The Irregularity of the Direct Image of Some \mathcal{D} -modules

By

Céline Roucairol*

Abstract

Let f and g be two regular functions on U smooth affine variety. Let \mathcal{M} be a regular holonomic \mathcal{D}_U -module. We are interested in the irregularity of the complex $f_+(\mathcal{M}e^g)$. More precisely, we relate the irregularity number at c of the systems $\mathcal{H}^k f_+(\mathcal{M}e^g)$ with the characteristic cycles of the systems $\mathcal{H}^k(f,g)_+(\mathcal{M})$.

§1. Introduction

• Let U be a smooth affine variety over \mathbb{C} and $g: U \to \mathbb{C}$ be a regular function on U. We denote by \mathcal{O}_U the sheaf of regular functions on U and by \mathcal{D}_U the sheaf of algebraic differential operators on U.

Let \mathcal{M} be a regular holonomic \mathcal{D}_U -module. We denote by $\mathcal{M}e^g$ the \mathcal{D}_U module obtained from \mathcal{M} by twisting by e^g . If \bigtriangledown is the connection defined by the \mathcal{D}_U -module structure of $\mathcal{M}, \bigtriangledown + dg$ is the one associated with $\mathcal{M}e^g$. Although \mathcal{M} is regular, $\mathcal{M}e^g$ is not regular in general. Here, regular means that there exists a smooth compactification X of U and an extension of $\mathcal{M}e^g$ as \mathcal{D}_X -module which is regular holonomic on X. In [10], C. Sabbah describes a comparison theorem for these \mathcal{D} -modules twisted by an exponential. This theorem gives a relation between the irregularity complex of $\mathcal{M}e^g$ (see [6]) and some topological data given by g and \mathcal{M} .

In this paper, we consider two regular functions $f, g: U \to \mathbb{C}$. We are interested in the irregularity of the cohomology modules of the direct image by f of a \mathcal{D}_U -module, $\mathcal{M}e^g$, where \mathcal{M} is regular and holonomic.

Communicated by M. Kashiwara. Received June 28, 2005. Revised September 27, 2005. 2000 Mathematics Subject Classification(s): 32C38, 35B40.

^{*}Universität Mannheim, Institut für Mathematik, A5, 6, 68131 Mannheim, Germany.

e-mail: celine.roucairol@uni-mannheim.de

^{© 2006} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

• In Section 2, we recall the definitions of a \mathcal{D} -module twisted by an exponential of a meromorphic function. We will need the definition in the case of meromorphic function during the proof of the main theorem.

Then, we will consider the case where \mathcal{M} is the sheaf of regular function \mathcal{O}_U . According to [4], the system $\mathcal{H}^k(f_+(\mathcal{O}_U e^g))$ extends vector bundle with flat holomorphic connection such that the generic fiber of the sheaf of their horizontal sections is canonically isomorphic to the cohomology group $H^{k+n-1}_{\phi_t}(f^{-1}(t)^{an}, \mathbb{C})$, where ϕ_t is the family of closed subsets of $f^{-1}(t)$ on which e^{-g} is rapidly decreasing. Using this result, we will motivate the study of the irregularity of the systems $\mathcal{H}^k f_+(\mathcal{O}_U e^g)$ by observations on some integrals.

• The main theorem of this paper gives us a formula for the irregularity number of the systems $\mathcal{H}^k(f_+(\mathcal{M}e^g))$ at finite distance and at infinity.

In the case where f and g are two polynomials in two variables which are algebraically independents and $\mathcal{M} = \mathcal{O}_{\mathbb{C}^2}$, the complex $f_+(\mathcal{O}_{\mathbb{C}^2}e^g)$ is concentrated in degree 0 except at a finite number of points (see [9]). Then, the irregularity number at a point $c \in \mathbb{C} \cup \{\infty\}$ of the system $\mathcal{H}^0f_+(\mathcal{O}_{\mathbb{C}^2}e^g)$ can be expressed in terms of some geometric data associated with f and g (see [9]).

In this paper, we calculate the irregularity number at $c \in \mathbb{C} \cup \{\infty\}$ of the systems $\mathcal{H}^k(f_+(\mathcal{M}e^g))$ with the help of the characteristic cycle of the systems $\mathcal{H}^k(f,g)_+(\mathcal{M})$, in the general case where f and g are any regular functions.

