Publ. RIMS, Kyoto Univ.
42 (2006), 933-985

Formal Gevrey Theory for Singular First Order
Quasi-Linear Partial Differential Equations

By

Masaki HIBINO*

Abstract

This paper is concerned with the existence, the uniqueness, convergence and
divergence of formal power series solutions of singular first order quasi-linear partial
differential equations. Firstly we give the condition under which the formal solution
exists uniquely. However, this formal power series solution does not necessarily con-
verge. So we characterize the rate of divergence of the formal solution via the Gevrey
order of formal power series. The Gevrey orders of formal solutions are determined
by the Newton polyhedrons of nonlinear partial differential operators.

81. Introduction and Main Result

In this paper we are concerned with formal power series solutions of the
following first order quasi-linear partial differential equation:

d
Pu(z) = Zai(x,u(;v))Diu(x) = f(z,u(z)), u(0)=0,
(1.1) =1

0
$:($1,...,Zd)€cd,u€c, D’L:am1:8_%7
where coefficients a;(x,u) (i = 1,...,d) and f(x,u) are holomorphic in a neigh-

borhood of (z,u) = (0,0).
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We shall study the case where
(1.2) a;(0,0) =0 forall i=1,...,d,

which is called a singular or degenerate case. Moreover as a compatibility
condition we assume the following:

(1.3) £(0,0) = 0.

In the following we always assume (1.2) and (1.3). We remark that by (1.2)
Cauchy-Kowalevsky’s theorem is not available.

We have two purposes. The first one is to prove the existence and the
uniqueness of the formal power series solution u(z) = 37,51 Uaz® (o =
(a1,...,aq) € N N =1{0,1,2,...}, o] = a1 + -+ + ag, 2% = 2,9 -+ - 14%)
centered at the origin for the singular equation (1.1). As we will see later, we
can prove it under some condition on the Jacobi matrix at the origin of the
vector field C? 3 x — (ay(z,0),...,aq(z,0)) € C% However, this formal power
series solution u(x) does not necessarily converge. So we would like to obtain
the rate of divergence, which is called the Gevrey order, of the formal solution
(cf. Definition 1.1). This is the second purpose of this paper. Hibino [2][3]
studied the same problems for linear equations and semi-linear equations. In
this paper we generalize these studies to quasi-linear equations.

The content of this paper is as follows: In §1.1 we introduce the result
in [3] for semi-linear equations. To state the result (Theorem 1.1), we give
the definition of the Gevrey order and explain the Poincaré condition, which
assures the existence and the uniqueness of the formal solution. In §1.2; using
the notation provided in §1.1, we give the main result in this paper (Theorem
1.2). Under one additional condition (cf. (1.6)), we will obtain the same result
as that of [3]. In §1.3 we introduce literature studying related topics. In §2 we
divide equations into seven classes, and for each class we give a precise Gevrey
order of the formal solution, which is determined by the Newton Polyhedron
of a quasi-linear differential operator (Theorem 2.1). Theorem 1.2 is obtained
as a corollaly of Theorem 2.1. The proof of Theorem 2.1 is done through §4,
85 and §6 by using the contraction mapping principle in Banach spaces which
consist of formal power series. The Banach spaces employed in the proof will
be introduced in §3.

81.1. Result for Semi-Linear Equations

In this subsection we state the theorem obtained in [3] for semi-linear
equations. First we give the definition of the Gevrey order, which gives the
rate of divergence of formal power series.



FORMAL GEVREY THEORY FOR SINGULAR PDE 935

Definition 1.1.  Let u(z) = >, cne Ua®® be a formal power series cen-
tered at the origin. We say that u(x) is of Gevrey-{s} class (s = (s1,...,84) €
R?) if the power series

Z ”a )s—10

aeNd

—
converges in a neighborhood of ¢ = 0, where 1(9 = (1,...,1), s — 1(4) = (5, —
1,...,sqa—1) and (a1)*=1” = (a1)* =1 (ag!)®a=1. G{s} denotes the set of
all formal power series being of Gevrey-{s} class. In particular, u(z) € el
if and only if u(x) is a convergent power series near x = 0.

Now let us consider the following singular first order semi-linear partial
differential equation:

d
(1.4) Pu(x) = ai(z)Dyu(x) = f(z,u(x)), u(0)=0,
i=1
where coefficients a;(x) (i = 1,...,d) and f(x,u) are holomorphic in a neigh-

a;(0)=0foralli=1,..., d (1.3).

borhood of z = 0 and (=, ) ( 0), respectively. Moreover it is assumed that
Let Dgya(0) = (Dja,( )) ij=1,..d be the Jacobi matrix at the origin of the

vector field z — (a1 (z),...,aq(x )) and let its Jordan canonical form be
A
By
(1.5) .
By,
Op
where
A1 01 01 A #£0(=1,...,m),
0 - Ji=0or1l

A= Ao , Bn= : ; ,

Sm1 1 (i=1,...,m—1),

)\m 0 h == 1, ,k,

—_—————

Np

and O, is a zero-matrix of order p (m, k, p > 0; nj, > 2; m4nq+- - -+ng+p = d).
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Let us assume the following condition (Po) according to the value of m
(“Po” derives from Poincaré):

i/\iai - fu(o’ 0)

i=1

where f,(0,0) = (0f/0u)(0,0), and ¢ is a positive constant independent of
a e N™.
The main result in [3] is stated as follows:

> cla] forall a« e N™ (if m > 1),

(Po)

Theorem 1.1 ([3]).  Under the condition (Po), the equation (1.4) has a
unique formal power series solution w(z) =3, 51 uax®. Furthermore u(z) €
G2N.-2N} yphere

max{ny,...,ni} (if k>1),
N={1 (if k=0 andp > 1),

% (if k=p=0).

Therefore in the case k = p = 0 the formal solution converges. In other cases
it diverges in general.

As was mentioned before, the purpose of this paper is to generalize the
above result to quasi-linear equations.

Remark 1.1.  The estimates of the Gevrey order given in Theorem 1.1
could be improved if the coefficients a;(z) have a higher order root for z =
0. For example, in the case m = k = 0 and p > 1, the formal solution
u(z) =307 (2n = 3)112?" =1 ((=1)!! = 1) of the ordinary differential equation
—23(d/dx)u(z) +u(z) = x belongs to G13/2}. Such a precise Gevrey order will
be given in Theorem 2.1.

81.2. Main Result

Let us state the main result in this paper.

Let J be the Jacobi matrix at the origin of the vector field z — (a;(x,0),. ..,
aq(x,0)), that is, J = (D;a;(0,0)); j=1,....d, and let us write its Jordan canonical
form as (1.5).

Similarly to Theorem 1.1, we assume the condition (Po). Moreover we
assume the following additional condition:

Oa;

(1.6) o

(0,0)=0 forall i=1,...,d.
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Now the main result in this paper is stated as follows:

Theorem 1.2.  Under the conditions (Po) and (1.6), the equation (1.1)
has a unique formal power series solution u(x) = Z\a\zl Uax®. Furthermore

u(z) € GBN-2NY “where N is same as in Theorem 1.1.

In order to prove Theorem 1.2, as a first step we shall transform the equa-
tion (1.1) in the next section. For that transformed equation we can obtain the
precise Gevrey order in individual variables of the formal solution (Theorem
2.1). We prove the unique existence of the formal solution and its Gevrey order
separately. However, the proof of the unique existence is quite similar to that
for semi-linear equations (cf. §6 in [3]), so in this paper we omit it. Admitting
the unique existence of the formal solution, we will prove its Gevrey order in
§4 (the case m # 0 and k = p = 0), §5 (the case m = 0) and §6 (the case m # 0
and (k,p) # (0,0)) by adopting the contraction mapping principle in Banach
spaces introduced in §3. This route of the proof is same as that in [3], but the
Banach spaces employed in the proof is slightly different from those used in [3]
(cf. Definition 3.1 and Remark 3.1).

81.3. Some Remarks on Related Topics

The studies in this paper and [2][3] are inspired by the study in Oshima
[9]. He studied a characterization of the kernel and the cokernel of the linear

mapping

PO :0—-0
d
(Pou(x) = Za,(a:)Dlu(x) + b(x)u(w)) ,

where O is the set of holomorphic functions at the origin, and a;(x), b(z) € O.
He studied the case m > 1 and k = 0 in our notation, and obtained the
condition under which the formal solution converges. That condition is called
the simple ideal condition (cf. Remark 2.2). However, as mentioned in our
theorem, when m > 1, k = 0 and p > 1, if we remove the simple ideal condition,
the formal solution diverges in general and it belongs to G122},

The problem of convergence and divergence for formal solutions has been
studied by many mathematicians. Higher order equations are studied by Miyake
[5], Miyake-Hashimoto [6] and Yamazawa [13]. Nonlinear equations are studied
in Gérard-Tahara [1], Miyake-Shirai [7] and Ouchi [10]. In Ouchi [10], the ex-
istence of asymptotic solutions is also dealt with. The study of Yamazawa [12]
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for semi-linear equations gives a different viewpoint from the author’s study
[3]. Moreover for linear equations, Kashiwara-Kawai-Sjostrand [4] and Miyake-
Yoshino [8] give different characterizations of convergence of formal solutions.
We can consider these studies to be the generalizations of Oshima’s study.
However, in these studies the case £ > 1 has not been studied. In this sense,
[2][3] and Theorem 1.2 give a different type of generalization of Oshima [9)].

Recently, Sibuya [11] studied greatly general higher order nonlinear ordi-
nary differential equations with one parameter:

du d'u
F (m,u,%,...,@@) =0,

where z, ¢ € C. [11] assumed the existence of formal solutions which take the
forms of

(1.7) u(z,e) = Zun(x)an,

where u, () are holomorphic in a common domain, and gave the Gevrey orders
of u with respect to the parameter e. Our equation (1.1) becomes a first order
ordinary differential equation depending upon several parameters if all but one
coefficient is identically zero. However, in this case our result (in case of one
parameter) does not follow from that of [11]. In general, formal solutions can
not be written in the forms of (1.7).

82. Reduction of Equation and Newton Polyhedron

In order to prove Theorem 1.2 we shall transform the equation (1.1) by a
linear transform of independent variables which reduces the Jacobi matrix J
to its Jordan canonical form. By (1.2), (1.3) and (1.6), a reduced equation is
written as follows according to the values of m, k and p:

Case (i) m>1,k>1,p>1:

(1)  Au(e,y,2) = (P +P"+P" + P")u(z,y, 2)
+90(x,y72) +g((E,y,Z,U((E,y,Z)),

u(0,0,0) =0,
r=(z1,...,2,) €C™, y=(y',... ,yk) € Gtk
yh = (yhlﬂ e 7yhnh) € Cnh(h = 17 tee 7k)a
z=(z1,...,%) € C?,

where

m a
(2:2) A=) Nizig— = fu(0,0),
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and

finite ou
Z(sxm Z( S Ciapyel.y 20z “)637

i=1 lal+|8]+]v|+r=2

Ja|>1

k np finite au
Pu-3 3 (Y dasneyor)

oyl .
[l +|8]+|v]+r>2 Y=in

lal>
p finite 9
+ e (z,y, z,u)xy" 2 u" o
qafyr\ T, Y, 2, Yy 2 ’
q=1 \ lal+I8l+|yl+r>2 4
lal>1

knhl

Py =— Z Z Y gh+1ay ;
h

hljhl

nh finite o
h
Z ( Z djhﬁ'yr (z,y, 2, U)yﬁzvur> g

1jn=1 *|B|+|y|+r>2 Jh

+

k
h=

P finite I
+Z ( Z BQQ’YT(I‘7y7Z7u)yIBzwur> %a
= q

g=1 [Bl+|v|+r=2

m finite 9

Py Z < Z Cigyr (T, Y, 2, u)yﬁzvur> %

=1 N |84y [+r2 '
(@ = @™ -z, yf = () ), ) = () ()
(h=1,...,k), 27 =27 ---2,7). go and g are holomorphic at the origin which
satisfy go(0,0,0) = 0 and g(z,y, z,0) =0, g,(0,0,0,0) = 0, respectively. In the
above expressions, all coefficients ¢;apg (2, y, 2, 1), etc., are holomorphic at the
origin, and none of them vanish at the origin unless they vanish identically. In
the following expressions, we assume the same conditions for those functions
appearing in the coefficients.

