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Infrared Catastrophe for Nelson’s Model
—Non-Existence of Ground State and
Soft-Boson Divergence—

By

Masao HIROKAWA™*

Abstract

We mathematically study the infrared catastrophe for the Hamiltonian of Nel-
son’s model when it has the external potential in a general class. For the model, we
prove the pull-through formula on ground states in operator theory first. Based on
this formula, we show both non-existence of any ground state and divergence of the
total number of soft bosons.

§1. Introduction

The purpose of the present paper is to investigate mathematically the
infrared (IR) catastrophe for Nelson’s Hamiltonian [25], in particular non-
existence of ground state and the divergence of the total number of soft bosons
(soft-boson divergence). The exact definition of ground state will be stated
in §2. The definition of soft boson will be explained later. IR catastrophe is
the trouble of IR divergence caused by massless particles forming a quantized
field. Nelson’s Hamiltonian is the Hamiltonian of the so-called Nelson’s model
describing a system of a quantum particle, which moves in the 3-dimensional
Euclidean space R? under the influence of an external potential, and which
interacts with a massless scalar Bose field. The massless scalar Bose field is the
quantized scalar field made of massless bosons. The boson is the (quantum)

Communicated by T. Kawai. Received April 7, 2004. Revised October 14, 2004, June 1,

2005, September 5, 2005.

2000 Mathematics Subject Classification(s): 81T10, 81V10.

This work is supported by JSPS, Grant-in-Aid for Scientific Research (C) 16540155.
*Department of Mathematics, Okayama University, 700-8530 Okayama, Japan.

e-mail: hirokawa@math.okayama-u.ac.jp

(© 2006 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



898 MAasAO HIROKAWA

particle following the Bose-Einstein statistics. In the present paper the soft
boson means the boson in a ground state.

Recently, the spectral properties of Nelson’s Hamiltonian has been studied
rather intensively (e.g., [2, 9, 11, 16, 20, 24]). In particular, Betz et al. showed
in [9] that when the external potential is in the Kato class the total number
of soft bosons for Nelson’s Hamiltonian diverges under the infrared singularity
(IRS) condition. We will concretely define this condition in §2. Around the
same time Lorinczi et al. showed in [24] that when the external potential is
strongly confining there is no ground state of Nelson’s Hamiltonian in spatial
dimension 3. The results in both [9] and [24] are proved by means of functional
integrals.

In [11] Deresifiski and Gérard treated the problem of non-existence of
ground state by L?-theoretical method and proved the non-existence of any
ground state for Nelson’s Hamiltonian under the assumption that the external
potential is strongly confining. They employed an amazingly simple method
based on the L?-theoretical pull-through formula. However, the results shown
in [11] do not seem to include the case of decaying potentials such as the
Coulomb potential. For another model, the so-called Pauli-Fierz model [26], it
was clarified in [8, 14] that there exists a ground state even under IRS condition,
when Pauli-Fierz’s Hamiltonian has the Coulomb-type potential.

In the present paper we consider Nelson’s Hamiltonian with a general
class of potentials including both strongly confining potentials and Coulomb-
type potentials and prove in a unified way the non-existence of any ground
state and the soft-boson divergence. Following the methods in [11, 24] to prove
the non-existence of any ground state, we are required to invent some suitable
technique in order to include Coulomb-type potentials. Thus, the present paper
looks at the problem from a different angle. Following the physical observation
stated below, we adopt an operator-theoretical method in which we combine
the technique of spatial localization presented by Griesemer, Lieb, and Loss [14]
and an approach based on the proof of the absence of ground state by Arai,
Hiroshima, and the author [6]. We believe that this approach is new.

In this paper the operator-theoretical pull-through formula announced in
[17] plays a crucial role. So, we give a complete version of its proof. To the
best of author’s knowledge, the approach presented in this paper is the first to
establish the pull-through formula in an operator-theoretical framework. Such
an operator-theoretical formula makes it possible to analyze infrared catas-
trophe in mathematical detail [7, 19, 21]. In physics it is generally expected
that the non-existence of ground state results from the soft-boson divergence.
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From a mathematical point of view, however, we establish in the present paper
that the pull-through formula implies both the non-existence of ground state
(Theorems 2.1 and 2.2) and the soft-boson divergence (Theorems 2.3 and 2.4),
independently to each other.

In a mathematical treatment, this IR problem was first studied for a
fermion-boson model related to Nelson’s by Frohlich [12]. It is worthy of note
that Pizzo developed Frohlich’s work in [27]. We tackled IR problem of prov-
ing the non-existence of ground state for the so-called generalized spin-boson
(GSB) model from an operator-theoretical point of view in [6], while we studied
a mathematical mechanism of existence of ground states for it in [4]. However,
because GSB model is very general, the information on IR problem for it was
so limited that we could not entirely achieve our goal. In the present paper,
we completely achieve it for Nelson’s Hamiltonian with the external potential
in the general class.

For our goal, we present the following physical image of the relation be-
tween the soft-boson divergence and the non-existence of ground state: To begin
with, the quantum particle coupled with the field formed by bosons is generally
dressed in the cloud of bosons, which makes the so-called quasi-particle. In par-
ticular, the total number of soft bosons for Nelson’s model diverges under IRS
condition. So, if a ground state exists under IRS condition, then the quantum
particle has to dress itself in the cloud of infinitely many soft bosons. Thus,
we can hardly expect that the cloud is spatially localized into a finite area.
Namely, because the soft boson is the boson in a ground state, the uncertainty
of the particle’s position in the ground state must be infinite under IRS condi-
tion. On the other hand, once a ground state exists, we can generally expect
to obtain the finite uncertainty of the position in the ground state in order to
observe the particle’s position. Therefore, the existence of a ground state of
Nelson’s model under IRS condition must imply a contradiction in quantum
theory. We seek to express this image in a mathematical way.

