ = f ′(2 + r) < 0, and

(1/C)(1 + r)−2[log(2 + r)]−1−ε ≤ −(rζ)′′ ≤ C(1 + r)−2[log(2 + r)]−1−ε.

4. To control the u terms by the energy, we will use the two following
lemma.

Lemma 1.1. For n ≥ 3 and u vanishing at infinity, we have
∫

|u|2r−2dx ≤ C

∫
|∂ru|2dx.

We have also the identity
∫

[(∂ru + u/r)2 + (n − 3)u2/r2]dx =
∫

(∂ru)2dx.

Lemma 1.2. For n ≥ 3, u vanishing at infinity, ν > 1, and λ ≥ 0, we
have ∫

r≤λt

|u(x)|2 < r − t >−ν dx ≤ C(λ)(1 + t)
∫

|∂ru|2dx.

Proof of the lemma.
a. The inequality of Lemma 1.1 is well known. To prove the identity, we

note that

Σ∂i(ωiu
2/r) = 2u∂ru/r + u2Σ∂i(xi/r2),

and this last term is (n − 2)u2/r2.
b. If u is supported for r ≤ C(1 + t), an easy adaptation of Lemma 9.1.3

of [3] gives the result of Lemma 1.2. Finally, let 0 ≤ χ(s) ≤ 1 a smooth cut-off
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supported for s ≤ 2, and being one for s ≤ 1. From the previous statement
applied to uλ(x) = χ( r

λ(1+t))u(x), we obtain

∫
r≤λt

|u|2 < r − t >−η dx ≤ C(1 + t)
∫

|∂ru|2dx + C(1 + t)−1

∫
(χ′)2|u|2dx

and the last integral is less than

C(1 + t)2
∫

|u|2/r2dx ≤ C(1 + t)2
∫

|∂ru|2dx

by Lemma 1.1, which finishes the proof. �

5. We are now in a position to bound the bad terms in (2.5).

a. (region I). The bad terms in (∂u)2 in (2.5) are bounded by C(1 +
r)−1(1 + t)−ε|∂u|2 as in 1.a. Also

|ζuaα∂αu| ≤ C(1 + r)−2(1 + t)−ε|u∂u|

≤ Cε′
u2

(1 + r)3+ε
+ (C/ε′)

|∂u|2
(1 + r)

(1 + t)−ε.

We consider now Du2. We have

|ζ ′′γ| ≤ C|ζ ′/rγ| ≤ C

r(1 + r)2(1 + t)ε
, |ζ ′∂γ| + |ζ∂2γ| ≤ C

(1 + r)3(1 + t)ε
.

Hence, in region I, all bad terms are controlled by

Cε′
∫

I

u2

r(1 + r)2+ε
dxdt′ + (C/ε′)

∫
I

|∂u|2
(1 + r)(1 + t′)ε

dxdt′

+ C

∫
I

u2

r(1 + r)2(1 + t′)ε
dxdt′.

b. (region III). There, the coefficients of the bad terms in (∂u)2 are all
bounded by C(1 + r)−1−ε. We also have

|ζuaα∂αu| ≤ C(1 + r)−2−ε|u∂u| ≤ C(1 + t)−1−ε|∂u|2 + C(1 + t)−1−εu2/r2.

All the bad terms in D are bounded by C(1 + r)−3−ε. Hence, in region III, all
bad terms are controlled by

C

∫
III

(1 + t′)−1−ε|∂u|2dxdt′ + C

∫
III

(1 + t′)−1−εu2/r2dxdt′.



�

�

�

�

�

�

�

�

712 Serge Alinhac

c. (region II). First, we consider the quadratic terms in ∂u in (rζ)[. . . ].
We write

∂jγ
ij∂iu = Tjγ

ij∂iu − ωj(∂tγ
ij)(Tiu − ωi∂tu)

= (∂tc
2)∂tu + Tjγ

ij∂iu − ωj(∂tγ
ij)Tiu,

∂rγ
ij∂iu∂ju = −ωi∂tu∂rγ

ij(Tju − ωj∂tu) + ∂rγ
ijTiu∂ju

= [−∂tc
2 + ((∂t + ∂r)γij)ωiωj ](∂tu)2 + (∂rγ

ij)

×(Tiu∂ju − ωi∂tuTju),

aα∂αu∂ru = aαTαu∂ru − aαωα∂tu∂ru.