Case (ii) m>1,k>1,p=0:

(2.3)  Au(z,y) = (P'+ P" + P" + P")u(z,y) + go(x,y) + g(x,y, u(x,y)),

u(0,0) =0,
where go and g are holomorphic at the origin which satisfy go(0,0) = 0 and
g9(z,y,0) =0, g,(0,0,0) = 0, respectively. The linear partial differential oper-
ator A is same as (2.2), and

finite

Z 0; x2+1 Z ( Z Ciagr (T, Y, u)xayﬂur> %,

| +1B|+r>2
lal>1
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940
k  np finite B
h
Plu=2, 2 ( 2 djhaﬁr(xvyv“)xayﬁuT> I
h=1jn=1 \a\J‘rIB‘I;rszz Y,

finite ou

k np—1 8 k T h
P”’u:—z Z yhjh,Jrlayihu +Z Z < Z d?har(x,y,U)yﬁur>ayhj,
h

Jn h=1j,=1 N|B|+r>2

h=1 jrn=1
m finite o
Py = Cigr(z,y, w)yPu” | =—.

i=1 N |g|4r>2
Case (iii) m>1,k=0,p>1:
(2.4)  Au(z,2) = (P +P"+ P" + P"u(x,2) + go(z, 2) + g(x, z,u(z, 2)),
u(0,0) =0,

where gg and g are holomorphic at the origin with go(0,0) = 0 and g(z, z,0) = 0,
94(0,0,0) = 0, respectively. The linear partial differential operator A is same

as (2.2), and

m—1 o m finite ou
/ § : § : § o r
Pu=— 5ixi+l % + < ciaw(x, Z, u)x 2Tu > %,
i=1 H i=1 lal+|y|+r>2 %
Jer]>1

finite ou

p
P”uzz ( Z 6qa’)’7"($az7u)xazﬂyur> 8_2:(]7

lal+]y|+r=2

ol >1

P finite
P/// _ T ou
U= eqyr (T, 2,u)2 U EP
q=1 > |y|+r>2 q

m finite
i N Ou
Py = g g Ciyr (T, 2, 1) 2 0 E
i=1 |y +r>2 !

Case (iv) m>1, k=p=0:
(2.5)
e ou
Mu(z) = =3 i 5 (2) + ) ( > czw,u(x))xau(x)r) 5. @)
i=1 7 [

+ go(2) + g(z, u(z)),
u(0) =0,
where go and ¢ are holomorphic at the origin with go(0) = 0 and g(z,0) = 0,
94(0,0) = 0, respectively. A is same as (2.2).
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Case (v) m=0,k>1,p>1:

(2.6)  fu(0,0) - u(y, 2) = P"u(y,z) + go(y, 2) + 9(y, 2, uly, z)), u(0,0) =0,
where go and g are holomorphic at the origin which satisty go(0,0) = 0 and
9(y,2,0) =0, g,(0,0,0) = 0, respectively, and

knhl

P///U—Z Z Y jn+1 3y

hljhl

finite ,
’ Z Z ( Z d.’;hﬁ’yr(yy Z, U,)yﬁz’yu’r> ay;bjh

h=1jn=1 >|B|+|y|+r>2

finite

ou
+ Z < Z eqpyr(Ys 2 u)yﬁzvur) F
q

1Bl+Iv]+r=>2

Case (vi) m=0,k>1,p=0:
(2.7) £u(0,0) - u(y) = P"u(y) + g0 (y) + 9(y, u(y)), w(0) =0,

where go and ¢ are holomorphic at the origin which satisfy go(0) = 0 and
9(y,0) =0, ¢,(0,0) = 0, respectively, and

k np—1 np, finite ou
L 3 SUONIEL NS 90 ol (D it PURTI BU

h=1 jn=1 Ih h=1jp=1 *|B|+r>2

Case (vii) m=k=0,p>1:
(2.8) fu(0,0) - u(z) = P"u(z) + go(2) + g(z,u(2)), w(0)=0,

where go and g are holomorphic at the origin with go(0) = 0 and g(z,0) = 0,
9x(0,0) = 0, respectively, and

P finite o
Pru=3 (X el 2
q=1 > |y[+r>2
Now we shall study the equations (2.1), (2.3), (2.4), (2.5), (2.6), (2.7) and
(2.8).
In order to give the Gevrey orders in an individual variable for formal
solutions of the above equations, we study the Newton polyhedrons of nonlinear
partial differential operators.
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Newton Polyhedron. Let

finite

Lu@)= Y aapr(&u(€)Eu() De’u(é)

o,BENT, |B]>1

(€= (&1,...,€4), D’ = (9/0€1)Pr - - - (8)9€4)P) be a nonlinear partial differ-
ential operator which is linear with respect to derivatives, where all coefficients
aapr (€, u) are holomorphic at the origin and do not vanish at the origin unless
they vanish identically.

We define Q(a, 3) (C R4 by

Qa, B) ={(X, W) = (X1,..., X, W) € RO+
Xi>a;— B (i=1,...,d), W<I8|}

and define Q(¢*u(€)" D¢ u(€)) by

d

Q™ u(§)" D u(€)) = | Qla + rei, B),

i=1
where e; = (0;1,0:2,...,0;a) (d;i: Kronecker’'s delta). We remark that

Q¥ DePu(€)) = Q(a, B). Let us define the Newton polyhedron N(L) of the
operator L by

Ch U Q& u(€)" D u(€)) ¢ (if L #0),

(a,8,r) with aqgrZ0

Q(0,0) (if L =0),

N(L) =

where Ch A denotes the convex hull of a set A ¢ R4+,

Now we shall apply the above general definition to our differential operators
P'+P"+P" +P"" (Cases (i), (ii) and (iii)) and P (Cases (v), (vi) and (vii)).
We remark that the correspondence of variables between (z,y, z) and £ is given
by

§

Case (i) (z,y,2)
Case (ii) (z,y)
Case (iii) (z,2)

Case (v) (y,2)
vi) y
Case (vii) z
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In order to state the main theorem in this section, we shall define the sets S;
(i=1,2,3,5,6,7),8;, 8}, 8/, 5}, S/ (j =1, 2, 3) whose elements give the
Gevrey orders of formal solutions.
Case (i) We define II,(p,0,7) and I (p,0,7) ((p,o,7) € [1,+00)4,
p = (p1eeespm) € [L+00)™, 0 = (oL,...,0%) € [1,+o0)t -t gh —
(o1,...,0M,) €1, +00)™, 7 = (11,...,7p) € [1,+00)P) by
Mi(p,0.7) = { (X, 9,2, W) € R**4

(p— 1(m)) X+ (0 — 1(n1+..i+nk)) VA4 (- 1(p)) CZ-W > _1}

(X (Xla”-a‘)( )ay (yl yk) yh:(yh ’yh )(h:]-""vk)’
Z=(2,...,2,); A- B means the scalar product oannd B) and

(p,o,7) {XJJZW e RO+,

(p—10M). X + (o ,1(n1+'“+nk)).y+(771(p))~ZfWZO},

respectively, and define S, 5’1, N{’ , 51, 51, and SY as follows:

Si={(p,0,7) € [1,4+00)"s N(P') C Ili(p,0,7)},
Si={(p,0,7) € [1,4+00)"s N(P") C ILi(p,0,7)},
51 =A(p,0,7) € [, 4+00)%; N(P") C ILi(p,0,7)},
S1={(p,0,7) € [1,+00)% N(P") C II1(p,0,7)},
Si={(p,0.7) € [1,+00)% N(P") C Ii(p,0,7)},
St ={(p,o,7) € [1,+00)%; N(P"") C IIy(p,0,7)}.

Case (ii) We define II5(p, o) and II(p, o) ((p, o) € [1,+00)%) by
Ih3(p,0) = {(X, 2, W) € R (p=107). X (g =10t +m0). y - > —1}
and
(p,0) = {(X,y,W) eRMY (p—10M). X 4 (o — 1Mty y W > o},
respectively, and define S, §§, §g , Sa, Sy and SY as follows:

So={(p,0) € [1,+00)% N(P') C lzz(p,a)},
Sy ={(p.0) € [1,+00)% N(P") C I1(p,0)},
Sy ={(p,0) € [1,+00)% N(P"™) C Ha(p,0)},
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S = {(pv U) [lv +oo)dv N( /H) C HQ(IO’ )}7
Sy ={(p,0) € [1,+00)%; N(P") C I>(p, )},
Sg:{( Ps ) [1,—|—oo)d, N(PNN) CHQ(pr )}

Case (iii) We define IT5(p, 7) and II3(p,7) ((p,7) € [1,+00)%) by
a(p,7) = {(X,Z,W) ERML (p— 1) x4 (7 —1P).Z —w > _1}
and

13(p,7) = { (X, 2,W) € R™L; (p—107) - X + (- —10) . 2 - W > 0},

respectively, and define Ss, §§, §é’, Ss3, S5, S as follows:

Sy ={(p,7) € [1,+00)"s N(P') C I3(p,7)},
S5 ={(p.7) € [1,4+00)"; N(P") C I3(p, 7)},
S5 ={(p,7) € [1,+00)"; N(P") C II3(p, 7)},
S3={(p,7) € [1,+00)"; N(P") C II3(p,7)},
Ss={(p,7) € [1,+00)"; N(P") C IIs(p,7)},
S ={(p,7) € [1,+00)%; N(P") C II3(p, 7)}.

Case (v) We define II5(0,7) ((0,7) € [1,+00)?) by
I5(0,7) = {(V. 2 W) € R*Y; (0100 #00). y (7 -10). 2 =W > 0,
and define S5 by

S5 = {(o,7) € [1,+00)% N(P") C Hs(o,7)}.
Case (vi) We define II5(0) (0 € [1,+00)%) by
Mg(0) = { (VW) € RIY; (g —10m++m) .y — W > 0},
and define Sg by
S = {o € [1,+00)%; N(P") C Is(a,7)}.
Case (vii) We define IT;(7) (1 € [1, +00)?) by
I(7) = {(2,W) € R (= 10) . 2 - W = 0},
and define Sy by
= {7 € [1,4+00)% N(P") C II7(7)}.

Then we obtain the following theorem.
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Theorem 2.1.  In Case (i) (resp. (ii), (iii), (iv), (v), (vi) and (vii)),
under the condition (Po) the equation (2.1) (resp. (2.3), (2.4), (2.5), (2.6),
(2.7) and (2.8)) has a unique formal power series solution. Furthermore the
formal solution belongs to G} if s satisfies the following condition:

Case (i) P =0=s=(p,o0,7) €S NSNS,

P'=0= s=(p,0,7) € S1 NS, ﬂgi',
P, P" £0=s=(po,7)eS NS N{SNSHU(S; NS}

Case (i) P" =0 = s=(p,0) € S,NS,NS},

P'=0= 5= (p,0) €S8N N5Y,
P, P" £0 = s=(p,o) €8N8 N{(S,NSY)U(S,N S}

Case (iii) P =0= s=(p,7) € S3N 55N S},

P'=0=s=(p,7)€S5N85N5Y,
P", P" £0=s=(p,7)€S3nS5N{(S5NSY)U(S;NSY};

Case (iv) s= 1,

Case (v) s=(0,7) € Ss;

Case (vi) s =0 € Sg;

Case (vil) s=7 € S7.

On the concrete method of determining Gevrey orders, for example, see
[2] (see also Lemmas 5.1, 6.1 and Remarks 5.2, 6.2).

Remark 2.1.  We can easily see that the following sg always satisfies the
condition in Theorem 2.1 for each case:

Case (i) s = (po,00,70),

Case (ii)  so = (po, 00),

Case (iii) s = (po, T0),

(
(

Case (iv) so = 1(@,
Case (v) s9 = (00,70),
(vi) sp = oo,

(

Case (vil) sg = 7o,
m

where pg = (N+1,...,N+1), o9 = (ct0,...,0%), "¢ = (N +1,N +
P

2,...,N+np)(h=1,.., k), 7o=(N+1,...,N+1). Therefore by a linear
transform of independent variables again we obtain Theorem 1.2 from Theorem
2.1 and the next Lemma 2.1. Thus the proof of Theorem 1.2 is reduced to that
of Theorem 2.1.