The present paper is organized as follows. In §2 we state main results. On
the external potential we impose two kind of assumptions, assumption (A) and
assumption (C). The assumption (A) is of rather general nature. Assuming
(A), we assert that ground states are absent from the domain of the square
of position operator (Theorem 2.1). Assumption (C) is more concrete and
more restrictive than (A). Assuming (C), we establish the non-existence of any
ground state (Theorem 2.3). Theorems 2.2 and 2.4 are concerned with estimates
of number of soft bosons. In §3 the operator-theoretical pull-through formula
is proved and a useful identity is derived from it. In §4 we prove Theorem 2.1
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and in §5 Theorem 2.3. In §6 the finite uncertainty is argued, and combining
this with the absence theorem and the estimate proved in §4, we establish our
final results, Theorems 2.2 and 2.4.

§2. Main Results

The position of the quantum particle with mass m = 1 is denoted by =,
the momentum by p := —iV,. Here we employ the natural units. Namely, we
set i = 1,c =1 throughout. As the Hamiltonian for the quantum particle, we
consider the Schrédinger operator acting in L?(R?),

L,
Hy = 5P +V,
with an external potential V.

We consider two types of assumption for H,; as the notice was given in §1,
i.e., general assumption (A) and concrete assumption (C). We prove under (A)
that any ground state is not in the subspace characterized by a kind of spatial
localization (Theorem 2.1). Under (C) we completely prove the non-existence
of any ground state (Theorem 2.2).

(A) H, is a self-adjoint operator bounded from below such that D(H,;) C
D(p?). Moreover, H,; has a ground state 1,;.

Here D(T') denotes the domain of an operator T. We denote the ground state
energy by Fu := inf o (H,), where o(T) denotes the spectrum of a closed
operator T

For completion of the non-existence theorem, we investigate the following
two classes of external potentials. The two classes include the strongly confining
potential, long and short range ones.

(C1) 2
(C1-1) H,; is self-adjoint on D(H,;) = D(p?)ND(V) and bounded from below,

(C1-2) there exist positive constants c¢; and co such that |z|? < 1V (z) + co

for almost every (a.e.) x € R? and |V (2)|?d*r < oo for all R > 0.
|z|<R

(C2) [31]:

(C2-1) Ve LZ(R?’) + LOO(R?’)’ and hm\zlﬂo@ |V(l‘)| = 0.
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In this case, by Kato’s theorem [29, Theorem X15] and the well-known fact [30,
§XTIII.4, Example 6], we have the following:

Proposition 2.1.  Assume (C2-1). Then,

(i) Ha: is self-adjoint on D(p?).

(ii) V is infinitesimally p*-bounded.

(iii) Oess(Hat) = [0, 00), where oess(Hat) is the essential spectrum of Hay.
We assume the following in addition to (C2-1):

(C2-2) H,; has a ground state 1, satisfying 1,¢(z) > 0 for a.e. z € R3 and
FE. <0.

Both in (C1) and (C2), condition (A) holds and we have a ground state
1t of Hyay. We say that V' is in (C1) (resp. (C2)) if (C1-1) and (C1-2) (resp.
(C2-1) and (C2-2)) hold.

Our quantum particle is coupled with a massless scalar Bose field. We first
prepare some notations for the quantized field. For the state space of scalar
bosons, we take the Hilbert space given by the symmetric Fock space F :=
D, [ L*(R3)] over L*(R3), where @7 L?(R?) denotes the n-fold symmetric
tensor product of L?(R3), the space of all square-integrable functions, and
®VL?(R3) := C. The finite particle space Fq is defined by Fy = { ¥ =
VO g...ov™g... ¢ F| U™ =0 for n > 3ng }. For every f € L*(R?)
and ¥ = VO v @... 0™ g... ¢ F, the smeared annihilation operator
a(f) of bosons is defined by

2.1)  (@()O)™ (ky, - ky) =V 1 [ fR) U (ke Ky, -k )d3k
RS

as @ TLL2(R3) 3 U+ — (o(f)T)™ € @PL2(R3) for n = 0,1,2,---, where
f(k)* is the complex conjugate of f € L%(R?). Then, a(f) is closable for every
f € L?(R3). We denote its closure by the same symbol. We define the smeared
creation operator a'(f) by the adjoint operator of a(f), i.e., al(f) = a(f)*, for
every f € L?(R3).

The smeared annihilation and creation operators satisfy the standard
canonical commutation relations (CCR):

(a(f),a'(9)] = (f.9)2 = /f

[a(f),a(@)] =0, [a'(f),a'(9)] =0, Vf.ge LQ(R3)
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on fo.
In this paper, we consider the following dispersion relation w(k),
(2.2) w(k) = |k|.
Then the free field energy operator Hy is the second quantization of w;, i.e.,
Hf = dI‘(w)

Here, for a self-adjoint operator h acting in L?(R3), its second quantization is
defined by

dr(h) :== @ n",
n=0

j-th
where (™) istheclosureofzyzlf@)”'@ h @ - Q@I=hI®---0I+1I®
hI® - @I+ +I®---®IXAh,ie,

R ::Z[@)...@ h® @I
i=1 j-th

acting in ®?L?(R?), where I denotes the identity operator on L?(R?), and
h(® = 0. We note that dI'(h) is a self-adjoint operator acting in F. Thus,
for Hy we employed the multiplication operator w as h in (2.2). We define the
subspace F(w) by the linear hull of { Qo,a’(f1) - a'(f,)Q| v €N, f; € D(w),
j=1,--- v }, where Q is the Fock vacuum, i.e.,

Q=100000--- € F.