In the following, we identify $\mathbb{C} \cup \{\infty\}$ with \mathbb{P}^1 . Let *i* be the inclusion of \mathbb{C}^2 in $\mathbb{P}^1 \times \mathbb{P}^1$. Let $c \in \mathbb{P}^1$ and $V = V_1 \times V_2 \subset \mathbb{P}^1 \times \mathbb{P}^1$ a neighbourhood of (c, ∞) .

Let Cch(c, k) be the characteristic cycle of $\mathcal{H}^k i_+(f, g)_+(\mathcal{M})$ in the neighbourhood V:

 $Cch(c,k) = mT_V^*V + m'T_{(c,\infty)}^*V + m''T_{\{c\}\times V_2}^*V + m'''T_{V_1\times \{\infty\}}^*V + \sum m_l T_{Z_l}^*V,$ where Z_l are some germs of irreducible curves in a neighbourhood of (c,∞) distinct from $V_1 \times \{\infty\}$ and $\{c\} \times V_2$.

Theorem 1.1. The irregularity number of $\mathcal{H}^k f_+(\mathcal{M}e^g)$ at c is equal to $\sum_l m_l I_{(c,\infty)}(Z_l, \mathbb{P}^1 \times \{\infty\})$, where $I_{(c,\infty)}(Z_l, \mathbb{P}^1 \times \{\infty\})$ is the intersection multiplicity of Z_l and $\mathbb{P}^1 \times \{\infty\}$ at (c,∞) .

• The theorem of commutation between the irregularity functor and the direct image functor ([6]) allows us to rephrasing Theorem 1.1 in terms of an irregularity complex of a regular holonomic \mathcal{D} -module twisted by an exponential (cf. Lemma 3.2).

Then, using the comparison theorem of [10], we are led to calculate the Euler characteristic of a germ of a complex of nearby cycles.

§2. The Complex $f_+(\mathcal{M}e^g)$

§2.1. Regular holonomic \mathcal{D} -modules twisted by an exponential

Let X be a smooth algebraic variety over \mathbb{C} .

We identify \mathbb{P}^1 with $\mathbb{C} \cup \{\infty\}$. Let $h : X \to \mathbb{P}^1$ be a meromorphic function.

Definition 2.1. We define the \mathcal{D}_X -module $\mathcal{O}_X[*h^{-1}(\infty)]e^h$ as a \mathcal{D}_X module which is isomorphic to $\mathcal{O}_X[*h^{-1}(\infty)]$ as \mathcal{O}_X -module. The original connection ∇ on $\mathcal{O}_X[*h^{-1}(\infty)]$ is replaced with the connection $\nabla + dh$ on $\mathcal{O}_X[*h^{-1}(\infty)]e^h$.

Let \mathcal{M} be a holonomic \mathcal{D}_X -module.

Definition 2.2. We define the \mathcal{D}_X -module $\mathcal{M}[*h^{-1}(\infty)]e^h$ as the \mathcal{D}_X -module $\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{O}_X[*h^{-1}(\infty)]e^h$.

Remark. $\mathcal{O}_X[*h^{-1}(\infty)]e^h$ is the direct image by an open immersion of a vector bundle with integrable connection. Then, it is a holonomic \mathcal{D}_X -module as algebraic direct image of a holonomic \mathcal{D} -module.

 $\mathcal{M}[*h^{-1}(\infty)]e^h$ is a holonomic left \mathcal{D}_X -module as tensor product of two holonomic left \mathcal{D}_X -modules (cf. Theorem 4.6 of [2]).

We have analogous definitions in the analytic case. We just have to transpose in the analytic setting.

§2.2. On the solutions of the systems $\mathcal{H}^k(f_+(\mathcal{O}_U e^g))$

The generic fiber of the sheaf of horizonal sections of $\mathcal{H}^k(f_+(\mathcal{O}_U e^g))$ can be describe as follows:

Theorem 2.1 ([4]). There exists a finite subset $\Sigma \subset \mathbb{C}$ such that

- $\mathcal{H}^k(f_+(\mathcal{O}_U e^g))|_{\mathbb{C}\setminus\Sigma}$ is a vector bundle with flat holomorphic connection.
- For all $t \in \mathbb{C} \setminus \Sigma$, $i_t^+ \mathcal{H}^{k-n+1}(f_+(\mathcal{O}_U e^g)) \simeq H^k_{\phi_t}((f^{-1}(t))^{an}, \mathbb{C})$, where i_t is the inclusion of $\{t\}$ in \mathbb{C} and ϕ_t is the family of closed subsets of $f^{-1}(t)$ on which e^{-g} is rapidly decreasing.