Lemma 2.1 ([2]). Let u(z) = 3 cna Uaz® € G153} (s > 1). Then
for any linear transform L : C* — C?, it holds that v(y) := u(Ly) € G{5%s},



946 MasAk1 HiBINO

From Theorem 2.1, on the existence of holomorphic solutions we obtain
the following corollary.

Corollary 2.1.  Let us consider Case (iii), and let us assume the fol-
lowing condition:

(I) P// — P/// — 0
or

(II) PIII — PI/I/ — O'
Then under the condition (Po) the equation (2.4) has a unique holomorphic
solution at the origin.

Let us consider Case (iv) and let us assume the condition (Po). Then the
equation (2.5) has a unique holomorphic solution at the origin.

Remark 2.2.  In Corollay 2.1, the condition (II) corresponds to the simple
ideal condition in Oshima [9].

From §4 we shall start the proof of Theorem 2.1. In §4 we shall deal
with Case (iv), and in this case the proof is very simple. In §5 we shall deal
with Cases (v), (vi) and (vii). However, these three cases are proved by an
essentially same method, so the proof will be done only in Case (v). Finally,
in §6 we prove the theorem for Cases (i), (ii) and (iii). In these cases also, the
theorem is proved by an essentially same method, so we will deal with only
Case (i). We remark that methods of proof employed in §5 and §6 are different.

§3. Banach Spaces Gg’sg(R) and éé,sk’s }(Rl,Rz)

Theorem 2.1 is proved by a contraction mapping principle in Banach spaces
which consist of formal power series. For this purpose in this section we shall
define two types of Banach spaces necessary in the proof, and we shall prove
some fundamental facts needed later.

Definition 3.1. (1) Let s = (s1,...,54) € R4 (R = {r e R; r >
0}) and R = (Ry,...,Rq) € (R4 \ {0})4, and let k be a real number which
satisfies k& < min{s;,...,sq}. The space of formal power series Géfk}(R) is
defined as follows:

We say that u(z) = > cne uax® belongs to Géfg(R) if u(0) =0 and

(s} _ laf! a
lully.r = Z |Ua\m3 < o0,

lal>1
where I! = I'(l + 1) for | > 0. We remark that & < min{sy,...,s4} implies
s-a—k >0 for all « such that |a| > 1.
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(2) Let (s',5%) = (s'1,...,8%,,5%1,...,5%,) € Ry"T and (R', R?) €
(Ry\ {0}))%@+dz (RL = (RYy,...,RYy,), R = (R?,...,R%;,)), and let k be a
real number which satisfies & < min{s'y,...,sq,,s%1,...,5%4,}. The space of
formal power series ééi’s2}(R1, R?) is defined as follows:

We say that u(z,y) = >, gyendi+dz uasz®y? belongs to é({)fkl,SZ}(Rl’ R?)
if u(0,0) = 0 and

{s",s"} _ |l B! o/ p2\a3
hllcie = 2, Mool g o gmm (P < oo

Then Géf,g (R) and é({fkl’sz}(Rl, R?) are Banach spaces equipped with the

1 .2
norms || - [|£° and ||| [[|{°5% 2z respectively.

Remark 3.1.  In [3], we introduced the spaces Géi]}(R) and éé,sol’sz}(Rl,
R?). In the proof of the theorem for quasi-linear equations (in particular,
when we prove divergence of the formal solution), the spaces Géfg (R) and

ééi’sz}(Rl, R?) for a positive k play significant roles (cf. §5 and §6).

Lemma 3.1. (1) Let s € Ry and let k < min{sy,...,sq}. Then for
all R € (R4 \ {0})? it holds that

Gil(R) c G,

(2) Let (s',5%) € Ry“T2 and let k < min{s'y,...,s',,5%1,...,5%,}
Then for all (R', R?) € (R4 \ {0})%%92 it holds that

é({),skl,f}(Rl’RQ) c G{sl,SZ}'
Proof. (1): In general it follows from Cauchy’s integral formula that a

formal power series u(z) = 3, cna Uaz® belongs to G{*} if and only if there
exist some positive constants A and B such that

|ua] < ABIal(a!)s_l(d) for all a € N¢.
Now let u(z) = /51 Ua®® € G({)’S,g (R). Then we have

sy (s-a—K! 1 sp(s-a—K 1 a1
ol < 4 g < Il g
By Stirling’s formula there exist some positive constants A and B such that

(s-a—k)!
= < A-Bll forall >1).
@) = or all a (la] >1)
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This completes the proof.

(2) is also proved similarly to (1). O

Lemma 3.2. Let a(x) = Y aend Gat® and a(z,y) =
2 (0, 8)EN1 +d2 aapr®y® be holomorphic at * = 0 and (x,y) = (0,0),
respectively.

(1) Lets e [l,+o00) andk < s;—1 foralli=1,...,d. Ifa(R) converges,
then for all u(x) € G({)fg(R) it holds that a(x) - u(x) € Géfg(R) and

la - ull £ < lal(R) - [lull ),

where |a|(R) := ) cna [aa| R
(1) Let s and k be same as in (1), and let us assume that a(R) converges.
If a(0) = 0, then it holds that a(x) € Gé)sk}(R) and

lall{*}, < lal(R).

(2) Let (s',s%) € [1,+o0)itd2 and k < s'; — 1, s%; — 1 for all i =
1,...,dy and j = 1,...,ds. If a(R', R?) converges, then for all u(x,y) €
~ 1 .2 ~ 1 .2
Géfk’s }(Rl,RQ) it holds that a(z,y) - u(z,y) € G({)fk’s }(RI,RQ) and

1 52 51,52
o ull['5 2 < lal(RY, B) - [[[ul 155" e
where al(RY, R?) := 30, g)envar+az |aas|(R)*(R?)7.
(2)" Let (st,s%) and k be same as in (2), and let us assume that a(R', R?)
~rl 2
converges. If a(0,0) = 0, then it holds that a(x,y) € Géfk’s }(Rl, R?) and

1 .2
all| &5 2 < lal(RY, R?).

a(z) - u(x) = Z aqugr® P,
a,BeN?, |B]>1
it holds that

. o+ A
lovulic = 32 lael sl

a,BENT, |B]>1

Rt8,

Hence it is sufficient to prove that

la+ G|! < (s-a+s-B—k)!
Bl = (s 8=k

This is proved as follows: s € [1,+00)? and k < s;—1 (i = 1,...,d) imply that

, forall a,feN?(|8]>1).
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s+ 08—k >|0| for all 8 such that |3] > 1. Moreover it is clear that |o| < s«
for all @ € N?. Therefore we obtain

| || la|
- Tu+ i < TG +s-5-0
’ j=1 j=1
~ (laf +s-8—k)! < (s-a+s-8—k)
(s B—k)) ~ (s-8—k)!
(2) is also proved by noting that
ol + a8 + 220 _ (ot +o? 4|8 ) T
= = (G + 17 +167])
2! 162! (2] + [52])! H
lo | +18"|
< I G+s'-e?+s-8 -k
j=1

(Ja!| 4 |8 + s - a® + 5% - 32 — k)!
(st-a?+s2-5%2—k)!
- {st- (et +a?)+ s (B + %) — k}!
< (sT-a2+s2- 32— k)
for all (o', 8'), (a?,5?) € NU+E (jo?| +]6%| > 1).
(1)’ is clear from the inequality s -« — k > |«| for all a such that || > 1.
(2) is also obvious. O

Lemma 3.3. (1) Lets€[l,400)¢, 0<k<s;—1(i=1,...,d) and let
us assume that u(x), v(z) € G({)fk} (R). Then it holds that u(x) - v(z) € Géfg(R)
and

(3.1) - ol £ < Slulli) - o)1)

k,R>

where S = max{si,...,Sq}.

(2) Let (st,s?) € [1,400)h1td2 0 <k <sl;—1,8% -1 (i=1,...,ds;

~ 1 .2
j=1,...,d2) and let us assume that u(z,y), v(z,y) € Gé’sk’s }(Rl,R2), Then
it holds that u(z,y) - v(z,y) € é({)i’SQ}(Rl, R?) and
1 82 ~ 17 2 81, 2

(3.2) e ol e < Sl A= - Mol 5 e-
where S = max{sly,...,s'q,,8%1,...,5%,}

Proof. First of all, we remark that in general the Beta function

1
B(m,n) :/ =101 - =ty
0
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has the following property:
0<my <mg, 0<ny <ng = B(mi,ni) > B(ma,ns).

Moreover we remark that the following equality holds: For m, n > 0,

m!n!

Tl = B+ Lnt 1) (mtnt1).

(1): Let u(z) = X241 Uaz®, v(z) = Zw'Zlvng € Géfg(R). Then we
have

(s} |a+/3|! o+
U v = E Ug | - [Ug] RYTP,
H Hk,R |a|7‘m21| | 6] {8 . (Oé I ﬂ) _ k’}'

Here it follows from the above remark that
(s-a—k)!(s-B—k)! < (s-a—k)!(s-B—k)!
{s-(a+p)—k} — {s-(a+p0)—2k}!
=B(sca—k+1,s-8—k+1)-{s- (a+5)—2k+1}

<B(lal + 1,181+ 1) {s- (a+ B) — 26+ 1)
(since k < (s — 1) . q, (s — 1(D) . g for |al, |3] > 1)
_ a8t s-(a+pB)—2k+1
e+ B ol 18+ 1
ledtB!
T Ja+ Bt

(since k > 0)

Therefore we have obtained (3.1).

(2): Let u(z,y) = Z\a|+|g|21 Uaﬂwayﬁa v(z,y) = Z|7|+|5|21 Uwéaﬂyg €
~r.l .2
G({)sk’S }(Rl, R?). Then we have

152
- ollIE7 2

=S fual- ol o+ [!18 + 4!
IO (a4 ) + 52 (5 +0) — k)

le]+]8]=1
[yI+18[=1

(Rl)a+7(R2),3+6.

Here similarly to (1), it holds that
(s ot st RNty t s 6B _ g (ol +IBDN] +]5)!
{st-(a+y)+s2-(B+0) -k} =7 (lat+q[+|B+d)!
Moreover it holds that

(lod + 18D+ 10D [edtIBlE - [v]9]!
(la+~[+18+)E — Jatqlt |64+4]!
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(see the proof of Lemma 3.3, (2) in [3]), which implies that

|la + 8 + 4!
{st-(a+~)+s2-(B+06) —k}!
ce_ lolgr el
— 7 {stra+s2- 8-k} {sl-y+s2-0—k}
Therefore (3.2) is proved. O

Lemma 3.4. (1) Letse[l,+00)? and0 <k <s;—1(i=1,...,d),
and let S be same as in Lemma 3.3, (1). Let F(x,u) be a holomorphic function
at (z,u) = (0,0), which satisfies F'(0,0) = 0. Let

F(x,u) = Z Forx®u”
la|+r>1

be the Taylor expansion of F(x,u). Moreover let us define the power series
|F[(x,u) by
|F|(z,u) = Z |For|zu’.

la|+r>1

If u(z) € Géij(R), then it holds that F(x,u(x)) € Géfg(R) and

(3-3) [ (2, u(z))

S 1 S
ik < I (RSl )

as far as both sides are well-defined.

(2) Let (st,s?) € [1,+00)htd2 and 0 < k < sl;—1, 8%, -1 (i=1,...,di;
j=1,...,d2), and let S be same as in Lemma 3.3, (2). Let F(x,y,u) be a
holomorphic function at (z,y,u) = (0,0,0), which satisfies F(0,0,0) = 0. Let
F(z,y,u) = Z\a|+|6|+7"21 Fogrz®yPu” be the Taylor expansion of F(x,y,u).
Moreover let us define the power series |Fl|(x,y,u) by |F|(z,y,u) =
Y lal+18tr1 [Faprla®yu’.

~ 1 .2

If w(z,y) € G({fk’s }(Rl,RZ), then it holds that F(x,y,u(z,y)) €

ééi’s2}(R1,R2) and

1.2 1 ~ sl g2
(34) Gy ulw ) < IR R Sl )
as far as both sides are well-defined.

