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Abstract

In this paper, we will give a complete geometric background for the geometry of
Painlevé V I and Garnier equations. By geometric invariant theory, we will construct a
smooth fine moduli space M¸

n (t, –, L) of stable parabolic connections on P1 with log-
arithmic poles at D(t) = t1+· · ·+tn as well as its natural compactification. Moreover
the moduli space R(Pn,t)a of Jordan equivalence classes of SL2(C)-representations
of the fundamental group π1(P

1 \ D(t), ∗) are defined as the categorical quotient.
We define the Riemann-Hilbert correspondence RH : M¸

n (t, –, L) −→ R(Pn,t)a and
prove that RH is a bimeromorphic proper surjective analytic map. Painlevé and
Garnier equations can be derived from the isomonodromic flows and Painlevé prop-
erty of these equations are easily derived from the properties of RH. We also prove
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that the smooth parts of both moduli spaces have natural symplectic structures and
RH is a symplectic resolution of singularities of R(Pn,t)a, from which one can give
geometric backgrounds for other interesting phenomena, like Hamiltonian structures,
Bäcklund transformations, special solutions of these equations.

§1. Introduction

§1.1. The purpose

The purpose of the series of papers is to give a complete geometric back-
ground for Painlevé equations of type V I or more generally for the so-called
Garnier equations.

As is well-known, these nonlinear differential equations have the Painlevé
property which means that generic solutions of these equations have no movable
singularity except for poles so that solutions have the analytic continuations on
whole of the universal covering of the space of time variables.

Besides the Painlevé property, there are several interesting phenomena
related to these equations which have been investigated by many authors.

• Each of these equations can be written in a Hamiltonian system by a natural
symplectic coordinate system ([Mal], [O3], [Iw1], [Iw2], [K], [ST]).

• These equations have natural parameters λ = (λ1, . . . , λn) ∈ Cn. More-
over there exist birational symmetries of these equations, called Bäcklund
transformations of these equations, which act on both of variables and the
parameters and preserve the equations. ([O4]).

• In Painlevé V I case, the group of all Bäcklund transformations is isomor-
phic to the affine Weyl group W (D(1)

4 ) of the type D(1)
4 . ([O4], [Sakai],

[AL2], [NY], [IIS0]).

• In Painlevé V I case, if λ ∈ C4 lies on a reflection hyperplane of a reflection
in W (D(1)

4 ), then the corresponding equation has one parameter family of
Riccati solutions. ([LY], [FA], [W], [STe], [SU]).

• A natural compactification of each space of initial conditions for PV I , intro-
duced by Okamoto [O1], can be obtained by a series of explicit blowing-ups
of P1

C × P1
C or F2. The compactification is given by a smooth projective

rational surface S and it has a unique anti-canonical divisors −KS = Y

such that S \Yred is the space of initial conditions for PV I . The pair (S, Y )
becomes an Okamoto-Painlevé pair of type D(1)

4 in the sense of [STT]. (See
also [Sakai]).
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Though these phenomena are discussed and investigated by many authors,
the intrinsic mathematical background for these facts remains to be understood.
Therefore, for example, it is worthwhile to ask the following fundamental ques-
tions:

• What is the geometric meaning of Painlevé property for these equations?

• What is the geometric meaning of the symplectic structure?

• What is the geometric origin of Bäcklund transformations?

• Why Riccati solutions or some classical solutions appear for the param-
eters on the reflection hyperplanes of the Bäcklund transformations?

In the series of the papers, the authors will give answers to these questions
in a natural intrinsic framework.

§1.2. Natural framework

It is already known (cf. [F], [Ga], [Sch], [JMU], [O3], [Iw1] and [Iw2])
that these equations can be derived from the isomonodromic deformation of
the systems of linear equations of rank 2 with regular singularities over P1 or
equivalently linear connections on vector bundles of rank 2 with logarithmic
poles over P1. Although we will follow this line in this paper, for several essen-
tial reasons, we have to introduce a slight generalization of linear connections
which will be explained as follows.

Let n ≥ 3 and let us set Tn = {t = (t1, . . . , tn) ∈ (P1
C)n | ti �= tj , (i �= j)},

Λn = {λ = (λ1, . . . , λn) ∈ Cn}. Fix a data (t,λ) ∈ Tn × Λn and set D(t) =
t1 + · · ·+ tn. We also fix a line bundle L on P1

C with a logarithmic connection
∇L : L −→ L⊗ Ω1

P1
C
(D(t)).

A quadruple (E,∇, ϕ, l = {li}n
i=1) consisting of:

(1) a rank 2 vector bundle E on P1,

(2) a logarithmic connection ∇ : E −→ E ⊗ Ω1
P1(D(t))

(3) a bundle isomorphism ϕ : ∧2E
�−→ L and

(4) one dimensional subspace li of the fiber Eti
of E at ti, li ⊂ Eti

, i = 1, . . . , n,

is called a (t,λ)-parabolic connection with the determinant (L,∇L) if they
satisfy the following conditions:
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(1) for any local sections s1, s2 of E,

(ϕ⊗ id)(∇s1 ∧ s2 + s1 ∧∇s2) = ∇L(ϕ(s1 ∧ s2)),

(2) li ⊂ Ker(resti
(∇)−λi), that is, λi is an eigenvalue of the residue resti

(∇) of
∇ at ti and li is a corresponding one-dimensional eigensubspace of resti

(∇).

We introduce a series of rational numbers α = (α1, . . . , α2n) such that
0 ≤ α1 < . . . < α2n < 1, which is called a weight. By using a weight α, one
can define parabolic degrees for (t,λ)-parabolic connections (E,∇, ϕ, l) and
introduce the notion of the parabolic stability. Let Mα

n (t,λ, L) be the coarse
moduli space of stable (t,λ)-parabolic connections on P1 with the determinant
(L,∇L). Considering the relative setting over the parameter space Tn × Λn =
{(t,λ)}, we can construct a family of moduli spaces

(1) πn : Mα
n (L) −→ Tn × Λn

such that π−1
n (t,λ) 
 Mα

n (t,λ, L). Later, we have to extend the family by
a finite étale covering T ′

n −→ Tn, and for simplicity, we denote it also by
πn : Mα

n (L) −→ T ′
n × Λn.

Next, let us fix t ∈ Tn and consider a representation ρ : π1(P1
C \D(t), ∗)

−→ SL2(C) of the fundamental group π1(P1
C \D(t), ∗) with a fixed base point

∗ ∈ P1
C. Two representations ρ1 and ρ2 are said to be equivalent if there exists

an element P ∈ SL2(C) such that ρ2 = P−1ρ1P . To each representation ρ, one
can associate a local system Eρ of rank 2 on P1

C \D(t) with an isomorphism
∧2Eρ 
 CP1

C\D(t). Moreover, two representations ρ1 and ρ2 are equivalent to
each other if and only if Eρ1 and Eρ2 are isomorphic as local systems. Hence
the moduli space of the isomorphism classes of local systems on P1 \D(t) with
trivial determinants is isomorphic to the moduli space of equivalence classes of
the representations.

Since π1(P1
C \ D(t), ∗) is a free group generated by γi for 1 ≤ i ≤ n − 1

where γi is a loop around the point ti, such a representation can be determined
by Mi = ρ(γi) ∈ SL2(C) for 1 ≤ i ≤ n− 1. Therefore the moduli space should
be a quotient space of SL2(C)n−1 by a diagonal adjoint action of SL2(C).

However there is no canonical way to give a scheme structure on the set
of equivalence classes of the representations. In this sense, we have to intro-
duce a stronger equivalence relation. Two SL2(C)-representations ρ1 and ρ2

of π1(P1
C \D(t), ∗) are said to be Jordan equivalent if their semisimplifications

are equivalent. This means that if a local system Eρ is an extension of rank one
local systems L1 and L2 one can not distinguish the extension classes. As is
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shown by Simpson [Sim2], the set of the Jordan equivalence classes of the local
systems or representations is equal to the set of closed points of the categorical
quotient

R(Pn,t) = SL2(C)n−1/Ad(SL2(C)),

of SL2(C)n−1 by the diagonal adjoint action of SL2(C). The categorical quo-
tients is defined as the affine scheme of the ring of invariant functions on
SL2(C)n−1 by the action of SL2(C). (Cf. §4).

Fixing the canonical generators γi ( 1 ≤ i ≤ n) of π1(P1
C \D(t), ∗), to each

representation ρ : π1(P1
C \D(t), ∗) −→ SL2(C), we can associate n-algebraic

functions on SL2(C)n−1

Tr(ρ(γi)) = ai, Tr(ρ((γ1 · · · γn−1)−1)) = Tr(ρ(γn)) = an

which are clearly invariant under the adjoint action. Setting An =
SpecC[a1, . . . , an] 
 Cn, we obtain a natural morphism

pn : R(Pn,t) −→ An.

For a fixed closed point a = (a1, . . . , an) ∈ An, let us denote by R(Pn,t)a =
p−1

n (a) the closed fiber at a, that is, we set

R(Pn,t)a = { [ρ] ∈ R(Pn,t) | Tr(ρ(γi)) = ai, 1 ≤ i ≤ n}.

Moreover, taking a finite étale covering T ′
n −→ Tn we can obtain a family of

moduli spaces

(2) φn : Rn −→ T ′
n ×An

such that φ−1
n (t,a) = R(Pn,t)a (cf. §4).

Now, we have obtained two kinds of moduli spaces Mα
n (t,λ, L) and

R(Pn,t)a for fixed (t,λ) ∈ T ′
n × Λn and (t, a) ∈ T ′

n × An. Moreover we have
two families of moduli spaces as in (1) and (2). (Note that we have already
pulled back the family in (1) by the finite covering T ′

n −→ Tn.)
Next, let us assume that eigenvalues of resti

(∇L) are integers for all 1 ≤ i ≤
n. Then we can define the Riemann-Hilbert correspondence RHn : Mα

n (L) −→
Rn such that the following diagram commutes:

(3)

Mα
n (L) RHn−−−−→ Rn

πn

� �φn

T ′
n × Λn

(1×µn)−−−−−→ T ′
n × An.
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Here, the map 1 × µn in the bottom row in (3) is given by the map (1 ×
µn)(t,λ) = (t,a) where

(4) ai = 2 cos 2πλi for 1 ≤ i ≤ n.

Under these relations, RHn induces the analytic morphism of the fibers for
each (t,λ) ∈ T ′

n × Λn:

(5) RHt,λ : Mα
n (t,λ, L) −→ R(Pn,t)a.

To define the correspondence, take a stable (t,λ)-parabolic connection (E,∇, ϕ,
{li}). Then restricting the connection ∇ to P1

C \D(t), define the local system
on P1

C \D(t) by

(6) E(∇) := ker
(
∇|P1

C\D(t)

)an

.

(Here
(
∇|P1

C\D(t)

)an

denotes the analytic connection associated to ∇|P1
C\D(t)).

Then it is easy to see that the map (E,∇, ϕ, {li}) �→ E(∇) induces the cor-
respondence in (3) or (5). Basically, our framework for understanding the
Painlevé or Garnier equations is the Riemann-Hilbert correspondences in (3)
and (5).

There exists one more thing which we should mention here. Let β1, β2 be
positive integers, α′ = (α′

1, . . . , α
′
2n) a series of rational numbers with 0 ≤ α′

1 <

. . . < α′
2n < 1 and set β = (β1, β2). Setting α = α′ β1

β1+β2
, we obtain a weight

α for (t,λ)-parabolic connections. (Note that since α2n = α′
2n

β1
β1+β2

< β1
β1+β2

,
this gives a restriction for the weight α). For the weight α, we consider the fam-
ily of moduli spaces Mα

n (L) −→ T ′
n×Λn. On the other hand, we will introduce

the notion of (α′,β)-stable (t,λ)-parabolic φ-connection which is a generaliza-
tion of α-stable (t,λ)-parabolic connections. The moduli space Mα′β

n (t,λ, L)
contains the moduli space Mα

n (t,λ, L) as a Zariski open set. Moreover we
can construct the family of the moduli spaces such that the following diagram
commutes:

(7)

Mα
n (L)

ι
↪→ Mα′β

n (L)

πn

� �πn

T ′
n × Λn T ′

n × Λn.



�

�

�

�

�

�

�

�

Moduli of Stable Parabolic Connections 993

§1.3. Main results

In the framework as above, we can state our main results in this paper as
follows.

1.3.1. Projectivity of the moduli space Mα′β
n (t,λ, L), Smoothness,

Irreducibility and the Symplectic Structure of Mα
n (t,λ, L)

We first prove that the moduli space Mα′β
n (t,λ, L) is a projective scheme.

Moreover one can show that the moduli space Mα
n (t,λ, L) for each (t,λ) ∈

Tn × Λn is smooth and endowed with a natural intrinsic symplectic structure
induced by Serre duality of tangent complexes. The irreduciblity of the moduli
space Mα

n (t,λ, L) for each (t,λ) ∈ Tn × Λn follows from the irreduciblity of
R(Pn,t)a via the Riemann-Hilbert correspondece (5).

Theorem 1.1 (Cf. Theorem 2.1, Theorem 5.2, Proposition 6.2 and
Proposition 9.1).

(1) For a generic weight (α′,β), πn : Mα′β
n (L) −→ T ′

n × Λn is a projective
morphism. In particular, the moduli space Mα′β

n (t,λ, L) is a projective
algebraic scheme for all (t,λ) ∈ T ′

n × Λn.

(2) For a generic weight α, πn : Mα
n (L) −→ T ′

n × Λn is a smooth morphism
of relative dimension 2n − 6 with irreducible closed fibers. Therefore, the
moduli space Mα

n (t,λ, L) is a smooth, irreducible algebraic variety of di-
mension 2n− 6 for all (t,λ) ∈ T ′

n × Λn.

Theorem 1.2 (Cf. Proposition 6.1). There exists a global relative 2-
form

(8) Ω ∈ H0(Mα
n (L),Ω2

Mα
n (L)/Tn×Λn

)

which induces a symplectic structure on each fiber of πn. Consequently, for
each (t,λ), the moduli space Mα

n (t,λ, L) becomes a smooth symplectic algebraic
variety.

1.3.2. Irreducibility, symplectic structure and singularities of
R(Pn,t)a

Let us call a data λ ∈ Λn a set of local exponents of connections.

Definition 1.1.

(1) A set of local exponents λ = (λ1, . . . , λn) ∈ Λn is said to be special if



�

�

�

�

�

�

�

�

994 Michi-aki Inaba, Katsunori Iwasaki and Masa-Hiko Saito

(a) λ is resonant, that is, for some 1 ≤ i ≤ n,

(9) 2λi ∈ Z,

(b) or λ is reducible, that is, for some (ε1, . . . , εn) ∈ {±1}n

(10)
n∑

i=1

εiλi ∈ Z

(2) If λ ∈ Λn is not special, λ is said to be generic.

(3) The data a = (a1, . . . , an) ∈ An is said to be special if µn(λ) = a for some
special λ ∈ Λn.

For a monodromy representation ρ : π1(P1 \ D(t), ∗) −→ SL2(C), set
Mi = ρ(γi) ∈ SL2(C) for 1 ≤ i ≤ n. We consider the following conditions
which are invariant under the adjoint action of SL2(C).

The representation ρ is irreducible.(11)

For all i, 1 ≤ i ≤ n, the local monodromy matrix Mi around ti
is not equal to ± I2.

(12)

Theorem 1.3 (Cf. Proposition 8.1, Proposition 6.3 and Theorem 7.1).
Assume that n ≥ 4.

(1) For any a ∈ An, the moduli space R(Pn,t)a is an irreducible affine scheme.

(2) Let R(Pn,t)�
a be the Zariski dense open subset of R(Pn,t)a whose closed

points satisfy the conditions (11) and (12). Then R(Pn,t)�
a is smooth and

there exists a natural symplectic form Ω1 on R(Pn,t)�
a.

(3) The codimension of the locus R(Pn,t)sing
a := R(Pn,t)a\R(Pn,t)�

a is at least
2.

1.3.3. Surjectivity and Properness of the Riemann-Hilbert corre-
spondence

Next, the most important result for the Riemann-Hilbert correspondence
is the surjectivity and the properness. One can show that the correspondence
RHt,λ in (5) gives an analytic isomorphism between two moduli spaces if λ ∈
Λn is generic (i.e. non-special). However, for a special λ ∈ Λn, one can see
that the map (5) contracts some subvarieties of Mα

n (t,λ, L) to singular locus
of R(Pn,t)a. Note that since the correspondence is not an algebraic morphism,
one can not directly apply the valuative criterion for the proof of the properness.
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Theorem 1.4 (Cf. Theorem 7.1). Under the notation above and as-
sume that n ≥ 4 and α is general. For all (t,λ) ∈ T ′

n×Λn, the Riemann-Hilbert
correspondence

(13) RHt,λ : Mα
n (t,λ, L) −→ R(Pn,t)a

is a bimeromorphic proper surjective morphism.

1.3.4. The Riemann-Hilbert correspondence as a symplectic reso-
lution of singularities of R(Pn,t)a

Moreover, we can introduce the natural intrinsic symplectic structure on
the smooth part R(Pn,t)�

a of the moduli spaces R(Pn,t)a. Together with the
natural symplectic structure of the moduli space Mα

n (t,λ, L), the map RHt,λ

gives a symplectic map, which means that the pullback of the symplectic struc-
ture on the smooth part of R(Pn,t)a coincides with the symplectic structure
on Mα

n (t,λ, L). This identification will be given by a kind of infinitesimal
Riemann-Hilbert correspondence (cf. Lemma 6.6). Together with the surjec-
tivity, the properness of RHt,λ and the fact that Mα

n (t,λ, L) is smooth, we
can say that RHt,λ gives an analytic symplectic resolution of the singularities
of R(Pn,t)a. Moreover, we can say that the map RHn in (3) gives a simulta-
neous resolution of the family φn : Rn −→ T ′

n × An with the base extension
1× µn : T ′

n × Λn −→ T ′
n ×An. (For definition, see [Definition 4.26, [KM]]).

Theorem 1.5 (Theorem 7.1, Lemma 6.6). Under the assumption of
Theorem (1.4), we have the following.

(1) For any (t,λ), let R(Pn,t)�
a be as in Theorem 1.3, and set Mα

n (t,λ, L)� =
RH−1

t,λ(R(Pn,t)�
a). Then the Riemann-Hilbert correspondence gives an an-

alytic isomorphism

(14) RHt,λ,|Mα
n (t,λ,L)� : Mα

n (t,λ, L)� �−→ R(Pn,t)�
a.

(Note that if λ is not special (cf. Definition 2.3, ((36)), ((37))), R(Pn,t)�
a =

R(Pn,t)a, hence RHt,λ gives an analytic isomorphism between Mα
n (t,λ, L)

and R(Pn,t)a.)

(2) The symplectic structures Ω restricted to Mα
n (t,λ, L)� and Ω1 on R(Pn,t)�

a

can be identified with each other via RHt,λ, that is,

(15) Ω|Mα
n (t,λ,L)� = RH∗

t,λ|Mα
n (t,λ,L)�(Ω1) on Mα

n (t,λ, L)�.
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(3) Putting together all results, the correspondence RHn in (3) gives an ana-
lytic simultaneous symplectic resolution of singularities after the base ex-
tension 1× µn : T ′

n × Λn → T ′
n ×An.

§1.4. Painlevé and Garnier equations and their Painlevé property

In the framework of this paper, we can derive the Painlevé and Garnier
equations as follows. Take the universal covering map T̃n −→ T ′

n −→ Tn and
pull back the diagram (3) to obtain the following commutative diagram:

(16)

M̃α
n (L) RHn−−−−→ R̃n

π̃n

� �φ̃n

T̃n × Λn
(1×µn)−−−−−→ T̃n × An.