More precisely, the family ϕ_t is defined as follow. Let $\pi : \widetilde{\mathbb{P}^1} \to \mathbb{P}^1$ be the oriented real blow-up of \mathbb{P}^1 at infinity. $\widetilde{\mathbb{P}^1}$ is diffeomorphic to $\mathbb{C} \cup S^1$, where S^1 is the circle of directions at infinity. A is in ϕ_t if A is a closed subset of $f^{-1}(t)$ and the closure of g(A) in $\mathbb{C} \cup S^1$ intersects S^1 in $] - \frac{\pi}{2}, \frac{\pi}{2}[$.

Let us motivate the study of this complex by observations on some integrals. Concerning Gauss-Manin systems, we can express their solutions as period integrals of the type $\int_{\gamma(t)} w_{|f^{-1}(t)}$, where $\gamma(t)$ is an horizontal family of cycles in the fibres $f^{-1}(t)$ and w is a relative algebraic differential form. As the Gauss-Manin connection is regular, these integrals have moderate growth in the neighbourhood of their singularities. In our case, some solutions can also be expressed as integrals.

Let Ψ_t be the family of closed subsets A of $f^{-1}(t)$ such that for all Rbig enough, $A \setminus g^{-1}(\{t \in \mathbb{C} \mid Re(-t) > R\})$ is compact. We consider the complex of semi-algebraic chains with support in Ψ_t (see [8]). We denote by $H_{k,\Psi_t}(f^{-1}(t)^{an},\mathbb{C})$ the k-th homology group associated with this complex. We can now integrate forms in $H^k_{\Phi_t}(f^{-1}(t)^{an},\mathbb{C})$ on cycles in $H_{k,\Psi_t}(f^{-1}(t)^{an},\mathbb{C})$.

According to Theorem 1.4 of [1], since f is a submersion outside Σ , we have an isomorphism

$$\mathcal{H}^{k-n+1}(f_+(\mathcal{O}_U e^g))|_{\mathbb{C}\backslash\Sigma} \simeq R^k f_*(DR_{\mathbb{C}^n/\mathbb{C}}(\mathcal{O}_U) e^g)|_{\mathbb{C}\backslash\Sigma}$$

Thus, we can extend the integration defined before to a form $we_{|f^{-1}(t)}^g$, where w is a relative algebraic differential form. Indeed, by the definition of Ψ_t , e^g is rapidly decreasing on the cycles and semi-algebraic chains with support in Ψ_t behave well at infinity.

In this way, to $\gamma(t)$, horizontal family of cycles in $H_{k,\Psi_t}(f^{-1}(t)^{an},\mathbb{C})$, we can associate a solution of the $\mathcal{D}_{\mathbb{C}\setminus\Sigma}$ -module $\mathcal{H}^{k-n+1}(f_+(\mathcal{O}_U e^g))|_{\mathbb{C}\setminus\Sigma}$. It is a morphism α of $\mathcal{D}_{\mathbb{C}\setminus\Sigma}$ -modules defined by $\alpha([we^g]) = \int_{\gamma(t)} we^g_{|f^{-1}(t)}$.

The study of the irregularity of the systems $\mathcal{H}^{k-n+1}(f_+(\mathcal{O}_U e^g))$ gives us informations about the growth of these integrals in the neighbourhood of their singularities.

§3. On the Irregularity of the Complex $f_+(\mathcal{M}e^g)$

In the following, we will identify $\mathbb{C} \cup \{\infty\}$ with \mathbb{P}^1 and we consider the canonical immersion $j : \mathbb{C} \to \mathbb{P}^1$. Let us fix $k \in \mathbb{Z}$ and $c \in \mathbb{P}^1$.

We are interested in the number $IR_{c,k}$, it being the irregularity number at $c \in \mathbb{P}^1$ of the system $\mathcal{H}^k j_+ f_+(\mathcal{M}e^g)$.

The first step of the proof of Theorem 1.1 consists in rephrasing it using an irregularity complex of a $\mathcal{D}_{\mathbb{C}^2}$ -module twisted by an exponential.

