
�

�

�

�

�

�

�

�

Publ. RIMS, Kyoto Univ.
42 (2006), 721–737

Belyi-Extending Maps and the Galois Action on
Dessins d’Enfants

By

Melanie Matchett Wood
∗

Abstract

We study the absolute Galois group by looking for invariants and orbits of
its faithful action on Grothendieck’s dessins d’enfants. We define a class of func-
tions called Belyi-extending maps, which we use to construct new Galois invari-
ants of dessins from previously known invariants. Belyi-extending maps are the
source of “new-type” relations on the injection of the absolute Galois group into the
Grothendieck-Teichmüller group. We make explicit how to get from a general Belyi-
extending map to formula for its associated invariant which can be implemented in a
computer algebra package. We give an example of a new invariant differing on two
dessins which have the same values for the other readily computable invariants.

§1. Introduction

In this paper we work in the direction of a program to understand GQ =
Gal(Q̄/Q), the absolute Galois group, originally sketched by Grothendieck in
his ambitious research outline [7]. One part of the program involves understand-
ing GQ by studying its action on certain combinatorial structures, structures
so simple at first glance that Grothendieck called them dessins d’enfants (chil-
dren’s drawings). We construct new invariants of the action of GQ on dessins
d’enfants. In fact, we give an example of how an invariant produced from our
method distinguishes between two dessin orbits on which previously known
invariants agree (Proposition 3.9).

Communicated by A. Tamagawa. Received January 31, 2005. Revised July 27, 2005.
2000 Mathematics Subject Classification(s): Primary 14G32; Secondary 14H30, 14G25,
11G99.
This work was supported in part through NSF grant DMS-9820438, NSA grant MDA904-
02-1-0060, and VIGRE grant DMS-9983320.

∗Department of Mathematics, Princeton University, Princeton, NJ 08544-1000, USA.
e-mail: melanie.wood@math.princeton.edu

c© 2006 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



�

�

�

�

�

�

�

�

722 Melanie Matchett Wood

Our basic tools are Belyi-extending maps β : P1 → P1 that are defined over
Q, ramified only over {0, 1,∞}, and send {0, 1,∞} into {0, 1,∞}. These maps
have the property that when (X, p) is a Belyi pair, (X, β ◦ p) is also a Belyi
pair. It follows that each of these β acts on the set of dessins. Moreover, the
action of a Belyi-extending map β on dessins commutes with the GQ action
on dessins. This implies that if two dessins Γ1 and Γ2 are in the same Galois
orbit then β(Γ1) and β(Γ2) are. Thus if I is a GQ-invariant of dessins (e.g.
the monodromy group, the rational Nielsen class), so is I ◦ β. In [5], Ellenberg
defines the class of Belyi-extending maps (without naming them) and notes that
when I is the monodromy group, the maps give new invariants as described
above. He uses this perspective to construct the cartographic group, but does
not go any further with it.

Building β(Γ) from Γ turns out to be quite straightforward. In Section 3.2
we give a simple, concrete way to construct β(Γ) geometrically from β and Γ.
Then in Section 3.3, we see how, given a β, we can easily write down a formula
that will produce β(Γ) from Γ for any Γ (when the dessins are given as pairs
of permutations). Implementing these procedures in Maple allowed us to find
an example where one of our new invariants distinguishes between two dessins
orbits previously indistinguished.

The action of GQ on dessins can be refined to an action on the algebraic
fundamental group of P1

C \ {0, 1,∞}. This allows one to inject GQ into the
Grothendieck-Teichmüller group (see [8]). Belyi-extending maps can be used
to get relations (called “new-type” relations) on the image of this injection,
analogously to the way the new dessin invariants are produced. In [13] and [14]
examples of these relations were produced using specific, very natural Belyi-
extending maps. In [12], Nakamura discusses the general properties necessary
for a map to give new-type relations via the Belyi-extending procedure, com-
putes these relations in some specific examples, and gives a list of examples
left for further work. Belyi-extending maps that are composites of PGL(2)-
transforms of the power-raising maps have been systematically studied in [1],
[2], and [9].

§2. Brief Review of Background and Definitions

§2.1. Belyi’s theorem and dessins d’enfants

We start with the following remarkable theorem.

Theorem 2.1 (Belyi’s Theorem, [3]). A compact Riemann surface C is
the analytic space associated to an algebraic curve defined over Q̄ if and only
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if there exists a holomorphic map pC from C to P1
C with ramification only over

three points.

