
�

�

�

�

�

�

�

�

Publ. RIMS, Kyoto Univ.
42 (2006), 803–835

Monodromy at Infinity and
Fourier Transform II

By

Claude Sabbah∗

Abstract

For a regular twistor D-module and for a given function f , we compare the
nearby cycles at f = ∞ and the nearby or vanishing cycles at τ = 0 for its partial
Fourier-Laplace transform relative to the kernel e−τf .

§ 1. Introduction

The regular polarizable twistor D-modules on a complex manifold form
a category generalizing that of polarized Hodge D-modules, introduced by
M. Saito in [6]. This category, together with some of its properties, has been
considered in [4]. A potential application is to produce a category playing the
role, in complex algebraic geometry, of pure perverse �-adic sheaves with wild
ramification, that is, a category enabling meromorphic connections with irreg-
ular singularities together with a notion of weight, compatible with various
functors as direct images by projective morphisms or nearby/vanishing cycles.

A way to obtain irregular singularity from a regular D-module is to apply
the functor that we call partial Laplace transform.

In [4, Appendix], we have sketched some results concerning the behaviour
of regular twistor D-modules with respect to a partial Fourier-Laplace trans-
form. We then have extensively used such results in [2] and [3]. In this article,
we give details for the proof of the results which are not proved in [4, Appendix].
The proofs yet appeared in a preprint form in [5, Chap. 8]. As indicated in
[4, Appendix], the goal is to analyze the behaviour of polarized regular twistor
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F–91128 Palaiseau cedex, France.

c© 2006 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



�

�

�

�

�

�

�

�

804 Claude Sabbah

D-modules under a partial (one-dimensional) Fourier-Laplace transform. We
generalize to such objects the main result of [1], comparing, for a given func-
tion f , the nearby cycles at f =∞ and the nearby or vanishing cycles for the
partial Fourier-Laplace transform in the f -direction (Theorem 5.1).

A remark concerning the terminology. We use the term (partial) Laplace
transform when we consider the transform for D-modules (or R-modules). The
effect of such a transform on a sesquilinear pairing is an ordinary Fourier trans-
form. On a twistor object, consisting of a pair of R-modules and a sesquilinear
pairing between them with values in distributions, the corresponding transform
is called Fourier-Laplace.

§ 2. A Quick Review of Polarizable Twistor D-Modules

Let us quickly review some basic definitions and results concerning polar-
izable twistor D-modules. We refer to [4] for details.

§ 2.a. Some notation

We denote by Ω0 the complex line with coordinate z, and by S the unit
circle |z| = 1. In fact, one could also take for Ω0 any open neighborhood of the
closed unit disc D = {z ∈ Ω0 | |z| � 1}. For any zo ∈ Ω0, we put

• ζo = Im zo,

• �zo
: C→ R the function (α′ + iα′′) �→ α′ − (Im zo)α′′,

• α � zo = α′zo + iα′′(z2
o + 1)/2.

(See [4, Chap. 0] for more notation and definitions.)

§ 2.b. The category R-Triples(X)

Given a n-dimensional complex manifold X, we denote by X the manifold
X×Ω0, by OX its structure sheaf, and by RX the sheaf of differential operators
defined in local coordinates x1, . . . , xn as OX 〈ðx1 , . . . ,ðxn

〉, where we put ðxi
=

z∂xi
.
A module over OX or RX is said to be strict if it has no OΩ0-torsion.
The objects of the category R- Triples(X) are the triples T =(M ′,M ′′, C),

where M ′,M ′′ are left RX -modules and C : M ′
|S ⊗OS

M ′′
|S → DbX×S/S is a

sesquilinear pairing. Here, OS means OΩ0|S, DbX×S/S is the sheaf of distribu-
tions on X×S which are continuous with respect to z ∈ S, and the conjugation
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is taken in the twistor sense (cf. [4, § 1.5.a]): it is the usual conjugation functor
in the X direction, and is the involution z �→ −z−1 in the z-direction.

The morphisms are pairs (ϕ′, ϕ′′) of morphisms, contravariant on the
“prime” side, and covariant on the “double-prime” side, which satisfy the com-
patibility relation C1(ϕ′m′

2,m
′′
1) = C2(m′

2, ϕ
′′m′′

1).
For any k∈ 1

2Z, the Tate twist (k) is defined by T (k)=(M ′,M ′′, (iz)−2kC),
and the adjoint T ∗ of T is (M ′′,M ′, C∗), with C∗(m′′,m′) = C(m′,m′′).

A sesquilinear duality S of weight w ∈ Z on T is a morphism S : T →
T ∗(−w).

There is a natural notion of direct image by a morphism f between smooth
complex manifolds, which is denoted by f†.

§ 2.c. Specialization along a smooth hypersurface

We consider the following situation: the manifold X is an open set in the
product C×X ′ of the complex line with some complex manifold X ′, we regard
the coordinate t on C as a function on X, and we put X0 = t−1(0). There is a
corresponding derivation ðt, and RX is equipped with an increasing filtration
V•RX , for which ðk

t has degree k, tk has degree −k (for any k ∈ N), and any
local section of RX0 has degree 0.

A coherent left RX -module M is said to be strictly specializable along
X0 if there exist, near any (xo, zo) ∈ X , a finite set A ⊂ C and a good V -
filtration indexed by �zo

(A + Z) ⊂ R, denoted by V (zo)
• M , such that, for any

a ∈ �zo
(A+ Z),

• each graded piece grV (zo)

a M is a strict RX0 -module;

• on each grV (zo)

a M , the operator ðtt has a minimal polynomial which takes
the form ∏

α∈A+Z

�zo (α)=a

[−(s+ α � z)]να ,

where the integers να only depend on α mod Z;

• if we denote by ψt,αM the kernel of a sufficiently large power of ðtt+α� z

acting on grV (zo)

a M , with a = �zo
(α), then

• t : ψt,αM → ψt,α−1M is onto for �zo
(α) � 0,

• ðt : ψt,αM → ψt,α+1M is onto for �zo
(α) � −1, but α 	= −1.
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We say that the strictly specializable module M is regular along X0 if
each V (zo)

a M is RX /C-coherent (cf. [4, § 3.1.d]).
Given an object T of R- Triples(X) for which M ′ and M ′′ are strictly

specializable along X0, and any α ∈ C, the specialization ψt,αC is defined by

ψt,αM ′
|S ⊗

OS

ψt,αM ′′
|S

ψt,αC−−−−−−→ DbX0×S/S

([m′], [m′′]) �−−−−−−→ Ress=α�z/z

〈|t|2sC(m′,m′′), • ∧ χ(t) i
2πdt ∧ dt

〉
,

(2.1)

where m′,m′′ are local liftings of [m′], [m′′]. In such a way, we get an object
ψt,αT of R- Triples(X0).

We also define the objects Ψt,αT by starting from the localization of T

along X0 (cf. [4, § 3.4]).

§ 2.d. Polarizable twistor D-modules

Let w be an integer. The category MT(r)(X,w) of regular twistor D-
modules is defined in [4, Def. 4.1.2]. It is a full subcategory of R- Triples(X).
Each object of MT(r)(X,w) is, in particular, strictly specializable along any
local analytic hypersurface, as well as all its successive specializations.

The Tate twist by (−w/2) is an equivalence between MT(r)(X,w) and
MT(r)(X, 0). If X is reduced to a point, the category MT(r)(pt, 0) (the regu-
larity condition is now empty) was defined by C. Simpson in [7] as the category
of twistor structures, which is equivalent to the category of trivializable vector
bundles on P1, or the category of C-vector spaces.

A polarization of an object of MT(r)(X,w) is a sesquilinear duality S of
weight w which induces, by any successive specializations ending to a point, and
gradation by the successive monodromy filtrations, a polarization of the punc-
tual twistor structures (cf. [4, § 4.2]). The subcategory MT(r)(X,w)(p) consist-
ing of polarizable regular twistor D-modules is semisimple (cf. Prop. 4.2.5 in
loc. cit.).

§ 3. Partial Laplace Transform of RX -Modules

§ 3.a. The setting

We consider the product A1× Â1 of two affine lines with coordinates (t, τ ),
and the partial compactification P1 × Â1, covered by two affine charts, with
respective coordinates (t, τ ) and (t′, τ ), where we put t′ = 1/t. We denote
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by ∞ the divisor {t = ∞} in P1, defined by the equation t′ = 0, as well as its
inverse image in P1 × Â1.

Let Y be a complex manifold. We put X = Y × P1, X̂ = Y × Â1 and
Z = Y × P1 × Â1. The manifolds X and Z are equipped with a divisor (still
denoted by) ∞. We have projections

Z
p

����
��

��
�� p̂

��
��

��
��

�

X

q
��

��
��

��
�� X̂

q̂����
��

��
�

Y

(3.1)

Let M be a left RX -module. We denote by M̃ the localized module
RX [∗∞]⊗RX M . Then p+M̃ is a left RZ [∗∞]-module. We denote by p+M̃⊗
E−tτ/z or, for short, by FM , the OZ [∗∞]-module p+M̃ equipped with the
twisted action of RZ described by the exponential factor: the RY -action is
unchanged, and, for any local section m of M ,

• in the chart (t, τ ),

ðt(m⊗ E−tτ/z) = [(ðt − τ )m]⊗ E−tτ/z,

ðτ (m⊗ E−tτ/z) = −tm⊗ E−tτ/z,
(3.2)

• in the chart (t′, τ ),

ðt′(m⊗ E−tτ/z) = [(ðt′ + τ/t′2)m]⊗ E−tτ/z,

ðτ (m⊗ E−tτ/z) = −m/t′ ⊗ E−tτ/z,
(3.3)

Definition 3.4. The partial Laplace transform M̂ of M is the complex
of R cX

-modules
p̂+

FM = p̂+(p+M̃ ⊗ E−tτ/z).

