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On the Occupation Time on the Half Line
of Pinned Diffusion Processes
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Abstract

The aim of the present paper is to generalize Lévy’s result of the occupation
time on the half line of pinned Brownian motion for pinned diffusion processes. An
asymptotic behavior of the distribution function at the origin of the occupation time
Γ+(t) and limit theorem for the law of the fraction Γ+(t)/t when t → ∞ are studied.
An expression of the distribution function by the Riemann–Liouville fractional integral
for pinned skew Bessel diffusion processes is also obtained. Krein’s spectral theory
and Tauberian theorem play important roles in the proofs.

§0. Introduction

P. Lévy’s arc-sine law is a well-known result for a Brownian motion: Let
B = {Bt, Px} be a standard Brownian motion on R1 and Γ+(t) =

∫ t

0
1[0,∞)

(Bs)ds, i.e., the occupation time on [0,∞). Then, for each t > 0, we have

P0

(1
t
Γ+(t) ≤ x

)
= P0(Γ+(1) ≤ x) =

2
π

arcsin
√

x, 0 ≤ x ≤ 1(0.1)

and

P0

(1
t
Γ+(t) ≤ x

∣∣∣ Bt = 0
)

= P0(Γ+(1) ≤ x|B1 = 0) = x, 0 ≤ x ≤ 1.(0.2)

Many authors have been interested in these results and tried to extend them
for more general stochastic processes. In the present paper we shall confine
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788 Yuko Yano

ourselves to the case of one-dimensional diffusion processes and we are inter-
ested in the following two results: The first one is due to S. Watanabe [10].
He proved that all possible limiting laws of the fraction Γ+(t)/t as t → ∞ are
Lamperti’s laws (3.1), which can be identified with the laws of the the time
spent on the positive side by skew Bessel diffusion processes. The second one is
due to Y. Kasahara and the author [5], which studies the relationship between
the asymptotic behavior of the distribution function of Γ+(t) and that of the
speed measure at x = 0.

However, we notice that these results are only concerned with (0.1) and
it might be natural to study similar problems for (0.2). Thus the aim of this
article is to study the same problems as above for pinned diffusion processes.
First, we shall determine the asymptotic behavior of the distribution function
at x = 0, which explains how it depends on the positive and negative sides
of the speed measure (Theorem 2.1). Secondly, we shall obtain an expression
of the distribution function by the Riemann–Liouville fractional integral for
pinned skew Bessel diffusion processes (Theorem 3.1). Finally, we shall study
a limit theorem for pinned diffusion processes (Theorem 3.2).

The idea of the proofs for the pinned diffusion processes are essentially the
same as for non-pinned cases. The key to our proofs is the double Laplace trans-
form formula (2.4) and Tauberian theorems for Laplace transform. However, it
should be emphasized here that the proofs cannot be carried out completely in
parallel. The difficulty is that we cannot apply the continuity theorem directly,
because, unlike the non-pinned case, the index of the regular variation of the
functions appearing in the double Laplace transform (2.4) is out of the range.

In Section 1, we shall introduce some notations and a brief review of Krein’s
correspondence and the generalized diffusion processes. Although they might be
cumbersome to readers who are familiar to these materials, they are necessary
to state and to prove our results. We shall state the asymptotic result with
the proof in Section 3, where the double Laplace transform formula is also
proved. Section 4 is devoted to our limit theorem. In Appendix, we shall give a
simple version of the inversion formula for the (generalized) Stieltjes transform
of arbitrary order.

§1. Preliminaries

We adopt the same notation as in [5] but we state it here for the complete-
ness of the paper. See [6] and [4] for details.