Such a map pC is called a Belyi map and (C, pC) is called a Belyi pair.
We usually (and in this paper) assume without loss of generality that the three
points are {0, 1,∞}. Two Belyi pairs (C, pC) and (C ′, pC′) are isomorphic
if there is a Riemann surface isomorphism f : C → C ′ such that pC′ ◦ f =
pC . Grothendieck found Belyi’s Theorem both “deep and disconcerting” as it
showed a “profound identity between the combinatorics of finite maps on the
one hand, and the geometry of algebraic curves defined over number fields on
the other” [7]. He defined dessins d’enfants to capture the combinatorial side
of this identity, and we will define them here and see how this identity unfolds.

Definition 2.2. A dessin d’enfants (or a dessin) is a connected graph
with a fixed bipartite structure (vertices labelled 0 or 1 so that each edge has
a vertex labelled 0 and a vertex labelled 1) and with fixed cyclic orderings of
the edges at each vertex.

Given a Belyi pair, we can define a dessin on the Riemann surface C as
the inverse image via pC of the real interval [0,1]. The natural orientation of C

determines a cyclic ordering on the edges incident to each vertex. The dessin
divides C into faces that correspond to pre-images of ∞. In fact, there is a
one-to-one correspondence between dessins and Belyi pairs up to isomorphism.
A dessin has well-defined faces because of the cyclic orderings at each vertex,
and we can glue in these faces to give the Belyi pair, which is unique up to iso-
morphism by the Riemann Existence Theorem. For a dessin Γ, let the Riemann
surface of the associated Belyi pair be called XΓ.

Notation and Conventions. Throughout this paper, P1 denotes P1
C

and U denotes P1 \ {0, 1,∞}. We compose paths in fundamental groups so
that δ2δ1 is the path that follows δ1 and then δ2. Through Section 3, we will
let the open real edge 01 be the base-point of the fundamental group of U .
(Any simply connected set B may be used as a base point because there is a
compatible collection of isomorphisms of the groups π1(U, t) for all t ∈ B.) To
generate π1(U, 01), we choose x, a counter-clockwise loop around 0, and y, a
counter-clockwise loop around 1. We let F2 be the free group on x and y, which
gives us an isomorphism π1(U, 01) ≈ F2. In π1(U, 01) and F2, we let z be the
element such that xyz = 1. In π1(U, 01), z is a loop that encircles ∞ once.

This notation allows us to describe several other sets that also correspond
to dessins and Belyi pairs. The following sets are all in one-to-one correspon-
dence:
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1. isomorphism classes of Belyi pairs with Belyi map of degree d,

2. isomorphism classes of dessins d’enfants with d edges,

3. isomorphism classes of degree d connected covering spaces of U ,

4. conjugacy classes of index d subgroups of π1(U, 01),

5. conjugacy classes of homomorphisms of F2 onto a transitive subgroup of
the symmetric group Sd,

6. conjugacy classes of ordered pairs of permutations that generate a transitive
subgroup of Sd.

We have seen the correspondence between (1) and (2), and the correspondence
between (5) and (6) is clear. The correspondence between (3) and (4) follows
from the standard theory of covering spaces. To see that (1) and (3) correspond,
we consider a Belyi pair pC : C → P1. We can remove {0, 1,∞} from P1 and
p−1

c ({0, 1,∞}) from C to get a covering space pc : C \ p−1
c ({0, 1,∞}) → U ,

and we can recover the Belyi pair by compactification of the covering space
and U . To see that (2) and (6) correspond, we note from an ordered pair of
permutations in Sd we can make a dessin with edges {1, 2, . . . , d} by taking
the cycles of the first permutation to be the cyclic edge orderings around the
vertices labelled 0 and the cycles of the second permutation to be the cyclic edge
orderings around the vertices labelled 1. This determines a graph with fixed
bipartite structure and cyclic edge orderings, and the permutations generate a
transitive group exactly when the graph is connected, i.e. a dessin. This gives
another way to see how to get a Belyi pair from a dessin. A dessin (2) gives
an ordered pair of permutations (6) corresponding to rotations around the 0-
vertices and the 1-vertices; such a pair of permutations gives a homomorphism
(5) from F2 ≈ π1(P1 \ {0, 1,∞}) to Sd, which gives a Belyi pair (1). Often
when we refer to a dessin, we implicitly also refer to the corresponding Belyi
pair, covering space, class of subgroups, homomorphism of F2, and permutation
pair.