Recall (cf. [4, Prop. A.2.7]) that we have:

Proposition 3.5. Let M be a coherent RX -module. Then FM is RZ -
coherent. If moreover M is good, then so is FM , and therefore M̂ = p̂+

FM is
R cX

-coherent.

Let us also recall the definition of the Fourier transform of a sesquilinear
pairing. Assume that M ′,M ′′ are good RX -modules. Let C : M ′

|S ⊗OS



�

�

�

�

�

�

�

�

808 Claude Sabbah

M ′′
|S → DbX×S/S be a sesquilinear pairing. We will define a sesquilinear pairing

between the corresponding Laplace transforms:

Ĉ : M̂ ′
|S ⊗OS

M̂ ′′
|S −→ Db bX×S/S .

Given local sections m′,m′′ of p+M ′
|S, p

+M ′′
|S, which can be written as

m′ =
∑

i φi ⊗m′
i, m

′′ =
∑

j ψj ⊗m′′
j with φi, ψj holomorphic functions on Z

and m′
i,m

′′
j local sections of M ′

|S,M
′′
|S, let ϕ be a C∞ relative form of maximal

degree on Z × S with compact support. We define the sesquilinear pairing
FC : FM ′

|S ⊗OS
FM ′′

|S → DbZ×S/S by the following formula:

〈FC(m′,m′′), ϕ〉 :=
∑
i,j

〈
C̃(m′

i,m
′′
j ),

∫
p

eztτ−tτ/zφiψjϕ
〉
.

This is meaningful, as, for any z ∈ S, the expression ztτ − tτ/z is purely
imaginary, so the integral is a (partial) Fourier transform of a function having
compact support with respect to τ , hence defines a function having rapid decay
as well as all its derivatives along t =∞; we can apply to it C̃(m′

i,m
′′
j ), which is

a priori a distribution on Y ×A1×S, tempered in the t-direction and continuous
with respect to z.

We can now define, using the direct image defined in [4, § 1.6.d],

Ĉ = p̂0
†
FC.

§ 4. Partial Laplace Transform and Specialization

Denote by i∞ the inclusion Y × {∞} ↪→ X. We will consider the functors
ψτ,α and ψt′,α, as well as the functors Ψτ,α and Ψt′,α of Definition 3.4.3 in [4].
We denote by Nτ ,Nt′ the natural nilpotent endomorphisms on the correspond-
ing nearby cycles modules. We denote by M•(N) the monodromy filtration
of the nilpotent endomorphism N and by grN : grM• → grM•−2 the morphism
induced by N. For � � 0, P grM� denotes the primitive part ker(grN)�+1

| grM�
of

grM� and PM� the inverse image of P grM� by the natural projection M� →
grM� . Recall that, in an abelian category, the primitive part P grM0 is equal to
ker N/(kerN ∩ Im N). We will also denote by M̃min the minimal extension of
M̃ (cf. § 3.4.b in loc. cit.).

Given a finite set of points with multiplicities in Ω0, we will consider the
corresponding divisor D and the corresponding sheaf OΩ0(−D). Given a R-
module N , we will put as usual N (−D) = OΩ0(−D)⊗OΩ0

N .

Proposition 4.1 (cf. [4, Prop. A.3.1]). Assume that M is strictly spe-
cializable and regular along t′ = 0. Then,
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(i) for any τo 	= 0, the RX -module M̃ ⊗ E−tτo/z is RX -coherent; it is also
strictly specializable (but not regular in general) along t′ = 0, with a con-
stant V -filtration, so that all ψt′,α(M̃ ⊗ E−tτo/z) are identically 0.

Assume moreover that M is strict. Then,

(ii) the RZ -module FM := p+M̃ ⊗ E−tτ/z is strictly specializable and regular
along τ = τo for any τo ∈ Â1; it is equal to the minimal extension of its
localization along τ = 0;

(iii) if τo 	= 0, the V -filtration of FM along τ − τo = 0 is given by

Vk
FM =

{
FM if k � −1,

(τ − τo)−k+1FM if k � −1;

we have

ψτ−τo,α
FM =

{
0 if α 	∈ −N− 1,

M̃ ⊗ E−tτo/z if α ∈ −N− 1.

(iv) If τo = 0, we have:

(a) for any α 	= −1 with Reα ∈ [−1, 0[, a functorial isomorphism on some
neighborhood of D := {|z| � 1},(

Ψτ,α
FM|D,Nτ

) ∼−→ i∞,+

(
ψt′,αM̃ (−Dα)|D,Nt′

)
,

where Dα is the divisor 1 · i if α′ = −1 and α′′ > 0, the divisor 1 · (−i)
if α′ = −1 and α′′ < 0, and the empty divisor otherwise;

(b) for α = 0, a functorial isomorphism(
ψτ,0

FM ,Nτ

) ∼−→ i∞,+

(
ψt′,−1M̃ ,Nt′

)
,

(c) for α = −1, two functorial exact sequences

0 −→ i∞,+ kerNt′ −→ kerNτ −→ M̃min −→ 0

0 −→ M̃min −→ cokerNτ −→ i∞,+ cokerNt′ −→ 0,

inducing isomorphisms

i∞,+ kerNt′
∼−→ ker Nτ ∩ Im Nτ ⊂ kerNτ

M̃min
∼−→ ker Nτ/(kerNτ ∩ Im Nτ ) ⊂ cokerNτ ,

such that the natural morphism ker Nτ → cokerNτ induces the identity
on M̃min.
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Proof of 4.1(i). Let us first prove the RX -coherence of M̃ ⊗ E−tτo/z when
τo 	= 0. As this RX -module is RX [∗∞]-coherent by construction, it is enough
to prove that it is locally finitely generated over RX , and the only problem is
at t′ = 0. We also work locally near zo ∈ Ω0 and forget the exponent (zo) in
the V -filtration along t′ = 0. Then, M̃ = OX [1/t′]⊗OX V<0M , equipped with
its natural RX -structure. By the regularity assumption, V<0M is RX /A1-
coherent, so we can choose finitely many RX /A1-generators mi of V<0M .

The regularity assumption implies that, for any i,

t′ðt′mi ∈
∑

j

RX /A1 ·mj .

In M̃ ⊗ E−tτo/z, using (3.3), this is written as

(t′ðt′ − τ0/t′)(mi ⊗ E−tτo/z) ∈
∑

j

RX /A1 · (mj ⊗ E−tτo/z),(4.2)

and therefore

(τo/t′)(mi ⊗ E−tτo/z) ∈
∑

j

V0RX · (mj ⊗ E−tτo/z).

It follows that M̃ ⊗E−tτo/z is V0RX -coherent, generated by the mi⊗E−tτo/z.
It is then obviously RX -coherent. The previous relation also implies that
τo(mi⊗E−tτo/z) ∈ t′M̃ ⊗E−tτo/z. Therefore, the constant V -filtration, defined
by Va(M̃ ⊗ E−tτo/z) = M̃ ⊗ E−tτo/z for any a, is good and has a Bernstein
polynomial equal to 1.

Proof of 4.1(ii) for τo �= 0 and 4.1(iii). The analogue of Formula (4.2)
now reads

(t′ðt′ + τðτ )(mi ⊗ E−tτ/z) ∈
∑

j

RX /A1 · (mj ⊗ E−tτ/z).

Therefore, the RZ /bA1-module generated by the mj⊗E−tτ/z is V0RZ -coherent,
where V denotes the filtration relative to τ − τo. It is even RZ -coherent if
τo 	= 0, as τ is a unit near τo, and this easily gives 4.1(iii), therefore also 4.1(ii)
when τo 	= 0.

Proof of 4.1(ii) for τo = 0. Let us now consider the case where τo = 0.
Then the previous argument gives the regularity of FM along τ = 0. We will
now show the strict specializability along τ = 0. We will work near zo ∈ Ω0

and forget the exponent (zo) in the V -filtrations relative to τ = 0 and to t′ = 0.
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Away from t′ = 0 the result is easy: near t = to, Formula (3.2), together
with the strictness of M , implies that FM is strictly noncharacteristic along
τ = 0, hence FM = V−1

FM and ψτ,−1
FM = M (cf. [4, § 3.7]).

We will now focus on t′ = 0. Denote by V•M the V -filtration of M relative
to t′ and put, for any a ∈ [−1, 0[,

Va+kM̃ = t′−kVaM (= Va+kM if k � 0).

Each VaM̃ is a V0RX -coherent module and, by regularity, is also RX /A1-
coherent. We will now construct the V -filtration of FM along τ = 0. For any
a ∈ R, put

Ua
FM =

∑
p�0

ð
p
t′
[
(p∗VaM̃ )⊗ E−tτ/z

]
,

i.e., Ua is the RZ /bA1-module generated by (p∗VaM̃ ) ⊗ E−tτ/z in FM . Notice
that, when we restrict to t′ 	= 0, we have for any a ∈ R,

Ua|t′ �=0 = FM|t′ �=0.

(ii)(1) Clearly, U• is an increasing filtration of FM and each Ua is RZ /bA1-
coherent for every a ∈ R.

(ii)(2) Ua is stable by τðτ : indeed, for any local section m of VaM̃ , we have
by (3.3):

(τðτ )ðp
t′(m⊗ E−tτ/z) = ð

p
t′(τðτ )(m⊗ E−tτ/z)

= ð
p
t′
[
t′ðt′(m⊗ E−tτ/z)− (t′ðt′m)⊗ E−tτ/z

]
= ð

p+1
t′ (t′m⊗ E−tτ/z)− ð

p
t′
[
(ðt′t

′m)⊗ E−tτ/z
]
.

The first term in the RHS is in Ua−1 and the second one is in Ua, as
VaM̃ is stable by ðt′t

′.