1.4.1. The case of generic λ

Now let us fix λ ∈ Λn and set a = µn(λ). First, assume that λ is generic.
We denote by (πn)λ : M̃α

n (λ, L) −→ T̃n and (φn)a : (R̃n)a −→ T̃n the families
obtained by restricting the families in (16) to T̃n×{λ} and T̃n×{a}. Moreover
we denote by RHλ : M̃α

n (λ, L) −→ (R̃n)a the restriction of RHn to the
restricted families. Since λ is generic, RHλ induces an analytic isomorphism
between M̃α

n (λ, L) and (R̃n)a. Fix a point t0 ∈ T ′
n. Since the original fibration

(φn)a : (Rn)a −→ T ′
n × {a} is locally trivial, we can obtain an isomorphism

(R̃n)a 
 R(Pn,t0)a × T̃n and the following commutative diagram for fixed λ

and a.

(17)

M̃α
n (λ, L) RHλ−−−−→� (R̃)a 
 R(Pn,t0)a × T̃n

(π̃n)λ

� �(φ̃n)a

T̃n × {λ}
=−−−−→ T̃n × {a}.

By using this global trivialization, for each closed point x ∈ R(Pn,t0)a, we
can define the unique constant section sx : T̃n −→ R(Pn,t0)a × T̃n for (φn)a
by the formula sx(t) = (x, t). Pulling back this constant section sx via RHλ

we obtain the global analytic section s̃x for the morphism (πn)λ. Varying the
initial points x, we obtain the family of constant sections {sx}x∈R(Pn,t0 )a of
R(Pn,t0)a× T̃n −→ T̃n and also the family of pullback sections {s̃x}x∈R(Pn,t0 )a

for M̃α
n (λ, L).

The family of sections {s̃x}x∈R(Pn,t0 )a gives the splitting homomorphism

(18) ṽλ : (πn)∗λ(ΘT̃n×{λ}) −→ ΘM̃α
n (λ,L)
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for the natural surjective homomorphism ΘM̃α
n (λ,L) −→ (πn)∗λ(ΘT̃n×{λ}). Con-

sider the following commutative diagram:

(19)

M̃α
n (λ, L) ũ−−−−→ Mα

n (λ, L)

(π̃n)λ

� �(πn)λ

T̃n × {λ}
u−−−−−−−−−−→

universal covering
Tn × {λ}.

We can see that the splitting homomorphism (18) descends to a splitting ho-
momorphism

(20) vλ : (πn)∗λ(ΘTn×{λ}) −→ ΘMα
n (λ,L).

(One can show that this splitting is an algebraic homomorphism). Therefore,
each algebraic vector field θ on Tn × {λ} determines an algebraic vector field
vλ(θ) on Mα

n (λ, L). The natural generators of the tangent sheaf of Tn × {λ}
can be given by 〈

∂

∂t1
, . . . ,

∂

∂tn

〉
.

Defining

(21) vi(λ) = vλ

(
∂

∂ti

)
∈ H0(Mα

n (λ, L),ΘMα
n (λ,L))

we obtain the differential system

(22) 〈v1(λ), . . . , vn(λ)〉

on Mα
n (λ, L). From the construction, it is obvious that these vector fields

{vi(λ)}1≤i≤n commute to each other, that is, the differential systems are inte-
grable. Since ũ : M̃α

n (λ, L) −→ Mα
n (λ, L) in (19) is also a covering map, each

section s̃x : T̃n × {λ} −→ M̃α
n (λ, L) defines a multi-section for Mα

n (λ, L) −→
Tn × {λ}, which gives an integral submanifold of Mα

n (λ, L) for the differential
system (22) at least locally. Hence the submanifold s̃x(T̃n × {λ}) of M̃α

n (λ, L)
given by the image of the section s̃x can be considered as the integral subman-
ifold (or a solution submanifold) for (22) over the universal covering space T̃n.
(It is natural to call the submanifold s̃x(T̃n × {λ}) an isomonodromic flow).
Since the integral submanifold s̃x(T̃n × {λ}) is isomorphic to the parameter
space T̃n × {λ} and the morphism π̃n : M̃α

n (λ, L) −→ T̃n × {λ} is algebraic,
we can conculde that

(23)
the diffrential system {vi(λ)}1≤i≤n on Mα

n (λ, L) has
Painlevé property. (See Figure 1).
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Figure 1. Riemann-Hilbert correspondence and isomonodromic flows for generic
λ

Actually, the dynamical system on Mα
n (λ, L) detemined by {vi(λ)}1≤i≤n has

geometric Painlevé property in the sense of [IISA] (cf. [Definition 2.2, [IISA]]).
The differential system {vi(λ)}1≤i≤n in (22) is called Painlevé V I system for
n = 4 and Garnier system for n ≥ 5. (Moreover we call each vector field vi(λ)
Painlevé or Garnier vector field).

By using a suitable algebraic local coordinate system for Mα
n (λ, L), one

can write down the differential equations associated to vi(λ) and see that these
differential systems are equivalent to known Painlevé V I systems and Garnier
systems. (It is possible to reduce the number of the time variables ti applying
the automorphism of P1

C from n to n−3). Moreover, one can apply a standard
argument to show that the vector fields vi(λ) are algebraic vector fields on
Mα

n (λ, L).

1.4.2. The case of special λ

Next, let us consider the case when λ is special. We have the same com-
mutative diagram as (17), however we encounter the following new phenomena.

(1) Although the moduli space Mα
n (t,λ, L) is nonsingular, the moduli space

R(Pn,t0)a has singularities.

(2) The Riemann-Hilbert correspondence RHλ : M̃α
n (λ, L) −→ (R̃n)a (or

RHt,λ : M̃α
n (t,λ, L) −→ R(Pn,t0)a for a fixed t) is still a bimeromorphic



�

�

�

�

�

�

�

�

Moduli of Stable Parabolic Connections 999

proper surjective map, but it contracts some families of compact subvari-
eties to singular locus of R(Pn,t0)a.

For example, in case when n = 4 (Painlevé V I case) and λ is special,
Mα

n (t,λ, L) contains at least one (−2)-rational curve. For simplicity, assume
that there is a unique (−2)-rational curve on M̃α

4 (t0,λ, L). Since R(Pn,t0)a is
an irreducible affine scheme, it cannot contain complete subvarieties of positive
dimension, and hence RHt0,λ has to contract the (−2)-rational curve onto a
singular point of type A1. (See Figure 2). Let us define the subset M̃α

n (λ, L)�

the complement of the subvarieties contracted by RHλ in M̃α
n (λ, L) and set

(R̃n)�
a := RHλ(M̃α

n (λ, L)�) so that RHλ|M̃α
n (λ,L)� : M̃α

n (λ, L)� −→ (R̃n)�
a is

an analytic isomorphism. For any n ≥ 4, we can pull back the constant sec-
tions sx by RHλ for x ∈ (R̃n)�

a and obtain analytic sections s̃x, for (πn)λ. Now
consider the family (πn)λ : Mα

n (λ, L) −→ Tn × {λ} over Tn × {λ} and define
Mα

n (λ, L)� ⊂ Mα
n (λ, L) as above. Then we can also obtain mutually commu-

tative Pailevé V I or Garnier vector fields vi(λ) for 1 ≤ i ≤ n on Mα
n (λ, L)�,

and {vi(λ)}1≤i≤n defines an integrable differential system on Mα
n (λ, L)�. Vary-

ing λ, we obtain the set of algebraic vector fields {vi}1≤i≤n on Mα
n (L)� over

Tn × Λn. Since the codimension of Mα
n (L) \ Mα

n (L)� in Mα
n (L) is greater

than 2, one can extend the algebraic vector field vi to Mα
n (L). Hence vi(λ)

can also be extended to the total space of the family of the moduli spaces
(πn)λ : Mα

n (λ, L) −→ Tn × {λ}. From the properness of the Riemann-Hilbert
correspondence RHλ : M̃α

n (λ, L) −→ (R̃n)a, we can conclude that the differen-
tial system {vi(λ)}1≤i≤n also has the geometric Painlevé property (cf. [IISA]).

The extended vector fields should be tangent to the family of contracted
subvarieties (see Figure 2). The restriction of Painlevé V I or Garnier vector
fields {vi(λ)}1≤i≤n to the family of the contracted subvarieties yields integrable
differential systems on the subvarieties whose solutions are given by a family of
classical solutions like Riccati solutions for Painlevé V I system. For example,
in the Painlevé V I case, we can observe the following correspondence (cf. [STe],
[IISA]). (See [Iw4] or [IISA] for the meaning of the nonlinear monodromy group
for Painlevé V I).

(24)
Mα

4 (t,λ, L) R(P4,t)a

(−2) rational curves in Mα
4 (t,λ, L) RHλ⇐⇒

Rational double points
on R(P4,t)a

� �

Riccati solutions for PV I ⇐⇒ Fixed points of the nonlinear
monodromies
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Figure 2. Riemann-Hilbert correspondence and isomonodromic flows for special
λ

In Garnier case (n ≥ 5), when λ is reducible (10), one can obtain a special
classical solution of the equation integrated by hypergeometric functions FD

of Lauricella (cf. [Proposition 1.7 [K]]). One can see that these classical solu-
tions of Garnier systems Gn correspond to the subvariety isomorphic to Pn−3

which parametrizes reducible stable parabolic connections. Moreover when λ

is resonant (9), the Garnier system Gn degenerates into a Riccati system over a
Garnier system Gn−1. A subvariety which can be contracted by RHt,λ is iso-
morphic to P1-bundle over Mα

n−1(t′,λ
′, L′) at a generic point of the contracted

subvatiety.

1.4.3. Painlevé V I or Garnier equations parametrized by λ ∈ Λn

In the above formulation, for each fixed local exponent λ ∈ Λn, we obtain
the Painlevé or Garnier vector fields vi(λ) for i, 1 ≤ i ≤ n as in (21) such that
{vi(λ)}1≤i≤n forms an integrable differential system. Moreover the solution
manifold for the differential system can be given by the isomonodromic flows.
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Varying the data λ, we obtain vector fields

(25) vi ∈ H0(Mα
n (L),ΘMα

n (L)/Λn
), 1 ≤ i ≤ n

for Mα
n (L) −→ Tn × Λn such that vi|Mα

n (λ,L) = vi(λ).

§1.5. The Hamiltonian system

It is well-known that the Painlevé and Garnier equations can be written in
the Hamiltonian systems. Now we can explain this as follows. Since the con-
stant flows on (φn)a : (R̃n)a −→ T̃n preserve the natural symplectic form Ω1 on
the fiber R(Pn,t)a and the pullback of Ω1 by Riemann-Hilbert correspondence
coincides with the symplectic structure Ω on Mα

n (t,λ, L), Painlevé or Garnier
vector fields preserve the symplectic structure Ω. Therefore, we can write the
differential equations in the Hamiltonian systems by using suitable cannonical
coordinate systems. Then an argument shows that such vector fields are ac-
tually regular algebraic, hence the Hamiltonians are given by regular algebraic
functions.

§1.6. The relation of the space of initial conditions of Okamoto or
Okamoto-Painlevé pairs for PV I

In the case of PV I , Okamoto [O1] constructed the spaces of initial condi-
tions by blowing up the accessible singularities of 4 parameter family of Painlevé
V I equations. They are open algebraic surfaces which are complements of the
anti-canonical divisors of projective rational surfaces obtained by the 8-point
blowing-ups of P1

C×P1
C or F2. In [Sakai], [STT], the notion of the pairs of pro-

jective rational surfaces and its effective anti-canonical divisors with suitable
conditions was introduced and its relation to Painlevé equation was revealed.
In [STT], such a pair is called an Okamoto–Painlevé pair. Okamoto-Painlevé
pairs of type D(1)

4 correspond to Painlevé V I equations. A semiuniversal family
of Okamoto–Painlevé pairs is a family of projective surfaces π : S −→ T ′

4 × Λ4

with the effective relative anticanonical divisor Y such that the configuration
of the anticanonical divisor Yt,λ is of type D(1)

4 . Then family of spaces of the
initial conditions of Okamoto can be obtained as an open subset S := S \ Y .

In the second part of this paper [IIS2], we will show that the family of
Okamoto-Pailevé pairs S −→ T4 × Λ4 can be identified with the family of
the moduli spaces Mα′β

4 (OP1(−1)) −→ T4 × Λ4, while S −→ T4 × Λ4 can
be identified with Mα

4 (OP1(−1)) −→ T4 × Λ4. (In this case, we will take
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β1 = β2 = 1, hence α = α′ β1
β1+β2

= α′/2). So our constructions of the moduli
spaces give an intrinsic meaning of Okamoto’s explicit hard calculations in [O1].

§1.7. The Bäcklund transformations–Symmetries of the equations

In our framework, Bäcklund transformations for the Painlevé equations
or Garnier equations can be defined as follows. Consider the Painlevé V I

or Garnier system {vi}1≤i≤n defined in (25) and the family of moduli spaces
πn : Mα

n (L) −→ T ′
n × Λn.

Definition 1.2. The pair (s̃, s) of a birational map s̃ : Mα
n (L) · · · →

Mα
n (L) (or s̃ : Mα′β

n (L) · · · → Mα′β
n (L) ) and an affine transformation s :

Λn −→ Λn is said to be a Bäcklund transformation of the differential system
{vi}1≤i≤n or {vi(λ)}1≤i≤n,λ∈Λn

if they make the following diagram commuta-
tive:

(26)

Mα
n (L)

s̃· · · → Mα
n (L)�πn

�πn

T ′
n × Λn

1×s−−−−→ T ′
n × Λn,

and it satisfies the condition:

(27) s̃∗(vi) = vi, or equivalently s̃∗(vi(λ)) = vi(s(λ)) .

There exists a natural class of Bäcklund transformations of Mα
n (L) for any

n ≥ 4 which are induced by elementary transformations of stable parabolic con-
nections (cf. §3). Since such transformations induce the identity on the moduli
space of the monodromy representations via Riemann-Hilbert correspondence,
we can conclude that the transformations preserve the vector field as in (27).
(This notion is equivalent to the rational gauge transformation or Schlesinger
transformation of connections). In §3, we will list up these kinds of Bäcklund
transformations.

As for Painlevé V I equations, the group of the Bäcklund transformation
in the above sense is isomorphic to the affine Weyl group W (D(1)

4 ) of type
D

(1)
4 , (cf. e.g. [O4], [IIS0]). The affine Weyl group W (D(1)

4 ) is generated by 5
reflections si, i = 0, 1, . . . , 4 corresponding to the simple roots in the Dynkin
diagram of type D(1)

4 (see Figure 3). A natural faithful affine action of W (D(1)
4 )
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to Λ4 = C4 � λ = (λj) can be given by

si(λj) = (−1)δijλj , i = 1, . . . , 4

s0(λi) = λi −
1
2

(
4∑

k=1

λk

)
+

1
2
.

(28)

Recalling the identification of the family Mα′β
4 (OP1(−1)) −→ T ′

4 × Λ4

with the family of Okamoto-Painlevé pairs S −→ T ′
4×Λ4, one can see that the

actions of W (D(1)
4 ) in (28) can be lifted to birational actions of the total space

of the family π : S −→ T ′
4 × Λ, that is, for each s ∈ W (D(1)

4 ), there exists a
commutative diagram

(29)

S s̃· · · → S�π

�π

T ′
4 × Λ4

1×s−−−−→ T ′
4 × Λ4.

Moreover it is known [O4] that the actions preserve the Painlevé vector field vi

in (25). That is, for each s ∈W (D(1)
4 ), we have

(30) s̃∗(vi(λ)) = vi(s(λ)) for 1 ≤ i ≤ 4.

In our framework, it is easy to give an intrinsic reason why s̃i for 1 ≤ i ≤ 4
preserve the vector field. It is simply because these come from elementary
transformations. However, the origin of the transformation s̃0 is still mysteri-
ous, and we cannot see any simple reason why s̃0 preserves the vector field.

As some experts suggested to us, it may be plausible to believe that s̃0 is
induced by Laplace transformations of the stable connection. (The authors were
informed by H. Sakai that M. Mazzocco gives some explanations for this fact
on this line). For simplicity, let us call the Laplace transform of the original
connection the dual of the connection. In general, the dual of logarithmic
connections of rank 2 becomes a connection of higher rank which may not be
logarithmic, so it is not so easy to identify the dual of the connection to the
original one. Only in the case of n = 4 (Painlevé case), we may miraculously
identify the original connection with its dual or a further transformed object,
so we have the extra Bäcklund transformation like s̃0. It may be reasonable to
consider the original connection and its dual at once. Then we may include the
Laplace transformation as a part of the Bäcklund transformations.

After we have finished the first version of this paper, Philip Boalch in-
formed us that he can obtain s̃0 using the method of [Boa] as follows. One
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can embed a rank 2 connection with 4-regular singular points over P1 into a
rank 3 reducible connection. Then there is a simple operation for shifting the
eigenvalues of the rank 3 connection. For a special value of shifting, one can
obtain a rank 2 subconnection or a rank 1 subconnection in the shifted rank 3
connection, then take the rank 2 connection or the quotient of rank 1 subcon-
nection. This gives a transformation from a rank 2 connection to another rank
2 connection whose transformation on λ gives s0. Note that this transforma-
tion only works for the case of n = 4. By using this result and another result
in [Boa], he also gave a different proof of a result in [IIS0].

Besides these stories, we should mention about the relation of the bira-
tional geometry and the Bäcklund transformations. As Saito and Umemura
pointed out in [SU], Bäcklund transformations of Painlevé equations which are
reflections with respect to roots of an affine root system are nothing but flops
corresponding to (−2)-rational curves in Okamoto spaces of initial conditions.

From the definition of elementary transformations, we can easily see that
the locus of indeterminacy of birational transformations correspond to the sub-
varieties which are contracted by the Riemann-Hilbert correspondence. Since
the Riemann-Hilbert correspondence gives a simultaneous symplectic resolu-
tion of the singularities of the family φn : Rn −→ T ′

n × An, it is now obvious
that those Bäcklund transformations are flops. (For definition and fundamental
facts on flops, see [§6,1 [KM]]).

1.7.1. Bäcklund transformations and the Riemann-Hilbert corre-
spondence

In [IIS0], we have proved that all of the Bäcklund transformations in
W (D(1)

4 ) on Mα
4 (L) −→ T ′

4 × Λ4 induce essentially identity on the moduli
space R4 after we take a finite quotient of An. (Note that this is nontrivial
only for s̃0). Therefore in this sense, the group of the Bäcklund transformations
W (D(1)

4 ) can be considered as the Galois group of the monodromy representa-
tions.

§1.8. Related works

It is worthwhile to discuss about some works related to this paper and to
clarify what are really new in this paper.

The notion of (t,λ)-parabolic connection on P1 is essentially introduced
by Arinkin-Lysenko in [AL1] as a quasiparabolic SL2-bundle. In [AL1], they
also discussed about the moduli problem for quasiparabolic SL2-bundles and
consider the moduli space as an algebraic stack. In the case of n = 4, under
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Root system D
(1)
4

α0

α1 α2

α3 α4

Figure 3. Dynkin diagram D
(1)
4

the assumption that λ is generic (cf. Definition 1.1), they give an explicit
description of the coarse moduli space. Moreover, in [AL2], by using the explicit
descriptions of the moduli spaces, they describe the group of automorphisms
of the family of moduli spaces by using an explicit geometry of surfaces. Later,
in [A], Arinkin introduced a notion of ε-bundle, generalizing Deligne-Simpson’s
τ -connections in [Sim1]. Again under the assumption that λ is generic Arinkin
gives a compactification of the moduli space of quasiparabolic SL2-bundles.
Although the basic notions are introduced in their works, from the viewpoint
of geometric background for Painlevé or Garnier equations, it is really necessary
to construct the moduli spaces even for special λ. For example, as we pointed
out in 1.7 (cf. [SU]), some Bäcklund transformations of these equations are
induced by flops in the terminology of the modern birational geometry and the
center of flops are lying over the special parameter λ.