Thus∣∣∣∣
∫

Dt

(rζ)[(∂iu)(∂jγ
ij∂ru − (1/2)∂rγ

ij∂ju) + aα∂αu∂ru]
∣∣∣∣

≤ (C/ε′)
∫ t

0

(1 + t′)−1−εE(t′)dt′ + C

∫
Dt

[|∂tc| + |aαωα|]|∂u|2dxdt′

+ Cε′
∫

Dt

σ−1−ε|Tu|2dxdt′,

since, in this region,

|a| + |∂γ| ≤ Cσ−1/2(1 + t)−1/2−ε, |Tγ| ≤ C(1 + t)−1−ε.

The other quadratic terms in ∂u have the good sign, except

F = (rζ ′)γijωi∂ru(∂ju − ωj∂ru),

which is bounded by C(1 + t)−1−ε|∂u|2.
We have finally

|ζuaα∂αu| ≤ C(1 + t)−1−ε σ−1−εu2

(1 + t)
+ C(1 + t)−1−ε|∂u|2.

We turn now to D. We have first

|ζ ′′γ| + |ζ ′γ/r| ≤ C(1 + t)−3−ε.

Also

|ζ ′∂γ| ≤ Cσ−1/2(1 + t)−5/2−ε ≤ C(1 + t)−1−ε σ−1−ε

(1 + t)
.

To handle the term ζ∂2
ijγ

ij , we write

ζ∂2
ijγ

ij = ζ[∂2
t c2 + Ti∂jγ

ij − ωiTj∂tγ
ij ],
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and the last two terms can be handled as before since they are bounded by

Cσ−1/2(1 + t)−5/2−ε.

Now

∂2
t c2 = 2(∂tc)2 + 2c∂2

t c

and ζ(∂tc)2 ≤ Cσ−1(1 + t)−2−ε. We write finally
∫

|u2ζ∂2
t c|dx ≤ C

∫
σ−1−ε(1 + t)−1u2|σ1+ε∂2

t c|dx

≤ C|σ1+ε∂2
t c|L∞

∫
|∂u|2dx

by Lemma 1.2.

d. When integrating over Dt, we also get boundary terms on t′ = 0 and
t′ = t ∫

(rζ)(∂tu)(∂ru + u/r)dx.

By Lemma 1.1, these integrals are control by energy integrals. Putting together
all inequalities, and using Lemma 1.1 and Lemma 1.2,we finally get

∫
Dt

|∂u|2
(1 + r)[log(2 + r)]1+ε

dxdt′ + Σ
∫

Dt

1
1 + r

|∂iu − ωi∂ru|2dxdt′

+
∫

Dt

u2

r(1 + r)2[log(2 + r)]1+ε
xdt′ ≤ Cε

{∫
Dt

|Pu||∂ru +
n − 1

2
u/r|dxdt′

+ E(t) + E(0) +
∫

I

u2

r(1 + r)2(1 + t′)ε
dxdt′ + ε′

∫
Dt

u2

(1 + r)3+ε
dxdt′

+ ε′
∫

Dt

σ−1−ε|Tu|2dxdt′ + (1/ε′)
∫

I

|∂u|2
(1 + r)(1 + t′)ε

dxdt′

+ (1/ε′)
∫ t

0

(1 + t′)−1−εE(t′)dt′ +
∫ t

0

A2(t′)E(t′)dt′
}

where

A2(t) = |∂tc| + |σ1+ε∂2
t c| + |aαωα|.

To finish the argument, we add the above inequality to a large amount of the
energy inequality, in order to regain control of E(t). Then we fix ε′ > 0 small
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enough to absorb in the left-hand side the terms which are multiplied by ε′.
The terms ∫

I

|∂u|2
(1 + r)(1 + t′)ε

dxdt′ +
∫

I

u2

r(1 + r)2(1 + t′)ε
dxdt′

will be absorbed by the left-hand side for t′ ≥ T0 big enough. For t ≤ T0, the
corresponding integrals over Dt are, by Lemma 1.1, bounded by

C

∫ t

0

E(t′)dt′.