Then, the action of H is given by

®ILA(R?) 5 (He®)" (kx, -+ k) = Y |k [0 (ky, -+ k), Vn €N,
j=1

and (Hf\Il)(O) =0for U =0 a0 g... ¢ F(w). Hyis symbolically written
as

Hp = / |k|a' (k)a(k)d>k,
R3
using symbolical representation of the annihilation operator by the kernel a(k),

alf) = /R alR) SR

We note that such symbolical notations are often used in physics.
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Remark 1. Fix k € R? arbitrarily. Then, the symbolic kernel a(k) of the
annihilation operator is given by

(2.3) (@(k)D)™ (ky, - k) = Vo + 1O (ke ky - k)
for n = 0,1,2,---. We note that a(k) is well-defined as an operator for ¥ €

Ds={U=00gq...00Mag...cfF v e SR, necN}, where S(R?)
is the set of all functions in the Schwartz class. The kernel a(k) is defined
pointwise by (2.3), so that a certain kind of continuity is required for W. See, for
example, [1, §2.2] and [3, §8-3]. It is well known that a(k)* is not densely defined
[29, §X.7]; indeed, a(k)* is trivial [3, Proposition 8.2], i.e., D(a(k)*) = {0}, so
that a(k) is not closable by [28, Theorem VIIL.1(b)].

The Hilbert space in which the Hamiltonian of Nelson’s model acts is
defined by H := L?(R3) ® F. In order to define the interaction Hamiltonian
Hy,, of Nelson’s model, we use the fact that H is unitarily equivalent to the
constant fiber direct integral L?(R3, d3x; F), i.e.,

®
H=LR) o F= LR &z F)= | Fdz,
R3
see [3, §13]. Throughout this paper, we identify H with the constant fiber direct
integral, i.e.,

D
(2.4) H= | Fdz.
R3

We set

w(k)
Ae(k) = 20eR) ke g e RS v >0,

2w(k)
where x.(k) == (2m)32if k < |[k| < A; := 0if |k| < K or A < |k| for
positive constants x and A. Physically, x and A mean an infrared cutoff and

an ultraviolet cutoff, respectively. We fix A in this paper. Then, we can define
HI,K by
@
Hy, = | ¢u(x)dx,
R3
where ¢, () is the cutoff Bose field given by

¢r~:(37) = aT(/\rw:) + a()‘mw)~
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We symbolically denote Hy, by

Hy, = . % (e*a(k) + e~ al(k)) d®k.
It is well known that Hj, is a self-adjoint operator acting in H [3, Theorem
13-5].
From now on, we also denote the identity operator on all Hilbert spaces by
I. So, for example, I ® I is abbreviated to I. Moreover, a constant operator
with the form of cl is abbreviated to ¢ for a constant c.
The cutoff Nelson Hamiltonian is given by

(25)  HY:=Hy®I+1®Hi+qHy,, 0<Vk<A; YVqeR,

acting in H = L*(R3) ® F. If the infimum of the spectrum of HY exists, we
call it the ground state energy of HY. Namely, the ground state energy EY of
HY is defined by

EY :=info(H)).

We say that H has a ground state if E} is an eigenvalue of HY. In this case,
every eigenvector with the eigenvalue EY is called a ground state. Namely, the
ground state v, satisfies H} ., = E}1,. The boson in the ground state ¢, is
called soft boson in this paper. We set

Hy = HY = H¥._o

and denote the ground state energy of Hj and Hy by Ej and Ey, respectively,
i.e.,

Ey :=info(Hy).
Then, we have

E}: < <¢at ® Q07 H;f’@[]at & QO>H = Eat7

where ( , )y is the standard inner product of H. We define a non-negative
Hamiltonian by
Hy:=(Hy — Ea) ® I +1® Hy.

Then, there exist C'/(Xl)7 C’f) > 0 such that
| Hetbllre < CRVN(Ho + Dl + 37144

for every ¢ € D(Hy), which is proved in (6.5) below. Combining this with a
Kato-Rellich type argument and the variational characterization of eigenvalues
(see, e.g., [3, Theorems 13-10 & 13-23]), we obtain the following proposition
immediately:
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Proposition 2.2. HY, 0 <k <A, is self-adjoint with D(H)) = D(H,)
=D(Hu@I)NDI®H;). HY, 0 <k <A, is bounded from below for arbitrary
values of q. In particular,

Eat - q2||)\m70‘|%2 S E,I: S Eat-

Moreover, HY, 0 < k < A, is essentially self-adjoint on every core for Hy.

It follows from w(k) = |k| that in the case x = 0 Nelson’s Hamiltonian
Hy = Hy = H}[.=0 has the singularity at k¥ = 0 such that
Aow(k)

=) and % ¢ L2(R3).
On the other hand, we have A, ,/w € L*(R?) in the case k > 0. The former
condition is called infrared singularity (IRS) condition in [5] (see also [6, (3.5)]),
the latter infrared regularity condition.

Denote the number operator of bosons by N¢, which is defined as the
second quantization of the identity operator I, i.e.,

(2.6) N == dD(I).
Symbolically,
Nf:/ at(k)a(k)d>k.
R3

In [6, Theorem 3.2] the absence theorem is described in terms of the total
number of soft bosons forming the cloud in which the Schrédinger particle is
dressed. Namely, the statement was that ground state is absent from D(I ®
Nfl/ 2). Our theorem is characterized by the spatial localization of the ground
state. Namely,

Theorem 2.1 (absence of ground states from D(z? ® I) for k = 0).
Assume (A). For every q with q # 0, Hy = H{ has no ground state in
D(z?®1).