Let m : [0, l) → [0,∞) be a right-continuous, nondecreasing function where
0 ≤ l ≤ ∞. We put m(0−) = 0 and m(x) = ∞ for x ≥ l when l < ∞ so that the
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The Occupation Time of Pinned Diffusions 789

Borel measure dm is defined on [0, l). Such dm is referred to as an inextensible
measure. Let M be the class of all such functions m. m ∈ M is sometimes
called a string. To a given m ∈ M, we assign a function h(λ) defined on (0,∞)
in the following way: If m(x) ≡ ∞, then h(λ) ≡ 0. Otherwise, for λ > 0, we
consider the following integral equations:

φ(x, λ) = 1 + λ

∫ x

0

dξ

∫ ξ+

0−
φ(u, λ)dm(u),

ψ(x, λ) = x + λ

∫ x

0

dξ

∫ ξ+

0−
ψ(u, λ)dm(u)

on the interval [0, l). The equations have unique continuous solutions φ(·, λ)
and ψ(·, λ) on [0, l) for each λ > 0. We then define

h(λ) = lim
x↑l

ψ(x, λ)
φ(x, λ)

=
∫ l

0

dx

φ(x, λ)2
.

We note that, if m(x) = 0 for 0 ≤ x < l, then h(λ) ≡ l. The correspondence
m ∈ M �→ h(λ) is called Krein’s correspondence. h(λ) is called the spectral
characteristic function of the string m.

The spectral characteristic function h(λ), h 	≡ ∞, has a unique represen-
tation

h(λ) = c +
∫

[0,∞)

dσ(ξ)
λ + ξ

(1.1)

for some 0 ≤ c < ∞ and nonnegative Radon measure dσ on [0,∞) such that∫
[0,∞)

dσ(ξ)
1 + ξ

< ∞.

The measure dσ is called the spectral measure and the function σ(t)=
∫
[0,t]

dσ(ξ)
is called the spectral function associated with the string m. In fact, it holds that

lim
λ→∞

h(λ) = c = inf{x ≥ 0; m(x) > 0} = inf Supp(dm).(1.2)

Let H be the class of all functions h of the form (1.1) and h ≡ ∞. An important
result is that Krein’s correspondence

m ∈ M �→ h ∈ H

is one-to-one and onto and defines a homeomorphism if suitable topologies are
introduced on M and H.



�

�

�

�

�

�

�

�

790 Yuko Yano

Let m∗ := m−1 ∈ M be the right-continuous inverse of m ∈ M. If
m ←→ h is Krein’s correspondence, then

m∗(x) ←→ 1
λh(λ)

=: h∗(λ)
(
= c∗ +

∫
[0,∞)

dσ∗(ξ)
λ + ξ

)
(1.3)

is also Krein’s correspondence. The function m∗ is called the dual string of m.
Put ψ = 1/h. The function ψ is called the spectral characteristic exponent

of the string m. We remark that ψ(λ), λ > 0, is known to have the form

ψ(λ) = c0 + c1λ +
∫ ∞

0

(1 − e−λu)n(u)du(1.4)

where c0 = 1/l, c1 = c∗ and

n(u) =
∫

(0,∞)

e−ξuξdσ∗(ξ).

Now let m+, m− ∈ M such that

m± : [0, l±) → [0,∞)

and m−(0) = 0. We define a Radon measure dm(x) on (−l−, l+) by

dm(x) =

{
dm+(x) on [0, l+),
dm̌−(x) on (−l−, 0)

where dm̌−(x) is the image measure of dm− under the mapping x �→ −x.
Then a strong Markov process X = {Xt, Px} on Em = (Supp(dm) ∪ {−l−} ∪
{l+}) ∩ (−∞,∞) associated with the Feller generator A = d

dm(x)
d
dx can be

constructed from the Brownian motion B on R1 by the time change. Here
the boundaries l+ and −l− are traps for the Markov process X. This process
is called the generalized diffusion process corresponding to the pair of strings
{m+, m−}. We denote the transition probability density of X with respect to
dm as p(t, x, y), i.e.,

Px(Xt ∈ dy) = p(t, x, y)dm(y).