In this sense, the advantage of introducing the notion of the stability for
(t,λ)-parabolic connection is obvious. In the GIT setting ([Mum]), despite
considerable careful computations of stability, we can construct the fine mod-
uli space of stable objects as smooth irreducible schemes even for special λ.
Moreover, we introduce the notion of parabolic φ-connections which is a gen-
eralization of the notion of ε-connections due to Arinkin-Deligne-Simpson and
define the stability for them. One can understand the powers of these notions
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in Theorem 2.1 and Theorem 2.2.
The construction of the family of moduli spaces in (2) of SL2(C)-

monodromy representations are essentially due to Simpson [Sim2]. However
a systematic treatment of nonlinear monodromies of the braid group is given
by Dubrovin and Mazzocco [DM] for a special case of n = 4, and by Iwasaki
[Iw3], [Iw4] for the general case of n = 4, and our construction of the family in
this paper is taking care of the action of nonlinear monodromies of the braid
groups to the moduli spaces.

Next, we would like to emphasize that only after we establish the natural
setting in 1.2 it becomes possible to give a precise formulation of Hilbert’s 21st
problem for these cases. In our setting, the affirmative answer to the problem
is equivalent to the surjectivity of the Riemann-Hilbert correspondences RHn

and RHt,λ in (3) and (5). As one can imagine easily, only reasonable result
which one can apply to proof of the surjectivity is Deligne’s theorem in [Del70].

Moreover the properness of RHt,λ is also a new result. In the process
of the proof, we need some analysis of the contraction induced by RHt,λ and
a technical lemma due to Professor A. Fujiki. The symplectic nature of the
moduli spaces is discussed by many authors. (See for example [Go], [Iw1] [Iw2]).
Iwasaki gave intrinsic symplectic structures on the moduli spaces of irreducible
logarithmic connections on a nonsingular complete curve and show that they
are obtained as the pullback of the symplectic structures on the moduli space
of the irreducible representations.

Again, in this paper, we extended the symplectic structure to the whole
moduli space of the stable parabolic connections and the smooth part of the
moduli of the representations. Then one can show that these symplectic struc-
tures are identified via RHt,λ. Our proof here is based on some complexes
of sheaves whose hypercohomologies describe the tangent spaces to the mod-
uli spaces. Together with the surjectivity and the properness of RHt,λ these
results can be understood as RHt,λ gives an analytic symplectic resolution
of singularities in the sense of [Bea]. These kinds of viewpoints seem to be
new, and this gives a clear explanation that a simple reflection in the group of
Bäcklund transformations is nothing but a flop with respect to this resolution.

The derivation of Painlevé equations from the isomonodromic deformation
of the linear connections is well-known. (See for example [JMU], [JM] and
[O3]). However in most cases, one first takes a normalized linear connection
written in certain coordinate systems and then writes up the Painlevé equations
as the compatibility conditions for the extended linear connections. For a
normalization, one has to assume that the vector bundle E of rank 2 and
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degree 0 is isomorphic to OP1 ⊕OP1 , which is not true in general. In fact, the
natural subscheme

(31) Zt = {(E,∇, ϕ, l) ∈Mα
n (t,λ, L);E �
 OP1 ⊕OP1}

of Mα
n (t,λ, L) is a non-empty divisor. We note that the isomonodromic flow

starting from some point p ∈Mα
n (t0,λ, L) \ Zt0 does not stay inside the open

subset
⋃

t (Mα
n (t,λ, L) \ Zt), that is, the flow intersects with Zt for some t.

Therefore, in order to prove the Painlevé property of Painlevé VI or Garnier
equations completely, we have to consider the whole space Mα

n (t,λ, L) and the
properness of the Riemann-Hilbert correspondence is essential for our proof of
Painlevé property. (For a discussion of various definitions of Painlevé property,
see [IISA]. Moreover, for some proofs of analytic Painlevé property of isomon-
odromic deformations, see [Mal] and [Miw]). Moreover most former approaches
avoid dealing with the case when λ is special, because one has to introduce the
notion of the stability of the parabolic connections to obtain a good moduli
space which is smooth and Hausdorff.

In our framework, we can also discuss the Painlevé or Garnier equations for
special λ in a natural framework. Interestingly enough, the classical solutions
for these equations can be derived from the family of subvarieties contracted
by RHt,λ. Now, the geometric meaning of these facts becomes very clear. (For
more detailed treatment in Painlevé V I case, see [W], [STe] and [SU]).

We should mention that Nakajima [N] obtained a smooth moduli space of
stable parabolic connections as the moduli space of filtered regular D-modules
by the technique of the hyper-Kähler quotients of moment maps. Then he
showed that the moduli space is diffeomorphic to the moduli space of parabolic
Higgs bundles. Nitsure [Ni] also constructed the moduli space of the stable
logarithmic connection without parabolic structures in GIT setting.
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§2. Moduli Spaces of Stable Parabolic Connections on
P1 and Their Compactifications

§2.1. Parabolic connections on P1

Let n ≥ 3 and set

Tn = {(t1, . . . , tn) ∈ (P1)n | ti �= tj , (i �= j)},(32)

Λn = {λ = (λ1, . . . , λn) ∈ Cn}.(33)

Fixing a data (t,λ) = (t1, . . . , tn, λ1, . . . , λn) ∈ Tn × Λn, we define a reduced
divisor on P1 as

(34) D(t) = t1 + · · ·+ tn.

Moreover we fix a line bundle L on P1 with a logarithmic connection ∇L :
L −→ L⊗ Ω1

P1(D(t)).

Definition 2.1. A (rank 2) (t,λ)-parabolic connection on P1 with the
determinant (L,∇L) is a quadruplet (E,∇, ϕ, {li}1≤i≤n) which consists of

(1) a rank 2 vector bundle E on P1,

(2) a logarithmic connection ∇ : E −→ E ⊗ Ω1
P1(D(t))

(3) a bundle isomorphism ϕ : ∧2E
�−→ L

(4) one dimensional subspace li of the fiber Eti
of E at ti, li ⊂ Eti

, i = 1, . . . , n,
such that

(a) for any local sections s1, s2 of E,

ϕ⊗ id(∇s1 ∧ s2 + s1 ∧∇s2) = ∇L(ϕ(s1 ∧ s2)),
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(b) li ⊂ Ker(resti
(∇) − λi), that is, λi is an eigenvalue of the residue

resti
(∇) of ∇ at ti and li is a one-dimensional eigensubspace of

resti
(∇).

Definition 2.2. Two (t,λ)-parabolic connections (E1,∇1, ϕ,

{li}1≤i≤n) (E2,∇2, ϕ
′, {l′i}1≤i≤n) on P1 with the determinant (L,∇L) are iso-

morphic to each other if there is an isomorphism σ : E1
∼−→ E2 and c ∈ C×

such that the diagrams

(35)

E1
∇1−−−−→ E1 ⊗ Ω1

P1(D(t))

σ

�∼= ∼=
�σ⊗id

E2
∇2−−−−→ E2 ⊗ Ω1

P1(D(t))

∧2
E1

ϕ−−−−→∼=
L

∧2σ

�∼= c

�∼=∧2 E2
ϕ′

−−−−→∼=
L

commute and (σ)ti
(li) = l′i for i = 1, . . . , n.

§2.2. The set of local exponents λ ∈ Λn

Note that a data λ = (λ1, . . . , λn) ∈ Λn 
 Cn specifies the set of eigenval-
ues of the residue matrix of a connection ∇ at t = (t1, . . . , tn), which will be
called a set of local exponents of ∇.

Definition 2.3. A set of local exponents λ = (λ1, . . . , λn) ∈ Λn is
called special if

(1) λ is resonant, that is, for some 1 ≤ i ≤ n,

(36) 2λi ∈ Z,

(2) or λ is reducible, that is, for some (ε1, . . . , εn) ∈ {±1}n

(37)
n∑

i=1

εiλi ∈ Z.

If λ ∈ Λn is not special, λ is said to be generic.

Lemma 2.1. Let (E,∇, ϕ, l = {li}) be a (t,λ)-parabolic connection on
P1 with the determinant (L,∇L). Assume that eigenvalues of resti

(∇L) are
integers for 1 ≤ i ≤ n. Suppose that there exists a subline bundle F ⊂ E

such that ∇F ⊂ F ⊗ Ω1
P1(D(t)). Then λ is reducible, that is, λ satisfies the

condition (37).
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Proof (Cf. [Proposition 1.1, [AL1]]). Since we have a horizontal bundle
isomorphism ϕ : ∧2E 
 L with respect to the connections, the eigenvalues
of the residue matrix resti

∇ at ti are given by λi and resti
(∇L) − λi. Since

∇F ⊂ F ⊗ Ω1
P1(D(t)), the subspace Fti

⊂ Eti
is an eigenspace of resti

(∇).
Therefore the eigenvalue of resti

(∇|F ) is congruent to εiλi modulo Z for εi = 1
or −1. The residue theorem says that

n∑
i=1

resti
(∇|F ) ≡ − degF ≡ 0 mod Z

hence we have the lemma.

Remark 2.1. For n = 4, the data λ ∈ Λ4 is special if and only if λ ∈ Λ4

lies on a reflection hyperplane of a reflection s ∈W (D(1)
4 ).

§2.3. Parabolic degrees

Let us fix a series of positive rational numbers α = (α1, α2, . . . , α2n), which
is called a weight, such that

(38) 0 ≤ α1 < α2 < · · · < αi < · · · < α2n < α2n+1 = 1.

For a (t,λ)-parabolic connection on P1 with the determinant (L,∇L), we can
define the parabolic degree of (E,∇, ϕ, l) with respect to the weight α by

pardegαE = pardegα(E,∇, ϕ, l) = degE +
n∑

i=1

(α2i−1 dimEti
/li + α2i dim li)

(39)

= degL+
n∑

i=1

(α2i−1 + α2i).

Let F ⊂ E be a rank 1 subbundle of E such that ∇F ⊂ F ⊗ Ω1
P1(D(t)). We

define the parabolic degree of (F,∇|F ) by

(40) pardegα F = degF +
n∑

i=1

(α2i−1 dimFti
/li ∩ Fti

+ α2i dim li ∩ Fti
)

Definition 2.4. Fix a weight α. A (t,λ)-parabolic connection
(E,∇, ϕ, l) on P1 with the determinant (L,∇L) is said to be α-stable (resp.
α-semistable) if for every rank-1 subbundle F with ∇(F ) ⊂ F ⊗ Ω1

P1(D(t))

(41) pardegα F <
pardegαE

2
,

(
resp. pardegα F ≤

pardegαE

2

)
.

(For simplicity, “α-stable” will be abbreviated to “stable”).
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We define the coarse moduli space by

(42)

Mα
n (t,λ, L) =

{
(E,∇, ϕ, l); an α-stable (t,λ)-parabolic connection

with the determinant (L,∇L)

}
/isom.

§2.4. Stable parabolic φ-connections

If n ≥ 4, the moduli space Mα
n (t,λ, L) never becomes projective nor com-

plete. In order to obtain a compactification of the moduli space Mα
n (t,λ, L),

we will introduce the notion of a stable parabolic φ-connection, or equivalently,
a stable parabolic Λ-triple. Again, let us fix (t,λ) ∈ Tn×Λn and a line bundle
L on P1 with a connection ∇L : L→ L⊗ Ω1

P1(D(t)).

Definition 2.5. The data (E1, E2, φ,∇, ϕ, {li}n
i=1) is said to be a (t,λ)-

parabolic φ-connection of rank 2 with the determinant (L,∇L) if E1, E2 are
rank 2 vector bundles on P1 with degE1 = degL, φ : E1 → E2, ∇ : E1 →
E2 ⊗Ω1

P1(D(t)) are morphisms of sheaves, ϕ :
∧2

E2
∼−→ L is an isomorphism

and li ⊂ (E1)ti
are one dimensional subspaces for i = 1, . . . , n such that

(1) φ(fa) = fφ(a) and ∇(fa) = φ(a)⊗ df + f∇(a) for f ∈ OP1 , a ∈ E1,

(2) (ϕ⊗id)(∇(s1)∧φ(s2)+φ(s1)∧∇(s2)) = ∇L(ϕ(φ(s1)∧φ(s2))) for s1, s2 ∈ E1

and

(3) (resti
(∇)− λiφti

)|li = 0 for i = 1, . . . , n.

Definition 2.6. Two (t,λ) parabolic φ-connections (E1, E2, φ,∇, ϕ,
{li}), (E′

1, E
′
2, φ

′,∇′, ϕ′, {l′i}) are said to be isomorphic to each other if there
are isomorphisms σ1 : E1

∼−→ E′
1, σ2 : E2

∼−→ E′
2 and c ∈ C \ {0} such that

the diagrams

E1
φ−−−−→ E2

σ1

�∼= ∼=
�σ2

E′
1

φ′
−−−−→ E′

2

E1
∇−−−−→ E2 ⊗ Ω1

P1(D(t))

σ1

�∼= ∼=
�σ2⊗id

E′
1

∇′
−−−−→ E′

2 ⊗ Ω1
P1(D(t))

∧2
E2

ϕ−−−−→∼=
L

∧2σ2

�∼= c

�∼=∧2E′
2

ϕ′
−−−−→∼=

L

commute and (σ1)ti
(li) = l′i for i = 1, . . . , n.

Remark 2.2. Assume that two vector bundles E1, E2 and morphisms
φ : E1 → E2, ∇ : E1 → E2 ⊗ Ω1

P1(D(t)) satisfying φ(fa) = fφ(a), ∇(fa) =
φ(a)⊗ df + f∇(a) for f ∈ OP1 , a ∈ E1 are given. If φ is an isomorphism, then
(φ⊗ id)−1 ◦ ∇ : E1 → E1 ⊗ Ω1

P1(D(t)) becomes a connection on E1.
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Fix rational numbers α′
1, α

′
2, . . . , α

′
2n, α

′
2n+1 satisfying

0 ≤ α′
1 < α′

2 < · · · < α′
2n < α′

2n+1 = 1

and positive integers β1, β2. Setting α′ = (α′
1, . . . , α

′
2n),β = (β1, β2), we obtain

a weight (α′,β) for parabolic φ-connections.

Definition 2.7. Fix a sufficiently large integer γ. A parabolic φ-
connection (E1, E2, φ,∇, ϕ, {li}n

i=1) is said to be (α′,β)-stable (resp. (α′,β)-
semistable) if for any subbundles F1 ⊂ E1, F2 ⊂ E2 satisfying φ(F1) ⊂ F2,
∇(F1) ⊂ F2 ⊗ Ω1

P1(D(t)) and (F1, F2) �= (E1, E2), (0, 0), the inequality

β1(deg F1(−D(t))) + β2(deg F2 − γ rank(F2)) +
Pn

i=1 β1(α
′
2i−1d2i−1(F1) + α′

2id2i(F1))

β1 rank(F1) + β2 rank(F2)

<

(resp. ≤)

β1(deg E1(−D(t))) + β2(deg E2 − γ rank(E2)) +
Pn

i=1 β1(α
′
2i−1d2i−1(E1) + α′

2id2i(E1))

β1 rank(E1) + β2 rank(E2)

holds, where d2i−1(F ) = dim((F1)ti
/li ∩ (F1)ti

), d2i(F1) = dim((F1)ti
∩ li),

d2i−1(E1) = dim((E1)ti
/li)(= 1) and d2i(E1) = dim li(= 1).

Define the coarse moduli space by

(43) Mα′β
n (t,λ, L)

:=

{
(E1, E2, φ,∇, ϕ, {li});

a (α′,β)-stable (t,λ)-parabolicφ-connection
with the determinant (L,∇L)

}
/isom.

For a given weight (α′,β) and 1 ≤ i ≤ 2n, define a rational number αi by

(44) αi =
β1

β1 + β2
α′

i.

Then α = (αi) satisfies the condition

(45) 0 ≤ α1 < α2 < · · · < α2n <
β1

(β1 + β2)
< 1,

hence α defines a weight for parabolic connections. It is easy to see that if we
take γ sufficiently large (E,∇, ϕ, {li}) is α-stable if and only if the associated
parabolic φ-connection (E,E, idE ,∇, ϕ, {li}) is stable with respect to (α′,β).
Therefore we see that the natural map

(46) (E,∇, ϕ, {li}) �→ (E,E, idE ,∇, ϕ, {li})
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induces an injection

(47) Mα
n (t,λ, L) ↪→Mα′β

n (t,λ, L).

Conversely, assuming that β = (β1, β2) are given, for a weight α = (αi) sat-
isfying the condition (45), we can define α′

i = αi
β1+β2

β1
for 1 ≤ i ≤ 2n. Since

0 ≤ α′
1 < α′

2 < · · · < α′
2n = α2n

β1+β2
β1

< 1, (α′,β) give a weight for parabolic
φ-connections.

Moreover, considering the relative setting over Tn×Λn, we can define two
families of the moduli spaces

(48) πn : Mα′β
n (L) −→ Tn × Λn, πn : Mα

n (L) −→ Tn × Λn

such that the following diagram commutes;

(49)

Mα
n (L)

ι
↪→ Mα′β

n (L)

πn

� �πn

Tn × Λn Tn × Λn.

Here the fibers of πn and πn over (t,λ) ∈ Tn × Λn are

(50) π−1
n (t,λ) = Mα(t,λ, L), π−1

n (t,λ) = Mα′β(t,λ, L).

§2.5. The existence of moduli spaces and their properties

The following theorem is one of our fundamental results in this article
which shows that the moduli spaces Mα′β

n (t,λ, L) and Mα
n (t,λ, L) exist and

they have good properties.

Theorem 2.1.

(1) Fix a weight β = (β1, β2). For a generic weight α′, πn : Mα′β
n (L) −→ Tn×

Λn is a projective morphism. In particular, the moduli space Mα′β(t,λ, L)
is a projective algebraic scheme for all (t,λ) ∈ Tn × Λn.

(2) For a generic weight α, πn : Mα
n (L) −→ Tn × Λn is a smooth morphism

of relative dimension 2n − 6 with irreducible closed fibers. Therefore, the
moduli space Mα

n (t,λ, L) is a smooth, irreducible algebraic variety of di-
mension 2n− 6 for all (t,λ) ∈ Tn × Λn.
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The proof of Theorem 2.1 can be separated into 3 parts. The construction
of the coarse moduli space of the parabolic φ-connections over a projective
smooth curve will be treated in Section 5. We deal with the relative settings
and prove the projectivity of the morphism πn : Mα′β

n (L) −→ Tn × Λn. (Cf.
Theorem 5.2). Since we have a natural embedding Mα

n (L) ↪→ Mα′β
n (L), the

existence of the moduli space Mα
n (L) easily follows from the first assertion. The

smoothness of the morphism πn : Mα
n (L) −→ Tn×Λn follows from Proposition

6.2. Finally, the irreducibility of the moduli space Mα
n (t,λ, L) is proved in

Section 9, (cf. Proposition 9.1), based on the irreducibility of the moduli space
R(Pn,t)a proved in Proposition 8.1.

Remark 2.3.

(1) As we mentioned in Introduction, we sometimes extend the base by an
étale covering T ′

n −→ Tn in Theorem 2.1, which causes no change in the
proof.

(2) The structure of moduli spaces Mα
n (L) and Mα′β

n (L) may depend on the
weight α and degL.