Proof. (1): It follows from Lemma 3.2, (1), (1) and Lemma 3.3, (1) that

1Pz u@) < S0 [Farl R "5
lal+r>1
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<¢ 3 IELR (shullh)

la|+r>1

~ PR SIul().

(2) is also proved similarly to (1) by using Lemma 3.2, (2), (2)" and Lemma
3.3, (2). O

Similarly to the proof of Lemma 3.4 we have the following.

Lemma 3.5. (1) Lets, k and S be same as in Lemma 3.4, (1). Let
F(x,u) be holomorphic at (x,u) = (0,0).
If u(z), v(x) € Géf’k}(R), then it holds that F(x,u(x))v(z) € Géij(R) and

(3-5) 17 (2, u(z))v(x)

k< 1F (RSl - Iolh

(2) Let (s',s?), k and S be same as in Lemma 3.4, (2). Let F(x,y,u) be
holomorphic at (x,y,u) = (0,0,0).
If u(z,y), v(z,y) € ééfg’sz}(Rl,RZ), then F(x,y,u(z,y))v(z,y) €
ééi’sz}(Rl,RQ) and
(3.6)
1 .yl )l ) e < VI (R B2 Sl ) - ol -

Lemma 3.6. (1) Let s, k, S and F(x,u) be same as in Lemma 3.4,
(1). Moreover let us assume that F(x,u) has the following Taylor expansion:

F(z,u) = Z Forzu”.
|| +r>2

If u(z), v(x) € Géf’k}(R), then we have
(8.7) IF(z, u(w)) ~ F(w,0(@) |11 < lu—vll i x [Pl (R, Sullh+101£D),

where Fy(z,u) = (0/0u)F(2,u) = 3 4112, r>1 rForx®u™ ! and |F,|(x,u) is
the power series defined by |Fu|(z,u) = 3,450, r>1 7| Fop|z®u" 1.

(2) Let (s',s%), k, S and F(z,y,u) be same as in Lemma 3.4, (2). More-
over let us assume that F(x,y,u) has the following Taylor expansion:

F(J?, Y, u) = Z Faﬁrxayﬁur'
la|+|B|+r>2
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~{81,32} 1 2
Ifu(z,y), v(z,y) € Gy, " (R, R®), then we have
{s',s%}
(3.8)  |F(z,y,ul@,y) — F(@,y, (@, 9)lll; 7 g
57,8 ~ 51,32 51752
< U= oll[5 %  1Fl (R B2 Sl + Il ).

where F,(z,y,u) = (0/0u)F(r,y,u) = Z\a\+|5|+r22,r21 rFaﬁr$ayﬂUT_l and
|Fu|(z,y,w) is  the power  series defined by |Fu|(x,y,u) =

2 lal+18l+r>2, r>1 7| Fogr|z®yPur—t.

Proof. (1): Since
Fla,u) — F(a,v) = (u— v)/o Fu(a, 0u+ (1 — 6)v)do,

it follows from Lemma 3.3, (1) and Lemma 3.4, (1) that

() o {s}
|kR SHU—U”ka

1E (2, u(x)) = F(z,v(x))

/0 Fo(z, 0u(z) + (1 — 0)o(z))do

kR
1

<ol < [ \Fu\(R,suoumfo) 1) do

< flu = oll{h x 1Rl (R Slullh + 01 £D)-

(2) is also proved similarly to (1) by using Lemma 3.3, (2) and Lemma 3.4,
(2). O

Lemma 3.7. (1) Lets, k, S and F(x,u) be same as in Lemma 3.5,
(1).
If ui(x), ua(x), v1(x), ve(x) € G({)fg (R), then it holds that
(39 |IF (e w(@)us(@) - Fla,vn(@))va(@)]}h
< Sllur —wr [ x 1Zul (RSO 5%+ 1ol D)) - a1

+ lluz — vl < 1FI (RSl l7h)

(2) Let (s',52), k, S and F(z,y,u) be same as in Lemma 3.5, (2).
~ 1 .2
Ifuy (z,9), ua(z,y), vi(z,y), va(z,y) € Géfk’s }(Rl, R?), then it holds that

(3.10)
F (@, y, ua (@, ) )ua (e, y) — Fla,y,vn(z,9))va(@, )15
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~ 1.2 ~ 1.2 1 .2
< Slllur — a1 x 1l (BY B2 S 150 + a1 ) )

1 .2 1 .2 ~ 1 .2
X a1 + lluz = ol 1555 d < 11 (R B2, Sl 155 )

Proof. (1): It is proved similarly to the previous lemmas by using the
following equality:

F(x,ur)ug — F(x,v1)va
= {F(z,u1) — F(x,v1) }ug + (ug — vo) F(z,v1)

= (u; — vl)/o Fu(z,0us + (1 — 0)v1)do - ug + (ug — v2) F(x, v1).

(2): Similar to (1). O

§4. Proof of Theorem 2.1 (Case (iv))

Let us start the proof of Theorem 2.1. As mentioned in §1, we omit the
proof of the unique existence of the formal solution. From §4 to §6, admitting
the unique existence of the formal solution, we will prove its Gevrey order. In
this section we consider Case (iv), and we shall prove that the formal solution
u(z) = 3|4 >1 Uax® of the equation (2.5) converges near x = 0, that is, u €
G}, For the proof we use the Banach space G({)’lo(d)} (X) (X =(X1,...,Xq) €
(R4 \ {0})?). For simplicity we write this space as Op(X) and write the norm

()
Il - ||31Xd }as Il - ||x. Therefore u(z) € Op(X) means

lullx = Z [ua| XY < 4o00.

lal>1

Proof of Case (iv) of Theorem 2.1. First we remark that the operator A
defined in (2.2) is well-defined as the mapping from G to itself. Moreover
since the condition (Po) implies that A -a — f,(0,0) # 0 for all & € N¢, where
Aa= Z?Zl A;a;, the operator A : Gt L gl 4 bijective and A~! is
given by

(4.1) A—l( > Uaxa) = > M_U—mxa.

aeNd aeNd

Now we introduce a new unknown function U(x) by

U(z) = Au(x), thatis, u(z)=A"'U(x).
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Then the equation (2.5) is equivalent to the following one:

(4.2) U(z)=TU(z), U(0)=0,
where
m—1 1
TU (x 0iTiy1 8/({1% v (x)
m ﬁnzte 1
+Y (Y e A U@ v ) 2 @
i=1 |a\+r>2 v
+go(x) + g(a, AU ().

Let us write the e-closed ball in Oy(X) as

Oo(X;e) = U(z) = Uaz® € Og(X); |U|lx <e
la|>1

We shall prove that the operator 7' is well-defined as the mapping from Oy (X ¢)
to itself by choosing X and e suitably and that it becomes a contraction map-
ping there.

By the condition (Po) there exists a positive constant C' such that

1 o
<

43 TR0 S hacA00)

< (C forall o € N%

By the first inequality the linear operator A=! : Og(X) — Og(X) is bounded
and we have

(4.4) AU x < C|U|x for U(zx) € Op(X).
Here let us give some lemmas.
Lemma 4.1.  Let us assume that |a|+7 > 1, and let Uy, ..., U, and V

belong to Og(X). Then z*(A~1UL) - (A71U,)0,, A=V belongs to Og(X) and
it holds that

XOé
(4.5) [lz*(ATI) -+ (A7)0 ATV [[x < CTH 5T |x - 1T [V

where C' is the same constant as in (4.3).
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Proof.  Let Up(x) = 32| qu>1 Utz € Og(X) (p=1,...,7) and V(z) =
> ip1>1 Vsa” € Op(X). Then is holds that

(AU - (AU 0, ATV

1 1 Bi
= ) i R v —
|a1\217..‘,|oﬂ"|21,|6|21/\ at — f,(0,0)  X-a”— f,(0,0) A- B — fu(0,0)

1 r )
X Uyt ...Uarvﬁxa-&-a +oFa+B8—e;

)

which implies

(46) (A7) -+ (A~ 0,)0,, AV | x
B 1 1
- Lol — o —
21, ez gz A0 SO0 A -am = £.(0,0)

|8i Lpam e
— N Ul |Uge ||V X 0T Hr ot Be
3 g fa0 oy el el

X

By (4.3) and (4.6) we obtain (4.5). O

Lemma 4.2.  Let us assume that || +r > 1, and let U and V belong
to Oy(X). Then it holds that

(4.7) ||x"‘(/1’1U)’"8 AT — 2%(A7WV) 0, A7V || x

SCT“ HU Vilx XZIIUIIXT IVix”.

v=0

Proof. Tt holds that

(4.8) (A7) 0, ATU — (A7 V)" 0, ATV
=z [{(A7'U)" — (A *1V)T}a AT+ (A7)0, A7HU - V)]

U V }Z 1U r—1— u 1V)uawiA—1U

+ (A7)0, AU - V)
By Lemma 4.1 and (4.8) we obtain (4.7).

By Lemmas 3.7, (1), 4.1, 4.2 and (4.4) we have the following.
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Lemma 4.3.  Let us assume that |o| +r > 1, and let U and V' belong
to Og(X). Let F(x,u) be holomorphic at (x,u) = (0,0). Then it holds that

(4.9)  ||F(z, A7 U)2® (A U) 8y, AU — Flz, AV)a® (A~ V) 8, A7V || x

r X "
< O IT = Vi x {leul(X,C(llle + Vi) - o)+

+ IF(x.cIvix) - > ||U||xr‘”||V||X”}.
v=0

Proof of Case (iv) of Theorem 2.1 (continued). If U(z) € Op(X), then
it follows from Lemmas 3.2, (1)’, 3.4, (1), 3.5, (1), 4.1 and (4.4) that TU(z) €
0p(X) and that

m—lX

i+1
ITUx <€ Y- S U
i=1 g

+iXi( T corl (X010 ¥ (Cl01s) )

! Mal+r>2

+ lgol(X) + Ig1 (X, €Il x )
= A(X,IU]1x).

By the expression of A(X,||U||x) we can take X and e such that A(X,¢) < e.
This shows that the operator T : Op(X;e) — Op(X;e) is well-defined.
Furthermore it follows from Lemmas 3.6, (1), 4.3 and (4.4) that

ITU = TV[x
< U =Vlx

m—1
Xit1

3>
i=1 X

finite
+ZX%( > lewnal (X, C(IUIx +1V]x)

Z la|4+r>2
« X“(C|U||X)T+1>

i=1

T

m 1 finite
+ ( > |cm|(x,0||V|X)Xa0T-Z|U||x7"‘”||V|X”)

X,
177 Mal4r>2 v=0

(3

+ lgul (X, CUWIx + IVIx))
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= U = Vilx x A(X, 1Ulx, [Vilx).

By the expression of A(X, |U| x, ||Vl x) we can take X and ¢ such that A(X,e,
g) < 1. This shows that T : Og(X;e) — Op(X;e) is a contraction mapping.
Therefore there exists a unique U(z) € Oy(X;¢) which satisfies (4.2). Lemma
3.1 implies U(x) € G} Hence u(r) = A71U(z) also belongs to G
and it is a solution of (2.5). Since we admit the unique existence of the formal
solution, the proof is completed. O

§5. Proof of Theorem 2.1 (Cases (v), (vi), (vii))

In this section we study Cases (v), (vi) and (vii). We admit the unique ex-
istence of the formal solution, and prove its Gevrey order. As mentioned in §2,
we only consider Case (v), that is, we only consider the equation (2.6). Further-
more, for simplicity we assume k = 1. We write a formal power series solution as
u(y, z) = E(ﬁﬁ)eN"ﬂ), 1Bl+ 1|1 ug,y?27 (n+p = d) and use the Banach space
G (V. 2) (Y = (Vi V) € RAOD™, Z = (Z1,.... Zy) € (R \{O})P).
Therefore u(y, z) € Géf’kf}(Y, Z) means

o, (18] + D!
||uH{ )= E g YPZ7 < +o0.
kY2 e o Br1-v—k)

In the equation (2.6) we may assume that f,,(0,0) = 1 since f,(0,0) # 0.
Hence (2.6) is written as follows when k = 1:

(5.1) u(y, z) = Tuly,2) = P"uly,2) + go(y, 2) + 9(y, z,u(y, 2)), u(0,0) =0,
where gy and g are holomorphic at the origin which satisfy go(0,0) = 0 and
9(y,2,0) =0, g,(0,0,0) = 0, respectively, and

finite

n—1 n
ou ou
Pru=Y g 43 (% dslnzantow)
=1 !