This theorem indirectly says that uncertainty of the position in ground
state is infinite. Namely, for the ground state ¢, with ||[¢x|[x = 1 we have
symbolically

(2.7) (AZ)gs = (b, (20T — (2)ge)*Pn)r]” = 00,

where (x)gs is the expectation vector of the position in the ground state,

<x>gs = <¢Ii7 T® I’(/%>7—[ € R3.
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Theorem 2.2 (non-existence of any ground state for k = 0).  Let V be
in class (C1) or (C2). Then, for every q with q # 0, Hy = H{ has no ground
state in H.

Without loss of generality, we have only to consider a normalized ground
state. Thus, we always treat the normalized ground state throughout this paper.

Theorem 2.3 (soft-boson divergence).  Assume (A) and that there ex-
ists a constant q, such that HY has a (normalized) ground state v, for every
K with 0 < k < A and q with |q| < q,. If Y € D(z* ®I), then

2 2
q A 9,2 2
(2.) (&L (108) - dllal 0 10,13

Y

< <wnaI®wan>H

2 2

q A 9 2 2
<{ 4 )+ .
< {58 (o) + Lol o Tl |

For the case where V' is in class (C2), we define a positive constant q, by

" 4(2m)? kj<a |kl +&2/2°
where Y := inf oess(Hat). We set g, = oo for the case where V is in class

(C1) because ¥ = oo in this case. Note that g, is independent of x. By [13,
Proposition I11.3] and [31, Theorem 1] and noting

Y — Ea
%/ oo (B) 2R (w(k) + K2/2) " dPk
R3

2
>,

we have the following proposition.

Proposition 2.3.  Let us fixt A > 0. H has a unique ground state 1,
for every k,q with 0 < x < A and |q| < q,, provided that V is in class (C1) or
(C2).

For these ground states ¥, 0 < k < A, we have the following:

Theorem 2.4 (soft-boson divergence).  Let V be in (Cl) or (C2).
Then, for the ground states ¢, of HY, 0 < k < A, (2.8) holds. Moreover,
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SUPo< k<A |HZE| ® Iwr@“?'( < oo and

2 2
q A q 2 2
4 (10g2) = LA ® I,

{87r2 (Ogn> 82 OEEEAHM v HH}

< (e, I @ Ne)w

2 2
q A 94 2 2
<< —— |log — —A I, .
< {5k (108 ) 4 5? swp llal o 10l |
We prove Theorem 2.1 and Theorem 2.3 in §4 and §5, respectively. Com-

bining these theorems with the fact on uncertainty argued in §6, Theorems 2.2
and 2.4 are also proved in §6.

83. An Identity from the Operator-theoretical Pull-through
Formula

Let us fix 0 < k < A, and we suppose that H}} has a ground state v,
throughout this section. As declared before Theorem 2.3, for simplicity we
normalized 1, throughout. By using the kernel version of CCR, [a(k) , af(k')] =
d(k — k'), we symbolically obtain the pull-through formula on the ground state

wli7

(1) Toak), = —qeEl

2w(k)

However, since the domain of a(k) is so narrow that a(k) is not closable as

(HY — EY + w(k)) " e ™ @ Inp,.

remarked in Remark 1, (3.1) itself should not be regarded as an operator equal-
ity on ground states. It should be regarded as an equality on L (R3; H) as
Dereziriski and Gérard did in [11, Theorem 2.5]. The purposes of this section
is to prove the operator-theoretical pull-through formula on the ground state
and derive a useful decomposition for Nelson’s model from it. To author’s best
knowledge, the proof in this paper is the first for the pull-through formula in
operator theory and the operator-theoretical version of this formula has another
development in operator theory of IR catastrophe (cf. [7, 19, 21]).

Before we state our desired proposition, we note the following lemma.
Lemma 3.1. For f € L?(R3) and t € R, set
ai(f) := eitHY (I® a(e_i‘”tf)) e~itH,

If wf, f//w € L?(R3), then
d

32 Gl =—ia {([ gt mak) o ety

for every v € D((HY)?).
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Proof. In the same way as in [23, Theorem 4.1], we can prove that

d , . ,
gD =ie™ [qHy, T (e f)] ey
for every 1 € D((HY)?). We obtain (3.2) from this equation directly. O

Proposition 3.1 (pull-through formula on ground states).  Fiz x with
0 < k < A. Assume (A) and suppose that HY has a ground state ¢,.. If
Y € D(2? @ 1), then for all f € C§°(R3\ {0}),

33)  T@al(f)ys

- _q Fk)* Xx (k)
RS

N _ N -1 —ikx 3
o) (H — E; + w(k)) (e ®I) Ve dk.

Proof. Let f € C3°(R3\ {0}). Then, there exists dy > 0 such that
{k e R3||k| < ds} Cc R*\suppf, which implies suppf C {k € R®| |k| > d/2}.
Set My = {keR*|k < [k] <A} and Q) = {keR?*| 0 < [k] < Kk or
A < [k[}. Since L*(R?) = L*(QM) ® L*(Q}), we identify L?(R?) with
L2(Qi%) @ L*(Q2)) in this proof. There exists f* € LQ(QnmA)7 f = int, ext,
such that L?(R?) 3 f = f™ @ fo e L2(Q) @ L2(Q2 ). For f%, there exists
a sequence fi € C(‘)’O(Qi’A), v € N, such that f& — f*in L2(Qi,A) as v — 00
and supp(fi*t @ o) C {k € R3| |k| > dy/2} for each v. For simplicity, we
denote firt @ fo<t by f,, i.e., f, = firt @ fext,