(3) The moduli space Mα
n (L) is a fine moduli space. In fact, we have the

universal family over the moduli space Mα
n (L). See §5.

(4) When we describe the explicit algebraic or geometric structure of the mod-
uli spaces Mα

n (L) and Mα′β
n (L), it is convenient to fix a determinant line

bundle (L,∇L). As a typical example of the determinant bundle is

(51) (L,∇L) = (OP1(−tn), d)

where the connection is given by

(52) ∇L(z − tn) = d(z − tn) = (z − tn)⊗ dz

z − tn
.

Here z is an inhomogeneous coordinate of P1 = SpecC[z] ∪ {∞}. For this
(L,∇L) = (OP1(−tn), d), we set

Mα
n (t,λ,−1) = Mα

n (t,λ, L), (resp. Mα′β
n (t,λ,−1) = Mα′β

n (t,λ, L) ).
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§2.6. The case of n = 4 (Painlevé V I case)

We will deal with the case of n = 4 which corresponds to Painlevé V I
equation. Let us fix a sufficiently large integer γ and take a weight (α′,β)
for parabolic φ-connections where α′ = (α′

1, . . . , α
′
8), β = (β1, β2), γ and fix

(t,λ) = (t1, . . . , t4, λ1, . . . , λ4) ∈ T4 × Λ4.
Then the corresponding weight α = (α1, . . . , α8) for parabolic connections

can be given by

αi = α′
i

β1

β1 + β2
1 ≤ i ≤ 8.

Later, for simplicity, we will assume that β1 = β2, hence α = α′/2. We also
assume (L,∇l) = (OP1(−tn), d) and in this case, we set

Mα′
4 (t,λ,−1) = Mα′β

4 (t,λ, L), Mα′
4 (−1) = Mα′β

4 (L).

By Theorem 2.1, we can obtain the commutative diagram:

(53)

Mα
4 (−1)

ι
↪→ Mα′

4 (−1)

π4

� �π4

T4 × Λ4 T4 × Λ4,

such that π−1
4 ((t,λ)) 
 Mα

4 (t,λ,−1) and π−1
4 (t,λ) 
 Mα′

4 (t,λ,−1). (Note
that α = α′/2). From Theorem 2.1, we see that for a generic weight α′, π4

is a projective morphism and π4 is a smooth morphism of relative dimension
2. In Part II, [IIS2], we will give detailed descriptions of the moduli spaces
Mα

4 (t,λ,−1) and Mα′
4 (t,λ,−1). The following theorem shows that our family

of the moduli space Mα′
4 (−1) −→ T4 × Λ4 can be identified with the family

of Okamoto-Painlevé pairs constructed by Okamoto [O1]. (See also [Sakai],
[STT]). Note also that Arinkin and Lysenko [AL1] give isomorphisms between
their moduli spaces and Okamoto spaces for generic λ.

Theorem 2.2 (Cf. [IIS2]).

(1) For a suitable choice of a weight α′, the morphism

π4 : Mα′
4 (−1) −→ T4 × Λ4

is projective and smooth. Moreover for any (t,λ) ∈ T4 × Λ4 the fiber
π−1

4 (t,λ) := Mα′
4 (t,λ,−1) is irreducible, hence a smooth projective sur-

face.
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(2) Let D = Mα′
4 (−1) \Mα

4 (−1) be the complement of Mα
4 (−1) in Mα′

4 (−1).
(Note that α = α′/2). Then D is a flat reduced divisor over T4 × Λ4.

(3) For each (t,λ), set

St,λ := π−1
4 (t,λ) := Mα′

4 (t,λ,−1).

Then St,λ is a smooth projective surface which can be obtained by blowing-
ups at 8 points of the Hirzebruch surface F2 = Proj(OP1(−2)⊕OP1) of de-
gree 2. The surface has a unique effective anti-canonical divisor −KSt,λ

=
Yt,λ whose support is Dt,λ. Then the pair

(54) (St,λ,Yt,λ)

is an Okamoto-Painlevé pair of type D(1)
4 . That is, the anti-canonical divi-

sor Yt,λ consists of 5-nodal rational curves whose configuration is same as
Kodaira–Néron degenerate elliptic curves of type D(1)

4 (=Kodaira type I∗0 ).
Moreover we have (Mα

4 (−1))t,λ = (Mα′
4 (−1))t,λ \ Yt,λ.

§3. Elementary Transformation of Parabolic Connections

In this section, we will give basic definitions and some calculations of ele-
mentary transformations of stable parabolic connections.

§3.1. Definition

Let us fix a line bundle L with a connection ∇L : L −→ L ⊗ Ω1
P1(D(t))

and we set

(55) µi = resti
(∇L) for 1 ≤ i ≤ n.

The residue theorem implies that
∑n

i=1 µi = − degL ∈ Z.
For each i, 1 ≤ i ≤ n, we set L(ti) = L⊗OP1(ti), L(−ti) = L⊗OP1(−ti)

and so on. We will define two elementary transformations which induce mor-
phisms of moduli spaces.

Elm+
ti

: Mα
n (t,λ, L)−→Mα

n (t,λ′, L(ti))(56)

Elm−
ti

: Mα
n (t,λ, L)−→Mα

n (t,λ”, L(−ti))(57)

Let (E,∇E, ϕ, {lj}1≤j≤n) be a (t,λ)-parabolic connection on P1 with the de-
terminant (L,∇L). Note that the eigenvalues of resti

(∇) are given by the
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following table.

(58) E :

 t1 t2 · · · tn−1 tn ∧2E

lj = l+j λ1 λ2 · · · λn−1 λn L

Etj
/lj 
 l−j µ1 − λ1 µ2 − λ2 · · · µn−1 − λn−1 µn − λn


3.1.1. Definition of Elm+

ti

Take a subsheaf Fi as
(59)
E(−ti) ⊂ Fi ⊂ E such that li = Fi/E(−ti) ⊂ Eti

and li(ti) = F (ti)/E

and define

(60) E+
i = Fi(ti) = Ker [E(ti) −→ E(ti)/F (ti) = E(ti)ti

/li(ti)] .

Since li is an eigenspace of resti
(∇E), it is easy to see that ∇E induces a

connection

(61) ∇E+
i

: E+
i −→ E+

i ⊗ Ω1
P1(D(t))

and ϕ : ∧2E −→ L induces a horizontal isomorphism ϕ′ : ∧2E+
i −→ L(ti).

Moreover, one can see that the subspace l′i = Eti
/li ⊂ (E+

i )ti
defines a new

parabolic structure {l′j}n
j=1 with l′j = lj for j �= i. Now we define

(62) Elm+
ti
(E) = (E+

i ,∇E+
i
, ϕ′, {l′i}),

which is called an upper elementary transformation of E at ti. Since l′i 

Eti

/li, (E+
i )ti

/l′i 
 li ⊗ O(ti), we see that (resti
(∇))|l′i = µi − λi,

(resti
(∇))|(E+

i )ti
/l′i

= −1+λi. Therefore the eigenvalues of the residues of ∇E+
i

on Elm+
ti
(E) = E+

i and the determinant ∧2E+
i are given as follows.

(63) Elm+
ti
(E) :

 tj t1 · · · ti · · · tn ∧2E+
i

l′j = l
′+
j λ1 · · · µi − λi · · · λn L(ti)

l
′−
j µ1 − λ1 · · · −1 + λi · · · µn − λn

 .

3.1.2. Definition of Elm−
ti

By using (59) subsheaf Fi ⊂ E we also define a filtration of sheaves

(64) E−
i = Fi ⊃ E(−ti) ⊃ Fi(−ti)

which defines a parabolic connection (E−
i ,∇E−

i
, ϕ′, l′) such that

l′i = E(−ti)/Fi(−ti) = (Eti
/li)⊗OP1(−ti).
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This is called a lower elementary transformation of E at ti and will be denoted
by

Elm−
ti

(E) := (E−
i ,∇E−

i
, ϕ′, l′).

Note that one has a horizontal isomorphism ϕ′ : ∧2E−
i

�−→ L(−ti) and the
eigenvalues of the residues of ∇E−

i
on Elm−

ti
(E) = E−

i are given as follows.

(65) Elm−
ti

(E) :

 t1 · · · ti · · · tn ∧2E−
i

l′j = l
′+
j λ1 · · · 1 + µi − λi · · · λn L(−ti)

l
′−
j µ1 − λ1 · · · λi · · · µn − λn

 .

3.1.3. Tensoring a line bundle L1

Let L1 be a line bundle with a logarithmic connection ∇L1 and set νj =
restj

(∇L1) for 1 ≤ j ≤ n. We can define a transformation ⊗(L1,∇L1) by

(66) (E,∇E, ϕ, {lj}) �→ (E ⊗ L1,∇E⊗L1 , ϕ
′, {lj ⊗ L1})

which induces a morphism of moduli spaces

(67) ⊗(L1,∇L1) : Mα
n (t,λ, L) −→Mα

n (t,λ′, L⊗ (L1)⊗2).

The set of eigenvalues of new connection can be given as follows.

(68)

E⊗L1 :

 t1 · · · ti · · · tn ∧2(E ⊗ L1)
l′j = l

′+
j ν1 + λ1 · · · νi + λi · · · νn + λn L⊗ (L1)⊗2

l
′−
j ν1 + µ1 − λ1 · · · νi + µi − λi · · · νn + µn − λn

 .

3.1.4. Ri: Interchanging the eigenspaces
Under the assumption

(69) λi �= µi − λi,

we see that there are unique eigenspaces l+i = li and l−i of resti
(∇E) with the

eigenvalues λi and µi − λi respectively. Interchanging the eigenspaces l+i and
l−i and keeping the other eigenspaces lj j �= i unchanged, we obtain a new
parabolic connection

(70) Ri(E) = (E,∇E, ϕ, {l′i}).

If λi = µi − λi, let us define Ri(E) = (E,∇E, ϕ, {li}), that is, Ri = Id.
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The set of eigenvalues of new connection can be given as follows.

(71) Ri(E) :

 t1 · · · ti · · · tn ∧2E

l′j = l
′+
j λ1 · · · µi − λi · · · λn L

E−
j,tj
/l′j 
 l

′−
j µ1 − λ1 · · · λi · · · µn − λn

 .

Now assume that resti
(∇L) ∈ Z for all 1 ≤ i ≤ n.

Lemma 3.1. Assume that λ is not reducible (cf. Definition 2.3). Then
Ri induces an isomorphism

(72) Ri : Mα
n (t,λ, L) �−→Mα

n (t,λ′, L).

Proof. Since λ is not reducible, any (E,∇E , ϕ, {li}) ∈Mα
n (t,λ, L) are ir-

reducible (Lemma 2.1), so is Ri(E). In particular Ri(E) is α-stable. Therefore
it induces a morphism of moduli spaces. Moreover it is obvious that R2

i = Id,
so it must be an isomorphism.

Later we will extend Ri a birational map of the moduli spaces.

§3.2. Birational transformations arising from elementary
transformations

Definition 3.1. Assume that α is generic. An affine birational trans-
formation of the family of moduli spaces πn : Mα

n (L) −→ T ′
n × Λn is a pair

of maps (s̃, s) consisting of a birational map s̃ : Mα
n (L) · · · −→Mα

n (L) and an
affine transformation s : Λn −→ Λn such that the following diagram commutes:

(73)

Mα
n (L)

s̃· · · → Mα
n (L)�πn

�πn

T ′
n × Λn

1×s−−−−→ T ′
n × Λn.

3.2.1. The group BLn

Now we fix a determinant line bundle (L,∇L) = (OP1(−tn), d) as in Re-
mark 2.3 and consider the family of the moduli spaces πn : Mα

n (OP1(−tn)) −→
T ′

n × Λn. Let ei ∈ Λn be the i-th standard base of Λn 
 Cn and set
λ = (λ1, . . . , λn) ∈ Λn. We define a group BLn generated by the following
affine automorphisms of Λn.
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(74)

t+i (λ) = λ + ei = (λ1, . . . , λi + 1, . . . , λn)

t+i,j(λ) = λ +
1
2
(ei + ej) =

(
λ1, . . . , λi +

1
2
, . . . , λj +

1
2
, . . . , λn

)
t−i,j(λ) =

(
λ1, . . . ,−λi +

1
2
, . . . ,−λj +

1
2
, . . . , λn

)
(1 ≤ i < j ≤ n− 1)

t−i,n(λ) =
(
λ1, . . . ,−λi +

1
2
, . . . , . . . , . . . ,−λn +

3
2

)
ri(λ) = (λ1, . . . ,−λi, . . . , λn) (1 ≤ i ≤ n− 1)

rn(λ) = (λ1, . . . , λi, . . . , 1− λn).

We can easily see the following relations.

(75) t+i = (t−i,jri)
2, t+i,j = t−i,jrirj .

Therefore we can define the group BLn as

(76) BLn = 〈t−i,j , (1 ≤ i < j ≤ n), rk, (1 ≤ k ≤ n)〉.

In [IIS2], we will show the following

Proposition 3.1. Every element s of the group BLn of affine transfor-
mations of Λn can be lifted to a birational transformation

(77) s̃ : Mα
n (OP1(−tn)) · · · −→Mα

n (OP1(−tn))

such that the pair (s̃, s) becomes an affine birational transformation of the family
of moduli spaces.

§4. Moduli of Representations of Fundamental Groups

§4.1. The family of punctured projective lines and their
fundamental groups

For n ≥ 3, let us consider the space Tn = {(t1, . . . , tn) ∈ (P1)n | ti �=
tj , (i �= j)} and its open subset

(78) Wn = {(t1, . . . , tn) ∈ Cn | ti �= tj , (i �= j)}.

Setting D(t) = t1 + · · ·+ tn for each t = (t1, . . . , tn) ∈ Tn, we denote by

(79) Γn,t := π1(P1 \D(t), ∗),
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t1 t2 tn−1

tn

γ1 γ2 γn−1

γn

∗

Figure 4. Canonical generators of π1(P1 \D(t), ∗).

the fundamental group of P1 \D(t) with the base point ∗ which we take very
near to tn. It is easy to see that Γn,t is generated by γ1, . . . , γn−1, γn in Figure
4 with one relation γ1γ2 · · · γn = 1. This set of generators γ1, . . . , γn is called
canonical generators of Γn,t with respect to the ordered n-points t.

For each i, 1 ≤ i ≤ n, we define a divisor Σn,i of P1 × Tn as

(80) Σn,i = {(z, (t1, . . . , tn)) ∈ P1 × Tn | z = ti }.

Setting Pn :=
(
P1 × Tn

)
\ (∪n

i=1Σn,i) 
 Tn+1, we obtain a natural projection
map which induces a smooth morphism

(81) τn : Pn −→ Tn

whose fiber Pn,t over t = (t1, . . . , tn) is P1 \D(t). The family τn : Pn −→ Tn

in (81) is called the universal family of n-punctured lines.
By the universal covering map T̃n −→ Tn, we can extend the family

(82)

P̃n −−−−→ Pn

τ̃n

� τn

�
T̃n ←−−−− Tn,
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where we set P̃n = Pn ×Tn
T̃n.

Fix a base point t0 ∈ Tn and consider the fundamental group π1(Tn, t0).
The natural n-th projection hn : Tn −→ P1 ((t1, . . . , tn) �→ tn) gives a structure
of fiber bundle over P1 whose fiber at tn =∞ is isomorphic to Wn−1. By using
the exact sequence of fundamental groups for fiber bundles, one can see that
there exists an isomorphism

(83) π1(Tn, t0) 
 π1(Wn−1, t0).

On the other hand, it is well known that the fundamental group π1(Wn−1, t0)
is isomorphic to the pure braid group PBn−1 of n − 1 strings. Therefore the
pure braid group PBn−1 acts on the universal covering T̃n and also the typical
fiber Pn,t0 of τ̃n in (82).

Moreover the fiber bundle π̂n : P̃n −→ T̃n becomes trivial, that is, there
exists a diffeomorphism P̃n

�−→ Pn,t0 × T̃n such that the following diagram
commutes:

(84)
P̃n

�−→ Pn,t0 × T̃n

τ̃n ↘ ↙
T̃n.

By using the isomorphism, for every t̃ ∈ T̃n, we can obtain the isomorphism of
fundamental groups

(85) π1(P̃n,t̃∗) 
 π1(Pn,t0 , ∗) = Γn,t0

as well as the identification of canonical generators γ1, . . . , γn in Figure 4 . The
action of the pure braid group PBn−1 on the fiber bundle π̂n : P̃n −→ T̃n

induces an action on canonical generators of Γn,t0 , which can be written in a
very explicit way. (For example for the case of n = 4, see [Iw3], [Iw4]).

§4.2. The moduli space of SL2(C)-representations

Definition 4.1. An SL2(C)-representation of the fundamental group
Γn,t = π1(Pn,t, ∗) of Pn,t = P1 \D(t) is a group homomorphism

(86) ρ : Γn,t = π1(Pn,t, ∗) −→ SL2(C).

We denote by Hom(Γn,t, SL2(C)) the set of all SL2(C)-representations of Γn,t.
If we fix a set of canonical generators γ1, . . . , γn of Γn,t as in Figure 4, we have
the identification

Hom(Γn,t, SL2(C)) = SL2(C)n−1

given by ρ �→ (ρ(γi)) for i = 1, . . . , n− 1.
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Definition 4.2.

(1) Two SL2(C)-representations ρ1, ρ2 are isomorphic to each other, if and
only if there exists a matrix P ∈ SL2(C) such that

ρ2(γ) = P−1 · ρ2(γ) · P for all γ ∈ π1(P̃n,t, ∗) .

(2) A semisimplification of a representation ρ is an associated graded of the
composition series of ρ.

(3) Two SL2(C)-representation is said to be Jordan equivalent if their semisim-
plifications are isomorphic.

Fixing t0 ∈ Tn and canonical generators γ1, . . . , γn of Γn,t0 and using the
isomorphism in (85), for any t ∈ T̃n, we fix an identification

(87) Hom(Γn,t, SL2(C)) �−→ SL2(C)n−1

by ρ �→ (ρ(γ1), . . . , ρ(γn−1)).
Let Rn−1 denote the affine coordinate ring of SL2(C)n−1 and consider the

simultaneous action of SL2(C) on SL2(C)n−1 as

(M1, · · · ,Mn−1) �→ (P−1M1P, · · · , P−1Mn−1P ).

Hilbert shows that the ring of invariants, denoted by (Rn−1)
Ad(SL2(C)), is

finitely generated. The following lemma is due to Simpson [Sim2],

Lemma 4.1 ([Mum], [Proposition 6.1, [Sim2]]). For any t ∈ T̃n, under
the identification (87), there exists the universal categorical quotient map

Φn : Hom(Γn,t, SL2(C)) 
 SL2(C)n−1 −→ R(Pn,t) = SL2(C)n−1/Ad(SL2(C))

where

(88) R(Pn,t) = Spec[(Rn−1)
Ad(SL2(C))].

The closed points of R(Pn,t) represent the Jordan equivalence classes of
SL2(C)-representations of Γn,t. We say that RPn = R(Pn,t) is the moduli
space of SL2(C)-representation of π1(P1 \ Σ(t)).

Remark 4.1. Lemma 4.1 says that the set R(Pn,t) of Jordan equiva-
lence classes of SL2(C)-representations admits a natural structure of an affine
scheme. Moreover, it is easy to see that the moduli stack of isomorphism classes
of SL2(C)-representations has no natural scheme structure.
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Remark 4.2. It is obvious that the algebraic structure or complex struc-
ture of the moduli space R(Pn,t) does not depend on t ∈ T̃n. However in
order to define the isomorphism Hom(Γn,t, SL2(C)) 
 SL2(C)n−1 we have to
fix canonical generators of Γn,t = π1(P1 \ D(t)). Since the pure braid group
PBn−1 := π1(Tn, ∗) acts on the sets of generators of Γn,t and hence acts on
R(Pn,t). This action is called the topological nonlinear monodromy action of
the pure braid group PBn−1 := π1(Tn, ∗). (Cf. [DM], [Iw3], [Iw4]).