(ii)(3) For any a ∈ R, we have Ua+1 = Ua + ðτUa: indeed, for m as above, we
have

ðτ · ðp
t′(m⊗ E−tτ/z) = −ð

p
t′

( 1
t′
m⊗ E−tτ/z

)
∈ Ua+1,

hence ðτUa ⊂ Ua+1; applying this equality the in the other way gives
the desired equality. This also shows that ðτ : grU

a
FM → grU

a+1
FM is

an isomorphism for any a ∈ R.
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(ii)(4) For any a ∈ R, we have τUa ⊂ Ua−1: indeed, one has, for m as above

τ (m⊗ E−tτ/z) = t′2ðt′(m⊗ E−tτ/z)− (t′2ðt′m)⊗ E−tτ/z

= ðt′(t′2m⊗ E−tτ/z)− (ðt′t
′2m)⊗ E−tτ/z;

the first term of the RHS clearly belongs to Ua−2 and the second one to
Ua−1.

(ii)(5) Denote by ba(s) the minimal polynomial of −ðt′t
′ on grV

a M̃ . Then, for
m as above, we have

−(ðt′t
′ + τðτ )(m⊗ E−tτ/z) = −(ðt′t

′m)⊗ E−tτ/z

after (3.3). Therefore, we have ba(−[ðt′t
′ + τðτ ])(m ⊗ E−tτ/z) ∈ U<a.

Using that ðt′t
′(m⊗ E−tτ/z) = ðt′(t′m⊗ E−tτ/z) ∈ Ua−1 by definition,

we deduce that ba(−τðτ )(m⊗E−tτ/z) ∈ U<a. Therefore, ba(−τðτ )Ua ⊂
U<a.

(ii)(6) We will now identify Ua/U<a with grV
a M̃ [η] := C[η] ⊗C grV

a M̃ , where
η is a new variable. Notice first that both objects are supported on
{t′ = 0}. Consider the map

VaM̃ [η] −→ Ua∑
p

mpη
p �−→

∑
p

ð
p
t′(mp ⊗ E−tτ/z).

Its composition with the natural projection Ua → Ua/U<a induces a
surjective mapping grV

a M̃ [η] → Ua/U<a. In order to show that it is
injective, it is enough to show that, if

∑
p ð

p
t′(mp ⊗ E−tτ/z) belongs to

U<a, then each mp belongs to V<aM̃ . For that purpose, it is enough
to work with an algebraic version of Ua, where “p∗” means “⊗CC[τ ]”.
Notice that, if a local section

∑r
�=0 τ

�(n� ⊗ E−tτ/z) of M̃ [τ ] ⊗ E−tτ/z

belongs to Ua, then the leading coefficient nr is a local section of Va+2rM̃

(by using that ðt′(n⊗ E−tτ/z) = (ðt′n)⊗ E−tτ/z − τ ((n/t′2)⊗ E−tτ/z)).
Remark then that, using (3.3),

∑q
p=0 ð

p
t′(mp ⊗ E−tτ/z) is a polynomial

of degree q in τ with leading coefficient ±(τ q/t′2q)(mq ⊗ E−tτ/z). If
the sum belongs to U<a, this implies that mq/t

′2q ∈ V<a+2qM̃ , i.e.,
mq ∈ V<aM̃ . Therefore, by induction on q, all coefficients mp are local
sections of V<aM̃ , as was to be shown.

Let us describe the RX [τðτ ]-module structure on grV
a M̃ [η] coming from

the identification with Ua/U<a. First, the RY -module structure is the
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natural one on grV
a M̃ , naturally extended to grV

a M̃ [η]. Then one checks
that

ðt′
∑

p

mpη
p = η

∑
p

mpη
p, t′

∑
p

mpη
p = −ðη

∑
p

mpη
p,(4.3)

τðτ

∑
p

mpη
p =

∑
p

(ð′
tt

′)(mp)ηp.(4.4)

If we denote by i∞ the inclusion Y × {∞} ↪→ X, the RX -module
grV

a M̃ [η] that these formulas define is nothing but i∞,+ grV
a M̃ , so we

have obtained an isomorphism of RX -modules:

(i∞,+ grV
a M̃ , ðt′t

′) ∼−→ (grU
a

FM , τðτ )(4.5)

(ii)(7) Consider the filtration V•
FM defined for a ∈ [−1, 0[ and k ∈ Z by

Va+k
FM =

{
Ua+1+k if k � 0,

τ−kUa+1 if k � 0.

This is a V -filtration relative to τ on FM , by (ii)(1), (ii)(2), (ii)(3) and
(ii)(4). It is good, by the equality in (ii)(3) and because τVa

FM =
Va−1

FM for a < 0 by definition. Notice that, for a > −1, we have
grV

a
FM = grU

a+1
FM .

For a > −1, we can use (4.5) to get a minimal polynomial of the right
form for −ðττ acting on grV

a
FM (here is the need for a shift by 1 between

U and V ), and strictness follows from (4.5) and the strictness of grV
a M̃ ,

which is by assumption.

It therefore remains to analyze grV
a

FM for a � −1.

(ii)(8) We will analyze grV
−1

FM = U0/τU<1 through the following two diagrams
of exact sequences, where the nonlabelled maps are the natural ones:

0

��

(U<0 ∩ τFM )/τU<1

��

0 �� U<0/τU<1
��

��

U0/τU<1
�� U0/U<0

�� 0

U<0/(U<0 ∩ τFM )

��

0

(4.6)
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and

0

��

U<0/(U<0 ∩ τU1)

��

0 �� U0/U<0
τðτ �� U0/τU<1

�� U0/τU1
��

��

0

U0/(τU1 + U<0)

��

0

(4.7)

Notice that, in (4.7), τðτ is injective because it is the composition

U0/U<0
ðτ−−−→ U1/U<1

τ−−→ U0/τU<1,(4.8)

ðτ is an isomorphism (cf. (ii)(3)) and τ is injective, as it acts in-
jectively on FM . Recall that (grU

0
FM , τðτ ) is identified, by (ii)(6),

with i∞,+(grV
0 M̃ , ðt′t

′). Notice also that τðτ vanishes on U<0/τU<1

(resp. on U0/τU1), as ðτU<0 ⊂ U<1 (resp. ðτU0 ⊂ U1). It remains
therefore to prove the strictness of U<0/τU<1 to get the desired
properties for grV

−1
FM . We denote by Nt′ the action of −t′ðt′ on

grV
−1 M̃ (by strictness, ker Nt′ is equal to the kernel of −t′ðt′ acting on

ψt′,−1M̃ ⊂ grV
−1 M̃ ). The strictness of grV

−1
FM follows then from the

strictness of i∞,+ψt′,−1M̃ , that of M̃min (defined in [4, Def. 3.4.7]) and
the first two lines of the lemma below, applied to the diagram (4.6).

Lemma 4.9. We have functorial isomorphisms of RX -modules:

U<0/(U<0 ∩ τU1) = U<0/(U<0 ∩ τFM ) ∼−→ M̃min

i∞,+ kerNt′
∼−→ (U<0 ∩ τFM )/τU<1

i∞,+ coker Nt′
∼−→ U0/(τU1 + U<0).

Proof. For m0, . . . ,mp ∈ M̃ , we can write

(4.10) m0 ⊗ E−tτ/z + ðt′(m1 ⊗ E−tτ/z) + · · ·+ ð
p
t′(mp ⊗ E−tτ/z)

= n0⊗E−tτ/z − τ
[
(n1/t

′2)⊗E−tτ/z + · · ·+ ð
p−1
t′

(
(np/t

′2)⊗E−tτ/z
)]
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with

np = mp mp = np

np−1 = mp−1 + ðt′mp mp−1 = np−1 − ðt′np

...
...

n1 = m1 + ðt′m2 + · · ·+ ð
p−1
t′ mp m1 = n1 − ðt′n2

n0 = m0 + ðt′m1 + · · ·+ ð
p
t′mp m0 = n0 − ðt′n1

(4.11)

Sending an element to its constant term in its τ expansion gives an
injective morphism U<0/(U<0∩τFM )→ M̃ . Formulas (4.10) and (4.11)
show that the image of this morphism is the RX -submodule of M̃

generated by V<0M̃ : this is by definition the minimal extension of M̃

across t′ = 0.

Let us show that

U<0 ∩ τU1 = U<0 ∩ τFM .(4.12)

Consider a local section of U<0 ∩ τFM , written as in (4.10); it satisfies
thus m0, . . . ,mp ∈ V<0M̃ and n0 = 0; then ðt′n1 = −m0 ∈ V<0M̃ .
This implies that n1 is a local section of V−1M̃ : indeed, the condition
on n1 is equivalent to t′ðt′n1 ∈ V<−1M̃ ; use then that, by strictness of
grV

a M̃ , t′ðt′ acts injectively on grV
a M̃ if a 	= −1. Therefore, (n1/t

′2)⊗
E−tτ/z ∈ U1. We can now assume that n1 = 0 and thus ðt′n2 ∈ V<0M̃ ...
hence (4.12), and the first line of the lemma. Notice moreover that the
class of each nj in grV

−1 M̃ is in kerNt′ .

Let η be a new variable. We define a morphism

ker Nt′ [η] −→ U<0/τU<1

by the rule

∑
j�1

[nj ]ηj−1 �−→ −τ
[
(n1/t

′2)⊗E−tτ/z + · · ·+ ð
p−1
t′

(
(np/t

′2)⊗ E−tτ/z
)]
,

(4.13)

by taking some lifting nj of each [nj ] ∈ kerNt′ ⊂ grV
−1 M̃ in V−1M̃ .

• This morphism is well defined: using (4.10), write

−τð
j−1
t′

(
(nj/t

′2)⊗E−tτ/z
)
=ð

j
t′
(
nj⊗E−tτ/z

)−ð
j−1
t′

(
(ðt′nj)⊗E−tτ/z

)
;
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that [nj ] belongs to kerNt′ is equivalent to t′ðt′nj ∈ V<−1M̃ ; there-
fore, both nj and ðt′nj belong to V<0M̃ ; moreover, if nj ∈ V<−1M̃ ,
so that nj/t

′2 ∈ V<1M̃ , the image is in τU<1.