Using finally Gronwall’s Lemma, we obtain the theorem, with A = A1 +
A2. �

§2. Wave Equation on a Curved Background :
Geometric Approach

We consider now a split metric on Rn
x × Rt (n ≥ 3)

g = −dt2 + gijdxidxj ,

where as usual x0 = t, greek indices run from zero to n and latin indices run
from 1 to n. We use the standard notation of geometry and assume as before

gij = δij + γij , ||γ|| ≤ K, K < 1,

where ||.|| denotes the operator norm associated to the standard euclidean norm
on Rn. We assume, as in part III of [3], that the standard spheres, defined by
t = t0, r = |x| = r0, play an essential role in our problem (this is what we call
a quasiradial situation ). Defining

T = −∇t = ∂t, c
2 =< ∇r,∇r >= gijωiωj , N = (1/c)∇r,

we will use the null frame

e1, . . . , en, L1 = T − N, L = T + N,

where the ej ’s are an orthonormal basis on the spheres. We will use the notation
�∇ for the rotation part of ∇u, and write

|�∇u|2 = Σea(u)2.

Recall also that the second fundamental form k(X, Y ) = − < DXT, Y > of the
hypersurfaces

Σt = {(x, t)}
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satisfies

kij = −1/2∂tgij , k(N, N) = ∂tc/c.

We also use the second fundamental form θ(X, Y ) =< DXN, Y > of the stan-
dard spheres in Σt. The traces of k and θ will be denoted by

k̄ = Σkaa + kNN , θ̄ = Σθaa.

We define the energy at time t to be

E(t) = 1/2
∫

Σt

[(Tu)2 + (Nu)2 + Σ(eau)2]dv.

We state the analogue of Theorem 1 for the d’Alembertian � associated to g.
Again, as in 1., we distinguish three zones

I = {r ≤ (1 + t)/2}, II = {(1 + t)/2 ≤ r ≤ 2(1 + t)}, III = {r ≥ 2(1 + t)}.

Theorem 2. Assume the following for the metric g : for some η > 0,

|γ| ≤ C(1 + t)−η, |∂γ| ≤ C(1 + r)−1(1 + t)−η,(Region I)

|γ| ≤ C(1 + r)−η, |∂γ| ≤ C(1 + r)−1−η,(Region III)

|k̄| + |θ̄ − (n − 1)/(rc)| + Σ|kaN | + |ea(c)|(Region II)(1)

≤ Cσ−1/2(1 + t)−
1
2−η

Σa�=b|θab| + Σ|kab| + |θaa − 1/(rc)| ≤ Cσ−1−η.(Region II)(2)

Then, for any ε > 0, there exists Cε such that, for all t ≥ 0 and all u sufficiently
vanishing at infinity, we have the inequality

(2.1)

E(t) +
∫

Dt

σ−1[log(1 + σ)]−1−ε((Lu)2 + |�∇u|2)dvdt′

+
∫

Dt

(1 + r)−1[log(2 + r)]−1−ε((Tu)2 + (Nu)2)dvdt′

+
∫

Dt

|�∇u|2
1 + r

dvdt′ +
∫

Dt

u2

r(1 + r)2[log(2 + r)]1+ε
dvdt′

≤ CεE(0) + Cε

∫
Dt

|�u|
[
|Tu| +

∣∣∣∣Nu +
n − 1

2
u/r

∣∣∣∣
]

dvdt′

+ Cε

∫ t

0

A(t′)E(t′)dt′.

The amplification factor is here

A(t) = |σ−1(c − 1)|L∞
x

+ |∂tc|L∞
x

+ |Nc|L∞
x

.
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Remark. We note the absence of second order derivatives in A. On the
other hand, since we did not make an assumption about Zγ, we have to include
the term Nc in A.

Proof. In regions I and III (the less sensitive regions), we made the same
non-geometric assumptions as in Theorem 1, and the terms will be treated in
a very similar way. In the following, we will concentrate therefore mostly on
region II.

1. We quickly revisit the proof of Theorem 4 of [2]. The energy terms in
regions I and III cause no problems and are handled exactly as in the proof of
Theorem 1. In region II, the term kNN |∂u|2 is taken care of by the definition
of A. Since

Σkaa = k̄ − kNN ,

we can replace assumption (1.1)a of Theorem 4 of [2] by our stronger assumption
(1), and the energy inequality holds, with the same error terms as in the proof
of Theorem 1.