For the definition of irregularity complex along an hypersurface, we refer the reader to [6] and [7]. We adopt the following notations. If \mathfrak{M} is a complex of \mathcal{D}_X -modules and Z is an hypersurface of X, we denote by $IR_Z(\mathfrak{M})$ the irregu-

larity complex of \mathfrak{M} along Z. For simplicity of notations, we write $IR_Z^k(\mathfrak{M})$ instead of $\mathcal{H}^k(IR_Z(\mathfrak{M}))$.

According to [5], the irregularity number $IR_{c,k}$ is equal to the dimension of the \mathbb{C} -vector space $IR^0(\mathcal{H}^k j_+ f_+(\mathcal{M}e^g))_c$.

Denote by \mathcal{N}^{\bullet} the complex of $\mathcal{D}_{\mathbb{P}^1 \times \mathbb{P}^1}$ -modules $i_+(f,g)_+(\mathcal{M})$. In the way of rephrasing Theorem 1.1, we need the following lemma:

Lemma 3.1. Let $\pi_2 : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ be the second projection and $D = (\mathbb{P}^1 \times \mathbb{P}^1) \setminus i(\mathbb{C}^2)$.

$$IR_{c}(\mathcal{H}^{k}j_{+}f_{+}(\mathcal{M}e^{g}))_{c} = IR_{\{c\}\times\mathbb{P}^{1}}(\mathcal{H}^{k}(\mathcal{N}^{\bullet})[*D]e^{\pi_{2}})_{(c,\infty)}[+1].$$

Proof. • Reduction to the case of the two projections.

Let $p_1 : \mathbb{C}^2 \to \mathbb{C}$ and $p_2 : \mathbb{C}^2 \to \mathbb{C}$ be the two canonical projections. As $f = p_1 \circ (f,g)$, we have $f_+(\mathcal{M}e^g) = p_{1+}(f,g)_+(\mathcal{M}e^g)$. Moreover, $(f,g)_+(\mathcal{M}e^g) = (f,g)_+(\mathcal{M})e^{p_2}$.

Finally, we obtain that $f_+(\mathcal{M}e^g) \simeq p_{1+}((f,g)_+(\mathcal{M})e^{p_2}).$

• In this paragraph, we denote by ${}^{p}\mathcal{H}$ the perverse cohomology. According to Corollary 2-1-8 of [6], we have:

$$IR_{c}(\mathcal{H}^{k}j_{+}f_{+}(\mathcal{M}e^{g})) = {}^{p}\mathcal{H}^{k}IR_{c}(j_{+}f_{+}(\mathcal{M}e^{g})).$$

Consider the following diagrams:

Then,

$$IR_{c}(j_{+}f_{+}(\mathcal{M}e^{g})) = IR_{c}(j_{+}p_{1+}((f,g)_{+}(\mathcal{M})e^{p_{2}}))$$

= $IR_{c}(\pi_{1+}i_{+}((f,g)_{+}(\mathcal{M})e^{p_{2}}))$
= $IR_{c}(\pi_{1+}i_{+}(\mathcal{N}^{\bullet}[*D]e^{\pi_{2}})).$

Then, $IR_c(\mathcal{H}^k j_+ f_+(\mathcal{M}e^g)) = {}^p \mathcal{H}^k IR_c(\pi_{1+}i_+(\mathcal{N}^{\bullet}[*D]e^{\pi_2})).$

• According to Proposition 3-6-4 of [7], the irregularity functor commutes with the direct image functor. Thus:

$$IR_{c}(\pi_{1+}i_{+}(\mathcal{N}^{\bullet}[*D]e^{\pi_{2}}))_{c} = \mathbb{R}\pi_{1*}IR_{\{c\}\times\mathbb{P}^{1}}(\mathcal{N}^{\bullet}[*D]e^{\pi_{2}})_{c}[+1]$$
$$= \mathbb{R}\Gamma(\{c\}\times\mathbb{P}^{1}, IR_{\{c\}\times\mathbb{P}^{1}}(\mathcal{N}^{\bullet}[*D]e^{\pi_{2}}))[+1].$$

• Then, we remark that π_2 is holomorphic out of (c, ∞) and \mathcal{N}^{\bullet} is regular holonomic (direct image complex of an algebraic regular holonomic \mathcal{D} -module). Then, $IR_{\{c\}\times\mathbb{P}^1}(\mathcal{N}^{\bullet}[*D]e^{\pi_2})$ has its support in (c,∞) and we have an isomorphism of complexes of vector spaces

$$IR_{c}(\pi_{1+}i_{+}(\mathcal{N}^{\bullet}[*D]e^{\pi_{2}}))_{c} = IR_{\{c\}\times\mathbb{P}^{1}}(\mathcal{N}^{\bullet}[*D]e^{\pi_{2}})_{(c,\infty)}[+1].$$