For every v € D((HY)?), t € R, and the above f,, we have

at(fl/)wzl & a(fz/)w
t
—iq/ eisH,L\I {( fu(k’)*eisw(k))\mm(k‘)d?’k) ®I} e_isHijdS
0 R3

by Lemma 3.1. Here, we note that supp(fii..) = supp((fi*)*As.z). Since

v

[idea € C5o(SUM)), we obtain by partial integration as in [6, Lemma 4.3] that

i 1 )
‘ fl’(k)*e”w(k))\n,m(k)d?’k — _t_2 g(k)ezto.z(lc)d?,k7
R3 s

where for n,m = 1,2, 3,

g(k) = O, { R0 O ( &;(k) A,{,m(k)fu(k)*> }
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with 0,, := 0/90k,,. Concerning 0, A,  and 0,0, A, in the above expression of
g(k), we can directly estimate them in the following because the function of x
appearing in A ; is only e~ There exists Ca,, > 0, which is independent of
K, x, such that [0, 2 (k)] < Cp (1 + |2]) and [9,0p s (k)] < Ca (1 + |2]?)
for every k with k < |k| < A. Thus, we have g € L(R?®) and we can show that
ax (f,)0 = s-limy_ 200 ay(f, )1 exists for all ¢ € D(HY?) N D(z®> @ I) in the
same way as in [6, Lemma 4.3]. So, we have the following equality

ax(fo )y =T a(f)y
+oo
~iq / et {( fulk )*gitw(ku,{,m(k)d%) ®I} e~y
0

Also see [22, Theorem 1 and (6)] and [23, Theorem 5.1]. Moreover, using
the absolute continuity of w(k) and the Riemann—Lebesgue theorem, we have
a+(f, ). = 0. By using these facts and e~"Hx ¢, = e~ "*Ex 1, we have

I'®a(fo)yn
_ iq/ pit(HY—E) ( fy(k)*eitw(k))\ﬁ’w(k)di’uk) ® Idt.
0 R3

So, by Fubini’s theorem and Lebesgue’s dominated convergence theorem, we
have for every ¢ € D(HY)

(3.4)
(0, I® a(fu)dw
= zqhm (/ fu (k) (o, HHL =~ B +w(k) Ar,z ®I¢N>Hd3k‘) dt
—ialiny [ £, < /0 Y =B+ k) =i9) sy An,m®fwn>ﬁd3k
—zqhm/ fulk Y+ w(k) — i), A @ Th)ndh

- <¢, _q/RS fo(B) (HY — EX + w(k)) ™ A s ®I1/z,€d3k> ,

H

where we used Fubini’s theorem in the 2nd equality noting

et f, (k)* (eI Bl g\ wm‘

< e_te‘fu(k)‘ |>‘n,m(k)| ||¢H'H7
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and we calculated the integral over 0 < t < oo in the 3rd equality using

lim i(HY — EY +w(k) — is)_1e_iT(H§_E§+“’(k)_iE)¢

T—o0

= lim e TS(HY — EN + w(k) — ie) te i THLI-E+w(k) g — .

T—o0

Therefore, (3.3) for f, follows from (3.4).
If k € suppf U <UVZV0 suppf,,)7 then |k|™' < 2/ds. Hence it follows that
1fo/ V@ = FIV@lFe < 2d50 N fo = flI72 = 24711 - fintH%2(Qi,§tA) + || fext —

Fext||2 1200 )) for v > vy. Therefore, we obtain

(3.5) folw? — fJwi/?

in L?(R3) as v — oo for j = 0, 1. Since v, € D(HS/Q) by Proposition 2.2, the
fundamental inequality [[7® a(fu )i — T ® a(fullse < |(fo — £)/ V@l @
H&/anHH holds. So, by (3.5), I ® a(f,)¥x — I ® a(f)¢, as v — oo. By
the Schwarz inequality, y,w™! € L?(R3), and (3.5), the r.h.s of (3.3) for f,

converges to that for f. Therefore, (3.3) holds for f € C5°(R?\ {0}). O

In (3.1), we employ the following decomposition of the plain wave e~
into the dipole-approximated term e~ "0 = 1 and the error term e~%* — 1, i.e.,
(3.6) e =1 4 (e7T — 1),

because this decomposition provides very simple treatment to estimate the total
number of soft bosons. Derezifiski and Gérard implement this way in L?-theory
[11]. We also employ this way and implement it in operator theory by using
(3.3).

Proposition 3.2.  Let us fir k with 0 < kK < A, and suppose that H}
has a ground state 1, and V., € D(x®> @ I). Then, for all f € C§°(R3\ {0}),

(3.7) %fZ/f (Kl

with
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Then,
2 A
: k) be|2d%k = L log =
(39 10 et = 10
2
q
(39) [ 1R Bt < a2l T

Proof. 'We obtain immediately (3.7) from (3.3) by using (3.6) and (H} —
EY + w(k)) M, = w(k) .. (3.8) follows from a direct computation. By
using |e~** — 1| < |k||z|, we have (3.9). O

Remark 2. We note that decomposition (3.6) is not always useful in
proving the non-existence of ground state. We have to use another technique
in a general case (e.g. see GSB model and some polaron models [19]). In fact,
to treat several sorts of polarons, we mathematically consider more general
dispersion relations w(k) and coupling functions A, ;(k). For simplicity, we
consider w(k) = [k|* and A (k) = xx(k)|k|~Ve~** now, where u > 0, v € R,
and d = 1,2, 3. Then, because we do not always have (3.9), our argument in §4
does not work. For example, consider the case p+ 2v < d < 2u + 2v — 2. For
such a case, by following the idea in [6] instead of (3.6), we can press forward
with a concrete computation from [6, Lemma 5.1] as announced in [18]. For
further details, see [19].

4. sence o roun tate from T ® or K =
8 Ab f G dS fi D2 1) f 0

In [6] we proved that any ground state of GSB model is absent from D(I ®
Nfl/ 2). Here, by employing decomposition (3.7), we prove Theorem 2.1, namely,
any ground state of Hy = HY is absent from D(z? ® I).