‘ 0
J=1 N B+ |y +r>2 Yi

P finite ou
153 () SESTETF
q

q=1 *[B|+|v[+r>2

Here all coefficients d;s, and €43, are holomorphic at the origin, and none of
them vanish at the origin unless they vanish identically.

We assume that s = (o, 7) satisfies the condition in Theorem 2.1, and
prove that the formal solution of (5.1) belongs to G177},
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Proof of Case (v) of Theorem 2.1. Let us write the e-closed ball in
Gl (Y, 2) as

Gl Z;e)

=Suly,2) = > usyy’s € GV, 2y lulliyh < e
1Bl+]vI>1
We shall prove that the operator T is well-defined as the mapping from
Géka’T}(Y,Z;e) to itself by choosing k, X, Y and e suitably and that it be-
comes a contraction mapping there.
Here we give some lemmas.

Lemma 5.1.  Let |B|+ |y|+r > 1 and |B'|+ |7| > 1. Let us assume
that (o,7) € [1,+00)? satisfies

(52) o (Brrel ) tT-(y =) 2B+l +r (G=1,...,n),
0-(ﬂfﬁ’)+7~(v+re§”)*v’)z|6|+|v\+7" (g=1,...,p),
where el = (01,...,8;n) (j = 1,...,n) and e’ = (61,...,04) (4 =1,...,p).

If k satisfies
(1=0) B+(=r)q+o-F+7

r
<k <min{o1—-1,...,0, -1, 7m —1,...,7 — 1},

(5.3)

and ui,...,u., v € Géffk’T}(Y, Z), then yﬂz'yul---urDyﬂ/Dz'ylv belongs to
G (Y, Z) and it holds that

(54) Iy® = s - Dy D 0||15T)
- YP 27 {a,r} {o.m} 1 {om
<criPi=hi Y& 77 "'HUTHk,Y,Z||UHk,Y,Z7
where
1 when |B| + |y| > r),
(5.5) C= (when |B] + |y] = )
max{o1,...,0n,T1,...,Tp} (when |B]+ |y] <r—1).

Remark 5.1.  The condition (5.2) implies

(1—0) - B+0=7)-v+0-0+71-7
r
gmin{ol—1,...,Un—1771—17~~~77'p_1}~
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Remark 5.2.  Let us write the Newton polyhedron of y%z7u(y,z)"
x D, D" u(y, z) as

N(y* 2 u(y, 2)" D, D7 u(y, z))
n p
U@B+rel™ 7. 8,9 )0 QB+, 5.9 ¢,
Jj=1 q=1

where

QBB Y)= V.ZW)eR"Y 2, >4,—7, (¢=1,...,p)
W < |3+ ||

Furthermore we define II (o, 7) by
(o, 7) = {(y,z,W) ERM, (6—1M). Y+ (r—1P). Z2-W > 0}
and define S by
S ={(0,7) € [1,400)% N(y*2"uly,2)"D,” D" u(y, 2)) C Il(o,7)}.

Then the condition (o, 7) € S is equivalent to (5.2).

Proof of Lemma 5.1. Let u,(y,z) = EIB“IH’Y“IN uﬁuwy 2" e
Géj’é'r}(y’ Z) (w=1,...,n) and v(y,z) = Z\g\+|7|>1 57y Z7 € G{U T}(Y Z).
Then it holds that

Y ui(y, 2) - ur(y, 2) Dy D vy, 2)

= 1 ... T ~
B 2 Uptyt® e UprayrUay
Wll-H'vl\Nzl, BT AT
F>p', 52"
~' ' : 3 r ~
/6. ’Y 5+61+"‘+57+ﬁ—5/z’y+'yl+...+,y'_;'_,.y_,y/,
(ﬂ Ity =)

which implies that

I 2" -+ Dy DL 0] 57

= ) upin ] [ufryr] V5] o il
- pratl s Vg ey ~ _ N
1B+ Iv 1, o 187|721 B-pNE =)
B2p, 52

IB+B+F =B+ +7+7 =]
{o-(B+B+8=0)+7-(v+7+7 ) —k}!
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+B+8—8" T+
xyﬁﬁﬁﬂzvv“/77

where f=8'+- -+ 8", 7=~ 4+ +4".
Therefore it is sufficient to prove the following inequality:

Bl 1 AT (o pr At — k) o+ 77— k)
(B=pNO =M o (B+B+5—B)+7 (v +7+7—7) —k}!
{IT,— (18" + DB + A
(IB+B+B-B+Iy+7+7 -7
B+ W =1 187+ v =1, B> 8,7 > 7).

(5.6)

< crIBl=hl

Let us prove (5.6). rk> (1—0)-f+(1—7)- v+ 0 -0 + 7 4" implies

(Il (08" +7 4" = K)o - B+7-7—k)
{o-(B+B+B—-p)+7-(y+7+7—7) - k}!
(Il D(o-pr+7- At —k+ 1)} (0-B+7-7—k+1)
Mo - B+B)+7-F+P)+o-(B=B)+7-(y=7)—k+1)
(Il Do B +7 7 —k+ )} (o-B+7-F—k+1)
< =TI
- (K +18]+ [ +1) ’

where
K=0-(B+B) +7-(F+7) — (r+ k.

Here we remark the following fact: Dirichlet’s integral

D(n()unh e 7777“)

F(no)F(m) F(m«)
Fno+m+--+mn)

/ / (1= (tr 4+ tp))0otgyym=to g, bty - dt,
t1>0,..., tr>0

ty 4 Htp<1

satisfies

0 <n < Cl (i:O,l,...,r) — D(ﬂo,?]l,...,nr) >D(CO’Cl?""C'I’)'
Case (I): |B] + |y| = r+ 1: In this case it holds that
18] +17]

DE+8 4+ +1)=I(K+r+1)- [[ K+,
l=r+1
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which implies

I,_{lelf(oﬂur-w—k+1)}r(a-5+r-7—k+1) 1
(K +r+1) @fﬁ‘(KH)
=D(o-B' +7-7' —k+1,...,0- 8 +7-4 —k+1L0-B+7-F—k+1)
1

>< e —
+
Pl 1)

<D(B+ I+ 1, 18+ I+ LB+ A+ D) =
PR 1)

(since k <min{oy —1,...,0, — 1,71 —1,...,7, — 1})
AT (8% + DB (5] + ! 1
(B+B+F+3+m)! TN K +1)
AT 087+ DB U8+ A 1
K! I (K + 0 TR o + 1)
where

K =[B+6+ [ +7l.

Moreover it follows from K > K that

(5.7)
il (K +8-B+ =) 1 1
(B—pnE=") K! [T (K + ) T2 (6 + 1)
R N v: e [ R = A S R e R
B CEYONCER DL K! paley K+1
<1.

By the above inequalities we obtain (5.6).
Case (II): |B| 4 |v| = r: In this case it holds that

Al Do prtr At —k+ D)} (- B+7-F—k+1)

I(K+7r+1)
ZD(U~ﬁ1+T-71—k‘—‘rl,...,O’-ﬂr—i-T-’yT—k—l—l,U-B—l—T':);—k'—l-l)
<D(IB' |+ I+ L, 1871+ W+ L 1Bl + 7] + 1)

AL (18" + yDIH(B] + [F)! 1
K! 2R +1)

r
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From this inequality and (5.7) we obtain (5.6).
Case (III): | 8] + |v| < r — 1: In this case it holds that

NK+r+1)=T(K+pl+h+1) J[ &+,
1=18]+lyl+1

which implies
_{szlF(a.gu+7.7u_k+1)}p(a.g+7_5_k+1) r

r II &+
I'K+r+1) =Bl bl L

{I= (B8 + DB + A
= (K +r)! I[ &+

I=|B[+|vI+1

L= B+ I DBl + ! 1 K41
K! TN E +1) i K+

< gt Lz (814 DB + D! 1

B K! A + 1)

From this inequality and (5.7) we obtain (5.6).
The proof is completed. O

From Lemma 5.1, similarly to the proof of Lemma 4.3 we can prove the
following lemma.

Lemma 5.2.  Let |B|+ |y|+7 > 1, |#/| + Y| = 1, and let us assume
that (o,7) € [1,4+00)¢ and k satisfy (5.2) and (5.3), respectively. Let u(y, z) and
{o,7

v(y, z) belong to Gon }(Y, Z), and let F(x,y,u) be holomorphic at (x,y,u) =
(0,0,0). Then it holds that

(5.8)  [1F (@, y.u)y’2u D, DY u— Fla,y,v)y’ 270" D, DY |15
- Y 20

< e ol = w5
o,T o,T o,T r+l
x {S|fu|(y, 2,5l 57 + D) - (el 573 )

r -V v
1AV 28Il ) - (lli72) (Ie1i572) }

v=0

where C is same as in (5.5) and S = max{o1,...,0,,T1,...,Tp}
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Proof of Case (v) of Theorem 2.1 (continued). Put kg = min{o1 —1,...,
on—1,m—1,...,7 — 1}, and let u(y, 2) € G({fk’;} (Y, Z). Then it follows from
the assumption (o,7) € S5 and Lemmas 3.2, (1)’, 3.4, (1), 3.5, (1), 5.1 that
Tu(y,z) € Gégkg}(Y Z) and that

n—1 Yy
-
|7l <Y~ |
j=1 7

finite

1 o )
+ZY]< Z |d;pvr|(Y, Z,S||ul))C 18] I’YIYﬂZ’YHU” +1>

Jj=1 1Bl +[y]+r=2

P finite
1 _1al—
+D o ( S leapr (Y. ZS|ul)er 1 Wﬁmnunr“)
q

q=1 1Bl+]y|+r=2
1
+190l(Y, Z) + < gl(Y, Z, S|jull)
=AY, Z, ||ul)-

Here for simplicity we write || - HE;/}Z as || -||. By the expression of A(Y, Z, ||u||)
we can take Y, Z and ¢ such that A(Y, Z,e) < e. This shows that the operator
TG, Zse) — GIGTH (Y, Zs e) is well-defined.