We remark that∫ ∞

0

e−λtp(t, 0, 0)dt =
1

ψ+(λ) + ψ−(λ)
, λ > 0.(1.5)

Let X = {Xt, Px} be a generalized diffusion process on (−l−, l+) corre-
sponding to the pair {m+, m−} so that m± ∈ M with m−(0) = 0 and let h±
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The Occupation Time of Pinned Diffusions 791

be the spectral characteristic functions and ψ± be the spectral characteristic
exponents associated with strings m±, respectively. We call a process X the
skew Bessel diffusion process of dimension 2−2α, 0 < α < 1, with the skew pa-
rameter p, 0 ≤ p ≤ 1, and denote it as SKEWBES(2−2α, p) if it corresponds
to the pair {m+, m−} given by

m+(x) = p1/αx1/α−1, l+ = ∞,

m−(x) = (1 − p)1/αx1/α−1, l− = ∞.

We remark that, if p = 0 or p = 1, the process X is the Bessel process in its
canonical scale which is reflecting at 0. The conditions for m± is equivalent to
the following:

h+(λ) = Dαp−1λ−α, h−(λ) = Dα(1 − p)−1λ−α

and

ψ+(λ) = pD−1
α λα, ψ−(λ) = (1 − p)D−1

α λα

where Dα = {α(1 − α)}−αΓ(1 + α)/Γ(1 − α). When p = α = 1/2, it is a
Brownian motion with a multiplicative constant.

§2. Asymptotic Behavior of the Occupation Time Distribution
Function

Our main result of this section is the following:

Theorem 2.1. Let X = {Xt, Px} be a generalized diffusion process on
(−∞,∞) corresponding to {m+, m−} and let Γ+(t) =

∫ t

0
1[0,∞)(Xs)ds. Let

ϕ(x) vary regularly at 0 with exponent 1/α, 0 < α < 1. If

m+(x) ∼ ϕ(x)
x

, x → 0+,(2.1)

then

P0(Γ+(t) ≤ x|Xt = 0) ∼ D2
α

Γ(1 + 2α)
·
− d

dtg
∗
−(t)

p(t, 0, 0)
{ϕ−1(x)}2, x → 0 +(2.2)

where

g∗−(t) =
∫

[0,∞)

e−tξdσ∗
−(ξ).(2.3)
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Remark. If ϕ(x) is a regularly varying function at 0 with exponent 1/α,
then the asymptotic inverse ϕ−1(y) is defined and varies regularly with expo-
nent α.

Remark. g∗−(t) is equal to the transition density p∗−(t, 0, 0) of a diffusion
process on (−∞, 0] corresponding to {0, m∗

−} (0 is a reflecting barrier).

To prove Theorem 2.1, we prepare the following formula:

Theorem 2.2. Let X = {Xt, Px} be a generalized diffusion process cor-
responding to {m+, m−} on (−l−, l+) and Γ+(t) =

∫ t

0
1[0,∞)(Xs)ds. Let ψ± be

the characteristic exponents of m±, respectively. Then, for λ > 0, µ > 0,∫ ∞

0

e−µtE0[e−λΓ+(t)|Xt = 0]p(t, 0, 0)dt =
1

ψ+(λ + µ) + ψ−(µ)
.(2.4)

Proof. Put

zε(x) = Ex

[∫ ∞

0

1[0,ε)(Xt)
m[0, ε)

e−µt−λΓ+(t)dt
]

for λ > 0, µ > 0. Then, according to Feynman–Kac formula, the function zε(x)
satisfies the equation(

µ + λ · 1[0,∞) −
d

dm(x)
d

dx

)
zε(x) =

1[0,ε)(x)
m[0, ε)

.

The value at x = 0 of the unique bounded solution of the preceding equation is

zε(0) =
1

m[0, ε)
1

ψ+(λ + µ) + ψ−(µ)

∫
[0,ε)

u2(y, λ + µ)dm(y)

where u2 is the positive non-increasing solution of (µ + λ − d
dm(x)

d
dx )u(x) = 0

with u(0) = 1. Then, letting ε → 0, we have

zε(0) → 1
ψ+(λ + µ) + ψ−(µ)

.