In our case, we can describe the categorical quotient
Spec[(Rn−1)

Ad(SL2(C))] more explicitly. Denote the coordinate ring Rn−1 of
SL2(C)n−1 by

(89) Rn−1 = C[ai, bi, ci, di]/(aidi − bici − 1) i = 1, . . . , n− 1

where Mi =
(

ai bi

ci di

)
.

The following Proposition follows from the fundamental theorem for matrix
invariants. (See [Theorem 2, Theorem 7, [For]] or [Theorem 1.3, [P]]).

Proposition 4.1.

(90) (Rn−1)
Ad(SL2(C)) = C[Tr(Mi1Mi2 · · ·Mik

), 1 ≤ i1, . . . , ik ≤ n− 1].

Moreover, the elements Tr(Mi1Mi2 · · ·Mik
) of degree k ≤ 3 generate the invari-

ant ring, that is,

(91)
(Rn−1)

Ad(SL2(C)) = C[Tr(Mi),Tr(MiMj),Tr(MiMjMk) | 1 ≤ i, j, k ≤ n− 1].

Let us set

(92) ai = Tr(Mi) for 1 ≤ i ≤ n,

which are elements of (Rn−1)
Ad(SL2(C)) and consider the subring An =

C[a1, . . . , an] of (Rn−1)
Ad(SL2(C). We have a natural morphism

(93) pn : R(Pn,t) = Spec
[
(Rn−1)

Ad(SL2(C))
]
−→ An = Spec [An] .

§4.3. Construction of the family of moduli spaces
φn : Rn −→ T ′

n ×An

Fix t0 ∈ Tn as the base point of fundamental group π1(Tn, t0) and fix
canonical generators γ1, . . . , γn of Γn,t0 . Again taking the universal covering
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map T̃n −→ Tn, we can obtain a trivialization (84) and isomorphisms of the
fundamental groups (85). By using the isomorphisms, for each t ∈ T̃n, we
obtain a canonical isomorphism

R(Pn,t) 
 R(Pn,t0).

Moreover the group π1(Tn, t0) 
 PBn−1 acts on the variety R(Pn,t0) as the
group of nonlinear monodromies and hence defines the action on the product
R(Pn,t0)×T̃n. Define the subgroup Γn−1 of π1(Tn, t0) as a kernel of the natural
homomorphism π1(Tn, t0) −→ Aut(C[a1, . . . , an]). It is easy to see that Γn−1

is a subgroup of π1(Tn, t0) of finite index, so defining as T ′
n = T̃n/Γn−1 we

obtain the finite étale covering

(94) T ′
n := T̃n/Γn−1 −→ Tn.

Consider the natural action of Γn−1 on the product T̃n×R(Pn,t0). The natural
map 1× pn : T̃n ×R(Pn,t0) −→ T̃n ×An is clearly equivariant with respect to
the action of Γn−1, where Γn−1 acts on An as the identity map. Setting

(95) Rn = T̃n ×R(Pn,t0)/Γn−1,

we obtain a morphism

(96) φn : Rn −→ T ′
n ×An,

which is said to be the family of the moduli spaces of SL2-representations of the
fundamental group. The fiber of φn at (t, a) is given by the affine subscheme
of Rn

(97) φ−1
n (t,a) = R(Pn,t)a := {[ρ] ∈ R(Pn,t) | Tr[ρ(γi)] = ai, 1 ≤ i ≤ n}.

Since ai determines the eigenvalues of monodromy matrix ρ(γi), a may be con-
sidered as the set of spectral of local monodromies. Hence the space R(Pn,t)a
is said to be the moduli space of isospectral SL2-representations. Note that
though the moduli space Mα

n (t,λ, L) is smooth for all (t,λ) if a is special in
the sense of Definition 1.1 the affine scheme R(Pn,t)a has singularities.

In §8, we will prove the following

Proposition 4.2. For any a ∈ An, the scheme R(Pn,t)a in (97) is
irreducible.
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§4.4. The case of n = 4

Now we recall the explicit description of the invariant ring for n = 4 due
to Iwasaki ([Iw3], [Iw4]). We denote by (i, j, k) a cyclic permutation of (1, 2, 3).
Then the invariant ring (R3)

Ad(SL2(C)) is generated by

(98)

xi = Tr[MjMk] for i = 1, 2, 3

ai = Tr[Mi] for i = 1, 2, 3

a4 = Tr[M1M2M3]

The following proposition is proved in [Iw4].

Proposition 4.3. The invariant ring (R3)
Ad(SL2(C)) is generated by

seven elements x1, x2, x3, a1, a2, a3, a4 and there exists a relation

(99) f(x,a) = x1x2x3 + x2
1 + x2

2 + x2
3 − θ1(a)x1 − θ2(a)x2 − θ3(a)x3 + θ4(a),

where we set

θi(a) = aia4 + ajak, (i, j, k) = a cyclic permutation of (1, 2, 3),(100)

θ4(a) = a1a2a3a4 + a2
1 + a2

2 + a2
3 + a2

4 − 4.(101)

Therefore we have an isomorphism

(102) (R3)
Ad(SL2(C)) 
 C[x1, x2, x3, a1, a2, a3, a4]/(f(z, a)).

Recall that fixing canonical generators of the fundamental group, for
any t ∈ T̃4, the categorical quotient R4,t is given by R(P4,t) :=
Spec[(R3)

Ad(SL2(C))] 
 Spec[C[x, a]/(f(x, a))]. Setting A4 = C4 =
Spec[C[a1, . . . , a4]], as in (93) we have a surjective morphism

p4 : R(P4,t) = Spec[C[x, a]/(f(x, a))] −→ A

whose fiber at a ∈ A is an affine cubic hypersurface in C3

R(P4,t)a 
 {(x1, x2, x3) ∈ C3 | f(x, a) = 0} ⊂ C3.

Therefore, the family in (96) φ4 : R4 −→ T ′
4 × A4 is a family of affine cubic

hypersurfaces in C3.
The subgroup Γ3 of π1(T4, t0) acts both on the space R(P4,t) and the

space R(P4,t)a as nonlinear monodromies. Iwasaki [Iw3] showed the following
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Proposition 4.4. There exists a one-to-one correspondence between
the set of fixed points of the action of Γ3 on R(P4,t)a and the set of singu-
lar points on the affine cubic hypersurface R(P4,t)a.

§5. Construction of the Moduli Space Mα′β
n (t,λ, L) and Proof of

Theorem 2.1, (1)

§5.1. Translation of the definition of parabolic φ-connection

In this section, we will translate the definition of parabolic φ-connection,
since it is rather convenient to generalize the definition for the construction of
the moduli space.

Let X be a smooth projective curve over C and D be an effective divisor
on X.

We define an OX -bimodule structure on Λ1
D = OX ⊕ (Ω1

X(D))∨ by

(a, v)f := (fa+ 〈v, df〉, fv)(103)

f(a, v) := (fa, fv)

for a, f ∈ OX and v ∈ (Ω1
X(D))∨, where 〈 , 〉 : (Ω1

X(D))∨ × Ω1
X(D) → OX is

the canonical pairing.

Definition 5.1. A parabolic Λ1
D-triple (E1, E2,Φ, F∗(E1)) on X con-

sists of two vector bundles E1, E2 on X, a left OX -homomorphism Φ : Λ1
D⊗OX

E1 → E2 and a filtration of coherent subsheaves: E1 = F1(E1) ⊃ F2(E1) ⊃
· · · ⊃ Fl(E1) ⊃ Fl+1(E1) = E1(−D).

Remark 5.1. Assume that two vector bundles E1, E2 on X are given.
Then giving morphisms φ : E1 → E2, ∇ : E1 → E2 ⊗ Ω1

X(D) satisfying
φ(fa) = fφ(a), ∇(fa) = φ(a)⊗ df + f∇(a) for f ∈ OX , a ∈ E1 is equivalent
to giving a left OX -homomorphism Φ : Λ1

D ⊗OX
E1 → E2.

Definition 5.2. A parabolic Λ1
D-triple (E′

1, E
′
2,Φ′, F∗(E′

1)) is said to
be a parabolic Λ1

D-subtriple of (E1, E2,Φ, F∗(E1)) if E′
1 ⊂ E1, E′

2 ⊂ E2,
Φ|Λ1

D⊗E′
1

= Φ′ and Fi(E′
1) ⊂ Fi(E1) for any i.

Fix rational numbers 0 ≤ α′
1 < α′

2 < · · · < α′
l < α′

l+1 = 1 and positive
integers β1, β2. We write α′ = (α′

1, . . . , α
′
l) and β = (β1, β2). We also fix an

ample line bundle OX(1) and a rational number γ with γ � 0.
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Definition 5.3. For a parabolic Λ1
D-triple (E1, E2,Φ, F∗(E1)), we put

µ(E1, E2, Φ, F∗(E1))

:=
β1 deg E1(−D) + β2 deg E2 − β2γ degOX(1) rank E2 +

Pl
i=1 β1α′

i length(Fi(E1)/Fi+1(E1))

β1 rank E1 + β2 rank E2
.

Definition 5.4. Assume that γ is sufficiently large. A parabolic Λ1
D-

triple (E1, E2,Φ, F∗(E1)) is (α′,β)-stable (resp. (α′,β)-semistable) if for any
non-zero proper parabolic Λ1

D-subtriple (E′
1, E

′
2,Φ′, F∗(E′

1)) of (E1, E2,Φ,
F∗(E1)), the inequality

µ(E′
1, E

′
2,Φ

′, F∗(E′
1)) <

(resp. ≤)
µ(E1, E2,Φ, F∗(E1))

holds. (If we fix a weight (α′,β), “(α′,β)-stable (resp. (α′,β)-semistable)”
may be abbreviated to “stable (resp. semistable)” for simplicity.)

Let S be a connected noetherian scheme and πS : X → S be a smooth
projective morphism whose geometric fibers are curves of genus g. Let D ⊂
X be an effective Cartier divisor which is flat over S. A similar formula to
(103) enables us to consider the OX -bimodule structure on Λ1

D/S := OX ⊕
(Ω1

X/S(D))∨.
Fix rational numbers 0 ≤ α′

1 < α′
2 < · · · < α′

l < α′
l+1 = 1, positive integers

r, d, {di}1≤i≤l, β1, β2, γ with γ � 0.

Definition 5.5. We define the moduli functor MD,α′,β,γ
X/S (r, d, {di}) of

the category of locally noetherian schemes over S to the category of sets by

(104) MD,α′,β,γ
X/S (r, d, {di})(T ) := {(E1, E2,Φ, F∗(E1))}/ ∼,

where T is a locally noetherian scheme over S and

(1) E1, E2 are vector bundles on X ×S T such that for any geometric point s
of T , rank(E1)s = rank(E2)s = r, deg(E1)s = deg(E2)s = d,

(2) Φ : Λ1
D/S ⊗OX E1 → E2 is a homomorphism of left OX×ST -modules,

(3) E1 = F1(E1) ⊃ F2(E1) ⊃ · · · ⊃ Fl(E1) ⊃ Fl+1(E1) = E1(−DT ) is a
filtration of E1 by coherent subsheaves such that each E1/Fi+1(E1) is flat
over T and for any geometric point s of T , length((E1/Fi+1(E1))s) = di,

(4) for any geometric point s of S, the parabolic Λ1
Ds

-triple ((E1)s, (E2)s,Φs,

F∗(E1)s) is stable (that is, (α′,β)-stable).
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(E1, E2,Φ, F∗(E1)) ∼ (E′
1, E

′
2,Φ

′, F∗(E′
1)) if there exist a line bundle L on

T and isomorphisms σj : Ej
∼→ E′

j ⊗ L for j = 1, 2 such that σ1(Fi+1(E1)) =
Fi+1(E′

1)⊗ L for any i and the diagram

Λ1
D/S ⊗OX

E1
Φ−−−−→ E2

id⊗σ1

�∼= σ2

�∼=

Λ1
D/S ⊗OX

E′
1 ⊗S L

Φ′⊗id−−−−→ E′
2 ⊗S L

commutes.

We call (E1, E2,Φ, F∗(E1)) a flat family of parabolic Λ1
DT /T -triples on

XT × T over T if it satisfies the above conditions (1), (2) and (3).

§5.2. Boundedness and Openness of stability

Proposition 5.1. The family of geometric points of
MD,α′,β,γ

X/S (r, d, {di}) is bounded.

Proof. Take any geometric point (E1, E2,Φ, F∗(E1)) ∈
MD,α′,β,γ

X/S (r, d, {di})(K). By Serre duality, we have

H1(XK , E1(m− 1)) = Hom(E1, ωXK
(1−m))∨.

Take any nonzero homomorphism f : E1 → ωXK
(1−m). Then (ker f,E2,Φ|ker f ,

F∗(E1)∩ker f) becomes a parabolic Λ1
DK

-subtriple of (E1, E2,Φ, F∗(E1)). Thus
we must have the inequality

µ(ker f,E2,Φ|ker f , F∗(E1) ∩ ker f) < µ(E1, E2,Φ, F∗(E1)).

Since deg(ker f) ≥ degE1+m−2g+1, we can find an integer m which depends
only on r, d, di,β,α

′, γ, X and D such that Hom(E1, ωXK
(1 −m)) = 0. Then

all E1 become m-regular.
Similarly we can find an integer m′ such that E2 are all m′-regular. Then

the family of (E1, E2) is bounded and the boundedness of the family of
(E1, E2,Φ, F∗(E1)) can be deduced from it.

We put εi := α′
i+1−α′

i for i = 1, . . . , l. Take an S-ample line bundle OX (1)
on X .
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Proposition 5.2. There exists an integer m0 such that for any geomet-
ric point (E1, E2,Φ, F∗(E1)) ∈MD,α′,β,γ

X/S (r, d, {di})(K), the inequality

β1α
′
1h

0(E′
1(m)) + β2h

0(E′
2(m− γ)) +

∑l
i=1 β1εih

0(Fi+1(E′
1)(m))

β1 rank(E′
1) + β2 rank(E′

2)

<
β1α

′
1h

0(E1(m)) + β2h
0(E2(m− γ)) +

∑l
i=1 β1εih

0(Fi+1(E1)(m))
β1 rank(E1) + β2 rank(E2)

holds for any proper non-zero parabolic Λ1
DK

-subtriple (E′
1, E

′
2,Φ′, F∗(E′

1)) of
(E1, E2,Φ, F∗(E1)) and any integer m ≥ m0.

Proof. By Proposition 5.1, there exists an integer N1 such that for any
geometric point (E1, E2,Φ, F∗(E1)) of MD,α′,β,γ

X/S (r, d, {di}), hi(Fj(E1)(m)) =
hi(E2(m − γ)) = 0 for i > 0, 1 ≤ j ≤ l + 1 and m ≥ N1. There also
exists an integer e such that for any geometric point (E1, E2,Φ, F∗(E1)) of
MD,α′,β,γ

X/S (r, d, {di}) and for any coherent subsheaf E′ of E⊕β1
1 ⊕ E⊕β2

2 (−γ),
the inequality

degE′ ≤ rankE′(µ(E⊕β1
1 ⊕ E2(−γ)⊕β2) + e)

holds. Note that we write µ(E) := rank(E)−1 deg(E) for a vector bundle E.
Applying [MY], Lemma 2.6 to the case

P (m) =
β1α

′
1χ(E1(m)) + β2χ(E2(m− γ)) +

∑l
i=1 β1εiχ(Fi+1(E1)(m))

β1 rankE1 + β2 rankE2
− 1,

r = rank(E⊕β1
1 ⊕ E⊕β2

2 ), a = µ(E⊕β1
1 ⊕ E2(−γ)⊕β2) + e,

we can take integers L,M such that M ≤ a and for any integer m ≥ L, the
inequality

h0(E′(m)) ≤ rank(E′)P (m)

holds for any vector bundle E′ on a fiber of X over S satisfying 0 < rank(E′) <
β1 rank(E1) +β2 rank(E2), µ(E′) ≤M and deg Ẽ′ ≤ a rank(Ẽ′) for any proper
nonzero coherent subsheaf Ẽ′ of E′.

Now we put

G :=

E′

∣∣∣∣∣∣∣
there exists a geometric point (E1, E2,Φ, F∗(E1))

of MD,α′,β,γ
X/S (r, d, {di}) such that E′ is a subbundle of E⊕β1

1 ⊕
E2(−γ)⊕β2 and µ(E′) ≥M

 .

Then G is bounded. Thus there exists an integer L′ ≥ L such that for any
E′ ∈ G and any m ≥ L′, E′(m−γ) is generated by its global sections, hi(E′(m−
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γ)) = hi((Fj(E1) ∩ E′)(m)) = 0 for i > 0 and 1 ≤ j ≤ l + 1. If we put

G̃ :=

{
(E′

1, E
′
2)

∣∣∣∣∣E′
1 ⊂ E1 (resp. E′

2 ⊂ E2) is a subbundle such that
Φ(Λ1

D/S ⊗ E′
1) ⊂ E′

2 and µ(E′
1
⊕β1 ⊕ E′

2(−γ)⊕β2) ≥M

}
,

then the set of polynomials{
β1α

′
1χ(E′

1(m)) + β2χ(E′
2(m− γ))

+
l∑

i=1

β1εiχ((Fi+1(E1) ∩ E′
1)(m))

}
(E′

1,E′
2)∈G̃

is finite, because E′
1
⊕β1 ⊕ E′

2(−τ )⊕β2 ∈ G for any (E′
1, E

′
2) ∈ G̃. Thus there

exists an integer m0 ≥ L′ such that for any m ≥ m0 and for any (E′
1, E

′
2) ∈ G̃,

the inequality

β1α
′
1χ(E′

1(m)) + β2χ(E′
2(m− γ)) +

∑l
i=1 β1εiχ((Fi+1(E1) ∩E′

1)(m))
β1 rank(E′

1) + β2 rank(E′
2)

< P (m) + 1

holds. We can easily see that this m0 satisfies the desired condition.

Proposition 5.3. Let T be a noetherian scheme over S and (E1, E2,Φ,
F∗(E1)) be a flat family of parabolic Λ1

DT /T -triples on X ×S T over T . Then
there is an open subscheme T s of T such that

T s(k) = {t ∈ T (k) |(E1, E2,Φ, F∗(E1))⊗ k(t) is stable}

for any algebraically closed field k.

Proof. We may assume that T is connected. Put P1(m) := χ((E1 ⊗
k(s))(m)), P2(m) := χ((E2 ⊗ k(s))(m − γ)) and P

(i)
1 (m) := χ((Fi(E1) ⊗

k(s))(m)) for a geometric point s of T . Since the family

G =

{
E′
∣∣∣∣∣E′ is a subbundle of (E⊕β1

1 ⊕ E2(−γ)⊕β2)⊗ k(s) for some
geometric point s of T and µ(E′) ≥ µ((E1, E2,Φ, F∗(E1))⊗ k(s))

}
is bounded, the family

G̃ =


(E′

1, E
′
2,Φ

′, F∗(E′
1))

∣∣∣∣∣∣∣∣∣∣∣

(E′
1, E

′
2,Φ′, F∗(E′

1)) is a parabolic Λ1
Ds

-subtriple
of (E1, E2,Φ, F∗(E1))⊗ k(s) for some geometric
point s of T such that E′

1 ⊂ E1 ⊗ k(s) (resp.
E′

2 ⊂ E2 ⊗ k(s)) is a subbundle and µ(E′
1, E

′
2,

Φ′, F∗(E′
1)) ≥ µ((E1, E2,Φ, F∗(E1))⊗ k(s))


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is also bounded. So the set of sequences of polynomials

P :=

{
(χ(E′

1(m)), χ(E′
2(m− γ)),

(χ(Fi+1(E′
1)(m)))1≤i≤l)

∣∣∣∣∣ (E′
1, E

′
2,Φ

′, F∗(E′
1)) ∈ G̃

}

is finite. For each P′ := (P ′
1, P

′
2, ((P

′
1)

(i+1))) ∈ P, put

Q := QuotP1−P ′
1

E1/XT /T ×T QuotP2−P ′
2

E2/XT /T

Let (E1)Q
π1→ G1 and (E2)Q

π2→ G2 be the universal quotient sheaves. We put

Q′ := QuotP ′
1−(P ′

1)
(2)

ker π1/XQ/Q×Q · · · ×Q QuotP ′
1−(P ′

1)
(l+1)

ker π1/XQ/Q .