Furthermore it follows from Lemmas 3.6, (1) and 5.2 that

I Tw — Tl
< Jlu—vf

finite
iYL ( S g <xz,s<||u||+||v|>>cr'ﬁ"W'Yﬂzwun”l)

Jj=1 18]+ |y|+r>2

n 1 finite r
+ Y,< > |dw|<y,z,snv|>cr-'ﬁ'-wﬂzv-Znur-”w)
3=1 77 N Byl +r>2 =0

P finite
1 _18]—
#5357 ( % leamnal¥ 2l + D)y 2 )

[Bl+|v]+r=2

P finite T
1 T— - T—U v
+ Y7 X ez Sle oz S ol )
TN B+ 22 v=0
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+ 19l (Y; 2, S(fJull + [v]])

= lu— vl x AY, Z, |[ul, |[v]))-

By the expression of A(Y,Z,|ull,|[v]]) we can take Y, Z and e such that
A(Y,Z,e,e) < 1. This shows that T : G{77 (Y, Zie) — G (Y, Zie) is a
contraction mapping. Therefore the proof is completed. O

§6. Proof of Theorem 2.1 (Cases (i), (ii), (iii))

In this section we study Cases (i), (ii) and (iii). We only consider
Case (i), and by the same reason as in the previous section we consider the
case k = 1. We write a formal power series solution as wu(z,y,z) =
2,87 ENT R, [al++ 121 Uapy®y’27 (m +n +p = d) and use the
Banach space G5 "™ (X, (Y, 2)) (resp. G§777 (X, Y, 2)) (X = (X1,..., Xpn)
€ R \{OH)™, VYV =(M,....Y,) € R\ {0})", Z = (Zl,...,Z )€ (Ry\
{0})?). Therefore u(z,y,2) € G,{C?(’)(U’T)}(X, (Y, Z)) (resp. € Gy p’g T}(X, Y, 2))
means

Il %)
! I
= > tap] |o!(18 + ]! X< e
o +18]+ |71 (p-ato-B+1-v—Fk)!
(resp, ||qup;;}Z
(laf + 18] + [vD! 5
= a xXoyBgzr « .
Z ‘u 5’Y|(p.a+g.6+7_7_k)! +00

|| +Bl+1v[=1

We recall that the equation (2.1) is written as follows when k = 1:

(61) AU(I’, Y, Z) = (Pl + P + P + P””)u(x, Y, Z) + gO(ma Y, Z)
+9(z,y, 2, u(z, y, 2)),
u(0,0,0) =0,
where go and g are holomorphic at the origin which satisfy g(0,0,0) = 0 and
g9(z,y,2,0) =0, g,(0,0,0,0) = 0, respectively, and

finite

Z 0; :L‘Z+1 Z ( Z legyr(x, Y, 2, u)xo‘y z'Yur) %,

lal+|8]+]v|+r=2
|1
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n finite o
"o X @ Yo"
U= - ( Z dja,@'yr(xa Y, Z,U,)JJ Yy zu ) ayj

J \a\+\5\+\7\+r>2
=

|

p finite o
+ Z ( Z eqaﬁfyr(x, Y, z, u)xay Z’YUT> 872(1’

Ia\+\[‘3\+|’ﬂ+r>2

le|>

i finite Ou
Pu=Tungt (3 duste) g
1Bl+|v|+r=2 ]
p finite ou
+ Z ( Z 6q5fy7“(1'7yaz7u)yﬁz’yur> g’
a=1 N |B|+]y|+r>2 '
m finite ou
Py = Z ( Z CiByr (2,9, 2, u)yﬁzvur) 3_132
i=1 N |B[+|y]+r>2

Here all coefficients ciagyr, Cigyr, djagyr, djgyrs €qapyr and eqgyr are holomor-
phic at the origin, and none of them vanish at the origin unless they vanish
identically.

We assume that s = (p, o, 7) satisfies the condition in Theorem 2.1, and
prove that the formal solution of (6.1) belongs to G{#* ™}, We remark that we
admit the unique existence of the formal solution.

Proof of Case (i) of Theorem 2.1. First we remark that the operator A
is well-defined as the mapping from G777} to itself. Moreover it follows from
the condition (Po) that A : G{ro7} — G1r.27} ig bijective and A~ is given by

(6.2)
U
-1 o, B _ afy ey
A (( g Uapyzy z”) = E —)\-a—fu(0,0)x Yy 2.

a,B,y)ENmFntP (o, B,y)EN™ 4P

Now we introduce a new unknown function U(x,y, z) by
Ulz,y,z2) = Au(z,y, 2), thatis, wu(z,y,z)=A"1U(z,vy,2).
Then the equation (6.1) is equivalent to the following one:
(6.3) U(z,y,2) =TU(x,y,z), U(0,0,0)=0,

where
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TU(z,y,2) = (P'+ P" + P + P") A" Uz, , 2)
+ go(l', Y, Z) + g(xv Y, z, A_lU(.’IJ, Y, Z))

Let us write the e-closed ball in é({fk’(g’ﬂ}(X, (Y,Z)) and Géf)k’g’T} (X,Y,2)
as

Gl eINX, (Y, 2)5e) = { Ule,y, 2)

= Y Uapay’s € GRUTHXL (Y, 2); VNI <&
la+|B]+|v|=1

and

Gl THX, Y, Zye) = { Ulz,y. 2)

= Z Uapyx®y’z" € Gé?,;U’T}(X,YvZﬁ ||U||,Ep)?;}2 sers
lee|+[8]+]v[=1

respectively.

We shall prove that T is well-defined as a mapping from G to itself by
choosing k, X, Y, Z and ¢ suitably and that it becomes a contraction mapping
there, where

. o h P//// — 0 “P/l’ P/l/l O d
Géf)k’( ) )}(X, (Y, 2);¢) (W en or # 0 an >

s=(p,0,7) € S ﬂSlﬂgiﬂS{’ ”
when P’ =0 or “P", P"" #0 and)

Gé{)’;mr} (X’ Y, Z; 5) Q / Qi
s=(p,o,7) €S NSNS NS

The condition (Po) implies that there exists a positive constant C' such
that

1 o
<

64 a0 =% ha- o0

< C forall a e N™.

By the first inequality the linear operator A~1 : ééf),;(g’T)}(X7 Y,2)) —
é({)’p,;(a’T)}(X, (Y, Z)) (resp. Gé’p,;U’T}(X,Y,Z) — G({)’pk’J’T}(X,Y,Z)) is bounded
and we have
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(6.5)
AU, < CNUNIEATTS, for Ulzy.2) € GOV (X, (v, 2))

(resp. [47UNTY < CIUNEETY, for Uley,2) € GI T (XY, 2)).
Here let us give some lemmas.

Lemma 6.1. (1) Let|a|+ |8+ |y|+7r>1 and ||+ 6|+ 7| > 1.
Let us assume that (p,0,7) € [1,+00)? satisfies

(6.6) prlatrel™ —o)+o-(B=B)+7 (=7
>lal+ 18]+ v+ (i=1,...,m),

pla—a)to-(Brre” —f)+7-(v—7)
>lal+ Bl +Pl+r (G=1,...,n),

pla—a)+o-(B=B)+7 (y+rel) —5)
zlaf+ B[+ yl+r  (¢=1,...,p),

where e(m) = (0i1y.- -y 0im) (1 =1,...,m), e;n) = (0j1,..-,05m) (J=1,...,n)

and e(p) (0g1,---,0gp) (g=1,...,p). If k satisfies

(6.7)
1-p)a+(Q—-0)-B+1—-7)v+p-d+0-F+7-7
r
<k < min{ps—1,...,p;m — 1,00 —1,...,0, -1, n —1,...,7, — 1},

and Uy,...,U., V € é({)’pk’(U’T)}(X, (Y, 2)) (resp. GéféU’T}(X,Y,Z)), then it
holds that z*y° 2 {[1,_,(A~'U)}D,* D,” D.” A=V e G{7" 7Y (X, (v, 2))
(resp. Géfk’a’T}(X,Y, Z)) and that

(6.8) 292 (A71 0y -+ (AU, D, D, D ATV,
Xe YR zv
< ortigr=lal=18l- 2
see XY 77
< O[553, - N |||£”X"&>; VIS,
2%y 21(A70y) - - (A7'U,) DY D, DY ATV,
X Y8 zv
resp. < grtter—lal=1Bl=Iv = ,
e X YP Z7
{p,o’T} {91‘777—}

< UL -

where C is the same constant as in (6.4), and
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(6.9)
. (when Ja] + 181 + 1] = 7).
max{p1,...,Pm,01,...,0n,T1,...,Tp} (when |a|+ |8+ |y <r—1).
(2) Let|a|+ 18]+ |v|+7r>1 and|a'| > 1. Let us assume that (p,o,T)
€ [1,+00)? satisfies
(6.10)
p-latre™ —a)y+o-(B-F)+7-(v=7) > ||+ 8|+ | +7 -1,
prla—a) 4o (B4rel =) +7-(v=7) 2 o + |8+ +7 -1,
prla—a)+o (B=F)+7 (v+rel) =2) = ol + [ + |y +7r -1
(i=1,....m;j=1,...,n;q9=1,...,p). If k satisfies
(6.11)
1-p)-a+(l—0)-b+Q—-7)v+p-d+0-F+17-9 -1
r
<k < min{p1—1,...,p;m— 1,00 —1,...,0, -1, n —1,...,7, — 1},

and Uy,....,U., V € Gé’p,;U’T}(X,Y, Z), then mayﬁzV{szl(A_lUu)}
x D, D, D" A7V € G THX,Y, Z) and

(6.12)
H:an Z’Y(AilUl) e (AilU )D a’D ﬁ,D27,A71V||I£?;;,}é
. e X« Y YAl ,O,T 9T 0,7}
< grHigr-lal=isl- MHXQ v 77 HUIHIE?X,Y,}Z"'”U?"HIE?X,Y,}Z”VHEX;KZ’
where
(6.13)
- 1 (when |af + (8] + |y| = 7+ 1),
max{pP1,...,Pms01y--sOnsT1,...,Tp} (when |a|+|B]+ |y < 7).

(3) Let|a| > 1 and ||+ |6|+ 7| = 1. Let us assume that (p,0,7) €
1, +00)? satisfies (6.10). If k satisfies (6. 11) andUy,...,U., V € G{p (o) }(X,

[
(Y, 2)), then «*y?2{IT,_ (A 'U)}D,* D7 D" A7V € G{”(‘”)}( X,
(Y. 2)) and
(6.14)  [lla®y’2 (A7) - (AU DY D D AW
~ Xo yB zv
< \Gr—lal=16]-Ivl+1 R
— CT‘O[OL C Xa/ YB/ Z,\//
< T - T NV IEDL,
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where Crqq s the constant dependent of v, o and o'.

Remark 6.1.  The conditions (6.6) and (6.10) imply

(1-p)0t(0-0)B4(1-7)3+pa'+o-F+ry
T
<min{py —1,...,pm —l,o1 —1,...,0,—1,m —1,...,7, — 1}

and
(I-p)at(1-—0)-B+(A—-7)y+p- ' +o-+7-7 -1
r
<min{py —1,...,pm —l,00 —1,...,0, —1,7n —1,...,7, — 1},
respectively.

Remark 6.2. Let us write the Newton polyhedron of z®y%zYu"
x D¢ Dyﬁ D.,” u as

N(z%y z”uTDzalDy’BlDﬂ/u)

= Ch UQa+re ) By 8 U Qlan B+ el .0 B )

i=1 j=1

p
ulJ Qe B,y +re, . 3, 7)}
qg=1

where

Q(a7 ﬂ? 75 al?ﬂ’?’)/)

X, > a; — oy (i=1,...,m)
. A o

= (X, Y, 2,W) € RIFL Vi = B; ﬁ/J (j=1,...,n)
ZqZ'Vq_’Yq (g=1,...,p)

W< o[+ 8]+ 7]
Furthermore we define IT(p, o, 7) and II(p, o, 7) by

1(p,0,7) = {(X,y,Z,W) e RML (p—1m)y. x
+(0—1(”)).y+(7—_1(:l>)).z_w20}

and
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H(p,O',T) = {(nyazaw) S Rd+1; (,0— l(m)) X

+w—ﬂmyy+ﬁ—1@y2—wvz—@,

respectively, and define S and S as follows:

S= {(p, 0,7) € [1,400)% N(zy z”uTDzalDy’BlDﬂ/u) C H(p,o,7)},

S = {(p, 0,7) € [1,+00)% N(z%y z"uTDwa/DyB/Dzvlu) c I(p,o,7)}.

Then the conditions (p,o,7) € S and (p,0,7) € S are equivalent to (6.6) and
(6.10), respectively.

Proof of Lemma 6.1. For U,(z,y,z) = ZIQ“\HW\HW\N US“BM“

x x® Y " (= 1,2,...,7) and V(x,y,2) = Z\&IHEHWIN Vagz2® GyB27 it
holds that

zyP (A7) - - (A_lUT)DzO‘/DyB/D ”’/A_lV(x Y, 2)

5 1 1 } 1
lad [+18T 417121, ..., [aT [+ 67 [+]47 |21 { Avak = fu(0,0) f A-a — £u(0,0)

p=1

a>al, BB, 7>~"
al gl
a U, KBk
X(Oé—oz)(g (A — {H aﬁ'y}

< V.~ xa+6+&—a y6+6+6—6 Z'y+7+'y—’y
aBy ’

wherea =al4+---+a", =03 +---+ 5", 7 =~'+ -+ 4", which implies
that

22 (A7 0) - (A7 0D, D, DY AV

1 1
) 2 {JlA%WﬁﬂMm}M~aﬁmmn

Jal|+|8[+]v1>1

Lo [+1A7 T+ 177121
ax>al, B>p' 3>~'

al B o
GGy G-
ot a+a—a|l(f+B+5—Fl++7+7 =)
{p-(atata—a)+o-(B+B+B-F)+7 - (v+7+7—7) -k}

X
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ks
X {H |U5uﬁu7u|} |Va§§|Xa+E+a—a YB+B+B=B" zrt7+7—
p=1

and
||xay z’y(A_lUl) e (A_lUr)Da:O/DyﬂlDz’Y/A_1V||£f))’(a,7;,}Z

T 1 1
= Z {E I\ ar —fu(0,0)|} IX-a — £,(0,0)]

lal|+|B8L[+]v1>1

laT| 4187 1+[v7 =1
axal, 52p, 52~

a! ] gl
@G- G-
(lot@+a—a|+|8+F+F—Fl+I+7+7 7))
{p-atatda—a)to-(B+B+5-F)+7 (v +7+7—7)—k}

ks
X {H |U5uﬁu7u|} |Va§§|Xa+E+a—a YBHB8+B=B" gy tyv+7—"
p=1

X

(1): The case Uy,..., U,V € Géf)k’g’T} (X,Y, Z): By using the first inequal-
ity of (6.4) we can prove the lemma similarly to the proof of Lemma 5.1.