§2.2. Action of GQ

Dessins d’enfants are particularly interesting because the absolute Galois
group acts on them. Since GQ acts on elements of Q̄, it acts on the coefficients
of polynomials over Q̄, and thus on smooth, algebraic curves defined over Q̄

with maps to P1 ramified only over {0, 1,∞}. This action is well-defined on
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dessins. Moreover, Grothendieck [7] noted that this action is faithful. It has
been since shown by Matzat [11] and Lenstra [16] that GQ acts faithfully on
smaller sets of dessins such as the dessins corresponding to Riemann surfaces
of genus 1 and dessin trees, dessins whose underlying graph structure is that of
a tree. Thus, in theory we could understand GQ by understanding how it acts
on dessins, or even dessin trees. Understanding the GQ action on dessins is one
step towards understanding GQ.

§2.3. GQ-invariants of dessins

The next question is how we should study this action, and one plan is to
look at the orbits of the action. A goal of current research is to find invariants
of the GQ action on dessins. In this paper, we refer to functions on dessins
that are constant on GQ-orbits as Galois or GQ-invariants. The theoretical
ideal would be to find a “complete” list of invariants, in the sense that any two
distinct GQ-orbits could be distinguished by some known invariant. The search
is in particular for invariants that are easily computed from the combinatorial
structure of the dessin, and here we will describe the well-known GQ-invariants
that meet this criteria.

The valency list of a dessin is an ordered triple of the sets of valencies of the
vertices labelled 0, 1, and ∞, respectively. (The ∞ valencies are just half the
number of edges of each face.) These valencies correspond to the ramification
indices of the Belyi pair above the points 0, 1,∞. The valency list of a dessin is
a good first invariant. From it coarser invariants such as the degree of the Belyi
map and the genus of the Riemann surface in the Belyi pair can be computed.
The automorphism group of a dessin is isomorphic to the automorphism group
of the corresponding Belyi pair, and is a GQ-invariant. The automorphisms of
the Belyi pair are defined over Q̄ and thus are acted on by GQ in a way that is
compatible with the GQ action on Belyi pairs.

The Monodromy Group
We can understand the correspondence between dessins and permuta-

tion pairs further by considering covering spaces. A connected covering space
h : Z → U of degree d, corresponding to a dessin Γ, determines a transitive
homomorphism

φΓ : F2 → Sd

up to conjugation in Sd. This homomorphism is given by the left action of
π1(U, 01) on the set of d paths h−1(01). This action is called the monodromy
action and defined as follows. Let e ∈ h−1(01) and let γ ∈ π1(U, 01). Then if
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γ̃ is the lift of γ to Z (a path but not necessarily a loop) with γ̃(0) on the edge
e, we define φΓ(γ) to act on e on the left by taking it to the element of h−1(01)
that contains γ̃(1). Intuitively, we start at e and then follow the lift of the path
γ to get γe. It is clear that the action of x and y on h−1(01), the edges of Γ,
are the permutations that correspond to the cyclic edge orderings at 0 and 1
respectively.

If Γ is a dessin corresponding to the subgroup H of F2, then the monodromy
group of Γ, M(Γ), is the image of φΓ. Equivalently,

M(Γ) = F2

/ ⋂
g∈F2

gHg−1 ,

or M(Γ) is the Galois group of the Galois closure of the covering space Z. The
monodromy group is also a GQ-invariant of dessins and is easily computed since
it is generated by the permutations corresponding to the cyclic edge orderings
at 0 and 1.

The Rational Nielsen Class
The Nielsen class n(Γ) of a dessin Γ is the data

(M(Γ); φΓ(x), φΓ(y), φΓ(z)).

The Nielsen class is defined up to abstract isomorphism of pairs (G; a, b, c) for a
group G and elements a, b, and c that generate G and satisfy abc = 1. Denote
the conjugacy class of s by [s] and let Ẑ× be the invertible elements in the
profinite completion of Z. The rational Nielsen class of a dessin Γ is

N(Γ) = { (M(Γ); [φΓ(x)λ], [φΓ(y)λ], [φΓ(z)λ]) | λ ∈ Ẑ× }.