• This morphism is injective: as we have seen in (ii)(6), the term
between brackets in (4.13) belongs to U<1 if and only if each nj/t

′2

belongs to V<1M̃ , i.e., each nj is in V<−1M̃ .

• The image of this morphism is equal to (U<0 ∩ τFM )/τU<1: this
was shown in the proof of (4.12).

As in (ii)(6), we can identify kerNt′ [η] with i∞,+ ker Nt′ and the mor-
phism is seen to be RX -linear.

Let us now consider the third line of the lemma. We identify U0/(τU1 +
U<0) with the cokernel of τ : grU

1 → grU
0 or, equivalently, to that of

τðτ : grU
0 → grU

0 . By (ii)(6), it is identified with i∞,+ coker ðt′t
′ acting

on i∞,+ grV
0 M̃ . Use now the isomorphism t′ : grV

0 M̃ → grV
−1 M̃ to

conclude.

(ii)(9) We will now prove that all the grV
a

FM for a � −1 are strict and have a
Bernstein polynomial. In (ii)(8) we have proved this for a = −1.

Choose a < −1. It follows from the definition of V•
FM that

τ : grV
a+1

FM −→ grV
a

FM(4.14)

is onto. Therefore, by decreasing induction on a and using (ii)(7), we
have a Bernstein relation on each grV

a
FM . It remains to prove the

strictness of such a module. This is also done by decreasing induction
on a, as it is now known to be true for any a ∈ [−1, 0[. It is enough to
show that (4.14) is also injective for any a < −1, and it is also enough
to show that

ðτ τ : grV
a+1

FM −→ grV
a+1

FM .

is injective. If a section m satisfies ðττm = 0 then, according to
the Bernstein relation that we previously proved, it also satisfies∏

(α � z)ναm = 0, where the product is taken on a set of α ∈ C with
�zo

(α) = a + 1 < 0 and να ∈ N. Such a set does not contain 0 and the
function z �→∏

(α � z)να is not identically 0. By induction, grV
a+1

FM is
strict. Therefore, m = 0, hence the injectivity.
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(ii)(10) By construction, the filtration V•
FM satisfies moreover that

• τ : grV
a

FM → grV
a−1

FM is onto for any a < 0,

• ðτ : grV
a

FM → grV
a+1

FM is onto for any a � −1.

This implies that all the conditions for strict specializability (cf. [4,
Def. 3.3.8]) are satisfied, and that moreover the morphism canτ intro-
duced in [4, Rem. 3.3.6(6)] is onto. Notice also that the morphism varτ

is injective: indeed, this means that τ : grV
0

FM → grV
−1

FM is injective,
or equivalently that τ : U1/U<1 → U0/τU<1 is injective, which has been
seen after (4.8).

In other words, we have shown that FM is strictly specializable along
τ = 0 and that it is equal to the minimal extension of its localization
along τ = 0, as defined in [4, § 3.4.b].

Proof of 4.1(iv). Now that FM is known to be strictly specializable
along τ = 0, the RX -modules ψτ,α

FM (cf. Lemma 3.3.4 in loc. cit.) are
defined. We can compare them with i∞,+ψt′,αM̃ .

(iv)(1) For any zo ∈ Ω0, we have a natural morphism, defined locally near zo

(putting a = �zo
(α))

ψτ,α
FM ↪−→ grV

a
FM −→ grU

a+1
FM(4.15)

∼−→ i∞,+ grV
a+1 M̃

i∞,+t
′

−−−−−−→∼ i∞,+ grV
a M̃ ,

which takes values in i∞,+ψt′,αM̃ . One verifies that the various
morphisms glue together in a well defined morphism ψτ,α

FM →
i∞,+ψt′,αM̃ .

Lemma 4.16. Near any zo ∈ D, the natural morphism ψτ,α
FM →

grU
a+1

FM (a = �zo
(α)) is injective for any α ∈ C�(−N∗) and, if a � −1,

ψτ,α
FM → i∞,+ψt′,αM̃ is an isomorphism near zo.

Proof. If a > −1, this has been proved in (4.5). Assume that a = −1
(and α 	∈ −N∗). If we decompose the horizontal sequence (4.6) with
respect to the eigenvalues of −τðτ , we get that, for any α 	= −1 with
�zo

(α) = −1, the natural morphism

ψτ,α
FM −→ U0/U<0
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is an isomorphism onto (U0/U<0)α+1 and, according to (4.5), we have
an isomorphism

ψτ,α
FM

∼−→ i∞,+ψt′,α+1M̃
i∞,+t

′
−−−−−−→∼ i∞,+ψt′,αM̃ .

Assume now that a < −1. Let k � 0 be such that b = a+ k ∈ [−1, 0[.
We prove the result by induction on k, knowing that it is true for k = 0.
By induction, we have a commutative diagram

ψτ,α+1
FM

� � ��

�τ
��

grU
a+2

FM

ψτ,α
FM �� grU

a+1
FM

ðτ�
��

showing that the lower horizontal arrow is injective if and only if ðττ is
injective on ψτ,α+1

FM , which follows from strictness if (α+ 1) � z 	≡ 0,
that is, if α 	= −1.

(iv)(2) Proof of 4.1(ivb). When α = 0, the proof follows from Lemma 4.16.

(iv)(3) Assume now that α 	= −1 satisfies Reα ∈ [−1, 0[. We wish to show
that (4.15) induces an isomorphism

ψτ,α
FM|D

∼−→ i∞,+ψt′,αM̃ (−Dα)|D.(4.17)

This is a local question with respect to z ∈ D.

Clearly, the image of ψτ,α
FM → grU

a+1
FM is contained in

ker[(ðττ + α � z)N : grU
a+1

FM → grU
a+1

FM ], for N � 0 and is
equal to this submodule if a � −1.

If a < −1 and if k � 1 is such that a+k ∈ [−1, 0[, the image is identified
with

Im(τkðk
τ ) : ker(ðττ + α � z)N −→ ker(ðττ + α � z)N ,

and it is identified with the image of the multiplication by
∏k

j=1(α+j)�z
on this module. For j = 1, . . . , k, the number β = α + j satisfies
Reβ � 0, β 	= 0 and �zo

(β) < 0. Then β � z = 0 has a solution z in D
iff Re β = 0, and this solution is z = ±i. This occurs iff Reα = −1 and
j = 1. In conclusion, the image of ψτ,α

FM|D in i∞,+ψτ,αM̃|D, is equal
to the image of the multiplication by (α+ 1) � z on i∞,+ψτ,αM̃|D. As
we assume that �zo

(α) < −1, the divisor of z �→ (α + 1) � z coincides,
near zo, with the divisor Dα, hence (4.17).



�

�

�

�

�

�

�

�

Monodromy at Infinity II 819

(iv)(4) We now show that there is no difference between ψτ,α
FM and Ψτ,α

FM

on some neighborhood of D.

Lemma 4.18. Assume that α 	= −1 and α′ := Reα ∈ [−1, 0[. Then
the natural inclusion ψτ,α

FMD ↪→ Ψτ,α
FMD is an isomorphism.

Note that the existence of an inclusion is proved in [4, Lemma 3.4.2(1)].

Proof. The question is local near points z ∈ D such that �z(α) � 0,
otherwise the result follows from Lemma 3.4.1 in loc. cit. Fix zo such
that �zo

(α) � 0 and let k � 1 be such that �zo
(α − k) ∈ [−1, 0[. We

have a commutative diagram

ψτ,α
FM

� � ��

τk

��

Ψτ,α
FM

� τk

��

ψτ,α−k
FM

∼ �� Ψτ,α−k
FM

and, as a := �zo
(α) and a − k are � −1 and α 	= −1, ψτ,α

FM

(resp. ψτ,α−k
FM ) is contained in grU

a+1
FM (resp. in grU

a+1−k
FM ),

using the local filtration U near zo. It follows (cf. (ii)(3)) that
ðk

τ : ψτ,α−k
FM → ψτ,α

FM is an isomorphism. Therefore, the image
of ψτ,α

FM in Ψτ,α
FM is identified with the image of ðk

ττ
k acting on

Ψτ,α
FM . Using the nilpotent endomorphism Nτ = −(ðττ + α � z), we

write ðk
ττ

k as (−1)k(Nτ + α � z) · · · (Nτ + (α− k + 1) � z). The proof
of the lemma will be complete if we show that none of the (α− j) � zo

(j = 0, . . . , k − 1) vanishes (assuming that zo ∈ D).

Notice that β := α− j satisfies β′ < 0 and β′− ζoβ′′ � 0. Assume that
β�zo = 0. By the previous conditions, we must have β′′ 	= 0 and zo 	= 0,

and the only possibility for zo is then zo = iζo and ζo = β′−
√

β′2+β′′2

β′′ .
Now, the condition β′ < 0 implies |ζo| > 1, so zo 	∈ D.

(iv)(5) Proof of 4.1(iva). It follows from (4.17) and Lemma 4.18 that we have
a functorial isomorphism

Ψτ,α
FM|D −→ i∞,+ψτ,αM̃ (−Dα)|D(4.19)

when α 	= −1 satisfies Reα ∈ [−1, 0[. This ends the proof of 4.1(iv)
when α 	= −1.
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(iv)(6) Proof of 4.1(ivc). Let us now consider the case when α = −1. The
two exact sequences that we consider are the vertical exact sequences
in (4.6) and (4.7), according to Lemma 4.9.