On the other hand,

(2.5)

zε(0) = E0

[∫ ∞

0

1[0,ε)(Xt)
m[0, ε)

e−µt−λΓ+(t)dt
]

=
∫ ∞

0

e−µtE0

[1[0,ε)(Xt)
m[0, ε)

e−λΓ+(t)
]
dt

=
∫ ∞

0

e−µt 1
m[0, ε)

∫
[0,ε)

E0

[
e−λΓ+(t)|Xt = y

]
p(t, 0, y)dm(y).
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Now let

p̃(t, x, y) := Ex

[
e−λΓ+(t)|Xt = y

]
p(t, x, y).

Then p̃(t, x, y) is the transition density of the diffusion process with generator
Ã = d

dm(x)
d
dx −λ ·1[0,∞). It is shown by McKean [8] that p̃(t, x, y), as a function

of y, belongs to the domain of Ã, in particular, it is continuous in y. Hence

the RHS of (2.5) →
∫ ∞

0

e−µtE0[e−λΓ+(t)|Xt = 0]p(t, 0, 0)dt, ε → 0+.

Therefore we obtain∫ ∞

0

e−µtE0[e−λΓ+(t)|Xt = 0]p(t, 0, 0)dt =
1

ψ+(λ + µ) + ψ−(µ)
.

Now we give the proof to our theorem.

Proof. By Theorem 2.2, we see∫ ∞

0

e−µtE0[e−λΓ+(t)|Xt = 0]p(t, 0, 0)dt =
1

ψ+(λ + µ) + ψ−(µ)

for λ > 0, µ > 0. Differentiating the both sides with respect to µ, we have

∫ ∞

0

e−µtE0[e−λΓ+(t)|Xt = 0]p(t, 0, 0)tdt =
∂

∂µ

(
ψ+(λ + µ) + ψ−(µ)

)
(
ψ+(λ + µ) + ψ−(µ)

)2 .(2.6)

We note by [4] that (2.1) is equivalent to

h+(λ) =
1

ψ+(λ)
∼ Dαϕ−1

( 1
λ

)
, λ → ∞.(2.7)

Thus, ψ+(λ) varies regularly at ∞ with exponent 0 < α < 1 and hence
∂

∂µψ+(λ + µ) → 0 as λ → ∞. Therefore, as λ → ∞,

the RHS of (2.6) ∼ d

dµ
ψ−(µ)

/
ψ2

+(λ)

and we obtain

ψ2
+(λ)

∫ ∞

0

e−µtE0[e−λΓ+(t)|Xt = 0]p(t, 0, 0)tdt → d

dµ
ψ−(µ), λ → ∞.(2.8)
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On the other hand, by (1.3), 1/(µh−(µ)) = ψ−(µ)/µ is the characteristic
function of the dual string m∗

− and hence there exists a nonnegative Radon
measure dσ∗

− on [0,∞) such that
∫ ∞
0

dσ∗
−(ξ)/(1 + ξ) < ∞ and

ψ−(µ)
µ

=
1

µh−(µ)
=

∫ ∞

0

dσ∗
−(ξ)

µ + ξ
=

∫ ∞

0

e−µtdt

∫ ∞

0

e−tξdσ∗
−(ξ)

=
∫ ∞

0

e−µtg∗−(t)dt.

We note that the constant c∗− = 0 by m−(0) = 0 and (1.2). Therefore, we have

d

dµ
ψ−(µ) =

∫ ∞

0

e−µt
{
− d

dt
g∗−(t)

}
tdt.

Since p̃(t, 0, 0) = E0[e−λΓ+(t)|Xt = 0]p(t, 0, 0) is monotone in t, (2.8) implies

ψ2
+(λ)E0[e−λΓ+(t)|Xt = 0]p(t, 0, 0) → − d

dt
g∗−(t), λ → ∞

by the continuity lemma (see Lemma 2 of [5]). Therefore

E0[e−λΓ+(t)|Xt = 0] ∼ 1
ψ2

+(λ)
·
− d

dtg
∗
−(t)

p(t, 0, 0)
, λ → ∞.