Let (kerπ1)Q′
π

(i)
1→ G

(i)
1 (1 ≤ i ≤ l) be the universal quotient sheaves. We

consider the composite homomorphisms

Ψ′ : Λ1
D/S ⊗ (kerπ1)Q′ ↪→ Λ1

D/S ⊗ (E1)Q′
ΦQ′
−→ (E2)Q′

(π2)Q′
−→ (G2)Q′

ψi : kerπ(i+1)
1 ↪→ (kerπ1)Q′

π
(i)
1−→ G

(i)
1 (2 ≤ i ≤ l)

ψl+1 : (kerπ1)Q′ ⊗OX (−D) −→ (kerπ1)Q′
π

(l+1)
1−→ G

(l+1)
1 .

Let Q̃′
P′ be the maximal closed subscheme of Q′ satisfying Ψ′

Q̃′
P′

= 0 and

(ψi)Q̃′
P′

= 0 for 2 ≤ i ≤ l + 1. Since fP′ : Q̃′
P′ → T is a proper morphism,

T s = T \
⋃

P′∈P
fP′(Q̃′

P′)

is an open subscheme which satisfies the desired condition.

§5.3. Construction of the moduli space

Now we construct the moduli scheme of MD,α′,β,γ
X/S (r, d, {di}). We define a

polynomial P (m) in m by P (m) := rdXm+d+r(1−g) where dX = degOXs
(1)

for s ∈ S and g is the genus of Xs. We take an integer m0 in Proposition 5.2.
By Proposition 5.1, we may assume, by replacing m0, that for any m ≥ m0,
hj(Fi(E1)(m)) = hj(E2(m− γ)) = 0 for j > 0, i = 1, . . . , l+ 1 and E2(m− γ),
Fi(E1)(m) (i = 1, . . . , l + 1) are generated by their global sections for any
geometric point (E1, E2,Φ, F∗(E1)) of MD,α′,β,γ

X/S (r, d, {di}). Put n1 = P (m0)
and n2 = P (m0−γ). Take two free OS-modules V1, V2 such that rankV1 = n1,
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rankV2 = n2. Let Q1 be the Quot-scheme QuotP (m)
V1⊗OX (−m0)/X/S and V1 ⊗

OXQ1
(−m0) → E1 be the universal quotient sheaf. Similarly letQ2 be the Quot-

scheme QuotP (m)
V2⊗OX (−m0+γ)/X/S and V2⊗OXQ2

(−m0+γ) → E2 be the universal

quotient sheaf. We put Q(i)
1 := Quotdi

E1/XQ1/Q1
. Let Fi+1(E1) ⊂ (E1)Q

(i)
1

be the

universal subsheaf. We define Q as the maximal closed subscheme of Q(1)
1 ×Q1

· · · ×Q1 Q
(l)
1 ×Q2 such that there are factorizations

(105) (E1)Q ⊗OXQ
(−DQ) −→ Fi+1(E1)Q ↪→ Fi(E1)Q ⊂ (E1)Q

for i = 1, . . . , l, where F1(E1) = E1. Since (E2)Q is flat over Q, there is a
coherent sheaf H on Q such that there is a functorial isomorphism

(106) HomXT
(Λ1

D/S ⊗OX (E1)T , (E2)T ⊗ L) ∼= HomT (H⊗OT ,L)

for any noetherian scheme T over Q and any quasi-coherent sheaf L on T .
We denote SpecS(H) by V∗(H), where S(H) is the symmetric algebra of

H over OQ. Let

Φ̃ : Λ1
D/S ⊗OX (E1)V∗(H) −→ (E2)V∗(H)

be the universal homomorphism. We define the open subscheme Rs of V∗(H)
by

Rs :=


s ∈ V∗(H)

∣∣∣∣∣∣∣∣∣∣∣

(V1)s → H0((E1)s(m0)), (V2)s → H0((E2)s(m0 − γ))
are bijective, Fi(E1)s(m0), (E2)s(m0 − γ) are
generated by their global sections, hj(Fi(E1)s(m0))
= hj((E2)s(m0 − γ)) = 0 for j > 0, 1 ≤ i ≤ l + 1 and
((E1)s, (E2)s, Φ̃s, F∗(E1)s) is stable


.

For y ∈ Rs and vector subspaces V ′
1 ⊂ (V1)y, V ′

2 ⊂ (V2)y, let E(V ′
1 , V

′
2 , y)1

be the image of V ′
1 ⊗ OX (−m0) → (E1)y and E(V ′

1 , V
′
2 , y)2 be that of V ′

1 ⊗
Λ1
Dy

(−m0)⊕ V ′
2 ⊗OX (−m0 + γ) → (E2)y. Since the family

F = {(E(V ′
1 , V

′
2 , y)1, E(V ′

1 , V
′
2 , y)2)|y ∈ Rs, V ′

1 ⊂ (V1)y, V
′
2 ⊂ (V2)y}

is bounded, there exists an integer m1(≥ m0) such that for all m ≥ m1,

V ′
1 ⊗H0(OXy

(m))→ H0(E(V ′
1 , V

′
2 , y)1(m)),

V ′
1 ⊗H0(OXy

(m0 +m− γ)⊗ Λ1
Dy
⊗OXy

(−m0))

⊕ V ′
2 ⊗H0(OXy

(m))→ H0(E(V ′
1 , V

′
2 , y)2(m− γ))
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are surjective andHi(OXy
(m0+m−γ)⊗Λ1

Dy
⊗OXy

(−m0)) = 0, Hi(OXy
(m)) =

0 for i > 0 for all members (E(V ′
1 , V

′
2 , y)1, E(V ′

1 , V
′
2 , y)2) ∈ F and the inequality

(β1 rankE′
1 + β2 rankE′

2)dX

×
(
β1h

0((E1)y(m0)) + β2h
0((E2)y(m0 − γ))−

l∑
i=1

β1εidi

)
− (β1 + β2)rdX

(
β1α

′
1h

0(E′
1(m0)) + β2h

0(E′
2(m0 − γ))

+
l∑

i=1

β1εih
0(Fi+1(E′

1)(m0))
)

> m−1
(
β1 dimV ′

1 + β2 dimV ′
2 − β1χ(E′

1(m0))− β2χ(E′
2(m0 − γ))

)
× (β1 dimV1 + β2 dimV2 −

l∑
i=1

β1εidi)

holds for (0, 0) � (V ′
1 , V

′
2) � ((V1)y, (V2)y), where E′

1 := E(V ′
1 , V

′
2 , y)1, E′

2 :=
E(V ′

1 , V
′
2 , y)2 and Fi+1(E′

1) := E′
1 ∩ Fi+1(E1)y for i = 1, . . . , l. From now on,

we fix such a large integer m1.
The composite

V1 ⊗ Λ1
D/S ⊗OX (−m0)Rs → Λ1

D/S ⊗ (E1)Rs
Φ̃−→ (E2)Rs

induces a homomorphism

V1 ⊗W1 ⊗ORs → (πRs)∗(E2(m0 +m1 − γ)Rs),

where W1 := (πS)∗(OX (m0 + m1 − γ) ⊗ Λ1
D/S ⊗ OX (−m0)) and the quotient

V2 ⊗OX (−m0 + γ) → E2 induces a homomorphism

V2 ⊗W2 ⊗ORs → (πRs)∗(E2(m0 +m1 − γ)Rs),

where W2 := (πS)∗(OX (m1)). These homomorphisms induce a quotient bundle

(V1 ⊗W1 ⊕ V2 ⊗W2)⊗ORs −→ (πRs)∗(E2(m0 +m1 − γ)Rs).

This quotient and the canonical quotient bundles

V1 ⊗W2 ⊗ORs = V1 ⊗ (πS)∗(OX (m1))⊗ORs → (πRs)∗(E1(m0 +m1)Rs),

V1 ⊗ORs → (πRs)∗(E1/Fi+1(E1)(m0)Rs) (i = 1, . . . , l)
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determine a morphism

ι : Rs → Grassr2(V1 ⊗W1 ⊕ V2 ⊗W2)×Grassr1(V1 ⊗W2)×
l∏

i=1

Grassdi
(V1),

where r1 = h0(E1(m0 +m1)s), r2 := h0(E2(m0 + m1 − γ)s) for any point s ∈
Rs and Grassr(V ) is the Grassmannian parametrizing r-dimensional quotient
vector spaces of V . We can check that ι is an immersion.

We set G := (GL(V1) × GL(V2))/(Gm × S), where Gm × S is contained
in GL(V1) × GL(V2) as scalar matrices. Then G acts canonically on Rs and
on Grassr2(V1 ⊗W1 ⊕ V2 ⊗W2) × Grassr1(V1 ⊗W2) ×

∏l
i=1 Grassdi

(V1). We
can see that ι is a G-equivariant immersion. There is an S-ample line bundle
OGrassr2(V1⊗W1⊕V2⊗W2)(1) on Grassr2(V1 ⊗W1 ⊕ V2 ⊗W2) induced by Plücker
embedding. Similarly there are canonical S-ample line bundles OGrassr1(V1⊗W2)

(1), OGrassdi
(V1)(1), on Grassr1(V1 ⊗W2), Grassdi

(V1), respectively. We define

positive rational numbers ν1, ν2, ν
(i)
1 (1 ≤ i ≤ l) by

ν1 = β1(β1P (m0) + β2P (m0 − γ)−
l∑

i=1

β1εidi),

ν2 = β2(β1P (m0) + β2P (m0 − γ)−
l∑

i=1

β1εidi),

ν
(i)
1 = (β1 + β2)β1rdXm1εi.

Let us consider the Q-line bundle

L := ι∗
(
OGrassr2 (V1⊗W1⊕V2⊗W2)(ν1)⊗OGrassr1 (V1⊗W2)(ν2)⊗

l⊗
i=1

OGrassdi
(V1)(ν

(i)
1 )

)

on Rs. Then for some positive integer N , L⊗N becomes a G-linearized S-ample
line bundle on Rs.

Proposition 5.4. All points of Rs are properly stable with respect to
the action of G and the G-linearized S-ample line bundle L⊗N .

Proof. Take any geometric point x of Rs. Let y be the induced geometric
point of S. We must show that x is a properly stable point of the fiber Rs

y with
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respect to the action of Gy and the polarization L⊗N
y . So we may assume that

S = SpecK with K an algebraically closed field. We put

(E1, E2,Φ, F∗(E1)) := ((E1)x, (E2)x, Φ̃x, F∗(E1)x).

Let

π2 : V1 ⊗W1 ⊕ V2 ⊗W2 → N2, π1 : V1 ⊗W2 → N1, π
(i)
1 : V1 → N

(i)
1

(i = 1, . . . , l)

be the quotient vector spaces corresponding to ι(x). We will show that ι(x) is
a properly stable point with respect to the action of G and the linearization of
L⊗N . Consider the character

χ : GL(V1)×GL(V2) −→ Gm; (g1, g2) �→ det(g1)β1 det(g2)β2 .

Then there is an isogeny kerχ −→ G and we may prove the stability with
respect to the action of kerχ instead of G. Take any one parameter subgroup
λ of kerχ. For a suitable basis e(1)1 , . . . , e

(1)
n1 (resp. e(2)1 , . . . , e

(2)
n2 ) of V1 (resp.

V2), the action of λ on V1 (resp. V2) is represented by

e
(1)
i �→ tu

(1)
i e

(1)
i (resp. e(2)i �→ tu

(2)
i e

(2)
i ) (t ∈ Gm),

where u(1)
1 ≤ · · · ≤ u

(1)
n1 (resp. u(2)

1 ≤ · · · ≤ u
(2)
n2 ) and

∑n1
i=1 β1u

(1)
i +

∑n2
i=1 β2u

(2)
i

= 0. Take a basis f (k)
1 , . . . , f

(k)
bk

of Wk for k = 1, 2.
We define functions a1(p) and a2(p) in p ∈ {0, 1, . . . , β1n1 + β2n2} as

follows. First we put (a1(0), a2(0)) := (0, 0). We put

(a1(1), a2(1)) :=

{
(1, 0) if β1u

(1)
1 ≤ β2u

(2)
1

(0, 1) if β1u
(1)
1 > β2u

(2)
2 .

Inductively we define
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(a1(p+ 1), a2(p+ 1)) := (a1(p), a2(p)) if p < β1a1(p) + β2a2(p)

(a1(p+ 1), a2(p+ 1)) := (a1(p) + 1, a2(p)) if p = β1a1(p) + β2a2(p),

β1u
(1)
a1(p)+1 ≤ β2u

(2)
a2(p)+1

and a1(p) < n1

(a1(p+ 1), a2(p+ 1)) := (a1(p), a2(p) + 1) if p = β1a1(p) + β2a2(p),

β1u
(1)
a1(p)+1 > β2u

(2)
a2(p)+1

and a2(p) < n2.

(a1(p+ 1), a2(p+ 1)) := (a1(p) + 1, a2(p)) if p = β1a1(p) + β2a2(p)

and a2(p) = n2

(a1(p+ 1), a2(p+ 1)) := (a1(p), a2(p) + 1) if p = β1a1(p) + β2a2(p)

and a1(p) = n1

Then a1(p) and a2(p) are integers with 0 ≤ a1(p) ≤ n1, 0 ≤ a2(p) ≤ n2,
a1(p) ≤ a1(p + 1) and a2(p) ≤ a2(p + 1). We define v1, . . . , vβ1n1+β2n2 and
e′1, . . . , e

′
β1n1+β2n2

by
vp := β1u

(1)
a1(p), e

′
p := e

(1)
a1(p) if a1(p− 1) < a1(p)

vp := β2u
(2)
a2(p), e

′
p := e

(2)
a2(p) if a2(p− 1) < a2(p)

vp := vp−1, e
′
p := e′p−1 if a1(p− 1) = a1(p) and a2(p− 1) = a2(p).

We put δp := (vp+1− vp)(β1n1 + β2n2)−1 for p = 1, . . . , β1n1 + β2n2− 1. Then
δp are non-negative rational numbers and for each 1 ≤ i ≤ n1

β1u
(1)
i =

∑
1≤p≤β1n1+β2n2−1

a1(p)<i

pδp +
∑

1≤p≤β1n1+β2n2−1
a1(p)≥i

(p− β1n1 − β2n2)δp

and for each 1 ≤ i ≤ n2

β2u
(2)
i =

∑
1≤p≤β1n1+β2n2−1

a2(p)<i

pδp +
∑

1≤p≤β1n1+β2n2−1
a2(p)≥i

(p− β1n1 − β2n2)δp.

For µ = 1, . . . , β1n1b1 + β2n2b2, we can find unique integers p0, p1 ∈
{0, 1, . . . , β1n1 + β2n2} such that

(a1(p1), a2(p1)) = (a1(p0 + 1), a2(p0 + 1)) = (a1(p0) + 1, a2(p0)), or

(a1(p1), a2(p1)) = (a1(p0 + 1), a2(p0 + 1) = (a1(p0), a2(p0) + 1)
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and

µ =



(a1(p0)β1 + (p1 − p0 − 1))b1 + a2(p0)β2b2 + j

for some 1 ≤ j ≤ b1

if (a1(p1), a2(p1))

= (a1(p0) + 1, a2(p0))

a1(p0)β1b1 + (a2(p0)β2 + (p1 − p0 − 1))b2 + j

for some 1 ≤ j ≤ b2

if (a1(p1), a2(p1))

= (a1(p0), a2(p0) + 1).

For such µ, we put s(2)µ := vp1 and

h′µ :=

{
e′p1
⊗ f (1)

j if (a1(p1), a2(p1)) = (a1(p0) + 1, a2(p0))

e′p1
⊗ f (2)

j if (a1(p1), a2(p1)) = (a1(p0), a2(p0) + 1).

Let U (2)
µ be the vector subspace of V1⊗W1⊕V2⊗W2 generated by h′1, . . . , h′µ. We

put U (2)
0 = 0. For q = 1, . . . , r2, we can find an integer µ(2)

q ∈ {1, . . . , β1n1b1 +
β2n2b2} such that dimπ2(U

(2)

µ
(2)
q

) = q and dimπ2(U
(2)

µ
(2)
q −1

) = q − 1. Then

r2∑
q=1

s
(2)

µ
(2)
q

=
r2∑

q=1

s
(2)

µ
(2)
q

(
dimπ2(U

(2)

µ
(2)
q

)− dim π2(U
(2)

µ
(2)
q −1

)
)

=
β1n1b1+β2n2b2∑

µ=1

s(2)µ

(
dim π2(U (2)

µ )− dimπ2(U
(2)
µ−1)

)

= r2s
(2)
β1n1b1+β2n2b2

−
β1n1b1+β2n2b2−1∑

µ=1

(s(2)µ+1 − s(2)µ ) dimπ2(U (2)
µ )

= r2vβ1n1+β2n2 −
β1n1+β2n2−1∑

p=1

(vp+1 − vp) dimπ2(U
(2)
β1a1(p)b1+β2a2(p)b2

)

=
β1n1+β2n2−1∑

p=1

(
r2p− (β1n1 + β2n2) dimπ2(U

(2)
β1a1(p)b1+β2a2(p)b2

)
)
δp.

For µ = (i−1)b2 + j, put h(1)
µ := e

(1)
i ⊗f (2)

j for i = 1, . . . , n1, j = 1, . . . , b2.