For the second assertion, notice first that, as the image of Im Nτ ∩
kerNτ in M̃min is supported on {t′ = 0}, it is zero by the definition of
the minimal extension, hence we have an inclusion Im Nτ ∩ kerNτ ⊂
i∞,+ kerNt′ . To prove i∞,+ ker Nt′ ⊂ Im Nτ , remark that the image of
(4.13) is in τ (U1/U<1), hence in τψτ,0

FM , that is, in Im varτ , hence in
Im Nτ .

The last assertion is nothing but the identification U<0 ∩ τFM = U<0 ∩
τU1 of Lemma 4.9.

§ 5. Partial Fourier-Laplace Transform of Regular Twistor
D-Modules

The main result of this article is (cf. [4, Th. A.4.1]):

Theorem 5.1. Let (T ,S ) = (M ′,M ′′, C,S ) be an object of
MT(r)(X,w)(p). Then, along τ = 0, M̂ ′ and M̂ ′′ are strictly specializ-
able, regular and S-decomposable. Moreover, Ψτ,α(T̂ , Ŝ ), with Reα ∈ [−1, 0[,
and φτ,0(T̂ , Ŝ ) induce, by grading with respect to the monodromy filtration
M•(Nτ ), an object of MLT(r)(X̂, w;−1)(p).

Note that the definition of S-decomposability is given in [4, Def. 3.5.1], and
that of the category MLT(r) in § 4.1.f of loc. cit. In particular, all conditions of
Definition 4.1.2 in loc. cit. are satisfied along the hypersurface τ = 0.

This theorem is a generalization of [1, Th. 5.3], without the Q-structure
however. In fact, we give a precise comparison with nearby cycles of (T ,S )
at t =∞ as in [1, Th. 4.3].

In order to prove Theorem 5.1, we need to extend the results of Proposition
4.1 to objects with sesquilinear pairings.

§ 5.a. “Positive” functions of z

Recall that we denote by D the disc |z| � 1 and by S its boundary. Let
λ(z) be a meromorphic function defined in some neighborhood of S. If the
neighborhood is sufficiently small, it has zeros and poles at most on S. We
say that λ is “real” if it satisfies λ = λ, where λ(z) is defined as c(λ(−1/c(z)))
and c is the usual complex conjugation. For instance, if α ∈ C, the function
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z �→ α � z/z is “real”. If λ(z) is “real” and if ψ is a meromorphic function
on C which is real (in the usual sense, i.e., ψc = cψ), then ψ ◦ λ is “real”. In
particular, for any α ∈ C∗, the function z �→ Γ(α � z/z) is “real”.

Lemma 5.2. Let λ(z) be a “real” invertible holomorphic function in
some neighborhood of S. Then there exists an invertible holomorphic function
µ(z) in some neighborhood of D such that λ = ±µµ in some neighborhood of
S. Moreover, such a function µ is unique up to multiplication by a complex
number having modulus equal to 1.

Definition 5.3. Let λ be as in the lemma. We say that λ is “positive”
if λ = µµ, with µ invertible on D, and “negative” if λ = −µµ.

Remark 5.4. Positive or negative “real” meromorphic functions. As-
sume that λ is a nonzero “real” meromorphic function in some neighborhood
of S. Then λ can be written as

∏
i[(z − zi)(z − zi)]mi · h with zi ∈ S, h holo-

morphic invertible near S and h = h: indeed, one shows that, if zo ∈ S, then
z − zo = (z + zo) · (−1/zoz); therefore, if zo ∈ S is a pole or a zero of λ with
order mo ∈ Z, then −zo has the same order, hence the product decomposition
of λ.

It follows from Lemma 5.2 that λ = ±gg, with g = µ
∏

i(z − zi)m
i , zi ∈ S,

mi ∈ Z and µ holomorphic invertible on D. This decomposition is not unique,
as one may change some zi with −zi. The sign is also nonuniquely determined,
as we have, for any zo ∈ S,

−1 =
(z − zo

z + zo

)
·
(z − zo

z + zo

)
.

Nevertheless, the decomposition and the sign are uniquely defined (up
to a multiplicative constant) if we fix a choice of a “square root” of the
divisor of λ so that no two points in the support of this divisor are op-
posed, and if we impose that the divisor of g is contained in this “square
root”. The sign does not depend on the choice of such a “square root”.
We say that λ is “positive” if the sign is +, and “negative” if the sign
is −.

Proof of Lemma 5.2. One can write λ = ν·µ with µ holomorphic invertible
near D and ν meromorphic in some neighborhood of D and having poles or
zeros at 0 at most. The function c(z) = ν/µ = ν/µ defines a meromorphic
function on P1 with divisor supported by {0,∞}. Thus, c(z) = c · zk with
c ∈ C and k ∈ Z, so λ = czkµµ. Moreover, the equality λ = λ implies that
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c ∈ R and k = 0. Changing notation for µ gives λ = ±µµ, with µ invertible on
D.

For uniqueness, assume that µµ = ±1 with µ holomorphic invertible in
some neighborhood of D. Then ±1/µ is also holomorphic in some neighborhood
of |z| � 1, so µ extends as a holomorphic function on P1 and thus is constant.
This implies that µµ = 1.

Lemma 5.5. Let α ∈ C be such that Reα ∈ [0, 1[ and α 	= 0. Then the
meromorphic function

λ(z) =
Γ(α � z/z)

Γ(1− α � z/z)
is “real” and “positive” (it is holomorphic invertible near S if Reα 	= 0).

Proof. That this function is “real” has yet been remarked. The only
possible pole/zero of λ on S is ±i, which occurs if there exists k ∈ Z such that
Reα+ k = 0. It is a simple pole (resp. a simple zero) if k � 0 (resp. k � −1).
As we assume Reα ∈ [0, 1[, the only possibility is when Reα = 0, with k = 0
(hence a pole).

Write λ(z) as Γ(α � z/z)2 · (1/π) sinπ(α � z/z). It is then equivalent to
showing that (1/π) sinπ(α � z/z) is “positive” for α as above.

Write α = α′ + iα′′. The result is clear if α′′ = 0, as we then have
α � z/z = α′ ∈ ]0, 1[. We thus assume now that α′′ 	= 0.

For any β ∈ C with β′′ 	= 0, we put b =
β′ +

√
β′2 + β′′2

β′′ and we can write

β � z

z
=
β′′b
2

(
1 +

iz

b

)(
1 +

iz

b

)
.

If α is as above, we have n−α′, n+α′ > 0 for any n � 1 and we put for n � 0

bn = −n− α
′ +

√
(n− α′)2 + α′′2

α′′ , cn =
n+ α′ +

√
(n+ α′)2 + α′′2

α′′ .

For n � 1, we have |bn| , |cn| > 1 and

(n− α) � z
z

=
n− α′ +

√
(n− α′)2 + α′′2

2

(
1 +

iz

bn

)(
1 +

iz

bn

)
,

(n+ α) � z
z

=
n+ α′ +

√
(n+ α′)2 + α′′2

2

(
1 +

iz

cn

)(
1 +

iz

cn

)
.

The number

c(α) =
∏
n�1

(n− α′ +
√

(n− α′)2 + α′′2)(n+ α′ +
√

(n+ α′)2 + α′′2)
4n2
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is (finite and) positive. On the other hand, as
1
bn

+
1
cn

= −α
′α′′

n2
+ O(1/n3),

the infinite product ∏
n�1

(
1 +

iz

bn

)(
1 +

iz

cn

)
defines an invertible holomorphic function in some neighborhood of D. Put

g(z) =
(c(α)(α′ +

√
α′2 + α′′2)

2

)1/2

·
(
1 +

iz

c0

) ∏
n�1

(
1 +

iz

bn

)(
1 +

iz

cn

)
.

Then we have (1/π) sinπ(α � z/z) = g(z)g(z).

If µ is a meromorphic function on some neighborhood of D, we denote by
Dµ its divisor on D. If M is a RX -module, we put M (Dµ) = OX (Dµ)⊗OX M

with its natural RX -structure.

Lemma 5.6. Let (T ,S )=(M ′,M ′′, C,S ) be an object of MT(X,w)(p).
Then, for each µ as above, (M ′(Dµ),M ′′(Dµ), µµC,S ) is an object of
MT(X,w)(p) isomorphic to (T ,S ).

Remark 5.7. We only assume here that M ′,M ′′ are defined in some
neighborhood of D, and not necessarily on Ω0. This does not change the
category MT(X,w)(p).

Proof. The isomorphism is given by ·µ : M ′(Dµ)→M ′ and ·(1/µ) :
M ′′→M ′′(Dµ).

§ 5.b. Exponential twist and specialization of a sesquilinear pairing

We now come back to our original situation of § 3.a. Let T =
(M ′,M ′′, C) be an object of R- Triples(X). We have defined the object
FT = (FM ′,FM ′′,FC) of R- Triples(Z). If we assume that M ′,M ′′ are strict
and strictly specializable along t′ = 0, then FM ′,FM ′′ are strictly specializable
along τ = 0. Then, for Reα ∈ [−1, 0[, Ψτ,α

FT is defined as in [4, § 3.6].
Recall (cf. (3.6.2) in loc. cit.) that we denote by Nτ : Ψτ,α

FT → Ψτ,α
FT (−1)

the morphism (−iNτ , iNτ ). If α = −1 (more generally if α is real) we have
Ψτ,α

FT = ψτ,α
FT . We also consider, as in § 3.6.b of loc. cit., the vanishing

cycle object φτ,0
FT .

The purpose of this section is to extend Proposition 4.1(iv) to objects of
R- Triples. It will be convenient to assume, in the following, that M ′ = M ′

min
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and M ′′ = M ′′
min; with such an assumption, we will not have to define a

sesquilinear pairing on the minimal extensions used in Proposition 4.1(iv), as
we can use the given C.