By (2.7) and Karamata’s Tauberian theorem, we have

P0(Γ+(t) ≤ x|Xt = 0) ∼ D2
α

Γ(1 + 2α)
·
− d

dtg
∗
−(t)

p(t, 0, 0)
{ϕ−1(x)}2, x → 0+

which completes the proof of the theorem.

Example 1. When X = {Xt, Px} is SKEWBES(2−2α, p), 0 < α < 1,
0 < p < 1, we put

Gα,p(x) := P0(Γ+(1) ≤ x|X1 = 0) = P0

(1
t
Γ+(t) ≤ x

∣∣∣ Xt = 0
)
.(2.9)

As is shown in the proof of Theorem 3.1 below, Gα,p(x) is characterized by∫ 1

0

dGp,α(x)
(ξ + x)α

=
1

p(1 + ξ)α + (1 − p)ξα
.(2.10)

By inverting this, we obtain an expression (3.2) by the Riemann–Liouville frac-
tional integral as given below. When α = 1/2, that is, the case of skew Brown-
ian motions, we have a more explicit formula: G 1

2 ,p(x) has the density g 1
2 ,p(x)

given by

g 1
2 ,p(x) =

p(1 − p)
2

{(1 − 2p)x + p2}− 3
2 , 0 < x < 1.(2.11)
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It is readily verified by an elementary calculus that this satisfies (2.10). In
particular, G 1

2 , 1
2
(x) = x, which is just Lévy’s result (0.2).

Theorem 2.1 implies that the asymptotic behavior of Gα,p(x) is as follows:

Gα,p(x) ∼ Γ(1 + α)
Γ(1 + 2α)Γ(1 − α)

· 1 − p

p2
x2α, x → 0+.

This can be obtained from the expression (3.2) given as below.

§3. Limit Theorem

In the case of non-pinned SKEWBES(2 − 2α, p), 0 < α < 1, 0 < p < 1,
the density formula of the fraction of the occupation time is given by the form

fα,p(x) =
sin απ

π

p(1 − p)xα−1(1 − x)α−1

p2(1 − x)2α + (1 − p)2x2α + 2p(1 − p)xα(1 − x)α cos απ

(3.1)

for 0 < x < 1 (see [7] and [10]). This is Lamperti’s density formula. In the
pinned SKEWBES(2−2α, p) case, we can determine the distribution function
of the fraction Γ+(t)/t, i.e., Gα,p(x), 0 < α < 1, 0 < p < 1, by inverting double
Laplace transform formula (2.10).

Theorem 3.1. For 0 ≤ x ≤ 1,

Gα,p(x) =
sin απ

π

∫ x

0

(1 − p)(x − s)α−1sαds

p2(1 − s)2α + (1 − p)2s2α + 2p(1 − p)sα(1 − s)α cos απ
.

(3.2)

Proof. Applying Theorem 2.2, we have∫ ∞

0

e−µtE0[e−λΓ+(t)|Xt = 0]
Dα

Γ(α)
tα−1dt =

Dα

p(λ + µ)α + (1 − p)µα
(3.3)

for λ > 0, µ > 0 in the SKEWBES(2 − 2α, p) case. By the self-similarity of
the Bessel process, i.e., (Γ+(t), Xt)

d= (tΓ+(1), tαX1), we have

the LHS of (3.3) =
∫ ∞

0

e−µtE0[e−λtΓ+(1)|X1 = 0]
Dα

Γ(α)
tα−1dt

=
Dα

Γ(α)
E0

[∫ ∞

0

e−{µ+λΓ+(1)}ttα−1dt
∣∣∣ X1 = 0

]

= DαE0

[ 1
{µ + λΓ+(1)}α

∣∣∣ X1 = 0
]

= Dα

∫ 1

0

dGp,α(x)
(µ + λx)α

.
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Setting ξ = µ/λ(> 0), we obtain

∫ 1

0

dGp,α(x)
(ξ + x)α

=
1

p(1 + ξ)α + (1 − p)ξα
.(2.10)

By the inversion formula for the Stieltjes transform (see Appendix or [9]), we
obtain the equality (3.2) and complete the proof.