2. a. As in part one, we will compute
∫

Dt
�uζ(rNu + n−1

2 u)dvdt′ for the
same ζ, and take n = 3 to simplify. We recall first the general formula

�uXu = −(1/2)Qαβπαβ + DαKα,

where X = Xα∂α is any field,

Qαβ = ∂αu∂βu − 1
2
gαβ < ∇u,∇u >,

Kα = QαβXβ and π stands for the deformation tensor of X defined by

(X)παβ = DαXβ + DβXα.

Writing ζ̃ = rζ, we also have the formula

(ζ̃N)πXY ≡ π̃XY = ζ̃(N)πXY + Xζ̃ < N, Y > +Y ζ̃ < N, X > .

We use now the above formula and express the double trace with the help of
our frame and its dual frame ea,−1/2L,−1/2L1 ; we find, with π = (N)π,

−2[�uζ̃Nu − DαKα] = 1/4QL1L1 π̃LL + 1/4QLLπ̃L1L1

+1/2QLL1 π̃LL1 − QL1aπ̃La − QLaπ̃L1a + Qabπ̃ab.
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Now

π̃LL = ζ̃πLL + 2Lζ̃, π̃L1L1 = ζ̃πL1L1 − 2L1ζ̃,

π̃LL1 = ζ̃πLL1 − 2Nζ̃,

the other components of π̃ being simply those of π multiplied by ζ̃. Thus

−2[. . . ] = 1/2Lζ̃QL1L1 − 1/2L1ζ̃QLL − Nζ̃QLL1 + ζ̃(Qαβπαβ).

b. We have as usual from the definition of Q

∇u = (−1/2)L1uL − (1/2)LuL1 + Σea(u)ea,

< ∇u,∇u > = −LuL1u + | �∇u|2,
QLL = (Lu)2, QL1L1 = (L1u)2, QLL1 = | �∇u|2, QLa = Luea(u),

QL1a = L1uea(u), Qab = ea(u)eb(u) − 1/2δab < ∇u,∇u > .

Hence

−2[. . . ] = (1/2)Nζ̃(L1u)2 + (1/2)Nζ̃(Lu)2 − Nζ̃| �∇u|2 + ζ̃(Qαβπαβ).

c. We can compute explicitly the components of π : we have first

< DNN, X > = −Nc/c2X(r) + 1/c < DN∇r, X >

= −Nc/c2X(r) + 1/c < DX(cN), N >

= −Nc/c2X(r) + X(c)/c,

< DT N, T > = 0, < DT N, ea >= 1/c < Da(cN), T >

= − < DaT, N >= kaN ,

< DaN, T > = − < DaT, N >= kaN , < DaN, eb >= θab.

Thus

1/2πLL =< DNN, T >= Tc/c, 1/2πL1L1 = −Tc/c, πLL1 =< DT N, T >= 0,

πLa =< DT N, ea > + < DNN, ea > + < DaN, T >= 2kaN + ea(c)/c,

πL1a = 2kaN − ea(c)/c, πab = 2θab.

d. Replacing these values into the above expression of the trace, we find

−2[. . . ] = Nζ̃((Tu)2+(Nu)2)−Nζ̃| �∇u|2 − 2ζ̃(Tc/c)TuNu−ζ̃ θ̄<∇u,∇u >

+ζ̃(−πLaL1uea(u) − πL1aLuea(u) + 2θabea(u)eb(u)).
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3. We have

div(ζu∇u) = ζu�u+<∇u,∇(ζu)>=ζu�u+ζ <∇u,∇u>+u<∇u,∇ζ >,

div(u2∇ζ) = u2�ζ + 2u < ∇u,∇ζ >,

hence finally

�uζu = div(ζu∇u − 1/2u2∇ζ) − ζ < ∇u,∇u > +(1/2)u2�ζ.

4. Putting together both formula, we obtain (still with π = (N)π)

(2.2)

− �uζ̃(Nu + u/r) = −div(K + ζu∇u − 1/2u2∇ζ) + 1/2Nζ̃((Tu)2 + (Nu)2)

− 1/2Nζ̃| �∇u|2+ < ∇u,∇u > (ζ − 1/2ζ̃ θ̄) − ζ̃(Tc/c)TuNu + (1/2)u2�ζ

− (1/2)ζ̃(πLaL1uea(u) + πL1aLueau − 2Σa�=bθabea(u)eb(u)) + ζ̃Σθaaea(u)2.