Proposition 5.8 (cf. [4, Prop. A.4.2]). For T as above, we have iso-
morphisms in R- Triples(X):(

Ψτ,α
FT ,Nτ

) ∼−→ i∞,+

(
Ψt′,αT ,Nt′

)
, ∀α 	= −1 with Reα ∈ [−1, 0[,

(φτ,0
FT ,Nτ ) ∼−→ i∞,+

(
ψt′,−1T ,Nt′

)
,

and an exact sequence

0 −→ i∞,+ kerNt′ −→ kerNτ −→ T −→ 0

inducing an isomorphism P grM0 ψτ,−1
FT

∼−→ T .

Corollary 5.9 (cf. [4, Cor. A.4.3]). Assume that T is an object of
MT(r)(X,w) ( resp. (T ,S ) is an object of MT(r)(X,w)(p)). Then, for any
α ∈ C with Reα ∈ [−1, 0[, (Ψτ,α

FT ,Nτ ) induces by gradation an object of
MLT(r)(X,w;−1) (resp. an object of MLT(r)(X,w;−1)(p)).

Proof of Corollary 5.9. Suppose that Proposition 5.8 is proved. As-
sume first that T is an object of MT(r)(X,w). Then, by definition,
i∞,+

(
grM• Ψt′,αT , grM−2 Nt′

)
is an object of MLT(r)(X,w;−1) for any α

with Reα ∈ [−1, 0[; therefore, so is
(
grM• Ψτ,α

FT , grM−2 Nτ

)
for any such

α 	= −1. When α = −1, as FM ′,FM ′′ are equal to their minimal extension
along τ = 0 (cf. Proposition 4.1) the morphism

Can :
(
ψτ,−1

FT ,M•(Nτ )
) −→ (

φτ,0
FT (−1/2),M•−1(Nτ )

)
,

(cf. § 3.6.b in loc. cit.) is onto. It is strictly compatible with the mon-
odromy filtrations (cf. [6, Lemme 5.1.12]), and induces an isomorphism
P grM� ψτ,−1

FT
∼−→ P grM�−1 φτ,0

FT (−1/2) for any � � 1, hence an isomor-
phism

P grM� ψτ,−1
FT

∼−→ i∞,+P grM�−1 ψt′,−1T (−1/2).

By assumption on T , the right-hand term is an object of MT(r)(X,w+�), hence
so is the left-hand term. Moreover, P grM0 ψτ,−1

FT � T is in MT(r)(X,w).
This gives the claim when α = −1.

In the polarized case, we can reduce to the case where w = 0, M ′ = M ′′,
S = (Id, Id) and C∗ = C. Then these properties are satisfied by the objects
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above, and the polarizability on the τ -side follows from the polarizability on
the t′-side.

The proof of the proposition will involve the computation of a Mellin trans-
form with kernel given by a function Ibχ(t, s, z). We first analyze this Mellin
transform.

The function Ibχ(t, s, z). Let χ̂ ∈ C∞
c (Â1,R) be such that χ̂(τ ) ≡ 1 near

τ = 0. For any z ∈ S, t ∈ A1 and s ∈ C such that Re(s+ 1) > 0, put

Ibχ(t, s, z) =
∫

bA1
eztτ−tτ/z |τ |2s χ̂(τ ) i

2π dτ ∧ dτ .(5.10)

We also write Ibχ(t′, s, z) when working in the coordinate t′ on P1. We will use
the following coarse properties (they are similar to the properties described for
the function Îχ of § 3.6.b of loc. cit.).
(i) Denote by Ibχ,k,�(t, s, z) (k, � ∈ Z) the function obtained by integrating
|τ |2s τkτ �. Then, for any s ∈ C with Re(s + 1 + (k + �)/2) > 0 and any
z ∈ S, the function (t, s, z)→ Ibχ,k,�(t, s, z) is C∞, depends holomorphically
on s, and satisfies limt→∞ Ibχ,k,�(t, s, z) = 0 locally uniformly with respect
to s, z.

(ii) We have

tIbχ,k,� = z(s+ k)Ibχ,k−1,� + zI∂ bχ/∂τ,k,� ðtIbχ,k,� = −Ibχ,k+1,�

tIbχ,k,� = z(s+ �)Ibχ,k,�−1 + zI∂ bχ/∂τ,k,� ðtIbχ,k,� = −Ibχ,k,�+1,

where the equalities hold on the common domain of definition (with respect
to s) of the functions involved. Notice that the functions I∂ bχ/∂τ,k,� and
I∂ bχ/∂τ,k,� are C∞ on P1 × C × S, depend holomorphically on s, and are
infinitely flat at t =∞.

It follows that, for Re(s+ 1) > 0, we have

tðtIbχ = −z(s+ 1)Ibχ + zI∂ bχ/∂τ,1,0,

tðtIbχ = −z(s+ 1)Ibχ + zI∂ bχ/∂τ,0,1.
(5.11)

(iii) Moreover, for any p � 0, any s ∈ C with Re(s+ 1 + (k + �)/2) > p and any
z ∈ S, all derivatives up to order p of Ibχ,k,�(t′, s, z) with respect to t′ tend to
0 when t′ → 0, locally uniformly with respect to s, z; therefore, Ibχ,k,�(t, s, z)
extends as a function of class Cp on P1 × {Re(s+ 1 + (k+ �)/2) > p} × S,
holomorphic with respect to s.
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Mellin transform with kernel Ibχ(t, s, z). We will work near zo ∈ S. For
any local sections µ′, µ′′ of M ′,M ′′ and any C∞ relative form ϕ of maximal
degree on X × S with compact support contained in the open set where µ′, µ′′

are defined, the function

(s, z) �−→ 〈
C(µ′, µ′′), ϕIbχ(t, s, z)

〉
is holomorphic with respect to s for Re s � 0 (according to (i)), continuous
with respect to z. One shows as in Lemma 3.6.6 of loc. cit., using (iii), that it
extends as a meromorphic function on the whole complex plane, with poles on
sets s = α � z/z.

This result can easily be extended to local sections µ′, µ′′ of M̃ ′, M̃ ′′: in-
deed, this has to be verified only near t =∞; there exists p � 0 such that, in the
neighborhood of the support of ϕ, t′pµ′, t′pµ′′ are local sections of M ′,M ′′; ap-
ply then the previous argument to the kernel |t|2p

Ibχ(t, s, z). In the following, we
will write

〈
C(µ′, µ′′), ϕIbχ(t, s, z)

〉
instead of

〈
C(t′pµ′, t′pµ′′), ϕ |t|2p

Ibχ(t, s, z)
〉

near t =∞.

Lemma 5.12. Assume that ϕ is compactly supported on (X �∞)× S.
Then, for µ′, µ′′ as above, we have

Ress=−1

〈
C(µ′, µ′′), ϕIbχ(t, s, z)

〉
=

〈
C(µ′, µ′′), ϕ

〉
.

Proof. The function (s + 1)Ibχ(t, s, z) can be extended to the domain
Re(s + 1) > −1/2 as C∞ function of (t, s, z), holomorphic with respect to s:
use (ii) with k = 1, � = 0 to write (s + 1)Ibχ(t, s, z) = (t/z)Ibχ,1,0 − I∂ bχ/∂τ,1,0.
It is then enough to show that this C∞ function, when restricted to s = −1, is
identically equal to 1. It amounts to proving that, for any t, z,

lim
s→−1

Re s>−1

[
(s+ 1)Ibχ(t, s, z)

]
= 1.

For Re s > −1 we have Ibχ(t, s, z) = J(t, s, z) +Hbχ(t, s, z), with

J(t, s, z) =
∫
|τ |�1

e−2i Im tτ/z |τ |2s i
2π dτ ∧ dτ,

and Hbχ extends as a C∞ function on A1 × C × S, holomorphic with respect
to s. It is therefore enough to work with J(t, s, z) instead of Ibχ. We now have

J(t, s, z) = |t|−2(s+1)
∫
|u|<|t|

e−2i Im u |u|2s i
2π du ∧ du

=
1
π
|t|−2(s+1)

∫ 2π

0

∫ |t|

0

e−2iρ sin θρ2s+1 dρdθ.
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Now, integrating by part, we get∫ |t|

0

e−2iρ sin θρ2s+1 dρ =
|t|2s+2

e−2i|t| sin θ

2s+ 2
+

2i sin θ
2s+ 2

∫ |t|

0

e−2iρ sin θρ2s+2 dρ,

and the second integral is holomorphic near s = −1. Therefore,

(s+ 1)J(t, s)

=
|t|−2(s+1)

2π

∫ 2π

0

[
|t|2s+2 e−2i|t| sin θ + 2i sin θ

∫ |t|

0

e−2iρ sin θρ2s+2 dρ
]
dθ.

Taking s→ −1 gives

lim
s→−1

Re s>−1

[(s+ 1)J(t, s)] =
1
2π

∫ 2π

0

[
e−2i|t| sin θ + 2i sin θ

∫ |t|

0

e−2iρ sin θ dρ
]
dθ.

Now,

2i sin θ
∫ |t|

0

e−2iρ sin θ dρ = −
∫ |t|

0

d

dρ

(
e−2iρ sin θ

)
dρ = 1− e−2i|t| sin θ,

hence lim s→−1
Re s>−1

[(s+ 1)J(t, s)] = 1.

Remark 5.13. To simplify notation, we now put

Jbχ(t, s, z) =
1

Γ(s+ 1)
Ibχ(t, s, z).

Using (ii) as in the previous lemma, one obtains that there exists a C∞ function
on A1 × C × S, holomorphic with respect to s, which coincides with Jbχ when
Re(s + 1) > 0. This implies that, when the support of ϕ does not contain ∞,
the meromorphic function s �→ 〈

C(µ′, µ′′), ϕJbχ(t, s, z)
〉

is entire.