Now we introduce a class of random variables {ξα,p}, 0 < α ≤ 1, 0 ≤ p ≤
1, as follows: Each ξα,p is a [0, 1]-valued random variable with the Stieltjes
transform of order α given by

E
[ 1
(λ + ξα,p)α

]
=

1
p(1 + λ)α + (1 − p)λα

, λ > 0.(3.4)

When 0 < α < 1, the distribution function of ξα,p is given by Gα,p(x). If α = 1,
ξ1,p is the constant random variable such that P [ξ1,p = p] = 1. If p = 0 or
p = 1, ξα,0 = 0 a.s. and ξα,1 = 1 a.s.

We now state the limit theorem for the law of Γ+(t)/t as t → ∞ for the
pinned diffusion processes. Let X = {Xt} be a generalized diffusion process
corresponding to {m+, m−}. We always assume that X0 = 0, that is, we
consider the probability law P0 unless otherwise stated.

Theorem 3.2. Let Γ+(t) =
∫ t

0
1[0,∞)(Xs)ds. If

m±(x) ∼ x
1
α−1K±(x), x → ∞(3.5)

for 0 < α ≤ 1 where K±(x) are slowly varying functions at ∞ with

lim
x→∞

K+(x)
K−(x)

=
p

1
α

(1 − p)
1
α

,(3.6)

then the distribution of Γ+(t)/t conditional on Xt = 0 converges in law to that
of ξα,p as t → ∞ i.e.,

P
(1

t
Γ+(t) ≤ x

∣∣∣ Xt = 0
)
→ P (ξα,p ≤ x), t → ∞.

Remark. The condition (3.5) with (3.6) is equivalent to the following
(see [4]):

h±(λ) =
1

ψ±
∼ Dαλ−αL±

( 1
λ

)
, λ → 0 +(3.7)
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where L±(λ) are slowly varying functions at ∞ with

lim
λ→∞

L+(λ)
L−(λ)

=
p

1 − p
(3.8)

and

Dα =

{
1, α = 1,

{α(1 − α)}−αΓ(1 + α)/Γ(1 − α), 0 < α < 1.

We prove Theorem 3.2. By (1.5), for µ > 0 and β > 0, we have∫ ∞

0

e−
µ
β tp(t, 0, 0)dt = β

∫ ∞

0

e−µtp(tβ, 0, 0)dt

=
1

ψ+(µ
β ) + ψ−(µ

β )

=
1

ψ−(µ
β )

· 1
ψ+(µ

β )/ψ−(µ
β ) + 1

∼ 1
ψ−(µ

β )
· (1 − p), β → ∞

∼ 1 − p

ψ−( 1
β )µα

, β → ∞

by the assumption that ψ± vary regularly with α, 0 < α ≤ 1. Hence we have

1
1 − p

· βψ−

( 1
β

)∫ ∞

0

e−µtp(tβ, 0, 0)dt → 1
µα

=
∫ ∞

0

e−µt tα−1

Γ(α)
dt, β → ∞.

Then we obtain

1
1 − p

· βψ−

( 1
β

)
· p(tβ, 0, 0) → tα−1

Γ(α)
, β → ∞.(3.9)

By Theorem 2.2 and (3.7), we have

1
1 − p

· βψ−

( 1
β

) ∫ ∞

0

e−µtE
[
e−

λ
β Γ+(tβ)

∣∣ Xtβ = 0
]
p(tβ, 0, 0)dt

=
1

1 − p
· ψ−

( 1
β

)∫ ∞

0

e−
µ
β tE

[
e−

λ
β Γ+(t)

∣∣ Xt = 0
]
p(t, 0, 0)dt

=
1

1 − p
· ψ−

( 1
β

)
· 1
ψ+(λ+µ

β ) + ψ−(µ
β )

=
1

1 − p
·
ψ−( 1

β )

ψ−(µ
β )

· 1
ψ+(λ+µ

β )/ψ−(µ
β ) + 1

→ 1
1 − p

· 1
µα

· 1
p(λ + µ)α/(1 − p)µα + 1

=
1

p(λ + µ)α + (1 − p)µα
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as β → ∞. By (3.3),

1
p(λ + µ)α + (1 − p)µα

=
∫ ∞

0

e−µtE[e−λtξα,p ]
tα−1

Γ(α)
dt.