• We conclude that

$$IR_{c}(\mathcal{H}^{k}j_{+}f_{+}(\mathcal{M}e^{g}))_{c} =^{p} \mathcal{H}^{k}IR_{c}(\pi_{1+}i_{+}(\mathcal{N}^{\bullet}[*D]e^{\pi_{2}}))_{c}$$

$$=^{p} \mathcal{H}^{k}IR_{\{c\}\times\mathbb{P}^{1}}(\mathcal{N}^{\bullet}[*D]e^{\pi_{2}})_{(c,\infty)}[+1]$$

$$= IR_{\{c\}\times\mathbb{P}^{1}}(\mathcal{H}^{k}(\mathcal{N}^{\bullet}]*D]e^{\pi_{2}})_{(c,\infty)}[+1]$$

$$= IR_{\{c\}\times\mathbb{P}^{1}}(\mathcal{H}^{k}(\mathcal{N}^{\bullet})[*D]e^{\pi_{2}})_{(c,\infty)}[+1].$$

Now, we can rephrase Theorem 1.1.

Let us choose some local coordinates (x, z) of $\mathbb{P}^1 \times \mathbb{P}^1$ in a neighbourhood of (c, ∞) such that:

- (c, ∞) has for coordinates (0, 0),
- $\{c\} \times \mathbb{P}^1$ has equation x = 0 in a neighbourhood of (c, ∞) ,
- $\mathbb{P}^1 \times \{\infty\}$ has equation z = 0 in a neighbourhood of (c, ∞) .

In these coordinates, π_2 is equal to $\frac{1}{z}$ in a neighbourhood of (c, ∞) . Then, according to Lemma 3.1, we are led to prove the following lemma:

Lemma 3.2. Let \mathfrak{M} be a holonomic regular $\mathcal{D}_{\mathbb{C}^2}$ -module. We denote the characteristic cycle of \mathfrak{M} in a neighbourhood of (0,0) by:

$$Cch(\mathfrak{M}) = mT^*_{\mathbb{C}^2}\mathbb{C}^2 + m'T^*_{(c,\infty)}\mathbb{C}^2 + m''T^*_{x=0}\mathbb{C}^2 + m'''T^*_{z=0}\mathbb{C}^2 + \sum m_l T^*_{Z_l}\mathbb{C}^2,$$

where Z_l are some germs of irreducible curves in a neighbourhood of (0,0) distinct from x = 0 and z = 0.

Then,

$$\chi(IR_{x=0}(\mathfrak{M}[\frac{1}{z}]e^{\frac{1}{z}})_{(0,0)} = -\sum_{l} m_{l}I_{(c,\infty)}(Z_{l}, \{z=0\}).$$

IRREGULARITY OF DIRECT IMAGE

§4. Proof of Lemma 3.2

We break up the proof of Lemma 3.2 in three steps:

Lemma 4.1.
$$\chi(IR_{x=0}(\mathfrak{M}[\frac{1}{z}]e^{\frac{1}{z}})_{(0,0)}) = \chi(IR_{z=0}(\mathfrak{M}[\frac{1}{xz}]e^{\frac{1}{z}})_{(0,0)}).$$

We denote by $\Psi_z(\mathfrak{M}[\frac{1}{x}])$ the complex of nearby cycles of $\mathfrak{M}[\frac{1}{x}]$ relative to z. It is a complex of constructible sheaves on $\mathbb{C} \times \{0\}$ defined as follows.

Let η small enough. We denote by $D^*(0,\eta)$ the universal covering of $D^*(0,\eta)$. Let (E,π,\tilde{z}) be the fiber product over $D^*(0,\eta)$ of $\mathbb{C} \times D^*(0,\eta)$ and $D^*(0,\eta)$. Then, we have the following diagram:

$$\begin{split} \mathbb{C}\times\{0\}^{\underbrace{\alpha}{\longrightarrow}} \mathbb{C}^2 &\stackrel{\tilde{i}}{\longrightarrow} \mathbb{C}\times D^*(0,\eta) &\stackrel{\pi}{\longleftarrow} E \\ & z \\ D^*(0,\eta) &\stackrel{}{\longleftarrow} D^*(0,\eta) \,. \\ \Psi_z(\mathfrak{M}[\frac{1}{x}]) &= \alpha^{-1} R(\tilde{i}\circ\pi)_* (\tilde{i}\circ\pi)^{-1} (DR(\mathfrak{M}[\frac{1}{x}])). \end{split}$$