We now work near ∞ with the coordinate t′. Assume that µ′ is a local
section of V (zo)

a1+1M̃
′ and that µ′′ is a local section of V (−zo)

a2+1 M̃ ′′. Assume more-
over that the class of µ′ in grV (zo)

a1+1 M̃ ′ is in ψt′,α1+1M̃ ′, and that the class of
µ′′ in grV (−zo)

a2+1 M̃ ′′ is in ψt′,α2+1M̃ ′′. Then one proves as in Lemma 3.6.6 of
loc. cit. that

〈
C(µ′, µ′′), ϕJbχ(t′, s, z)

〉
has poles on sets s = γ � z/z with γ such

that 2 Re γ < a1 + a2 or γ = α1 = α2.
Let us then consider the case where α1 = α2 := α. Then, if ψ has

compact support and vanishes along t′ = 0, the previous result shows that〈
C(µ′, µ′′), ψJbχ(t′, s, z)

〉
has no pole along s = α � z/z. It follows that

Ress=α�z/z

〈
C(µ′, µ′′), ϕJbχ(t′, s, z)

〉
only depends on the restriction of ϕ to
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t′ = 0; in other words, it is the direct image of a distribution on t′ = 0 by the
inclusion i∞. We will identify this distribution with ψt′,α+1C. We will put

i∗∞ϕ =
ϕ|∞

i
2πdt

′ ∧ dt′ .

Lemma 5.14. For any α ∈ C with Reα 	∈ N, and µ′, µ′′ lifting local
sections [µ′], [µ′′] of ψt′,α+1M̃

′, ψt′,α+1M̃
′′, we have, when the support of ϕ is

contained in the open set where µ′, µ′′ are defined,

Ress=α�z/z

〈
C(µ′, µ′′), ϕJbχ(t′, s, z)

〉
=

1
Γ(−α � z/z)

〈
ψt′,α+1C([µ′], [µ′′]), i∗∞ϕ

〉
.

Proof. Let χ(t′) be a C∞ function which has compact support and is ≡ 1
near t′ = 0. As ϕ− i∗∞ϕ ∧ χ(t′) i

2πdt
′ ∧ dt′ vanishes along t′ = 0, the left-hand

term in the lemma is equal to

Ress=α�z/z

〈
C(µ′, µ′′), Jbχ(t′, s, z)i∗∞ϕ ∧ χ(t′) i

2πdt
′ ∧ dt′〉.(5.15)

On the other hand, as Reα 	∈ N, we have α � z/z 	∈ N for any z ∈ S, and
the function 1/Γ(−s) does not vanish when s = α � z/z for any such α and z.
Therefore, by definition of ψt′,α+1C, the right-hand term is equal to

Ress=α�z/z
1

Γ(−s)
〈
C(µ′, µ′′), |t′|2(s+1)

i∗∞ϕ ∧ χ(t′) i
2πdt

′ ∧ dt′〉.(5.16)

Put J̃bχ(t, s, z) = |t|2(s+1)Jbχ(t, s, z). Then, by (5.11) expressed in the coor-
dinate t′, we have

t′
∂J̃bχ

∂t′
= −J̃∂ bχ/∂τ,1,0, t′

∂J̃bχ

∂t′
= −J̃∂ bχ/∂τ,0,1,

and both functions J̃∂ bχ/∂τ,1,0 and J̃∂ bχ/∂τ,0,1 extend as C∞ functions, infinitely
flat at t′ = 0 and holomorphic with respect to s ∈ C. Put

K̃bχ(t′, s, z) = −
∫ 1

0

[
J̃∂ bχ/∂τ,1,0(λt′, s, z) + J̃∂ bχ/∂τ,0,1(λt′, s, z)

]
dλ.

Then K̃bχ is of the same kind. Notice now that, for any s ∈ C with Re(s+ 1) ∈
]0, 1/4[ and any z ∈ S, we have

lim
t→∞(|t|2(s+1)

Ibχ(t, s, z)) =
Γ(s+ 1)
Γ(−s) .(5.17)
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[Let us sketch the proof of this statement. We assume for instance that χ̂ ≡ 1
when |τ | � 1. We can replace Ibχ(t, s, z) with∫

|τ |�1

eztτ−tτ/z |τ |2s i
2π dτ ∧ dτ

without changing the limit, and we are reduced to computing

1
π

∫ 2π

0

∫ ∞

0

e−2iρ sin θρ2s+1dρ dθ.

Using the Bessel function J0(r) = 1
2π

∫ 2π

0
e−ir sin θdθ, this integral is written as

2
∫ ∞

0

ρ2s+1J0(2ρ)dρ =
1

22s+1

∫ ∞

0

r2s+1J0(r)dr,

and it is known (cf. [8, § 13.24, p. 391]) that, on the strip Re(s+ 1) ∈ ]0, 1/4[,
the latter integral is equal to 22s+1Γ(s+ 1)/Γ(−s).]

On this strip, we can therefore write J̃bχ(t′, s, z) = K̃bχ(t′, s, z) + 1/Γ(−s),
by Taylor’s formula. For fixed t′ 	= 0 and z ∈ S, both functions are holomorphic
for Re(s + 1) > 0, hence they coincide when Re(s + 1) > 0 and we thus have
on this domain

Jbχ(t′, s, z) =
|t′|2(s+1)

Γ(−s) +Kbχ(t′, s, z).

By the properties of Kbχ, this implies that the function

s �−→ 〈
C(µ′, µ′′),Kbχ(t′, s, z)i∗∞ϕ ∧ χ(t′) i

2πdt
′ ∧ dt′〉

is entire for any z ∈ S. Hence, there exists an entire function of s such that the
difference of the meromorphic functions considered in (5.15) and (5.16), when
restricted to the half-plane Re(s + 1) > p (with p large enough so that they
are holomorphic on the half-plane), coincides with this entire function. This
difference is therefore identically equal to this entire function of s, and (5.15)
and (5.16) coincide. This proves the lemma.

Proof of Proposition 5.8. We will work near zo ∈ S. By definition
(cf. § 2.c), given any local sections [m′], [m′′] of ψτ,α

FM ′, ψτ,α
FM ′′ and local

liftings m′,m′′ in Va′FM ′, Va′′FM ′′ with a′ = �zo
(α) and a′′ = �−zo

(α), we have,
for any C∞ relative form ϕ of maximal degree on X × S,

〈
ψτ,α

FC([m′], [m′′]), ϕ
〉

= Ress=α�z/z

〈
FC(m′,m′′), ϕ |τ |2s

χ̂(τ ) i
2π dτ ∧ dτ

〉
,

(5.18)



�

�

�

�

�

�

�

�

830 Claude Sabbah

where χ̂ ≡ 1 near τ = 0. In particular, for sections m′,m′′ of the form µ′ ⊗
E−tτ/z, µ′′⊗E−tτ/z with µ′, µ′′ local sections of M̃ , the definition of FC implies
that the right-hand term above can be written as

Ress=α�z/z

〈
C(µ′, µ′′), ϕIbχ(t, s, z)

〉
.(5.19)

[Here, we mean that both functions〈
C(µ′, µ′′), ϕIbχ(t, s, z)

〉
and〈

FC(µ′ ⊗ E−tτ/z, µ′′ ⊗ E−tτ/z), ϕ |τ |2s χ̂(τ ) i
2π dτ ∧ dτ

〉
,

a priori defined for Re s � 0, are extended as meromorphic functions of s on
the whole complex plane.] Moreover, by RX -linearity, it is enough to prove
Proposition 5.8 for such sections.

Proof of Proposition 5.8 away from ∞. This is the easy part of the
proof. We only have to consider α = −1 and, for ϕ compactly supported
on (X �∞)× S, we are reduced to proving that

Ress=−1

〈
C(µ′, µ′′), ϕIbχ(t, s, z)

〉
=

〈
C(µ′, µ′′), ϕ

〉
,

for local sections µ′, µ′′ of M̃ ′, M̃ ′′. This is Lemma 5.12.

Proof of Proposition 5.8 near ∞ for α 	= −1, 0. The question is local on
D. We can compute (5.18) by using liftings ofm′,m′′ in grU

a′+1
FM ′, grU

a′′+1
FM ′′,

according to (4.15). By R-linearity, we only consider sections m′ = t′−1µ′ ⊗
E−tτ/z, m′′ = t′−1µ′′ ⊗ E−tτ/z, where µ′ is a local section of Va′M̃ ′ and µ′′ of
Va′′M̃ ′′. According to (5.19), we have〈

ψτ,α
FC([m′], [m′′]), ϕ

〉
= Ress=α�z/z

〈
C(t′−1µ′, t′−1µ′′), ϕIbχ(t, s, z)

〉
,

and, from Lemma 5.14, this is

Γ(1 + α � z/z)
Γ(−α � z/z)

〈
ψt′,α+1C([t′−1µ′], [t′−1µ′′]), i∗∞ϕ

〉
=

Γ(1 + α � z/z)
Γ(−α � z/z)

〈
ψt′,αC([µ′], [µ′′]), i∗∞ϕ

〉
.

By Lemma 5.5 and its proof, we have Γ(1 + α � z/z)/Γ(−α � z/z) = µµ, with
Dµ = −Dα (recall that Dα was defined in Proposition 4.1(iva)), as we assume
Reα ∈ [−1, 0[. We then apply Lemma 5.6.
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Proof of Proposition 5.8 near ∞ for α = 0. By the same reduction as
above, we consider local sections m′

0,m
′′
0 of V0

FM ′, V0
FM ′′ of the form m′

0 =
µ′

1⊗E−tτ/z, m′′
0 = µ′′

1⊗E−tτ/z, where µ′
1, µ

′′
1 are local sections of V1M̃ ′, V1M̃ ′′.