The case Uy,..., U, V € éé)p,;(U’T)}(X, (Y,Z)): From the first inequality
of (6.4) it is sufficient to prove the following inequality:

(6.15)
al B ol
@—al (G- GE-)

. (IT—i(p-at +o-BrtT A =k} p-a+o-B+7 75— k)
{p-(a+at+a-a)+o-(B+B+B-F)+7 (v+7+7—7)— Kk}
{IT,—y [ 118 ] + [v*)'}al' (18] + )"

lota+a—al(|B+B+8— B+ v +7+7 -+
(o + 18+ =1, @[+ 87+ ] > 1,

a>a,B8>0,5>9).

< ¢rlal=181=v

If we admit the following inequality (6.16), the proof of (6.15) is similar to
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the proof of (5.6).
{IT, = (e[ 4 18] 4 [y D! (|af + 18] + 71)!
(la+al+[B+ 8]+ 7+
- {IT=1 la™ 151 8# ] + [y DI al (18] + [7])!
@+ all(|8+ 6]+ 7+ 7!

The proof of (6.16) is reduced to that of the following inequality: For aq,...,a,,
bi,...,b. >0,

(6.16)

(al —i—bl)'(ar—i—br)' ai!by!---a,lb,!
(ar+ - +ar+by+--+b)! — (al+"‘+ar)!(bl+"'+br)!-

(6.17) is proved as follows: Let us consider the equality
(5 + n)a1+b1 . (5 + n)ar+br _ (5 + n)a1+-~+ar+b1+~-+br’

and let us calculate the coefficients of &2+ +arpbit+br in hoth sides. Then
we have

j : (al + bl) (ar + br)
1<ci<ajtby,..., 1<er<ap+by “ Cr

c1ttep=ar+--Far

(6.17)

B ai+---+a.+by+---+0b,
B ( a+---+a, )’
which implies
(a1 +b)!  (ar +b,)!
ailbs!  a,lb,!
_ <a1+bl)m<ar+br> < <a1+---+ar+bl+---+br)
ay a, - ay+---+ap
(e +-Fap+by 4o+ by)!
(a1t an) (b + o+ b))
Therefore (6.17) is proved.
(2): Let us estimate as [1/(A-a* — £,(0,0))| <C (u=1,...,7), |a|/(\-
a— f.(0,0))] < C, and note that

a! p! Y i (a] + 18] + ] — 1)!
@@= @G- G2 " (al + 13+ = o] = |8 = 17!
Then it is sufficient to prove the following inequality:

(6.18)

(8] + 181 + 7] - 1)!
(lal + 181+ 7] = |/ = 1B = [y ])!
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(I_i(p-at+o BrtT gt =k} p-a+0 B+7-7—k)
{p-(a+a+a—a)+o-(B+B+F-)+7-(y+7+7—7)—k}!
< ortaltgioin AL (la? 1+ 18"+ D'}(a1 + 18] + 51!
- (lata+a—o[+[B+B+8—F++7+7 7))
(o [+18' [+ =1, e+ (87 + Y 2 La > o, 3> 8,5 > 7).

We remark that |&| + || + [§] — 1 > 0 since |a| > |o/| > 1.
Let us prove (6.18). 7k > (1—p)-a+(1—0)-8+(1—7)-y+p-a'+0-F' 479 —1
implies
(6.19)

(Il_i(p-at o BtT g =k} p-a+o-F+7 75— k)
{prla+ra+a-a)to (B+B+5-0)+7 (y+7+7 -7~ k}!

(Il I(p-at+o-Br+r- A —k+ D)} (p-a+0 B+ -F—k+1)
Fp-(a+a+d—o)+o-(B+B+B-B)+7-(y+7+7-7)—k+1)
§ (Il T(p-ar+0-Br+7 A" —k+ 1)} (p-a+0-B+7-F—k+1)
= (K + lal + 13+ hl)

r

3

where
K=p-(@+a)+o-(B+B)+7 - F+7) — (r+1)k.
The case |a| + |8] + |y| > r + 2: In this case it holds that

||+ + 7|1
INE+|al+8l+h)=T(K+r+1) ] &K+,
l=r+1

which implies

F:{H;Zlf(p-a“—i-a-ﬁ”—i—T-'y“—k—i—l)}l”(p-&—i—a-g—l—T-ﬁ'—k—l-l)

(K +r+1)
y 1
H\liliifl-&-h\—l(Kle)
_ ILa (o + 18%] + D'} (8l + 18] + 7! 1
B (K +7)! I (R4

AT (e + 18] + D'} (al + 18] + A
B K!
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1 1
x e )
Iy (K + 1) TR (k4 0)

where
K=la+al+|6+8+F+Al.

Moreover it follows from K > K that

(&l + 18] + 7l = 1)! (K +]a—o'[+]8=B1+ ]y =]
(&l + 18] + 31 — o] = 18] = |¥' ! K!
» 1 1
Il (K + ) T = e+
(&l + 18 + 31 — 1! (K —|o/] = 18| = [ +1)!
T (al+ 181+ 17 = o] = 1871 = [¥])! K!
XMHWHﬂ4j?7mw7@qihq+l+l
—1 K +1
< 1.

By the above inequalities we obtain (6.18). In the case |a| + |8 + 7] <r +1
also, we can prove (6.18) similarly.
(3): Let us estimate as

la+a+a—d|

{szl |)‘ cak — fu(070)|}|)‘ o — fu(070)|

S Crao/ .

Then it is sufficient to prove the following inequality:

(6.20)
al B o
(@—alg-pH@E-—7")
(Il —i(p-ar+o-prtr-y—k)}(p-a+o-B+7-5—k)
{p-lata+a—a)+o-B+B+B-F)+7 - (y+7+75—7) —k}!
< orlal—lBl=p+1 (I o 119 + 1r* a1 B] + B!
a (lata+a—a|=DB+B+6-F+ Iy +7+7=7!
(o' |+ 18"+ =1, e |+ 187+ v = La >, 8> 6,7 >7).

We remark that |« + @+ a — o’| — 1 > 0 since |a] > 1.
Let us prove (6.20). The case |a| + |3| + |y| = 7+ 2: From (6.16) and the
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proof of (2) we see that

(6.21)
o (s (o] + 187 + 1D} (al + 1B) + ! |
- K! H}i‘f‘ﬁ‘+|7|_l(1~(+1)
_ L le 06" + v DB E (18] + [7])! 1
@+ all([B+ Bl + 7 + 7! [T =K )

Moreover it holds that

(6.22)
al Bl !
(@—aNtp-pHnE -
(loa+ta+a—o|-DB+B+B—F|+ Iy +7+7 -+

X = = —
la+all(|B+ 8 + [7+7)!
X \a|+|ﬁ|+wl\—1 P
12 (K +1)
_a B! A Ja+a-dNB+B8-Fl+F+7 7))
(@—a)t@-pnGE-—7)" @+ a|l(|B + 6|+ 7 +7))!
§ ?TW@+&—@W+I .“?fWB+B—ﬁW+W+W—WW+l
=1 K+l =1 K—|-|O[|—1+l

<1

By (6.19), (6.21) and (6.22) we obtain (6.20). In the case |a|+ |8+ |y < r+1
also, we can prove (6.20) similarly.
The proof is completed. O

From Lemma 6.1, similarly to the proof of Lemma 4.3 we can prove the
following lemma.

Lemma 6.2.  Let F(z,y, z,u) be holomorphic at (z,y, z,u) = (0,0,0,0).
Let us put Frapya gy (Y, 2,u) = F(x,y, 2, u)xo‘yﬁzVuera/Dyﬁ/Dz'y/u.

(1) Let |a|+ |81+ vl+7r =1, ||+ |6+ || =1, and let us assume
that (p,o,7) € [1,+00)% and k satisfy (6.6) and (6.7), respectively. If U, V €
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ééf’,;(g’T)}(X, (Y, Z)) (resp. Géf’,;a’T}(X,Y, 7)), then it holds that

(6.23) || Fragyargy (@4, 2 A7U) = Fragyargy (@9, 2, A7 V)15

k,X,(Y,Z)
Xe Y8 zv
r+1or—|a|=[8]—=|v] {p,(o,7)}
=CTC X' Y8 zv ) ,Z)
< (XY, 2 UM IVIRS S b5 )

| Franar i (2,9, 2, A7) = Fragyarr (@, .2, A7 VIIE Y,

X>YP zv o
=77 U= VI, :

resp. < Crtier—lel=18l=ll
< (XY Z VIR VI i)
where C' and C are same as in (6.4) and (6.9), respectively, and

(6.24) 3(X,Y, Z,U,V;r) = CS|F,|(X,Y, Z,5C(U + V)) - U™t
+|FI(X,Y, Z,SCV) - > UV

v=0

(S=max{p1, ..., Pm:s 01, On,Ti,. ., Tp}).

(2) Let ||+ 18|+ |y +7 > 1 and |&/| > 1, and let us assume that
(p,0,7) € [1,+00)¢ and k satisfy (6.10) and (6.11), respectively. If U, V €
G TN X,Y, Z), then it holds that

(625) ||~7:7‘O¢B"/a'ﬂ/"/'(x7y7Z;A_lU) - fraﬁ"/a’ﬁ' /(x’y,Z7A_1V)||]{C’p}?”;’}Z
< ¢rigrlal-181- o X2 Y2 20 U - vy,

X Y8 zZv
< 3(X Y, 2NN VI, i),

where C is same as in (6.13).

(3) Let|a|l > 1 and ||+ |B'| + 17| > 1. Let us assume that (p,0,7) €
[1,4+00)? and k satisfy (6.10) and (6.11), respectively. If U, V € Géf’,;(a’T)}(X,
(Y, Z)), it holds that

(6:26) (|| Frapyarsr (2,4, 2 ATU) = Frapyarpry (@9, 2 AT V[0S

X Y8 7 {p.(0,7)}
XO‘ Yﬁ/ Z,Y |||U V|||kpX7(Y7Z)

< F (XY, Z I VIS b))

< O @rlal=1BI=l1 2

k,X,(Y,Z) kX, (Y,Z)
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Proof of Case (i) of Theorem 2.1 (continued). Put kg = min{p; —1,...,
pm—lo0—1,...,0,—1,7m—1,...,7, — 1}

Case (I); P"" =0: Let U(z,y,2) € éé)p,;(()g’T)}(X, (Y,Z)). Then it follows
from the assumption (p,o,7) € S1N.S; NS} and Lemmas 3.2, (2)', 3.4, (2), 3.5,
(2), 6.1, (1), (3) that TU(z,y,2) € G§7"™ (X, (Y, Z)) and that

IITU|| < Au(X, Y, Z||[U]]) + A2(X, Y, Z, [[|U]]]) + As(X, Y, Z, [|[|U]]])
+B(X, Y, Z[[|U]]D),

where

m—1
Xit1
finite

JrZ;( Z ‘Ciaﬁ'erX,YaZ,gCU)
i=1

PN a4 18I+ ]y |22

la 21
x C (m)aT_a_ﬁ_|7|+1XO‘YBZ’YUT+1>,
A»(X,Y,Z,U)
n 1 finite N
N Z?( Y ldjapyl(X,Y, Z,5C0)
j=1"7 el +181 174722

X Cra0C~TIQI|ﬁ|“/+1XaYﬁZWUT+1>

finite

P
1 ~
t2 Z, ( Y legasyl(X,Y,Z,5CU)

la|+[Bl+]v|+r>2
le|>1

X Cra0C~T—a—ﬁ—|’Y|+lXaYBZA/UT+1>’

n—1
Y.
A3(X,Y,z,Uu)=C) Ty
WENTOLT,

n finite
1 ~
+Z_( Z |djﬁ'Y7‘|(XaKZ,SCU)CT_|5|_'YYBZ’Y(CU)r-i-l)

J=1 "7 N4yl +r>2
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finite

1 = — — r
+§JZ( > wme&KZ£CUw*W'”Y%W&W>“)
g=1 B+ ]|y +r>2

For simplicity, we write ||||||,{€§g?(?,}z) as |[|-]||. We can take X, Y, Z and € such
that A, (X,Y, Z,¢) + As(X,Y, Z,¢) + A3(X,Y, Z,¢) + B(X,Y, Z,¢) < e. This
shows that the operator T : ééf}k’ﬁa’ﬂ}(X, (Y, 2);e) — é({)ﬁ;go’ﬂ}(X, (Y,Z);¢e) is
well-defined.