The rational Nielsen classes are also defined up to abstract isomorphism (iso-
morphisms need not preserve which tuple corresponds to which λ). The rational
Nielsen class is another GQ-invariant (see [5, Section 3]).

§3. Invariants from Belyi-extending Maps

§3.1. New invariants

To find new invariants we consider a special sort of map as suggested by
Ellenberg in [5, Section 2, Subsection: Cartographic group, and variants].

Definition 3.1. A map β : P1 → P1 is called Belyi-extending if β is a
Belyi map defined over Q, and β({0, 1,∞}) ⊂ {0, 1,∞}.
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Belyi-extending maps have recently been used to find “new-type” equations
satisfied by the absolute Galois group in terms of its action on the fundamental
group of P1 \{0, 1,∞} (see [14], [12]). Thus it is natural to investigate whether
these maps give new information about the action of the absolute Galois group
on covering spaces of P1 \ {0, 1,∞}, i.e., dessins.

Note that if h is a Belyi map and β is Belyi-extending, then β ◦ h is also
a Belyi map. If β is a Belyi-extending map and Γ is a dessin corresponding
to the Belyi pair (XΓ, pXΓ), define β(Γ) to be the dessin corresponding to
(XΓ, β ◦ pXΓ).

Proposition 3.2. Let (XΓ, pXΓ) be a Belyi pair corresponding to a
dessin Γ and β be a Belyi-extending map. If I is a GQ-invariant of dessins, so
is I ◦ β.

Proof. Note that for σ ∈ GQ, σ(β) = β, and thus σ((XΓ, β ◦ pXΓ)) =
(σ(XΓ), β ◦ σ(pXΓ)). Thus, σ(β(Γ)) = β(σ(Γ)), and so for an invariant I,
I(β(Γ)) = I(σ(β(Γ))) = I(β(σ(Γ))), which proves the proposition.

As Ellenberg notes in [5], the proof of Proposition 3.2 is the same as the
proof he gives in the specific case β(t) = 4t(1− t) and I being the monodromy
group. Since the monodromy group is a useful and easily computable invariant,
we use it to define a whole new class of invariants.

Definition 3.3. If β is a Belyi-extending map and Γ is a dessin, then we
define the GQ-invariant Mβ(Γ) to be M(β(Γ)), the monodromy group of β(Γ).

Note that M = Mid = Mt. Also the invariant M4t(1−t) is defined as
the cartographic group in [10]. Along with these Mβ , we could consider the
automorphism groups, rational Nielsen classes, and other invariants of β(Γ) as
new invariants for Γ. In this paper we will further investigate the Mβ .

Two New Cartographic Groups
Consider the map α(t) = 4t(1 − t); Mα is the cartographic group. It

turns out that α1 = α ◦ (1/t) and α2 = α ◦ (t/(t − 1)) lead to new Galois
invariants we call the 1∞-cartographic group, Mα1 , and the 0∞-cartographic
group, Mα2 . These invariants distinguish some orbits indistinguished by the
monodromy group, rational Nielsen class, automorphism group, and traditional
cartographic group invariants. (Take most examples, such as [10, Ex. 5], of
the cartographic group separating orbits and exchange the roles of 0, 1, and
∞.) Given the symmetry of the situation, these are natural group invariants
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to define after defining the cartographic group, but they have not previously
been mentioned in the literature to the author’s knowledge.

§3.2. Geometric construction of β(Γ) from Γ

We have some examples of easily computable GQ-invariants of dessins and
to extend these to useful invariants via Belyi-extending maps, we will show
how to effectively construct β(Γ) from Γ. For a dessin Γ drawn as a graph
with cyclic edge orderings, we describe how to construct β(Γ) in a geometric
fashion. We will then see that the geometric construction can be translated
into a combinatorial method.

For a dessin Γ, we can form an associated tripartite graph with cyclic edge
orderings, which we call T (Γ). To construct T (Γ), we start with Γ and add a
vertex labelled ∞ for each face of Γ, connecting the vertex with edges to all of
the face’s vertices in the cyclic order they occur. (Recall that faces and cyclic
orderings of edges around faces are determined by the cyclic edge orderings at
the vertices of the dessin.) We can view the real line of P1 as a triangle with
vertices at 0, 1, and ∞. Then if Γ is associated to the Belyi map pXΓ : XΓ → P1,
T (Γ) is simply the inverse image of that triangle via pXΓ .