5. a. We study now the components of θ. We have

N = (1/c)gijωi∂j ,

DaN = ea((1/c)gijωi)∂j + (1/c)gijωie
k
aΓα

kj∂α.

Now

ea(ωi) = ea(xi/r) = 1/rei
a, ea(c) = (1/2c)ea(gij)ωiωj + (1/rc)gijei

aωj ,

and, since the standard scalar product of ea and ω is zero,

gijei
aωj = γijei

aωj ,

DaN = O(∂γ) + O(γ/r) + (1/rc)Σgijei
a∂j .

Here and later, the notation f = O(g) means a pointwise bound

|f(x, t)| ≤ C|g(x, t)|

with a constant C fixed in the region under consideration.
Thus

θab = O(∂γ) + O(γ/r) + (1/rc)Σgijei
agjkek

b ,

and the last sum is just the standard scalar product of ea and eb, which is
δab + O(γ). Finally

θaa = (1/rc) + O(∂γ) + O(γ/r), θ̄ = (2/rc) + O(∂γ) + O(γ/r),
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and, if a �= b, θab = O(∂γ) + O(γ/r). From the expressions of πLa and πL1a we
also have

|ea(c)| + |πLa| + |πL1a| = O(∂γ) + O(γ/r).

b. We compute �ζ :

divN = θ̄, div∇r = divcN = cθ̄ + Nc,

�ζ = divζ ′∇r = ζ ′(cθ̄ + Nc) + c2ζ ′′

= (c2/r)(rζ)′′ + cζ ′(Nc/c + θ̄ − (2c/r)).

We have

|(Nc/c + θ̄ − 2c/r)| = O(∂γ) + O(γ/r).

6. We now bound the bad terms in (2.2). In regions I and III, thanks to
the above estimates, the analysis is exactly the same as in the proof of Theorem
1, and we omit it. In region II, consider first the gradient terms. We have

2ζ − ζ̃ θ̄ = 2ζ
c − 1

c
− ζ̃(θ̄ − 2/(rc)) = O(σ−1(c − 1)) + O(|θ̄ − 2/(rc)|).

The first term is already taken care of by A ; since < ∇u,∇u > contains at
least one good derivative Lu or ea(u), our assumption (1) gives as usual

| <∇u,∇u> (θ̄−2/(rc))|≤Cε′σ−1−ε((Lu)2+| �∇u|2)+(C/ε′)(1 + t)−1−ε|∂u|2.

The same discussion applies to the terms containing one good derivative

πLaL1uea(u), πL1aLuea(u).

For the pure rotation terms, we write

Σθaaea(u)2 − 1/(rc)| �∇u|2 = Σ(θaa − 1/(rc))ea(u)2.

Thanks to (2), this last sum is bounded by Cσ−1−ε| �∇u|2.
Consider now the bad u2 terms. They are bounded by

C(1 + t)−2|Nc| + σ(1 + t)−3|σ−1(c − 1)| + C(1 + t)−2|θ̄ − 2/(rc)|.

Using Lemma 1.1, we can control the integral of the first two terms by
∫ t

0
A(t′)

E(t′)dt′. The last term is less than

C(1 + t)−2σ−1/2(1 + t)−1/2−ε ≤ C(σ−1−ε(1 + t)−1)(1 + t)−1−ε
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and, using Lemma 1.2, its integral can be bounded by
∫ t

0
(1 + t′)−1−εE(t′)dt′.

7. It remains to consider the boundary integrals which are less than∫
|∂tu||Nu + u/r|dv ≤

∫
|∂tu|2dv +

∫
|Nu|2dv +

∫
u2/r2dv + 2

∫
uNu/rdv.

We remark that

div((u2/r)N) = (u2/r)θ̄ + 2uNu/r

= (2/c)(u2/r2) + (u2/r)(θ̄ − 2/(rc)) + 2uNu/r.

In regions I or III, the integral of (u2/r)θ̄ is less than that of u2/r2, and we can
use Lemma 1.1. In region II,

(u2/r2)|θ̄ − 2/(rc)| ≤ u2σ−1−ε(1 + t)−1

and we use Lemma 1.2 to conclude.
The rest of the proof is exactly the same as in the proof of Theorem 1. �
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