Lemma 4.2. $\chi(IR_{z=0}(\mathfrak{M}[\frac{1}{xz}]e^{\frac{1}{z}})_{(0,0)}) = \chi(\Psi_z(\mathfrak{M}[\frac{1}{x}])_{(0,0)}).$

Lemma 4.3. $\chi(\Psi_z(\mathfrak{M}[\frac{1}{x}])_{(0,0)}) = -\sum_l m_l I_{(c,\infty)}(Z_l, \mathbb{P}^1 \times \{\infty\}).$

Proof of Lemma 4.1. Let us first show that

$$IR_{x=0}(\mathfrak{M}[\frac{1}{z}]e^{\frac{1}{z}}) = R\Gamma_{x=0}(IR_{z=0}(\mathfrak{M}[\frac{1}{xz}]e^{\frac{1}{z}})).$$

Let η be the inclusion of $\mathbb{C} \times \mathbb{C}^*$ in \mathbb{C}^2 . By definition,

$$IR_{z=0}(\mathfrak{M}[\frac{1}{xz}]e^{\frac{1}{z}}) = cone\left(DR(\mathfrak{M}[\frac{1}{xz}]e^{\frac{1}{z}}) \to R\eta_*\eta^{-1}(DR(\mathfrak{M}[\frac{1}{xz}]e^{\frac{1}{z}}))\right)$$
$$= cone\left(DR(\mathfrak{M}[\frac{1}{xz}]e^{\frac{1}{z}}) \to R\eta_*(DR(\mathfrak{M}[\frac{1}{x}])_{|\mathbb{C}\times\mathbb{C}^*})\right).$$

Now, consider the following diagram:

$$\begin{array}{c} \mathbb{C} \times \mathbb{C}^{*} & \stackrel{\eta}{\longrightarrow} \mathbb{C}^{2} \\ & \int_{J'} & \int_{J} \\ \mathbb{C}^{*} \times \mathbb{C}^{*} & \stackrel{\eta'}{\longrightarrow} \mathbb{C}^{*} \times \mathbb{C} \end{array}$$

As \mathfrak{M} is regular, we have:

$$R\eta_*(DR(\mathfrak{M}[\frac{1}{x}])|_{\mathbb{C}\times\mathbb{C}^*}) = R\eta_*RJ'_*(DR(\mathfrak{M})|_{\mathbb{C}^*\times\mathbb{C}^*})$$
$$= RJ_*R\eta'_*(DR(\mathfrak{M})|_{\mathbb{C}^*\times\mathbb{C}^*}).$$

But $R\Gamma_{x=0}RJ_* = 0$. Then:

$$R\Gamma_{x=0}(IR_{z=0}(\mathfrak{M}[\frac{1}{xz}]e^{\frac{1}{z}})) = R\Gamma_{x=0}(DR(\mathfrak{M}[\frac{1}{xz}]e^{\frac{1}{z}}))$$
$$= IR_{x=0}(\mathfrak{M}(\frac{1}{z}]e^{\frac{1}{z}}),$$

by definition of irregularity complex.

Then, we are led to prove that the complexes $R\Gamma_{x=0}(IR_{z=0}(\mathfrak{M}[\frac{1}{xz}]e^{\frac{1}{z}}))$ and $IR_{z=0}(\mathfrak{M}[\frac{1}{xz}]e^{\frac{1}{z}})$ have the same characteristic function at (0,0).

Using the following distinguished triangle,

it is sufficient to show that the characteristic function on $\{x = 0\}$ of the complex $RJ_*J^{-1}(IR_{z=0}(\mathfrak{M}[\frac{1}{xz}]e^{\frac{1}{z}}))$ is zero.

Now, if \mathcal{F} is a constructible sheaf on X and $P \in \{x = 0\}$,

$$\chi((RJ_*J^{-1}\mathcal{F})_P) = \chi((\mathbb{D}(J_!J^{-1}\mathbb{D}\mathcal{F}))_P) = \chi((J_!J^{-1}\mathbb{D}\mathcal{F})_P) = 0,$$

where \mathbb{D} is the Verdier duality (see [11]).