For a dessin Γ, we draw T (Γ) as a black graph in XΓ over a black 01∞
triangle in X = P1. See Figure 1. Now we color gray the dessin in X associated
to the Belyi map β : X → Y = P1, where the 01 edge of Y is also colored gray.
This gives an overlay of a gray dessin and the black triangle in X, which we call
the extending pattern of β. The extending pattern contains the combinatorial
information of a super-imposed gray dessin and labelled black triangle. This
information includes the vertices, edges, and cyclic edge orderings. In Figure 1,
we mark the 0 and 1 vertices of the gray dessin with filled and open circles,
respectively.

We can slice X along the real segments 0∞ and 1∞ to get a diamond
D composed of the closed upper hemisphere and the open lower hemisphere
attached along the edge 01. Figure 2 shows D in black. Note that D maps
continuously and surjectively onto X. The pre-images of D in XΓ partition the
surface into diamonds, and the boundaries of the diamonds are the 0∞ and
1∞ edges of T (Γ). Each diamond is composed of a closed triangle over the
upper hemisphere of X and an open triangle over the lower hemisphere of X,
attached at an edge over 01. We can view the extending pattern of β in D as
in Figure 2. Since β is defined over the real numbers, all of the boundary of
the diamond is in the pre-image of the real line of Y and so no edges of the
dessin corresponding to β cross the boundary of the diamond.
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T(   )

X

Y

Figure 1. Geometric Construction of a new dessin from a Belyi-extending map

Figure 2. Extending pattern of a dessin

To construct β(Γ) as an overlay on T (Γ), we copy the gray dessin from
the extending pattern of β in D to each diamond in XΓ. In Figure 1, we
have started this construction by copying the extending pattern of β into one
diamond of XΓ. Doing this for every diamond of XΓ will draw β(Γ) as a gray
dessin on top of T (Γ) and only depends on the combinatorial information of
T (Γ) and the extending pattern of β. Thus, β(Γ) is determined by Γ and the
extending pattern of β. We call two Belyi-extending maps equivalent if they
have the same extending pattern.
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Remark 3.4. If β1 and β2 have extending patterns that are the same
except that the gray labels 0, 1, and ∞ have been permuted, then β1 = h ◦ β2,
where h is a complex automorphism of (P1, {0, 1,∞}) (one of t, 1−t, 1/t, 1/(1−
t), (t−1)/t, t/(t−1)). It should be noted that for such an h, M = M ◦h and thus
Mβ1 = Mβ2 . If β1 and β2 have extending patterns that are the same except that
the labels of the black triangle have been permuted, then β1 = β2 ◦ h, where
h ∈ Aut(P1, {0, 1,∞}). This is the case for the traditional cartographic group,
our new 1∞-cartographic group, and our new 0∞-cartographic group. Since
often the Belyi-extending β will not be symmetric with respect to {0, 1,∞}, β

and β ◦h can give different information as Belyi-extending maps. For example,
when β1 = β2◦h, the invariants Mβ1 and Mβ2 usually give different information
about GQ-orbits of dessins, as with the cartographic groups. Heuristically, if
the invariant Mβ was somehow sensitive to the 0 vertices of a dessin, Mβ◦(1−t)

would be sensitive in that way to the 1 vertices.

§3.3. Combinatorial construction of β(Γ) from Γ

Combinatorially, we have the extending pattern of β and we want a formula
in which we can plug the monodromy permutations of Γ to get the monodromy
permutations of β(Γ). Recall that

φ∆ : π1(P1 \ {0, 1,∞}, 01) ≈ F2 → Sd

gives the monodromy action on the edges of the dessin ∆. In this section, let
φ∆(w) = w∆. The extending pattern of β gives us the permutation pair [xβ, yβ ]
corresponding to the Belyi pair (P1, β), and let Eβ be the set of edges of the
corresponding dessin. Let EΓ be the set of edges of a dessin Γ, which is just
{1, 2, . . . , deg Γ} (since we will not use information about Γ to construct our
formula for β(Γ)).

Proposition 3.5. Given the geometric construction of Section 3.2, we
can naturally identify the edges of β(Γ) with the elements of EΓ × Eβ.