Proof of Theorem 2.1: We use reductio ad absurdum to prove Theorem
2.1. Suppose that Hy := HY has a ground state v, in D(z%> @ I). We note we
already normalized the ground state 1),. For every ¢ € D(I ® Nfl/ 2), define the
function Fy 4 by

(4'1) F¢',1Z10 (k) = Z<¢7 Jj(k)wo>7{-

j=1

Since D(I ® Nf1/2) C D(I ® a'(f)), we can define the anti-linear functional
Tpp, - L?(R3) — C by

Ty, () = L@ a (N)d, dy)r, Vo e DI N,
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By the fundamental inequality concerning af(f) and N¢, we have

T,0, (N)] < 1@ (Ne + 1) 2|41 ] 2,
namely, Ty 4 is a bounded anti-linear functional. So, by Riesz’s lemma, there
exists a unique F € L?(R3) such that Ty, (f) = (f, F)r2 for every f €
L*(R3). We note that ¢, € D(Hy) = D(Hy) C D(HLY'?) ¢ D(H}'?) c D(a(g))
for every g € L*(R®) with g/\/w € L*(R?). By (3.7), we obtain (f, Fyy )12 =
(9, T®a(f)g)n = Ty, (f) for f € C5°(R?\ {0}). Thus, we have

Fyy, = F € L*(R®), VYoe DI N
By (3.7) and (4.1), we have
(42)  =aO1(k)(@, Vo) = (&, Ji(k)Yo) 1 = Foy, (k) = (¢, Jo (k) )n

as an L?(R?)-function of k, where

(k) = —XolB)
v 2w(k) w(k)
So, by (3.8) and (3.9), we reach a contradiction if (¢, ¥,)» # 0. Namely,
the left hand side of (4.2) is not in L?(R3) when (¢, ¥,)% # 0, on the other
hand, the right hand side of (4.2) is in L?(R®). Let us consider the case where
(¢, ¥,)n = 0 now. In this case, since we took an arbitrary ¢ from D(I ® Nf1/2)
which is dense in L%(R3), we have v, = 0, which also implies a contradiction.
Therefore, we obtain Theorem 2.1.

85. Sharp Estimate of Total Number of Soft Bosons

In this section, we prove Theorem 2.3. So, we assume k > 0 throughout
this section. In order to prove Theorem 2.3, we justify the following symbolic
identity

(5.1) (¥, I ® Neth)p = /R T @ alk)p 3.

Let X = (X, A, u) be a o-finite measurable space. Define the symmetric
Fock space Fx from X by

Fx =Perr’(x).
n=0
The annihilation operator a(f), f € L?(X), and the number operator N acting
in Fx can be defined in the same way as in (2.1) and (2.6) for those acting in
F, respectively.
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Proposition 5.1.  For arbitrary complete orthonormal system {f,}, of
L*(X),
(oo}
(5:2) IN2RIE =3 a(f) 0%, Ve D(NY2),
Proof. Set
" M 2
" e (n+1) (. e
\I/M (k1’ 7 Z (f v kla 7kn))L2(X)

v=1
dﬂn(kh'"» n) =dp(k1) @ - - @ du(ky).

By the definition of the annihilation operator, for each M € N and every
¥ € D(N'/?) we have

leafu W =S [k O )
n=0 "

Since WV (. ky, -+ k) € L*(X) for p"-ace. (ki,--- ,k,) € X", we have
\I/S\Z)(klﬂ T ’kn) < ||\Il(n+l)('a klv T akn)HzL?(X)’ u"—a.e. (klv T ’kn) € Xna

by Bessel’s inequality. Since {f,}, is complete, \IIEZ)(kl,~~ ,kn) converges
to [[WOFD( Ky, - ,kn)H%Z(X) as M — oo. Therefore, (5.2) follows from
Lebesgue’s monotone convergence theorem. O

Lemma 5.1.  For every k with 0 < k < A,
Yy € D(I ® Ng).

Proof. Let R:, = {keR?||k| <k} and R, = {k € R®||k| > x}. We
set N&* = dl(1y ) and Ny* = dl (1)) actmg in @,°, ®'L*(RY,) and
®n:0 @I LR ,.), respectively. We note

(5-3) D((H¢")") € D((N")*)

for s > 0. Through the unitary equivalence H) = HSK ® I+ I®HZ", the
ground state 1, of HY is represented by Qp ® 9", where % is a ground
state of HZ" and Qg the Fock vacuum. We note Ny & NfSN QI+1®N;".
Since D(H{") € D(N7 ") by (5.3), ¢7" is in D(N7®), ie., Y2 € D(N7"),
by Proposition 2.2. Hence our lemma follows. ]

Setting X = R? in Proposition 5.1 and using the identification (2.4) and
Lemma 5.1, we obtain mathematical justification of (5.1):
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Corollary 5.1.  For every k with 0 < k < A and an arbitrary complete
orthonormal system {f,},-, of L*(R?),

(54) (e, T® Netwo)r = |11 @ NP3 = S I @ alf)voull3,-

v=1

Proof of Theorem 2.3: Fix k satisfying 0 < x < A. We assume all hy-
potheses of Theorem 2.3. Let {f,},2, C C§5°(R*\ {0}) and {e,} ~, be com-
plete orthonormal systems of L?(R?) and H, respectively. Then, { f,,(~)ep}3°p:1

is a complete orthonormal system of L?(R?;H). By using Parseval’s equality,
we have

0 et = 1, 0o

-y

v=1p=1

-3

v=1p=1

—Z / Fulk)* T (k)b d®k

for j = 1,2 since J;(-), € L*(R3;H) for every r satisfying 0 < xk < A.
Applying the triangle inequality to (3.7) and using (5.4) and (5.5), we have