Proof of Lemma 4.2. This is a particular case of a result of C. Sabbah (cf. Corollary 5-2 of [10]). \Box

Proof of Lemma 4.3. Denote by \mathcal{C}^{\bullet} the complex $\Psi_z(\mathfrak{M}[\frac{1}{x}])$. By definition, $\mathcal{C}^{\bullet}_{(0,0)} = R(\tilde{i} \circ \pi)_*(\tilde{i} \circ \pi)^{-1}(DR(\mathfrak{M}[\frac{1}{x}]))_{(0,0)}.$ \bullet Then, for all $k \in \mathbb{Z}$,

$$\mathcal{H}^{k}\mathcal{C}^{\bullet}_{(0,0)} = \underset{(0,0)\in Uopen}{indlim} \mathbb{R}^{k}\Gamma(U, R(\tilde{i}\circ\pi)_{*}(\tilde{i}\circ\pi)^{-1}(DR(\mathfrak{M}[\frac{1}{x}]))).$$

As $\{D(0,\eta_1) \times D(0,\eta_2)\}_{\eta_1,\eta_2}$ is a fundamental system of neighbourhoods of (0,0), we have

$$\mathcal{H}^{k}\mathcal{C}^{\bullet}_{(0,0)} = indlim_{\eta_{1},\eta_{2}} \mathbb{R}^{k}\Gamma(D(0,\eta_{1}) \times D(0,\eta_{2}), R(\tilde{i} \circ \pi)_{*}(\tilde{i} \circ \pi)^{-1}(DR(\mathfrak{M}[\frac{1}{x}]))).$$

• Let Σ be a Whitney stratification associated with the constructible sheaf $DR(\mathfrak{M}[\frac{1}{x}])$. Then, for η_1 and η_2 small enough, there exists a homotopy equivalence $p: (\tilde{i} \circ \pi)^{-1}(D(0,\eta_1) \times D(0,\eta_2)) \to D(0,\eta_1) \times \{\tilde{\eta}\}$ compatible with Σ . Thus, $\mathcal{H}^k \mathcal{C}^{\bullet}_{(0,0)} = \underset{\eta_1,\eta_2}{indlim} \mathbb{R}\Gamma(D(0,\eta_1) \times \{\tilde{\eta}\}, DR(\mathfrak{M}[\frac{1}{x}])).$

• Now, as \mathfrak{M} is regular, $DR(\mathfrak{M}[\frac{1}{r}]) = RJ_*J^{-1}(DR(\mathfrak{M}))$. Then,

$$\mathcal{H}^{k}\mathcal{C}^{\bullet}_{(0,0)} = indlim_{\eta_{1},\eta_{2}} \mathbb{R}\Gamma(D(0,\eta_{1}) \times \{\tilde{\eta}\}, RJ_{*}J^{-1}(DR(\mathfrak{M})))$$
$$= indlim_{\eta_{1},\eta_{2}} \mathbb{R}\Gamma(D^{*}(0,\eta_{1}) \times \{\tilde{\eta}\}, J^{-1}(DR(\mathfrak{M}))).$$

• Let fix η_1 and $\tilde{\eta}$ small enough such that the singular support of \mathfrak{M} in $D^*(0,\eta_1) \times \{\tilde{\eta}\}$ is a finite number of points. Denote by P_1, \ldots, P_s these points. They are the intersection points of $D^*(0,\eta_1) \times \{\tilde{\eta}\}$ and $\cup Z_l$. As $DR(\mathfrak{M})_{|D^*(0,\eta_1) \times \{\tilde{\eta}\}}$ is a complex of constructible sheaves with respect to the stratification $\{D^*(0,\eta_1) \times \{\tilde{\eta}\} \setminus \{P_1,\ldots,P_l\}, P_1,\ldots,P_l\}$, the Euler characteristic of $\mathbb{R}\Gamma(D^*(0,\eta_1) \times \{\tilde{\eta}\}, J'^{-1}(DR(\mathfrak{M}))$ is equal to:

$$\chi(\mathbb{R}\Gamma(D^*(0,\eta_1)\times\{\tilde{\eta}\}\setminus\{P_1,\ldots,P_l\},DR(\mathfrak{M})))+\sum_{i=1}^l\chi(DR(\mathfrak{M})_{P_i}).$$