Combining these with (3.9), we obtain that

E
[
e−

λ
β Γ+(tβ)

∣∣ Xtβ = 0
]
→ E[e−λtξα,p ], β → ∞

and hence

P
( 1

β
Γ+(tβ) ≤ x

∣∣∣ Xtβ = 0
)
→ P (tξα,p ≤ x), β → ∞

for every t > 0. This clearly implies that

P
(1

t
Γ+(t) ≤ x

∣∣∣ Xt = 0
)
→ P (ξα,p ≤ x) = Gα,p(x), t → ∞,

which completes the proof.

§4. Appendix: An Inversion Formula for the Stieltjes Transform

First we recall the Riemann–Liouville fractional integral of order ρ > 0:

Iρ[f ](x) :=
1

Γ(ρ)

∫ x−

0+

(x − ξ)ρ−1f(ξ)dξ

=
1

Γ(ρ)

∫
1(0,x)(ξ)(x − ξ)ρ−1f(ξ)dξ.

Obviously, when ρ ≥ 1, the integral Iρ[f ](x) is well-defined and is a continuous
function on [0,∞).

Lemma 4.1. Let 0 < ρ < 1 and let f(x) be a Borel measurable func-
tion on [0,∞) which is bounded on each compact subset of [0,∞). Then the
Riemann–Liouville fractional integral of order ρ of the function f is well-defined
and is a continuous function on (0,∞).

Proof. It is obvious noting the following: Let ε > 0 such that ε < ρ.
Then there exists a constant C such that

|xρ−1 − yρ−1| ≤ C|x − y|ε{xρ−ε−1 + yρ−ε−1}

for any x, y > 0.

It is easy to check the following:
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Lemma 4.2. Let ρ1, ρ2 > 0 and let f(x) be a Borel measurable function
on [0,∞) which is bounded on each compact subset of [0,∞). Then it holds that

Iρ1 ◦ Iρ2 [f ](x) = Iρ1+ρ2 [f ](x)

for any x ∈ (0,∞).

Lemma 4.3. Let ρ > 1 and let f(x) be a Borel measurable function on
[0,∞) which is bounded on each compact subset of [0,∞). Then Iρ[f ](x) has
a continuous derivative given by

d

dx
Iρ[f ](x) = Iρ−1f(x)

for any x ∈ (0,∞).

Let F (x) be a non-negative increasing function on [0,∞). For 0 < ρ < 1
the Stieltjes transform of the Stieltjes measure dF of order ρ is defined by

Sρ[dF ](x) =
∫

[0,∞)

dF (ξ)
(x + ξ)ρ

.

If the Riemann–Stieltjes integral of the right hand side converges at a point
x ∈ (0,∞), then it converges uniformly on any compact subset of C \ (−∞, 0]
and hence the function Sρ[dF ] is a holomorphic function on C \ (−∞, 0].