Moreover it follows from Lemmas 3.6, (2), 6.2, (1), (3) that

NTU =TVl < [IU = V]| {Zl(X,Y,Z|||U|H,|HVH|)
+ Ao (X, Y, Z, U] 11V
+ A3 (XY, Z (U] VI +B(X,Y,Z,H\UIII,IIIVIII)},

where

m—1
~ X;
A(X,Y,ZU0V)=C) ==
=1

X;
_ ol finite _
+SCY e ( > |Ciagyral (X, Y, Z,SCU + V)
=1 """ N al Bl + | +r22, o] 21

O (mgr—la—|B|—|7|+1XayBZVUT+1>
’I"OLCi

m finite
1 -
+§:g;( > [Ciage|(X, Y, Z,5CV)
i=1 lee|+1Bl+ |7 |+7>2, |a|>1

X Crac(.wz)gr_‘al_‘ﬁ‘_‘7‘+1XaY5Z7 Z UT‘_’/VV) )

v=0
As(X,Y, 2,U,V)
B n 1 finite -
= SCZY( Z |dja,8'yr,u|(X, Ya Zv SC(U+V))
7=1 "7 Mal+|Bl+y1+r>2, |a]>1

» Cmo(fr—la—IBI—I'y|+1Xay62'vUr+1>

finite
1 .
+§}—( > \djasy| (X, Y, Z,5CV)

Y;
1 lo+[Bl+1v|4+7r>2, |a|>1
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X CTQOCNT_IQ|—|5|—M"rlXayﬁZ"/ Z UT—Z/VV>

v=0
~ P 1 finite N
+SCZZ< Z ‘eqaﬁ'yr,u|(X7KZ’ SC(U+V))
a=1 |+ 8]+ |y |+r>2, |a|>1
X Cra05T|a||ﬁ|“/+1XaYﬁZWUT+1>
P 1 finite ~
35 Y lwlxrzion
g=1 "7 Mal+|Bl+|y|+r>2, |al>1

X Craoar_‘a‘—\ﬂ\—l’yl-&-lXayﬁZ'y Z UT—I/VI/> :

v=0

n—1
~ Y,
A3(X,Y,Z, U, V) = E Jtl
3( s Ly &y Uy ) Cj:1 g

n finite
~ 1 _
+5027( S Jdipyral (XY, Z,SC(U + V)
=1 "7 MBI+ r>2

X CTﬁ|7|Yﬁzv(CU)r+1>

finite

1 ~
+Zy< Z |dj5’YT‘(XaKZ,SCV)
J=1 "7 MBIyl 4rz2
x CroIA=hly gyt § Ur—yvy>
v=0
_ P 1 finite N
+5027( > leqprul (XY, Z,SC(U +V))
g=1 "9 N |Bl+]y|+r22
x CT/B|7|YBZ’Y(CU)T+1>
1 finite _
+ZZ< Z leqpyr (X, Y, Z,SCV)
a=1 "7 N |Bl+|y|+r>2

x CroIs=hly s z1 o+t $° UT_VVV> 7

v=0
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B(X,Y,Z,U,V) = C|g.|(X,Y, Z,5C(U + V)).
We can take X, Y, Z and ¢ such that A1(X,Y, Z,e,¢) + Ay(X,Y, Z,e,¢) +
A3(X,Y,Z,e,¢) + B(X,Y,Z,e,e) < 1. This shows that T : G§7'77 (X, (v,
Z);e) — ééf,;gg’T)}(X, (Y, Z);¢) is a contraction mapping.

Case (II); P” = 0: Let U(z,y,2) € G({fk’g’T}(X,Y,Z). Then it follows
from the assumption (p,o,7) € S1 NS N §{’ and Lemmas 3.2, (1), 34, (1),
3.5, (1), 6.1, (1), (2) that TU(x,y,z2) € Géf),;Z’T}(X,Y,Z) and that

where

m—1
Xi
AXY,ZU)=C ) " U
=1

finite

+ Y ( X lawmlery.zSon)
=1

lal+18]+]v|+r=>2
>1

I
le|

« 5r—a|—6—7+1XayaZV(CU)T+1)7

As(X,Y, Z,U)
m 1 finite _
=2 y( > lesdl (XY, 2, SCU>C'°—’“'V'“YBZ”(CU)T“)-
=1 7" N Byl rz2
For simplicity, we write || - ||1£§§(T3;Z as || - ||. We can take X, Y, Z and ¢

such that A4(X,Y, Z,¢e) + A5(X,Y, Z,e) + A5(X,Y, Z,¢e) + B(X,Y, Z,¢e) < e.
This shows that the operator T : Géf)k’:’T} (X,Y, Z;e) — G({fk’g’T}(X, Y, Z;¢) is
well-defined.

Moreover it follows from Lemmas 3.6, (1), 6.2, (1), (2) that

17U = TVI| <10 = V| x {&(X,Y, Z, U] IVI]) + A5(X, Y, Z, U], V)
+ As(X Y. 2, UL IVI) + BEX,Y, Z, U] IVID -

where

m—1

~ X,
XY, ZUV)=C ) =
i=1 i
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m finite
~ 1 ~
ey g 00X ez v)
i=1 77" N al+|Bl+ | +r>2, [al>1

« C~T—|a|—|5|—’Y+1XOZY52’Y(CU)T+1>

m finite
1 ~
I ND Y i | (X, Y, 2,35CV)
i=1 7 N a4+ B+ +r>2, [af>1

x Grlal=IBl=h+1 oy s 7 et §° UWVV> ’
v=0

As(X,Y, Z, U, V)

-~ m 1 finite N
:SCZY( > [eqprrul (XY, Z,5C(U +V))
=1 7" N Bl 4|yl +r>2
X 5TI6|’Y|+1YBZ’7(CU)T+1>
finite
1 ~
+ZZ( Z legayr| (X, Y, Z,SCV)
=t |Bl+Iv]+7>2

o« G181~ H+1y 8 7y o i Ur_uvu)
V=0

We can take X, Y, Z and ¢ such that A:;(X,Y, Z,e,€) + Zg(X,Y, Z,e,€) +
A5(X,Y, Z,e,) + B(X,Y, Z,e,¢) < 1. This shows that T : G{%7™ (X, Y, Z;¢)
— Géf’k’gﬁ} (X,Y, Z;¢) is a contraction mapping.

Case (III), (i); P” # 0, P"" £ 0 and (p,0,7) € S1 NSNS NSY:
Let U € ééf’,;gg’T)}(X, (Y, Z)). Then it follows from the assumption (p, o, 7) €
S1 NSNS NSY and Lemmas 3.2, (2)', 3.4, (2), 3.5, (2), 6.1, (1), (3) that
TU(x,y,2) € ééﬁ;[(]a’T)}(X, (Y, Z)) and that

ITU||| < Au(X,Y, Z, |[U]]]) + A2(X, Y, Z, [[|U]]) + As(X, Y, Z, [[|U]]])

+ A(X, Y, Z,|[|U]]) + B(X, Y, Z, [[[U]]]),

where

AG (Xv va Z; U)
m finite

= 1_( > |cmr|(X,Kz,§cU)cr—5—”YBZ%CUY“)-
|B]+1y[+r>2

b

i=1 v
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Moreover it follows from Lemmas 3.6, (2), 6.2, (1), (3) that
U =TV IV = VIl % { A3V Z 0L VD
+ AV, Z 0L VI + A5, Y, 2, 01 V)
+A6(X,Yazv|||U|H3|HV|H)+B(XaKZa‘HU|||7|||V|||)}7

where

Aﬁ(X, Ya Zv Ua V)

m finite

~ 1 N
:502y< > leiprul (X, Y, Z,SC(U +V))
=170 N Bl |y 22
X CT—|5|—7yﬁz’y(CU)r+1>
1 finite ~
+ZX< Z |cipyr| (X, Y, Z,SCV)
=17 N Bl 42

X CT_|B|_|"/|Y5Z’YCT+1 Z UT—VVV) )
v=0

By the above expressions, similarly to the previous cases we can take X,
Y, Z and ¢ such that T : Gé’p,;(()a’T)}(X, (Y, Z);e) — Géf)k’(()a’ﬂ}(X, (Y, Z);¢) is
well-defined and T is a contraction mapping there.

Case (III), (ii); P” # 0, P # 0 and (p,o,7) € S1 N S; NS NSY:
Let U € G({)pk’:’T}(X7 Y,Z). Then it follows from the assumption (p,o,7) €
51N S NSNS and Lemmas 3.2, (1), 3.4, (1), 3.5, (1), 6.1, (1), (2) that
TU (z,y,2) € G({fk’g’T}(X, Y, Z) and that

ITU[| < Ay(X,Y, Z, |U]]) + A7(X. Y, Z,||U||) + A3(X, Y, Z, ||U])
+ A5(X7 Yu Z7 ||U||) + B(Xv Yu Z7 ||U||)7

where

A7(Xa Y; Zv U)
finite

n 1 N
=2 Y; ( Y. Idjase|(X,Y, 2,500)
j=1

I N a8+ v +r>2
>1

I
le]

y CT—a—ﬂ—IWIXayBZ“/(CU)H-l)
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p finite
1 o~
+27( Z legasyr| (X, Y, Z,SCU)
g=1 79 \ |a|+181+[vI+r21

[ 21

" CT—a—ﬂ—IWIXayﬂz“/(CU)T-H).

Moreover it follows from Lemmas 3.6, (1), 6.2, (1), (2) that

17U =TV < U= VI x {&(X,Y, Z, |UIL, IV]) + A2(X, Y, Z, U, V)
+BX,Y, Z, U], IVI)},

where

A(X,Y,Z,U, V)
m finite

~ 1 ~
ey (Y (dyayral (X. Y. ZSC(WU + V)
i=1 "7 Mo+ |84y +r>2, (o] >1

" CrlallﬁleayBZW(CU)rJrl)

m finite

+2 ( > \djapye (XY, Z,5CV)

i=1 "7 Nl B4y Hr>2, (ol >1

<=

x ¢r=lal=lBl=hl xoy B zrcr et § U’“"V”>
v=0
" p 1 finite _
vy (% eanmal (X, Y, Z.5C(U + 1))
TN Jal+[8]+|y]+r>2, |l >1

N

" CrlallﬁleayBZW(CU)rJrl)

finite

p 1 _
+y° - ( > leqapyr | (X, Y, Z,SCV)

la|+[Bl+|v|+r>2, || >1

x Crolel=IBl-hl Xy z7or+1 §° Uruvu> ,

v=0
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Therefore similarly to the previous cases we can take X, Y, Z and e such

that T : Géf’,;g’T}(X,KZ;s) — Gé)p,;;"T}(X,Y, Z;¢) is well-defined and T is a
contraction mapping there.

1

2

(3]

[4

5

6

[7

8

[9

(10]
(11]
(12]

(13]

The proof is completed. |
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