We notice1 that ðτ (−t′m′′
0) = m′′

0 by (3.3) and, using [4, (3.6.23)] with m′′
−1 =

−t′m′′
0 (and replacing there t with τ ), we get〈

φτ,0
FC([m′

0], [m′′
0 ]), ϕ

〉
=

〈
φτ,0

FC([m′
0], [ðτm′′

−1]), ϕ
〉

= −z−1
〈
ψτ,−1

FC([τm′
0], [m′′

−1]), ϕ
〉

=z−1 Ress=−1

〈
FC(m′

0, t
′m′′

0), ϕτ |τ |2s
χ̂(τ ) i

2πdτ ∧ dτ
〉

= z−1 Ress=−1

〈
C(µ′

1, µ
′′
1), ϕt′Ibχ,1,0

〉
,

by definition of FC. Now, by (ii) after (5.10), we have z−1t′Ibχ,1,0 =
(s + 1)|t′|2Ibχ + |t′|2I∂ bχ/∂τ,1,0, and the second term will not contribute to
the residue, so〈

φτ,0
FC([m′

0], [m′′
0 ]), ϕ

〉
= Ress=−1

〈
C(µ′

1, µ
′′
1), ϕ(s+ 1)|t′|2Ibχ

〉
= Ress=−1

〈
C(t′µ′

1, t
′µ′′

1), ϕJbχ

〉
by (5.13)

=
〈
ψt′,0C(t′µ′

1, t
′µ′′

1), i∗∞ϕ
〉

by Lemma 5.14 with α = −1

= ψt′,−1C(µ′
−1, µ

′′
−1), i

∗
∞ϕ

〉
,

if we put µ−1 = t′2µ1.

Proof of Proposition 5.8 near ∞ for α = −1. Let us first explain
how ψτ,−1

FC is defined and how it induces a sesquilinear pairing on
P grM0 ψτ,−1

FM ′, P grM0 ψτ,−1
FM ′′.

In order to compute ψτ,−1
FC, we lift local sections [m′], [m′′] of

ψτ,−1
FM ′, ψτ,−1

FM ′′ in U0
FM ′, U0

FM ′′ and compute (5.18) for α = −1.
We know, by [4, Lemma 3.6.6], that this is well defined.

To compute the induced form on P grM0 , we use (4.6) and (4.7) and, arguing
as above, we have to consider sections m′,m′′ of U<0

FM ′, U<0
FM ′′. We are then

reduced to proving that, for local sections µ′, µ′′ of V<0M̃ ′, V<0M̃ ′′, we have

Ress=−1
Γ(s+ 1)
Γ(−s)

〈
C(µ′, µ′′), |t′|2(s+1)

ϕ
〉

=
〈
C(µ′, µ′′), ϕ

〉
.

By [4, Lemma 3.6.6], the meromorphic function s �→ 〈
C(µ′, µ′′), |t′|2(s+1)

ϕ
〉

has poles along sets s + 1 = γ � z/z with Re γ < 0. For such a γ and for
1I thank the referee for correcting a previous wrong proof and pointing out that, in the
formula of [4, Lemma 3.6.33] which was previously used here, the term |t|2s has to be
replaced with |t|2s − s, making the right-hand term in this formula independent of χ.
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z ∈ S, we cannot have γ � z/z = 0. Therefore, s �→ 〈
C(µ′, µ′′), |t′|2(s+1)

ϕ
〉

is holomorphic near s = −1 and its value at s = −1 is
〈
C(µ′, µ′′), ϕ

〉
. The

assertion follows.

§ 5.c. Proof of Theorem 5.1

We first reduce to weight 0, and assume that w = 0. It is then possible to
assume that (T ,S ) = (M ,M , C, Id). We may also assume that M has strict
support. Then, in particular, we have M = M̃min, as defined above.

According to Corollary 5.9 (and to Proposition 5.8 for φτ,0), we can apply
the arguments given in [4, § 6.3] to the direct image by q.

Notice that we also get:

Corollary 5.20. Let (T ,S ) = (M ′,M ′′, C,S ) be an object of
MT(r)(X,w)(p). Then, we have isomorphisms in R- Triples(X):(

Ψτ,αT̂ ,Nτ

) ∼−→ (
Ψt′,αT ,Nt′

)
, ∀α 	= −1 with Reα ∈ [−1, 0[,

(φτ,0T̂ ,Nτ ) ∼−→ (
ψt′,−1T ,Nt′

)
.

§ 5.d. A complement in dimension one

Let first us indicate some shortcut to obtain the S-decomposability of M̂

when Y is reduced to a point, so that X = P1. First, without any assumption
on Y , we have exact sequences, according to Proposition 4.1,

0 −→ ker Nτ −→ ψτ,−1
FM

canτ−−−−−→ i∞,+ψt′,−1M −→ 0,

0 −→ i∞,+ψt′,−1M
varτ−−−−→ ψτ,−1

FM −→ cokerNτ −→ 0,
(5.21)

and

0 −→ i∞,+ kerNt′ −→ ker Nτ −→M −→ 0

0 −→M −→ cokerNτ −→ i∞,+ cokerNt′ −→ 0.
(5.22)

It follows that H 1q+ ker canτ = H 1q+M and H −1q+ coker varτ =
H −1q+M . By the first part of the proof, we then have exact sequences

ψτ,−1M̂
canτ−−−−−→ ψτ,0M̂ = ψt′,−1M −→H 1q+M −→ 0

0 −→H −1q+M −→ ψt′,−1M = ψτ,0M̂
varτ−−−−→ ψτ,−1M̂ .
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Therefore, if q+M has cohomology in degree 0 only, M̂ is a minimal extension
along τ = 0. Such a situation occurs if Y is reduced to a point, so that X = P1:
indeed, as (T ,S ) is an object of MT(r)(P1, 0)(p), we can assume that T is
simple (cf. [4, Prop. 4.2.5]); denote by M the restriction of M to z = 1, i.e.,
M = M /(z − 1)M ; by Theorem 5.0.1 of loc. cit., M is an irreducible regular
holonomic DP1-module;

• if M is not isomorphic to OP1 , then q+M has cohomology in degree 0 only
[use duality to reduce to the vanishing of H −1q+M , which is nothing but
the space of global sections of the local system attached to M away from its
singular points]; by Theorem 6.1.1 of loc. cit., each cohomology H jq+M

is strict and its fibre at z = 1 is H jq+M ; therefore, H jq+M = 0 if j 	= 0;

• otherwise, M is isomorphic to OP1 with its usual DP1 structure, and M̂ is
OP1 (where P1 denotes P1 × Ω0, cf. § 2.b), so M̂ is supported on τ = 0
and ψτ,−1M̂ = 0;

in conclusion, the S-decomposability of M̂ along τ = 0 is true in both cases.

Corollary 5.20 does not give information on ψτ,−1T . We will derive it now
in dimension one.

Proposition 5.23. Let (T ,S ) = (M ′,M ′′, C,S ) be an object
of MT(r)(P1, w)(p). Assume that T is simple and not isomorphic to
(OP1 ,OP1 , C, Id)(−w/2). Then, if q : P1 → pt denotes the constant map,
the complex q+T has cohomology in degree 0 only and we have natural
isomorphisms

grM� ψτ,−1(T̂ , Ŝ )
canτ−−−−−→∼ grM�−1 φτ,0(T̂ , Ŝ )(−1/2) for all � � 1,

grM� ψτ,−1(T̂ , Ŝ )
varτ←−−−−−∼ grM�+1 φτ,0(T̂ , Ŝ )(1/2) for all � � −1,

P grM0 ψτ,−1(T̂ , Ŝ ) ∼−→H 0q+(T ,S ).

(The gluing C for the trivial twistor (OP1 ,OP1 , C, Id) is given by f ⊗ g �→ fg.)

Proof. We first reduce to weight 0 and take T = (M ,M , C) with S =
(Id, Id). We a priori know by [4] that the morphisms canτ and varτ in the
proposition are morphisms in MT(r)(P1, w)(p), so we only need to show the
isomorphism at the level of M . Notice that, by Proposition 4.1(iv), the exact
sequences (5.22) induce isomorphisms

P grM0 ψτ,−1
FM

∼−→M and M
∼−→ P grM0 ψτ,−1

FM .(5.24)
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The first point (H iq+T = 0 for i 	= 0) is shown in the preliminary remark
above under the assumption on T made in the proposition. Notice also that
we have shown, as a consequence, that H iq+ kerNτ and H iq+ coker Nτ also
vanish for i 	= 0. With the exact sequences (5.21), this implies that

H 0q+ kerNτ = ker N̂τ and H 0q+ coker Nτ = coker N̂τ ,(5.25)

where N̂τ denotes (here, in order to avoid confusion) the nilpotent endomor-
phism on H 0q+ψτ,−1

FM = ψτ,−1M̂ . We then have exact sequences

0 −→ ker N̂τ −→ ψτ,−1M̂
canτ−−−−−→ ψτ,0M̂ −→ 0,

0 −→ ψτ,0M̂
varτ−−−−→ ψτ,−1M̂ −→ coker N̂τ −→ 0.

As canτ and varτ are strictly compatible with the monodromy filtration after
a shift by 1 (cf. [6, Lemme 5.1.12]), and as ker N̂τ is contained in M0ψτ,−1M̂ ,
we get the first isomorphism for � � 1. Similarly, use that M−1ψτ,−1M̂ is
contained in Im N̂τ = Im varτ to get the second isomorphism for � � −1.

To get the third isomorphism, we only have to show that H 0q+ commutes
with taking P grM0 because of (5.24). We deduce first from the previous results
that we also have H iq+ Im Nτ = 0 for i 	= 0 and H 0q+ Im Nτ = Im N̂τ . Then,
the injective morphism

0 −→ Im Nτ −→ Im Nτ + ker Nτ

remains injective after applying H 0q+ and, as the H iq+ vanish for i 	= 0, we
conclude that the cokernel satisfies

H iq+P grM0 ψτ,−1
FM = 0 for i 	= 0 and H 0q+P grM0 ψτ,−1

FM

= P grM0 ψτ,−1M̂ .
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