Proof. From Section 3.2, XΓ can be partitioned into diamonds, and each
diamond can be naturally identified with the element of EΓ that it contains.
Since each diamond maps continuously and bijectively onto X and no dessin
edges cross the boundary of the diamond, each diamond contains exactly one
pre-image of every element of Eβ. Thus, each edge of β(Γ) can uniquely be
identified by the diamond it is in and the element of Eβ it is over.
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First we will find the permutation xβ(Γ), and then note yβ(Γ) can be found
analogously. Let (a, b) ∈ EΓ×Eβ be an edge of β(Γ), and we will find xβ(Γ)(a, b).
The monodromy elements xβ(Γ) and xβ come from the same loop x in the
fundamental group of the downstairs P1 \ {0, 1,∞}. Thus the action of xβ(Γ)

in the covering space associated to β(Γ) restricts to the action of xβ in the
covering space associated to (P1, β). This means that xβ(Γ) acts as xβ on the
Eβ factor of the edges of β(Γ).

Now consider the 0 vertex of the edge b in the extending pattern of β (the
vertex of b that is above 0, not the 0 vertex of the black triangle). Note if in the
cyclic edge orderings around this 0 vertex, the black 0∞ segment or the black
1∞ segment is between the edges b and xβb. We wish to find which of these
black segments, if any, the monodromy path xβ that takes b to xβb crosses.
We say the path crosses one of these segments if it goes from the closed upper
hemisphere of X to the open lower hemisphere of X or vice versa by way of
intersecting the segment. From this information, we can find w(b), the action of
xβ(Γ) on the EΓ factor, so that xβ(Γ)(a, b) = (w(b)a, xβb). If, in going counter-
clockwise around the 0 vertex of b to get from b to xβb, the monodromy path
crosses

1. the black 0∞ from the upper to lower hemisphere of X, then w(b) = xΓ,

2. the black 0∞ from the lower to upper hemisphere of X, then w(b) = x−1
Γ ,

3. the black 1∞ from the lower to upper hemisphere of X, then w(b) = yΓ,

4. the black 1∞ from the upper to lower hemisphere of X, then w(b) = y−1
Γ ,

5. neither the black 0∞ nor the black 1∞, then w(b) is the identity, and

6. two of these edges, then w(b) is the product of the elements of M(Γ) given
above for those edges, such that the element corresponding to the first edge
crossed is on the right.

Often, and always when the relevant vertex is in the interior of the dia-
mond, the action will fall into case (5). The results of the cases given are clear
because when a path crosses a black 0∞ or 1∞, it goes from one diamond in
XΓ to another and the relationship between the first diamond and the second is
exactly as listed above. So given the extending pattern of β, we can determine
exactly which elements of Eβ fall into each of the six cases above. This allows
us to write down a formula for xβ(Γ) in terms of xΓ, yΓ, and xβ . Similarly we
can write yβ(Γ) in terms of xΓ, yΓ, and yβ .
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Remark 3.6. There is a unified story to the multiple cases given above.
In each case, the action of xβ(Γ) on the EΓ factor is an element w(b) that
depends on b, the value in the Eβ factor. To determine w(b), consider the path
ρ(b) in X = P1 that starts at the edge b and goes counterclockwise around the
0 vertex of b very near the vertex and ends at xβb. The path ρ(b) can be viewed
as an element of π1(X \{0, 1,∞},D), where the base-point is the map of D (the
diamond) into X described in Section 3.2. However, we can canonically identify
π1(X\{0, 1,∞},D) with π1(X\{0, 1,∞}, 01) since 01 lies inside D. This allows
us to identify the path ρ(b) with an element W (b) ∈ π1(X \{0, 1,∞}, 01). Then
w(b) is just the image of W (b) in M(Γ).

Some examples will illustrate the combinatorial construction.

Example 3.7. Consider the map γ(t) = −27(t3 − t2)/4. Note that
γ({0, 1,∞}) = {0,∞}, γ is ramified only over {0, 1,∞}, and γ is defined over
Q. Thus γ is Belyi-extending. We can draw the extending pattern of γ, as

a

b c

Figure 3. Extending pattern of γ

shown in Figure 3. We see that [xγ , yγ ] = [(a b), (b c)]. Let the edges of Γ be
denoted 1, 2, . . . , d. Then xγ(Γ) is composed of all the cycles of the form(

(k, a) (xΓk, b) (xΓk, a) (x2
Γk, b) (x2

Γk, a) · · ·
)

and
(
(k, c) (yΓk, c) (y2

Γk, c) · · ·
)

for 1 ≤ k ≤ d, and yγ(Γ) is composed of all the cycles of the form

((k, b) (k, c)) ,

for 1 ≤ k ≤ d.
Thus we can write a simple procedure that will, for the permutation pair of

any Γ, produce the permutation pair of β(Γ). With this we can make computa-
tions in a program such as Maple about Mγ(Γ) from the permutation pair of Γ.