Then, according to the index theorem of Kashiwara (cf. [3]),

$$\chi(\mathbb{R}\Gamma(D^*(0,\eta_1) \times \{\tilde{\eta}\}, J^{\prime-1}(DR(\mathfrak{M}))))$$

= $rk(\mathfrak{M}) \sum_{l} I_{(0,0)}(Z_l, \{z=0\}) + \sum_{l} (rk(\mathfrak{M}) - m_l) I_{(0,0)}(Z_l, \{z=0\})$
= $-\sum_{l} m_l I_{(0,0)}(Z_l, \{z=0\}).$

Remark. If f and g are two polynomials in two variables, we can compare Theorem 1.1 and Theorem 1 of [9]. Let us recall this theorem:

Let \mathbb{X} be a smooth projective compactification of \mathbb{C}^2 such that there exists $F, G : \mathbb{X} \to \mathbb{P}^1$, two meromorphic maps, which extend f and g. Let us denotes by D the divisor $\mathbb{X} \setminus \mathbb{C}^2$. Let Γ be the critical locus of (F, G).

Let $c \in \mathbb{P}^1$. We denote by Δ_1 the cycle in $\mathbb{P}^1 \times \mathbb{P}^1$ which is the closure in $\mathbb{P}^1 \times \mathbb{P}^1$ of $(F, G)(\Gamma) \cap (\mathbb{C}^2 \setminus \{c\} \times \mathbb{C})$, where the image is counted with multiplicity and by Δ_2 the cycle in $\mathbb{P}^1 \times \mathbb{P}^1$ which is the closure in $\mathbb{P}^1 \times \mathbb{P}^1$ of $(F, G)(D) \cap (\mathbb{C}^2 \setminus \{c\} \times \mathbb{C})$, where the image is counted with multiplicity.

Theorem 4.1. If f and g are algebraically independent, the irregularity number of $\mathcal{H}^0(f_+(\mathcal{O}_{\mathbb{C}^2}e^g))$ is equal to

$$I_{(c,\infty)}(\Delta_1, \mathbb{P}^1 \times \{\infty\}) + I_{(c,\infty)}(\Delta_2, \mathbb{P}^1 \times \{\infty\}).$$

Then, we can prove that the germs Z_l of irreducible curves in Theorem 1.1 are the germs at (c, ∞) of the irreducible branches of $\Delta_1 \cup \Delta_2$. The multiplicity m_l of $i_+(f,g)_+(\mathcal{O}_{\mathbb{C}^2})$ on $T_{Z_l}^*V$ are the multiplicity of Z_k in $\Delta_1 \cup \Delta_2$.

References

- Dimca, A., Maaref, F., Sabbah, C. and Saito, M., Dwork cohomology and algebraic *D*-modules, *Math. Ann.*, **318** (2000), 107–125.
- [2] Kashiwara, M., Systems of microdifferential equation, Progress in Math., 34, Birkhäuser, Boston, 1983.
- [3] Kashiwara, M., Index theorem for constructible sheaves, in: systèmes différentiels et singularités, Astérisque, 130 (1985), 193–209.
- [4] Maaref, F., Sur un analogue irrégulier de la connexion de Gauss-Manin, Ann. Fac. Sci. Toulouse Math., 8 (1999), 117–124.
- [5] Malgrange, B., Sur les points singuliers des équations différentielles, Enseignement Math., 20 (1974), 147–176.
- [6] Mebkhout, Z., Le théorème de positivité de l'irrégularité pour les \mathcal{D}_X -modules, Grothendieck festschrift, III, Progress in Math., 88 (1990), 84–131.
- [7] Mebkhout, Z., Le théorème de positivité, le théorème de comparaison, le théorème d'existence de Riemann, séminaire et congrès, 8 (2004), 165–307.
- [8] Pham, F., La descente des cols par les onglets de Lefschetz avec vue sur Gauss-Manin, in: systèmes différentiels et singularités, Astérisque, 130 (1985), 11–47.
- [9] Roucairol, C., Irregularity of an analogue of the Gauss-Manin systems, ArXiv:AG/0505075, 2005.
- [10] Sabbah, C., On the comparaison theorem for elementary irregular *D*-modules, *Nagoya Math. J.*, **141** (1996), 107–124.
- [11] Verdier, J. L., Dualité de Poincaré, Séminaire Heidelberg-Strasbourg 1966–67, Publ. I.R.M.A. 3, Strasbourg, 1969.