Theorem 4.1. Suppose that the Stieltjes transform Sρ[dF ] converge at
a point x ∈ (0,∞). Then the limit

Φ(x) := lim
η→0+

1
2πi

∫ x−

0+

dσ{Sρ[dF ](−σ − iη) − Sρ[dF ](−σ + iη)}

exists for any x ∈ (0,∞) and the equality

Φ(x) =
1

Γ(ρ)
I1−ρ[F − F (0)](x)

holds for any x ∈ (0,∞). That is, the function x �→ Φ(x) is a continuous
function in x such that∫ x−

0+

{F (ξ) − F (0)}dξ = Γ(ρ)Iρ[Φ](x)

for any x ∈ (0,∞). Moreover, suppose the limit

φ(σ) := lim
η→0+

1
2πi

{Sρ[dF ](−σ − iη) − Sρ[dF ](−σ + iη)}
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exist for any σ ∈ (0,∞) and there exist a function φ̃ such that

|Sρ[dF ](−σ − iη) − Sρ[dF ](−σ + iη)| ≤ φ̃(σ)

and ∫ x−

0+

φ̃(σ)dσ < ∞

for any x ∈ (0,∞). Then it follows that F (x) is continuous and

F (x) − F (0) = Γ(ρ)Iρ[φ](x)

for any x ∈ (0,∞).

Proof. Let x > 0 be fixed.

1
2πi

∫ x−

0+

dσ{Sρ[dF ](−σ − iη) − Sρ[dF ](−σ + iη)}

=
1

2πi

∫ x−

0+

dσ

∫
[0,∞)

{(ξ − σ − iη)−ρ − (ξ − σ + iη)−ρ}dF (ξ)

=
1

2πi

∫ x−

0+

dσ

∫
[0,x)

{(ξ − σ − iη)−ρ − (ξ − σ + iη)−ρ}dF (ξ)

+
1

2πi

∫ x−

0+

dσ

∫
[x,2x)

{(ξ − σ − iη)−ρ − (ξ − σ + iη)−ρ}dF (ξ)

+
1

2πi

∫ x−

0+

dσ

∫
[2x,∞)

{(ξ − σ − iη)−ρ − (ξ − σ + iη)−ρ}dF (ξ)

=: S1 + S2 + S3.

Then we show that

lim
η→0+

S1 =
1

Γ(ρ)
I1−ρ[F ](x) and lim

η→0+
S2 = lim

η→0+
S3 = 0.

First, we obtain that

S1 =
1

2πi

∫
[0,x)

dF (ξ)
∫ x−

0+

{(ξ − σ − iη)−ρ − (ξ − σ + iη)−ρ}dσ

=
1

2πi

∫ x−

0+

{F (ξ) − F (0)}{(ξ − x − iη)−ρ − (ξ − x + iη)−ρ}dξ

→ sin ρπ

π

∫ x−

0+

{F (ξ) − F (0)}(x − ξ)−ρdξ

=
1

Γ(ρ)
I1−ρ[F ](x).
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The convergence is justified by∫ x−

0+

(x − ξ)−ρdξ < ∞.(4.1)

It easily follows that S2 converges to zero from (4.1) and

lim
η→0+

{(x − σ − iη)−ρ − (x − σ + iη)−ρ} = 0

if x − σ > 0.
Finally, note that

S3 =
1

2πi

∫ x−

0+

dσ

∫
[2x,∞)

dF (ξ)
∫ η

−η

iρ(ξ − σ − iζ)−ρ−1dζ.

Thus,

|S3| ≤
η

π

∫
[2x,∞)

dF (ξ)
∫ x−

0+

2ηρ(ξ − σ)−ρ−1dσ

=
η

πρ

∫
[2x,∞)

{(ξ − x)−ρ − ξ−ρ}dF (ξ)

→0

as η → 0+.

In the case of F (x) = Gα,p(x), 0 < α < 1, 0 < p < 1, we have

Sα[dF ](x) =
1

p(1 + x)α + (1 − p)xα
.

Then we can compute φ(σ) as

φ(σ) =
sin απ

π

(1 − p)σα

p2(1 − σ)2α + (1 − p)2σ2α + 2p(1 − p)σα(1 − σ)α cos απ

and hence obtain (3.2).
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loi de l’arc sinus, Séminaire de Prob.XXIII, 294-314, Lecture Notes in Math., 1372,
Springer, Berlin-Heidelberg-New York, 1989.

[2] Feller, W., An Introduction to Probability Theory and its Applications, Vol. II, Wiley,
1971.
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