We can also easily compute Mγ◦h for any h ∈ Aut(P1, {0, 1,∞}) by exchanging
the roles of xΓ, yΓ, and (xΓyΓ)−1 in the procedure.
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Example 3.8. Consider the map ξ(t) = 27t2(t−1)2/(4(t2−t+1)3), and
note that it is Belyi-extending. This is the quotient map by the automorphisms
of (P1, {0, 1,∞}).

a b
c

de

f

Figure 4. Extending pattern of ξ

The extending pattern of ξ is shown in Figure 4. We see that [xξ, yξ] =
[(a f)(b c)(d e), (a b)(c d)(e f)]. Let the edges of Γ be denoted 1, 2, . . . , d and
let zΓ = (xΓyΓ)−1. Then xξ(Γ) is composed of all the cycles of the forms(

(k, a) (k, f) (xΓk, a) (xΓk, f) (x2
Γk, a) (x2

Γk, f) · · ·
)
,(

(k, c) (k, b) (yΓk, c) (yΓk, b) (y2
Γk, c) (y2

Γk, b) · · ·
)
, and(

(k, e) (k, d) (zΓk, e) (zΓk, d) (z2
Γk, e) (z2

Γk, d) · · ·
)
,

for 1 ≤ k ≤ d, and yξ(Γ) is composed of all the cycles of the forms

((k, a) (k, b)) , ((k, c) (k, d)) , and ((k, e) (k, f)) ,

for 1 ≤ k ≤ d.
Note that since ξ = ξ ◦ h for any h ∈ Aut(P1, {0, 1,∞}), we get no new

invariants from considering ξ ◦ h.

The new invariants that we have produced with Belyi-extending maps can
give information about the GQ-orbits of dessins that we can’t get from old
invariants.

Proposition 3.9. Let ∆ be the dessin corresponding to the permutation
pair

[(1 2 3 4)(5 6 7)(8 9), (1 8 4 7)(2 3 10)(5 6)]

and Ω be the dessin corresponding to the permutation pair

[(1 2 3 4)(5 6 7)(8 9), (1 3 8 9)(2 10)(4 5 6)]

(shown in Figure 5). Then ∆ and Ω have the same valency lists, automorphism
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3

7

6

4210

8

9

∆

Ω

1

5

5

10

2

3

89

1

4

7

6

Figure 5.

groups, monodromy groups, cartographic groups, and rational Nielsen classes.
However, the Mξ groups of ∆ and Ω differ in size. Thus, ∆ and Ω are in
different GQ-orbits

Proof. All of the necessary computations can be done with Maple. Re-
call that x and y are loops around 0 and 1 in the fundamental group of
P1\{0, 1,∞}, the pair of permutations corresponding to a dessin is [φ(x), φ(y)],
and xyz = 1. We can compute that φ∆(z) = (1 6 7 3)(2 10)(4 9 8) and
φΩ(z) = (1 8 2 10)(6 7)(3 4 5), and thus see that ∆ and Ω have the same
valency lists. We can compute with Maple, or notice by drawing the dessins,
that both have trivial automorphism group. We can notice this easily since
both have a single 0 vertex of degree 1, which means that any automorphism
fixes the incident edge and thus all edges. We can compute with Maple the
monodromy and cartographic groups of ∆ and Ω as permutation groups and
can verify that these invariants are the same for the two dessins. In fact, just
computing the size of the monodromy groups of ∆ and Ω shows that each has
order 10!/2. This implies that both monodromy groups are the alternating
group A10 since they are index two subgroups of S10. Notice that in the mon-
odromy group of ∆ or Ω, [g] includes all elements of the same cycle type as g