We define integers s(1)1 , . . . , s
(1)
b2n1

by putting s(1)µ := β1u
(1)
i for µ = (i− 1)b2 + j

with 1 ≤ j ≤ b2. Let U (1)
µ be the vector subspace of V1 ⊗W2 generated by

h
(1)
1 , . . . , h

(1)
µ for µ = 1, . . . , b2n1. We put U (1)

0 = 0. For q = 1, . . . , r1, let µ(1)
q

be the integer such that dimπ1(U
(1)

µ
(1)
q

) = q and dim π1(U
(1)

µ
(1)
q −1

) = q − 1. Then

r1∑
q=1

s
(1)

µ
(1)
q

=
b2n1∑
µ=1

s(1)µ

(
dim π1(U (1)

µ )− dimπ1(U
(1)
µ−1)

)
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= r1s
(1)
b2n1

−
b2n1−1∑

µ=1

(s(1)µ+1 − s(1)µ ) dimπ1(U (1)
µ )

= r1β1u
(1)
n1
−

n1−1∑
i=1

(u(1)
i+1 − u

(1)
i )β1 dimπ1(U

(1)
ib2

)

= r1β1u
(1)
n1

+
∑

a1(p)<n1

(vp+1 − vp) dimπ1(U
(1)
a1(p)b2

)

= r1

 ∑
1≤p≤β1n1+β2n2−1

a1(p)<n1

pδp +
∑

1≤p≤β1n1+β2n2−1
a1(p)≥n1

(p− β1n1 − β2n2)δp


−

∑
1≤p≤β1n1+β2n2−1

a1(p)<n1

(β1n1 + β2n2)δp dim π1(U
(1)
a1(p)b2

)

=
β1n1+β2n2−1∑

p=1

(
r1p− (β1n1 + β2n2) dimπ1(U

(1)
a1(p)b2

)
)
δp

Let V (1)
p be the vector subspace of V1 generated by e(1)1 , . . . , e

(1)
p . We put

V
(1)
0 = 0. For i = 1, . . . , l and for q = 1, . . . , di, let µi

q be the integer such that

dim π
(i)
1 (V (1)

µi
q

) = q and dim π
(i)
1 (V (1)

µi
q−1) = q − 1. Then

di∑
q=1

β1u
(1)
µi

q
=

di∑
q=1

β1u
(1)
µi

q

(
dim π

(i)
1 (V (1)

µi
q

)− dim π
(i)
1 (V (1)

µi
q−1)

)
=

n1∑
p=1

β1u
(1)
p

(
dim π

(i)
1 (V (1)

p )− dim π
(i)
1 (V (1)

p−1)
)

= diβ1u
(1)
n1
−

n1−1∑
p=1

β1(u
(1)
p+1 − u(1)

p ) dimπ
(i)
1 (V (1)

p )

= diβ1u
(1)
n1
−

∑
a1(p)<n1

(vp+1 − vp) dimπ
(i)
1 (V (1)

a1(p))

= di

 ∑
1≤p≤β1n1+β2n2−1

a1(p)<n1

pδp +
∑

1≤p≤β1n1+β2n2−1
a1(p)≥n1

(p− β1n1 − β2n2)δp


−

∑
1≤p≤β1n1+β2n2−1

a1(p)<n1

(β1n1 + β2n2)δp dim π
(i)
1 (V (1)

a1(p))
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=
β1n1+β2n2−1∑

p=1

(
dip− (β1n1 + β2n2) dimπ

(i)
1 (V (1)

a1(p))
)
δp.

Thus we have

µL⊗N

(x, λ)

= −
(

2∑
k=1

νk

rk∑
q=1

s
(k)

µ
(k)
q

+
l∑

i=1

ν
(i)
1

di∑
q=1

β1u
(1)
µi

q

)
N

=
β1n1+β2n2−1∑

p=1

Nδp

{(
−p

l∑
i=1

ν
(i)
1 di + (β1n1 + β2n2)

l∑
i=1

ν
(i)
1 dimπ

(i)
1 (V (1)

a1(p))

)
− (ν1r1 + ν2r2)p+ (β1n1 + β2n2)

×
(
ν1 dim π1(U

(1)
a1(p)b2

) + ν2 dim π2(U
(2)
β1a1(p)b1+β2a2(p)b2

)
) }

.

See [Mum], Definition 2.2 for the definition of µL⊗N

(x, λ). By [Mum], Theorem
2.1, x is a properly stable point if

− p(ν1r1 + ν2r2) + (β1n1 + β2n2)(ν1 dimπ1(U
(1)
a1(p)b2

)

+ ν2 dimπ2(U
(2)
β1a1(p)b1+β2a2(p)b2

))

− p
l∑

i=1

ν
(i)
1 di + (β1n1 + β2n2)

l∑
i=1

ν
(i)
1 dim π

(i)
1 (V (1)

a1(p)) > 0

for all p = 1, . . . , β1n1 + β2n2 − 1.
For each p (1 ≤ p ≤ β1n1 + β2n2 − 1), let V ′

k be the vector subspace of
Vk generated by e

(k)
1 , . . . , e

(k)
ak(p) for k = 1, 2. Then U

(1)
a1(p)b2

= V ′
1 ⊗ W2 and

U
(2)
β1a1(p)b1+β2a2(p)b2

= V ′
1 ⊗W1 ⊕ V ′

2 ⊗W2. Put

E′
1 := Im(V ′

1 ⊗OX (−m0)→ E1), Fi+1(E′
1) := Fi+1(E1) ∩ E′

1, (i = 1, . . . , l),

E′
2 := Im(V ′

1 ⊗ Λ1
D/S(−m0)⊕ V ′

2 ⊗OX (−m0 + γ) → E2), Φ′ := Φ|Λ1
D/S

⊗E′
1
.

Then (E′
1, E

′
2,Φ′, F∗(E′

1)) is a parabolic Λ1
DK

-subtriple of (E1, E2,Φ, F∗(E1)).
By the choice of m1, we have π2(U

(2)
β1a1(p)b1+β2a2(p)b2

) = H0(E′
2(m0 +m1 − γ))

and π1(U
(1)
a1(p)b2

) = H0(E′
1(m0 +m1)). Put r′1 := rankE′

1, r′2 := rankE′
2. Let

V ′(i)
1 be the kernel of the composite V ′

1 ↪→ V1
π

(i)
1−→ N

(i)
1 . Then we have

− p(ν1r1 + ν2r2) + (β1n1 + β2n2)(ν1 dim π1(U
(1)
a1(p)b2

)
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+ ν2 dimπ2(U
(2)
β1a1(p)b1+β2a2(p)b2

))

− p
l∑

i=1

ν
(i)
1 di + (β1n1 + β2n2)

l∑
i=1

ν
(i)
1 dim π

(i)
1 (V (1)

a1(p))

≥ (β1 dimV1 + β2 dimV2 −
l∑

i=1

β1εidi)

×
{
− (β1 dimV ′

1 + β2 dimV ′
2)(β1h

0(E1(m0 +m1)) + β2h
0(E2(m0 +m1 − γ)))

+ (β1 dimV1 + β2 dimV2)(β1h
0(E′

1(m0 +m1)) + β2h
0(E′

2(m0 +m1 − γ)))
}

− (β1 dimV ′
1 + β2 dimV ′

2)
l∑

i=1

ν
(i)
1 di

+ (β1 dimV1 + β2 dimV2)
l∑

i=1

ν
(i)
1 (dimV ′

1 − dimV ′(i)
1 )

= (β1 dimV1 + β2 dimV2 −
l∑

i=1

β1εidi)

×
{
− (β1 dimV ′

1 + β2 dimV ′
2) (rdX (β1 + β2)m1 + β1 dimV1 + β2 dimV2)

+ (β1 dimV1 + β2 dimV2)((β1r
′
1 + β2r

′
2)dXm1

+ β1χ(E′
1(m0)) + β2χ(E′

2(m0 − γ)))
}

− (β1 dimV ′
1 + β2 dimV ′

2)
l∑

i=1

ν
(i)
1 di

+ (β1 dimV1 + β2 dimV2)
l∑

i=1

ν
(i)
1 (dimV ′

1 − dimV ′(i)
1 )

= (β1 dimV1 + β2 dimV2 −
l∑

i=1

β1εidi)

×
{
− rdX (β1 + β2)m1(β1 dimV ′

1 + β2 dimV ′
2)

+ (β1r
′
1 + β2r

′
2)dXm1(β1 dimV1 + β2 dimV2)

}
+ (β1 dimV1 + β2 dimV2 −

l∑
i=1

β1εidi)(β1 dimV1 + β2 dimV2)

×
{
− (β1 dimV ′

1 + β2 dimV ′
2) + (β1χ(E′

1(m0)) + β2χ(E′
2(m0 − γ)))

}
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− (β1 dimV ′
1 + β2 dimV ′

2)
l∑

i=1

(β1 + β2)β1rdXm1εidi

+ (β1 dimV1 + β2 dimV2)
l∑

i=1

(β1 + β2)β1rdXm1εi(dimV ′
1 − dimV ′(i)

1 )

= −(β1 dimV1 + β2 dimV2)(β1 + β2)rdXm1

×
(
β1 dimV ′

1 + β2 dimV ′
2 −

l∑
i=1

β1εi(dimV ′
1 − dimV ′(i)

1 )
)

+ (β1 dimV1 + β2 dimV2)(β1r
′
1 + β2r

′
2)dXm1

×
(
β1 dimV1 + β2 dimV2 −

l∑
i=1

β1εidi

)
+
(
β1 dimV1 + β2 dimV2 −

l∑
i=1

β1εidi

)
(β1 dimV1 + β2 dimV2)

×
(
− (β1 dimV ′

1 + β2 dimV ′
2) + (β1χ(E′

1(m0)) + β2χ(E′
2(m0 − γ)))

)
≥ (β1 dimV1 + β2 dimV2)

×
{

(β1r
′
1 + β2r

′
2)dXm1

(
β1h

0(E1(m0)) + β2h
0(E2(m0 − γ))−

l∑
i=1

β1εidi

)
− (β1 + β2)rdXm1

(
β1h

0(E′
1(m0)) + β2h

0(E′
2(m0 − γ))

−
l∑

i=1

β1εi(h0(E′
1(m0))− h0(Fi+1(E′

1)(m0))
)}

+
(
β1 dimV1 + β2 dimV2 −

l∑
i=1

β1εidi

)
(β1 dimV1 + β2 dimV2)

×
(
− (β1 dimV ′

1 + β2 dimV ′
2) + (β1χ(E′

1(m0)) + β2χ(E′
2(m0 − γ)))

)
> 0.

Note that the last inequality holds by the choice of m1. Hence x is a
properly stable point.

By Proposition 5.4, there exists a geometric quotient Rs/G. The following
proposition follows from a standard argument.

Theorem 5.1. MD,α′,β,γ
X/S (r, d, {di}) := Rs/G is a coarse moduli

scheme of MD,α′,β,γ
X/S (r, d, {di}).
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Remark 5.2. The quotient map Rs →MD,α′,β,γ
X/S (r, d, {di}) is a principal

G-bundle, which we can see by the following lemma and the same argument as
[M], Proposition 6.4.

Lemma 5.1. Take any geometric point (E1, E2,Φ, F∗(E1)) ∈
MD,α′,β,γ

X/S (r, d, {di})(K). Then for any endomorphisms f1 : E1 → E1, f2 :
E2 → E2 satisfying Φ ◦ (1 ⊗ f1) = f2 ◦ Φ and f1(Fi+1(E1)) ⊂ Fi+1(E1) for
1 ≤ i ≤ l, there exists c ∈ K such that (f1, f2) = (c · idE1 , c · idE2).

Proof. Take such (f1, f2). Let c ∈ K be an eigenvalue of f1 ⊗ k(x) for
some x ∈ XK(K). Then f1 − c · idE1 becomes an endomorphism of E1 which
is not an isomorphism. Put E′

1 := Im(f1 − c · idE1), E
′
2 := Im(f2 − c · idE2),

Φ′ := Φ|Λ1
DK

⊗E′
1

and Fi+1(E′
1) := (f1−c·idE1)(Fi+1(E1)) for i = 1, . . . , l. Then

(E′
1, E

′
2,Φ

′, F∗(E′
1)) becomes a parabolic Λ1

DK
-subtriple of (E1, E2,Φ, F∗(E1)).

If we put G1 := ker(E1 → E′
1), G2 := ker(E2 → E′

2), ΦG := Φ|Λ1
DK

⊗G1
and

Fi+1(G1) := Fi+1(E1)∩G1 for i = 1, . . . , l, then (G1, G2,ΦG, F∗(G1)) becomes
a parabolic Λ1

DK
-subtriple of (E1, E2,Φ, F∗(E1)). If (E′

1, E
′
2) �= (0, 0), then, by

the stability of (E1, E2,Φ, F∗(E1)), we must have the inequalities

β1α
′
1χ(E1(m)) + β2χ(E2(m− γ)) +

∑l
i=1 β1εiχ(Fi+1(E1)(m))

β1 rank(E1) + β2 rank(E2)

>
β1α

′
1χ(E′

1(m)) + β2χ(E′
2(m− γ)) +

∑l
i=1 β1εiχ(Fi+1(E′

1)(m))
β1 rank(E′

1) + β2 rank(E′
2)

>
β1α

′
1χ(E1(m)) + β2χ(E2(m− γ)) +

∑l
i=1 β1εiχ(Fi+1(E1)(m))

β1 rank(E1) + β2 rank(E2)

for m� 0, which is a contradiction. Therefore we have (E′
1, E

′
2) = (0, 0), which

means that (f1, f2) = (c · idE1 , c · idE2).

§5.4. Projectivity of the moduli space

Proposition 5.5. Let R be a discrete valuation ring over S with residue
field k = R/m and quotient field K. Let (E1, E2,Φ, F∗(E1)) be a semistable
parabolic Λ1

DK
-triple on XK . Then there exists a flat family (Ẽ1, Ẽ2, Φ̃, F∗(Ẽ1))

of parabolic Λ1
DR

-triples on XR over R such that (E1, E2,Φ, F∗(E1)) ∼=
(Ẽ1, Ẽ2, Φ̃, F∗(Ẽ1))⊗R K and that (Ẽ1, Ẽ2, Φ̃, F∗(Ẽ1))⊗R k is semistable.

Proof. Two surjections

V1 ⊗OXK
(−m0) ∼= H0(E1(m0))⊗OXK

(−m0) → E1,
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V2 ⊗OXK
(−m0 + γ) ∼= H0(E2(m0 − γ))⊗OXK

(−m0 + γ) → E2

and the quotients E1 → E1/Fi+1(E1) (i = 1, . . . , l) give a morphism f :
SpecK → Q, where Q is defined by the property (105) in subsection 5.3. Since
Q is proper over S, f extends to a morphism f̃ : SpecR → Q. Thus there are
coherent sheaves E(0)

1 , E(0)
2 on XR flat over R and a flat family of filtrations

F∗(E
(0)
1 ) of E(0)

1 such that E(0)
1 ⊗K ∼= E1, E

(0)
2 ⊗K ∼= E2 and F∗(E

(0)
1 )⊗RK =

F∗(E1). The pullback of H by the morphism f̃ : SpecR → Q is denoted by
HR. Recall that H is defined by (106) in subsection 5.3. The homomorphism
Φ : Λ1

D/S⊗E1 → E2 corresponds to a homomorphism ψ : HR⊗RK → K. There

is a non-zero element t ∈ K \ {0} and a homomorphism ψ̃ : HR → R such that
tψ = ψ̃⊗RK. Let Φ(0) : Λ1

D/S⊗E
(0)
1 → E

(0)
2 be the homomorphism correspond-

ing to ψ̃. Then we have (E1, E2,Φ, F∗(E1)) ∼= (E(0)
1 , E

(0)
2 ,Φ(0), F∗(E

(0)
1 ))⊗RK,

since (E1, E2,Φ, F∗(E1)) ∼= (E1, E2, tΦ, F∗(E1)). Our proposition follows from
the following claim:

Claim. There is a flat family (Ẽ1, Ẽ2, Φ̃, F∗(Ẽ1)) of parabolic Λ1
DR

-
triples on XR over R such that Ẽj ⊂ E

(0)
j for j = 1, 2, Fi+1(Ẽ1) ⊂ Fi+1(E

(0)
1 ) for

i = 1, . . . , l, Φ̃ = Φ(0)|Ẽ1⊗Λ1
D/S

, (Ẽ1, Ẽ2, Φ̃, F∗(Ẽ1))⊗RK ∼= (E1, E2,Φ, F∗(E1))

and (Ẽ1, Ẽ2, Φ̃, F∗(Ẽ1))⊗R k is semistable.

Assume that E(0)
1 ⊗ k or E(0)

2 ⊗ k have torsions. In this case let B(0)
1 and

B
(0)
2 be the torsion parts of E(0)

1 ⊗ k and E(0)
2 ⊗ k, respectively. Then there are

exact sequences

0→ B
(0)
1 −→ E

(0)
1 ⊗ k −→ G

(0)
1 → 0

0→ B
(0)
2 −→ E

(0)
2 ⊗ k −→ G

(0)
2 → 0,

where G(0)
1 and G(0)

2 are vector bundles on Xk. Put E(1)
1 := ker(E(0)

1 → ((E(0)
1 ⊗

k)/B(0)
1 )), E(1)

2 := ker(E(0)
2 → ((E(0)

2 ⊗ k)/B(0)
2 )), Φ(1) := Φ(0)|

Λ1
DR

⊗E
(1)
1

and

Fi+1(E
(1)
1 ) := Fi+1(E

(0)
1 )∩E(1)

1 for i = 1, . . . , l. Then there are exact sequences

0→ G
(0)
1 −→ E

(1)
1 ⊗ k −→ B

(0)
1 → 0

0→ G
(0)
2 −→ E

(1)
2 ⊗ k −→ B

(0)
2 → 0.

Again let B(1)
1 and B

(1)
2 be the torsion parts of E(1)

1 ⊗ k and E
(1)
2 ⊗ k, re-

spectively. Repeating these operations, we obtain sequences (E(n)
1 , E

(n)
2 ,Φ(n),

F∗(E
(n)
1 ))n≥0, (B(n)

1 , B
(n)
2 )n≥0 and (G(n)

1 , G
(n)
2 )n≥0. Then the injections

B
(n+1)
1 ↪→ B

(n)
1 , B(n+1)

2 ↪→ B
(n)
2 are induced by the homomorphisms E(n+1)

1 ⊗
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k → E
(n)
1 ⊗ k, E(n+1)

2 ⊗ k → E
(n)
2 ⊗ k. Since (lengthB(n)

1 , lengthB(n)
2 )n≥0 is

stationary, we may assume that it is constant. Then we have isomorphisms
B

(n+1)
1

∼→ B
(n)
1 , B(n+1)

2
∼→ B

(n)
2 , G(n)

1
∼→ G

(n+1)
1 , G(n)

2
∼→ G

(n+1)
2 for all n.

Assume that (B(n)
1 , B

(n)
2 ) �= (0, 0). There is an exact sequence

E
(n)
j /mnE

(0)
j

u−→ E
(0)
j /mnE

(0)
j −→ E

(0)
j /E

(n)
j → 0

for n ≥ 1 and j = 1, 2. We can see that (E(n)
j /mnE

(0)
j )⊗ k ∼= B

(n−1)
j and that

u⊗ k : (E(n)
j /mnE

(0)
j )⊗ k ∼= B

(n−1)
j → E

(0)
j ⊗ k

is injective. Thus E(0)
j /E

(n)
j is flat over R/mn and the quotient E(0)

j /mnE
(0)
j →

E
(0)
j /E

(n)
j determines a morphism fn : SpecR/mn → Quot

E
(0)
j /XR/R

for n ≥
1. So we obtain a morphism f : Spec R̂ → Quot

E
(0)
j /XR/R

, where R̂ is the

completion of R. f corresponds to a quotient sheaf E(0)
j ⊗ R̂

π→ G. Since

(kerπ) ⊗ R/m ∼= B
(0)
j , kerπ ⊗ K̂ is a torsion submodule of E(0)

j , which is
nonzero either for j = 1 or j = 2, where K̂ is the quotient field of R̂. However,
it is a contradiction, because E(0)

1 ⊗ K̂, E(0)
2 ⊗ K̂ are vector bundles. Hence we

must have (B(n)
1 , B

(n)
2 ) = (0, 0) for some n. So we may assume without loss of

generality that E(0)
1 ⊗ k and E(0)

2 ⊗ k are locally free.
Now assume that the claim does not hold. Then we can define a descending

sequence of flat families of parabolic Λ1
DR

-triples

(E(0)
1 , E

(0)
2 ,Φ(0), F∗(E

(0)
1 )) ⊃ (E(1)

1 , E
(1)
2 ,Φ(1), F∗(E

(1)
1 ))

⊃ (E(2)
1 , E

(2)
2 ,Φ(2), F∗(E

(2)
1 )) ⊃ · · ·

as follows: Suppose (E(n)
1 , E

(n)
2 ,Φ(n), F∗(E

(n)
1 )) has already been defined.