/ B)en T3 (K)ibw)ndk

e, / Fo B T () R

2

H

(56)  (n, T® Netbw)r = T @ alfo) ¥l

v=1
<2 [ InEd 2 [ 10
By (3.8), (3.9), (5.6), we have
7 A @ o 2
61 e ro N <2{ L (10g2) 4+ Lnllel o 10,13}
By (3.7) again, we have
L 207 Btk = T 9 alfe = [ 10 )

In the same way as above, we get

68 [ A0 < 20 1@ Nevah+2 [ 100 .
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y (3.8), (3.9), and (5.8), we have

q2

A q*
L (1082 ) < 20, 10 Moo+ 252 ol 10,

8w

which implies

q2 A q2 2 2
(5.9) 3.2 logE - 8?/\ 2] @ Iell3 ¢ < (Yn, I @ Nithe)n

Therefore, (2.8) follows from (5.7) and (5.9).

§6. Finite Uncertainty of Position in Ground State

In this section, we show that if HY has a (normalized) ground state, then
the uncertainty of the position in the ground state has to be finite. More
precisely, if HY has a ground state v, then v, € D(z? ® I). Therefore,
contrary to (2.7), we can indirectly prove that uncertainty of the position in
the ground state is finite, (Ax)gs < 00.

In the first half of this section, we consider the case where V is in class
(C1) and prove that if HY has a ground state 1), then ¢,, belongs to D(2?>®1).
Moreover, to prove Theorem 2.4, we need a uniform estimate of |||z]| ® It
in the infrared cutoff k. To do that we prepare some inequalities.

Lemma 6.1.  Assume (A). Then, there exists a constant Cq > 0 such
that
(6.1) sup || (Ho+ 1) (HY = EY + 1) | < Cq.
0<Kr<A

Proof. For every L?(R3)-valued function f, : RS — L*(R?) (ie., f. €
L*(R3) for a.e. x € R? and || f.||z2 € L*(R?)), we set || fo]|12,00 := €SS. SUP,cps
| fzllz. Combining fundamental inequalities for Hy and ¢, (z) with an argu-
ment on the constant fiber direct integral (see, e.g., [3, Lemma 13-12]), for
every ¢, > 0 and every ¢ € D(Hy), we have

(6.2) 1Hy w13 < (24 €)[V2Aw o V@ 132 oo T @ H P53,
+5 (14 32) IV el

= (2+6)IV2A0/Va 32 1 ® Hy (13,

43 (14 52 ) IVBAolalvie
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since |e~***| = 1. By fundamental inequalities, we have

1/2

(6.3) 11 ® He“pl3 = (¥, T ® Hio)w < [9]l2]l] © Hip|l2

1
<& (Ho + DYlls + 511915

It follows from direct estimates that

9 A2 9 A
(6.4) Mollfe < gz e/ VEllEe < 5
By (6.2) — (6.4), we have
(6.5) | Hr ol < O (e, |(Ho + Dbl + CL (e, ) |91,

where
A
C’/(\l)(e,s’) = 2£ 2e'(2 +¢),
™

VA [2+¢€
N = +2(1+2 )A

Since (Ho+1)y = (HY —EY+1)Y—qHi s+ (EY — Eqa )t for every ¢ € D(Hy)
and |EY — Ea| < ¢?||Ax,0l/32 by Proposition 2.2,

1

I(Ho + Dbl < | (HY = BY + Dol
1 ldlC{) (e, ")

|4|CF (e,€') + g>A% /872

1-|q/C (e, )

911

for every e,&’ > 0 satisfying 1 — |q|C,(\1)(a, ¢’) > 0, which implies

1+ |q|C(2)(€ e+ q2A2/87T

I(Ho + I)(HY — EX + 1)7Y|| <
—lqloM (e, )

We obtain the following lemma from Lemma 6.1.

Lemma 6.2.  For every q # 0 and arbitrary k,e with 0 < € and 0 <
k<A,

Cq

(6.6) I (Ho + D(H = By 407" | < et
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Proof. (6.6) follows from (6.1) and

el if e<1,
1 if e>1.

I(HE — B} + D(H - Ef + )7 < {
Lemma 6.3.  Let V be in class (C1).
(i) D(V) c D(z?).

(ii) If ¢ is in D(Hy), then v € D(|z| ® I) and

6.7) ol @ IplIZ, < erllHy >3 + eallvl3, < e HowllE, + (ex + e2) 113,
In particular, for 0 <k < A

(68) |H.T| ® I’(/)HH%_‘ < (6102 +c1 + 02) .

Proof. (i) directly follows from the first inequality of (C1-2). We obtain
the first statement of (ii) by (C1-1), Proposition 2.2, and (i). As for the second
statement, the first inequality of (6.7) is obtained in the same way as in [2,
Lemma 4.6]. By Schwarz’ inequality, we have

V2013 = (0, Hob)oe < 1l Hoble < b+ 1603
< [Hovll7, + I1v 13,
for ¢» € D(Hy). So, we obtain the second inequality of (6.7). By (6.7), we have
2] ® Il < eall(Ho + D) (HY — B + D)7HHY — EY + Dl

+(Cl + 62)
=c1l|(Ho + D)(HY = BY + 1) 'gl3 + (1 + ¢2).