for which the relabeling permutation from that element to g is even. Then note
that φ∆(x) = φΩ(x), conjugation by (8 3 5 2 4)(7 9)(10 6) relabels φ∆(y) to
φΩ(y), and conjugation by (6 8 5 9 4 3 10 7 2) relabels φ∆(z) to φΩ(z). Thus
∆ and Ω have the same rational Nielsen class. However, computation in Maple
using the description of ξ(Γ) above shows that Mξ(∆) has size 19752284160000
while Mξ(Ω) has size 214066877211724763979841536000000000000. (This ex-
ample was constructed so that ∆ would have the S3 symmetry that ξ quotients
by, but there is no reason to think this would be the only example where Mξ

provides new information, only the easiest to construct.)
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Using the procedure we have described for getting β(Γ) from Γ, we can
compute that ∆ and Ω agree on some other GQ-invariants we have defined in
this paper. They agree on the 0∞-cartographic group, the 1∞-cartographic
group, and the groups Mγ◦h for any h ∈ Aut(P1, {0, 1,∞}). There are other
known Galois invariants of dessins which we have not checked here, such as
Ellenberg’s braid group invariant [5] and Fried’s lifting invariants [6]. However,
these invariants are not readily computable from the combinatorial data of the
dessin. Our new invariants from Belyi-extending maps have the benefit of being
easily computable with a computer algebra package.

§4. Directions for Further Research

Finding a Belyi map that produces a certain dessin is difficult computa-
tionally, and so usually when we know two dessins are in different orbits it is
because we know an invariant on which they differ. It is likely there are many
dessin orbits which could be distinguished by computing new invariants but
which are not currently distinguished by any means.

Since Belyi-extending maps give us new, computable GQ-invariants of
dessins, a natural direction of research is to find such maps. Recall that we
can take such a map and compose on the left or right an automorphism of
(P1, {0, 1,∞}) to get another such map. We refer to a set of Belyi-extending
maps that arise from each other by composing with automorphisms a family
of Belyi-extending maps. Considering other maps in the family of α was what
led us to the 0∞- and 1∞-cartographic groups. Finding Belyi-extending maps
amounts to looking for rational solutions to polynomial equations and though
this is difficult to do in general, it can be done in many specific cases. Re-
call that for a Belyi-extending map β and a dessin Γ, the only structure that
determines how to get β(Γ) from Γ is the extending pattern of β defined in
Section 3.2 and that we call two Belyi-extending maps equivalent if they have
the same extending pattern.

The following degree 3 maps are Belyi-extending, non-equivalent, and all
in distinct families. Their extending patterns are shown in Figure 6, with the
extending pattern of βi labelled i.

• β1(t) = γ(t) = −27
4 (t3 − t2)

• β2(t) = −2t3 + 3t2

• β3(t) = t3+3t2

4

• β4(t) = 27t2(t−1)
(3t−1)3
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• β5(t) = t2(t − 1)/
(
t − 4

3

)3

1 2 3

4 5

Figure 6. Extending patterns of several Belyi-extending maps

The following maps are quotient maps of P1 by some of its finite automor-
phism group actions. The equations for the maps βT and βO were found in
[4]. They are all Belyi-extending, non-equivalent, and in distinct families. It
is important to note that there could be other Belyi-extending maps that are
quotients by group actions, because it is not just the quotient that determines
the equivalence class of the maps but also the position of the real triangle in
the domain, i.e. the precise extending pattern and not just the dessin (P1, β).

Cn µn(t) = tn

Dn νn(t) = (tn + 1)2/(tn − 1)2

D3 = S3 ξ(t) = 27t2(t−1)2

4(t2−t+1)3

Tetrahedron βT (t) = t3(t3+8)3

(t6−20t3−8)2

Octahedron βO(t) = 108t4(t4−1)4

(t8+14t4+1)3

The above Belyi-extending maps or other maps in their families could
potentially lead to new GQ-invariants of dessins. The family of Belyi-extending
maps is closed under composition, so composing the above maps gives infinitely
many Belyi-extending maps. For all of these Belyi-extending maps β there are
many new invariants to consider. We could compose any GQ-invariant with the
action of β on dessins to get a new dessin invariant; however, the monodromy
group, rational Nielsen class, and automorphism group give the most easily
computable new invariants. It can be shown that the invariants Mµn

and the
rational Nielsen classes of µn(Γ) can be constructed from previously known
invariants of Γ, but we saw that Mξ is a new invariant and it is not known
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whether any of the other maps give new invariants. Investigating this question
for various β would be an interesting direction of further research.
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