This inequality and Lemma 6.2 imply (6.8). |
The following proposition follows from Lemma 6.3 directly:

Proposition 6.1 (finite uncertainty of position in ground state).  Let
V be in class (C1l) and k satisfy 0 < k < A. If HY has a ground state 1y,
then ¢, € D(z? ® I). Moreover, supgc,.<p |||z| ® Ithy||n < oo, provided that
Yy, exists for 0 < k < A.
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Proof. Suppose that there exists a ground state v, of HY. Then, by (C1-
1), Lemma 6.3(i), and Proposition 2.2, we have ¢, € D(HY) C D(H, ® I) C
D(z? ® I). The uniform estimate of |||z| ® It.|l+ in & follows from (6.8)
directly. O

In the last half of this section, we consider the case where V' is in class (C2)
and we prove that if HY has a ground state 1., then 1, belongs to D(z? ® I).
Moreover, we show a uniform estimate of |||x| ® I1,||# in the infrared cutoff &,
by proving the so-called exponential decay.

Let ENV=0 = info ( HYY="), where the superscript of HY" =" means that
in (2.5) the external potential V' is omitted. The (positive) binding energy is
defined by

Ebn ESV=0 _ BN

K

The binding energy is bounded from below:

Proposition 6.2 (strict positivity of binding energy). Let V be in
class (C2). Fiz k with 0 < k < A. Then,

(6.9) EPn > _FE, > 0.

Proof. Using the idea proving [14, Theorem 3.1] for the Pauli-Fierz model,
relation (6.9) was proved in [20, Proposition 4.4], but for the special external
potential. It is easy to see that our proposition is also proven in the same
way as in [20, Proposition 4.4] following the idea in the proof of [14, Theorem
3.1]. O

Proposition 6.3 (exponential decay). Fizk with0 < x < A. LetV be
in class (C2). Assume HY has a (normalized) ground state 1. Then, there
exist a sufficiently small Cy > 0, a sufficiently large Ng € N, and C > 0 such
that 1,. € D(e“0l*) and

(6.10) el |5

-1/2
< 30N )y 4 o |Eqa] — sup IV($)|_Cg ’
No<|z|

where

(6.11) |Eat| — sup |V (x)| —C3 > 0.
N0<|J/"
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Proof.  Since lim|;| o [V (2)| = 0in (C2-1), we can take Ny € Nand Cy >
0 such that (6.11) holds because we assumed F,; < 0 in (C2-2). We take a non-
negative function 1,, € C§°(R) for each n € N satisfying 1,,(r) = 1 for |r| < n;
=0 for |r] >3n,0 < 1,(r) < 1forn < |r| < 3n. Since 1, € C5°(R) again, we
have C,, := sup,. |d1,,(r)/dr| < co. We set f.(r) :=r(1+er)~! for every e > 0
and 7 > 0. We define a function Gy, o (z) by Gpc(z) := (1 — 1,,(|z|)) fo(eCol=l).
Since 0 < f.(r) < e~! for all 7 > 0, the multiplication operators f.(e“°l*) and
Gy are bounded on L?(R?). In the same way as in [20, Lemma 5.1], we have

in 1
(6:12)  EXGhe ® Igllfy < 5 (0 s [VGnel* ® T
+ sup ‘V(x)lekm G?L,E ® I¢K>H

n<|z|
It is easy to check that

0Gnz(x) __9nlal) ,  coe (el €y
- Fe(e1N) 4+ Co (1 — 1 (| I))(Hae%m)zm.

81,‘]‘ 833]‘

So, using suppll!, C [~3n, —n] U [n,3n] and (1 + eeC0l#l)=* < (1 4 geCol=l)—2
we have

23 2
(6.13) |VGn,€(x)|2§2< sup fs(eCD""”)> Z(%)

n<|z[<3n j=1

) ) e2Colz|
+2C5(1 = Ly(|2]))* ———
(1 + eeColzl)

e3n N2 3 |33‘ 2 2
<2 (o) 2 (BL) +ac6..00
=1

<260MZ< aiLID) + 203G, (2)”.

It is easy to check that

(6.14) i( (%'j' > <2,

7j=1
By Proposition 6.2 and (6.12) — (6.14), we have
(6'15) ||GN0,€ Y Ii/’n”%—(

1
< CJZVOeGCDNO {|Eat| — sup |V(x)|— 03} .

No<|z|
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Let dE,|(£) be the spectral measure of the multiplication operator |z|, i.e.,
the spectral representation of |z| by dE),(§) is

|z| = /OOO §dE ), (§).

Then, by Lebesgue’s monotone convergence theorem and (6.15), we have

-1
(6.16) C3, %N S | Eyy| — sup |V(2)| - C3
No<|z|

> lim |G, e ® Iy, |13,
- / (1= Ty (€))22%0d)| By (€) ® T 2,
— (@ = By (J2])) ¥ @ T2,

with ¢, € D ((1— Ly, (|z]))e®!®l @ I). Moreover, since |Iy, (|z|)e!|
e3¢oNo we have

IN

(6.17) 11 (J]) 01! @ Tapy||py < 30N

with ¢, € D (Iy,(|z|)e“l*l @ I). Therefore, our statement that ¢, €
D(e®#l) and (6.10) follows from (6.16) and (6.17). O

This exponential decay immediately implies the following.

Proposition 6.4 (finite uncertainty of position in ground state).  Let
V be in class (C2) and k satisfy 0 < k < A. If H has a ground state vy,
then v, € D(z* ® I). Moreover, supgc .« ||| ® Iby||ln < oo, provided that
Yy exists for 0 < k < A.

Proof. We have only to note the following. There exists Ry > 0 such that
r < " 4 R, for every r > 0. Ll

Proof of Theorem 2.2: Theorem 2.2 follows from Propositions 6.1 and 6.4
and Theorem 2.1.

Proof of Theorem 2.4: We note first that there exists a ground state
for |q| < g5 and 0 < k < A by Proposition 2.3. Then, Theorem 2.4 follows
from Propositions 6.1 and 6.4 and Theorem 2.3.
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