There exists a maximal destabilizer (B(n)
1 , B

(n)
2 ,ΦB(n) , F∗(B

(n)
1 )) of (E(n)

1 , E
(n)
2 ,

Φ(n), F∗(E
(n)
1 ))⊗k as in the usual case of semistability of coherent sheaves. We

can see that B(n)
j is a subbundle of E(n)

j ⊗k for j = 1, 2 and Fi+1(B
(n)
1 ) = B

(n)
1 ∩

(Fi+1(E
(n)
1 )⊗ k) for i = 1, . . . , l. We put G(n)

j := (E(n)
j ⊗ k)/B(n)

j for j = 1, 2.

Then G(n)
1 has an induced quotient parabolic structure F∗(G

(n)
1 ). A homomor-

phism ΦG(n) : Λ1
D/S ⊗ G

(n)
1 → G

(n)
2 is induced by Φ(n) and (G(n)

1 , G
(n)
2 ,ΦG(n) ,

F∗(G
(n)
1 )) becomes a parabolic Λ1

Dk
-triple. Put

E
(n+1)
j = ker(E(n)

j → G
(n)
j ), Φ(n+1) := Φ(n)|

Λ1
D/S

⊗E
(n+1)
1

,

Fi+1(E
(n+1)
1 ) = ker(Fi+1(E

(n)
1 ) → Fi+1(G

(n)
1 ))
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Then (E(n+1)
1 , E

(n+1)
2 ,Φ(n+1), F∗(E

(n+1)
1 )) becomes a flat family of parabolic

Λ1
DR

-triples on XR over R. There are exact sequences

(107)
0→ B

(n)
j → E

(n)
j ⊗ k → G

(n)
j → 0 and 0→ G

(n)
j → E

(n+1)
j ⊗ k → B

(n)
j → 0

for j = 1, 2. Then we can see that (G(n)
1 , G

(n)
2 ,ΦG(n) , F∗(G

(n)
1 )) becomes a

parabolic Λ1
Dk

-subtriple of (E(n+1)
1 , E

(n+1)
2 ,Φ(n+1), F∗(E

(n+1)
1 )) ⊗ k. We can

check that Fi+1(G
(n)
1 ) = G

(n)
1 ∩ (Fi+1(E

(n+1)
1 )⊗ k) for i = 1, . . . , l. Put

C
(n)
j := G

(n)
j ∩B(n+1)

j , ΦC(n) := (Φ(n+1) ⊗ k)|
Λ1

Dk
⊗C

(n)
1
,

Fi+1(C
(n)
1 ) := Fi+1(G

(n)
1 ) ∩ Fi+1(B

(n+1)
1 ) (i = 1, . . . , l).

Then (C(n)
1 , C

(n)
2 ,ΦC(n) , F∗(C

(n)
1 )) becomes a parabolic Λ1

Dk
-triple and

Fi+1(C
(n)
1 ) = C

(n)
1 ∩ (Fi+1(E

(n+1)
1 ) ⊗ k) for i = 1, . . . , l. A quotient parabolic

structure F∗(B
(n+1)
1 /C

(n)
1 ) is induced on B

(n+1)
1 /C

(n)
1 and a homomorphism

ΦB(n+1)/C(n) : Λ1
Dk
⊗B(n+1)

1 /C
(n)
1 → B

(n+1)
2 /C

(n)
2 is induced by Φ(n+1). Then

(B(n+1)
1 /C

(n)
1 , B

(n+1)
2 /C

(n)
2 ,ΦB(n+1)/C(n) , F∗(B

(n+1)
1 /C

(n)
1 ))

becomes a parabolic Λ1
Dk

-triple. If (C(n)
1 , C

(n)
2 ) �= (0, 0), then we have

µ((C(n)
1 , C

(n)
2 ,ΦC(n) , F∗(C

(n)
1 ))) ≤ µmax((G

(n)
1 , G

(n)
2 ,ΦG(n) , F∗(G

(n)
∗ )))

< µmax((E
(n)
1 , E

(n)
2 ,Φ(n), F∗(E

(n)
1 ))⊗ k) = µ((B(n)

1 , B
(n)
2 ,ΦB(n) , F∗(B

(n)
1 ))),

where µmax means the value of µ at the maximal destabilizer. Thus, in any
case, we have the inequality

µ((B(n+1)
1 , B

(n+1)
2 ,ΦB(n+1) , F∗(B

(n+1)
1 )))

≤ µ((B(n+1)
1 /C

(n)
1 , B

(n+1)
2 /C

(n)
2 ,ΦB(n+1)/C(n) , F∗(B

(n+1)
1 /C

(n)
1 )))

≤ µ((B(n)
1 , B

(n)
2 ,ΦB(n) , F∗(B

(n)
1 )))

with equality if and only if (C(n)
1 , C

(n)
2 ) = (0, 0).

The descending sequence

{µ((B(n)
1 , B

(n)
2 ,ΦB(n) , F∗(B

(n)
1 )))}n∈N

must become stationary since it is bounded below. We may assume without
loss of generality that

µ((B(n)
1 , B

(n)
2 ,ΦB(n) , F∗(B

(n)
1 )))
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is constant for all n. In this case we must have (C(n)
1 , C

(n)
2 ) = (0, 0) and

(B(n+1)
1 , B

(n+1)
2 ,ΦB(n+1) , F∗(B

(n+1)
1 ))

becomes a parabolic Λ1
Dk

-subtriple of

(B(n)
1 , B

(n)
2 ,ΦB(n) , F∗(B

(n)
1 ))

for all n. Since the descending sequence {rankB(n)
1 + rankB(n)

2 }n∈N must be
stationary, we may assume without loss of generality that rankB(n)

1 +rankB(n)
2

is constant for all n. Then we must have

(B(n)
1 , B

(n)
2 ,ΦB(n) , F∗(B

(n)
1 )) = (B(n+1)

1 , B
(n+1)
2 ,ΦB(n+1) , F∗(B

(n+1)
1 ))

for all n. Thus the sequences (107) split and

(E(n)
1 , E

(n)
2 ,Φ(n), F∗(E

(n)
1 ))⊗ k

∼= (B(n)
1 , B

(n)
2 ,ΦB(n) , F∗(B

(n)
1 ))⊕ (G(n)

1 , G
(n)
2 ,ΦG(n) , F∗(G

(n)
1 )).

Then all the maps G(n)
j → G

(n+1)
j are isomorphisms. Since B(n+1)

j → B
(n)
j

are all isomorphic, every image of E(n)
j ⊗ k → E

(0)
j ⊗ k is B(0)

j for j = 1, 2.

So we have an isomorphism (E(0)
j /E

(n)
j ) ⊗ k ∼= G

(0)
j for any n. On the other

hand, every image of mn/mn+1 ⊗ E
(0)
j → E

(n)
j ⊗ k is G(n−1)

j . So we have an

isomorphism (E(n)
j /mnE

(0)
j )⊗ k ∼= B

(n−1)
j . Consider the exact sequence

0 −→ E
(n)
j /mnE

(0)
j

u−→ E
(0)
j /mnE

(0)
j −→ E

(0)
j /E

(n)
j −→ 0.

Then u ⊗ k : (E(n)
j /mnE

(0)
j ) ⊗ k ∼= B

(n−1)
j → E

(0)
j ⊗ k is injective. Thus u is

injective and E
(0)
j /E

(n)
j is flat over R/mnR. Then quotients E(0)

j ⊗ R/mn →

E
(0)
j /E

(n)
j define a system of morphisms SpecR/mn → Q′

j := Quot
χ(G

(0)
j (n))

E
(0)
j /XR/R

which induces a morphism fj : Spec R̂ → Q′
j , where R̂ is the completion of R.

If G̃j is the quotient sheaf of E(0)
j ⊗ R̂ corresponding to fj , then we have G̃j ⊗

R/mnR ∼= E
(0)
j /E

(n)
j . Similarly we can lift the parabolic structure F∗(G

(0)
1 ) to

a flat family F∗(G̃1) of parabolic structure on G̃1 over R̂. We can also lift ΦG(0)

to ΦG̃ : Λ1
D/S ⊗ G̃1 → G̃2 and (G̃1, G̃2,ΦG̃, F∗(G̃1)) becomes a flat family of

parabolic Λ1
DR

-triples which is a quotient of (E(0)
1 , E

(0)
2 ,Φ(0), F∗(E

(0)
∗ ))⊗R̂. If K̂

is the quotient field of R̂, then (G̃1, G̃2,ΦG̃, F∗(G̃1))⊗K̂ becomes a destabilizing
quotient parabolic Λ1

DK̂
-triple of (E1, E2,Φ, F∗(E1))⊗K̂, which contradicts the

semistability of (E1, E2,Φ, F∗(E1)).

As a corollary of Proposition 5.5, we obtain the following proposition:
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Proposition 5.6. Assume that α′
1, . . . , α

′
l are sufficiently general so

that all the semistable parabolic Λ1
D/S-triples are stable. Then the moduli

scheme MD,α′,β,γ
X/S (r, d, {di}) is projective over S.

There is another corollary of Proposition 5.5 which is used in the proof
of the surjectivity of the Riemann-Hilbert morphism in Lemma 7.1. For a
parabolic connection (E,∇, ϕ, {li}), let (0, 0) = (F0,∇0) ⊂ (F1,∇1) ⊂ · · · ⊂
(Fl,∇l) = (E,∇) be a Jordan-Hölder filtration of (E,∇), that is, each (Fi/Fi+1,

∇i) is irreducible, where ∇i : Fi/Fi+1 → Fi/Fi+1⊗Ω1
X(D(t)) is the connection

induced by ∇i. Then we put

gr(E,∇) :=
l⊕

i=1

(Fi/Fi+1,∇i).

Corollary 5.1. Let R be a discrete valuation ring with quotient field
K and residue field k. Let (E,∇, ϕ, {li}) be a flat family of connections with
parabolic structures on X × SpecR over R such that the generic fiber (E,∇,
ϕ, {li})⊗R K is α-semistable. Then there exists a flat family (Ẽ, ∇̃, ϕ̃, {l̃i}) of
α-semistable parabolic connections such that (Ẽ, ∇̃, ϕ̃, {l̃i})⊗K ∼= (E,∇, ϕ, {li})
⊗K and gr((Ẽ, ∇̃)⊗ k) ∼= gr((E,∇)⊗ k).

§5.5. Proof of Theorem 2.1 (1)

Now we prove the assertion (1) of Theorem 2.1.
We take S for Tn × Λn and X for P1 × Tn × Λn.
Let Di ⊂ P1 × Tn × Λn be the effective divisor determined by the section

Tn×Λn ↪→ P1×Tn×Λn; ((tj)1≤j≤n, (λk)1≤k≤n) �→ (ti, (tj)1≤j≤n, (λk)1≤k≤n)

for i = 1, . . . , n and put D :=
∑n

i=1Di. Then D becomes an effective Cartier
divisor on P1 × Tn × Λn which is flat over Tn × Λn.

We fix a line bundle L on P1 × Tn × Λn with a relative connection

∇L : L→ L⊗ Ω1
P1×Tn×Λn/Tn×Λn

(D)

over Tn×Λn. Let α′ = (α′
1, . . . , α

′
2n), β = (β1, β2), and γ � 0 be as in Theorem

2.1.
We define a moduli functor Mα′β

n (L) of the category of locally noetherian
schemes over Tn × Λn to the category of sets by

Mα′β
n (L)(S) := {(E1, E2, φ,∇, ϕ, {li}n

i=1)}/ ∼,

where S is a locally noetherian scheme over Tn ×Λn corresponding to (t,λ) =
(t1, . . . , tn, λ1, . . . , λn) ∈ Tn(S)× Λn(S) and
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(1) E1, E2 are rank 2 vector bundles on P1 × S,

(2) φ : E1 → E2 is an OP1×S-homomorphism, ∇ : E1 → E2 ⊗ Ω1
P1(D(t)) is a

morphism such that ∇(fa) = φ(a)⊗ df + f∇(a) for f ∈ OP1×S , a ∈ E1,

(3) li ⊂ E1|ti
are rank 1 subbundles such that (resti

(∇) − λiφ|ti
)|li = 0 for

i = 1, . . . , n,

(4) ϕ :
∧2E2

∼−→ L⊗Lϕ is an isomorphism such that (ϕ⊗ 1)(∇(s1)∧φ(s2) +
φ(s1) ∧ ∇(s2)) = (∇L ⊗ idLϕ

)(ϕ(φ(s1) ∧ φ(s2))) for s1, s2 ∈ E1 where Lϕ

is a line bundle on S,

(5) for any geometric point s of S, the fiber ((E1)s, (E2)s, φs,∇s, ϕs,

{li|ti⊗k(s)}n
i=1) is (α′,β)-stable and deg(E1)s = degLs.

Here (E1, E2, φ,∇, ϕ, {li}) ∼ (E′
1, E

′
2, φ

′,∇′, ϕ′, {l′i}) if there exist a line
bundle L on S and isomorphisms σj : Ej

∼→ E′
j ⊗ L for j = 1, 2 such that

σ1|ti×S(li) = l′i for any i, the diagrams

E1
φ−−−−→ E2

σ1

�∼= ∼=
�σ2

E′
1 ⊗ L

φ′
−−−−→ E′

2 ⊗ L

and

E1
∇−−−−→ E2 ⊗ Ω1

P1(D(t))

σ1

�∼= ∼=
�σ2⊗id

E′
1 ⊗ L

∇′
−−−−→ E′

2 ⊗ Ω1
P1(D(t))⊗ L

commute and there is an isomorphism σ : Lϕ
∼→ Lϕ′ ⊗ L⊗2 such that the

diagram ∧2E2
ϕ−−−−→∼ L⊗ Lϕ

∧σ2

�∼= ∼=
�id⊗σ∧2

E′
2 ⊗ L

ϕ′⊗idL−−−−−→∼ L⊗ Lϕ′ ⊗ L⊗2

commutes.
We can define another weight α = (α1, . . . , α2n) with 0 ≤ α1 < · · · <

α2n <
β1

β1+β2
< 1 by

α = α′ β1

β1 + β2
.

Theorem 2.1, (1) follows from the following theorem:

Theorem 5.2. There exists a coarse moduli scheme Mα′β
n (L) of

Mα′β
n (L), which is projective over Tn × Λn if α′ is generic. If we put
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Mα
n (L)

:=
{
(E1, E2, φ,∇, ϕ, {li}) ∈Mα′β

n (L)
∣∣∣φ : E1 → E2 is an isomorphism

}
,

then Mα
n (L) is a Zariski open subset of Mα′β

n (L), which is a fine moduli scheme
of α-stable parabolic connections.

Proof. We put r = 2, d = degLs for s ∈ Tn × Λn, l = 2n and di = i for
i = 1, . . . , 2n and consider the moduli scheme MD,α′,β,γ

P1×Tn×Λn/Tn×Λn
(2, d, {di}).

For each (E1, E2, φ,∇, ϕ, {li}) ∈ Mα′β
n (L)(S), let Φ : Λ1

DS
⊗ E1 → E2 be

the left OP1×S-homomorphism corresponding to (φ,∇) and put F2i+1(E1) :=
E1(−

∑i
j=1 tj) for i = 0, . . . , l and F2i(E1) := ker(F2i−1(E1) → (E1|ti

/li)) for
i = 1, . . . , l, where (t1, . . . , tn, λ1, . . . , λn) ∈ Tn(S)× Λn(S) corresponds to the
structure morphism S → Tn × Λn. Then the correspondence (E1, E2, φ,∇,
ϕ, {li}) �→ (E1, E2,Φ, F∗(E1)) determines a morphism of functors

ι :Mα′β
n (L)→MD,α′,β,γ

P1×Tn×Λn/Tn×Λn
(2, d, {di}).

We can easily see that ι is represented by a closed immersion. Recall that
Rs →MD,α′,β,γ

P1×Tn×Λn/Tn×Λn
(2, d, {di}) is a principal G-bundle. Then there exists

a closed subscheme Z ⊂ Rs such that

hZ = hRs ×MD,α′,β,γ

P1×Tn×Λn/Tn×Λn
(2,d,{di})

Mα′β
n (L).

Z descends to a closed subscheme of MD,α′,β,γ
P1×Tn×Λn/Tn×Λn

(2, d, {di}) which is just

the coarse moduli scheme of Mα′β
n (L).

If we take γ sufficiently large, we can check that a parabolic connection
(E,∇E, ϕ, {li}) is α-stable if and only if the associated parabolic φ-connection
(E,E, idE ,∇E , ϕ, {li}) is (α′,β)-stable. Thus the open subscheme

Mα
n (L)

:=
{

(E1, E2, (φ,∇), F∗(E1)) ∈Mα′β
n (L)

∣∣∣φ : E1 → E2 is an isomorphism
}

of Mα′β
n (L) is just the moduli space of α-stable parabolic connections with the

determinant L.
If degL is odd, we can see by the same argument as [[M], Theorem 6.11]

or [[HL], Theorem 4.6.5] that Mα
n (L) is in fact a fine moduli scheme. If degL

is even, then we can obtain, by an elementary transform, an isomorphism

σ : Mn(L) →Mn(L′)
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of moduli stacks of parabolic connections without stability condition, where
degL′ is odd. Then we can see by the same argument that σ(Mα

n (L)) becomes
a fine moduli scheme, and so Mα

n (L) is also fine.

§6. Tangent Spaces of the Moduli Spaces and
Canonical Symplectic Structure

In this section, we will work over the finite étale covering T ′
n −→ Tn defined

in (94). Fix (t,λ) ∈ T ′
n×Λn and set ai = 2 cos 2πλi and a = (a1, . . . , an). More-

over fix a determinant line bundle L = (L,∇L) on P1 such that resti
(∇L) ∈ Z.

We have defined two moduli spaces Mα
n (t,λ, L),R(Pn,t)a where Mα

n (t,λ, L)
is the moduli space of stable (t,λ)-parabolic connections with the determinant
L and R(Pn,t)a is the moduli of Jordan equivalence classes of the SL2(C)-
representations of π1(P1 \D(t), ∗) with fixed local exponents a = (a1, . . . , an).
As we show in Theorem 2.1, for a suitable (or generic) weight α, the moduli
space Mα

n (t,λ, L) is a non-singular complex scheme. In this section, we will
describe the tangent space to Mα

n (t,λ, L) and a non-degenerate holomorphic
2-form on the moduli space Mα

n (t,λ, L).
Although the moduli space R(Pn,t)a may be singular, we can define a

Zariski dense open set R(Pn,t)�
a of R(Pn,t)a such that R(Pn,t)�

a is a non-
singular variety. (Note that for generic a ∈ An, R(Pn,t)�

a = R(Pn,t)a). More-
over on R(Pn,t)�

a we can also define a canonical symplectic structure Ω1. In
§7 we define the Riemann-Hilbert correspondence RHt,λ : Mα

n (t,λ, L) −→
R(Pn,t)a. We show that RHt,λ is bimeromorphic proper surjective morphism
and gives an analytic isomorphism between Mα

n (t,λ, L)� := RH−1
t,λ(R(Pn,t)�

a)
and R(Pn,t)�

a. (Again, for a generic λ, Mα
n (t,λ, L)� = Mα

n (t,λ, L)). Note
that RHt,λ is not an algebraic morphism, and hence the algebraic structures of
Mα

n (t,λ, L)� and R(Pn,t)�
a are completely different). The canonical symplectic

structures on both moduli spaces can be identified via RHt,λ|Mα
n (t,λ,L)� , that

is,
(
RHt,λ|Mα

n (t,λ,L)�

)∗ (Ω1) = Ω.

§6.1. Tangent space to Mα
n (t,λ, L)

Consider the base extension of the family of moduli spaces in (48) by the
étale covering T ′

n −→ Tn:

(108) πn : Mα
n (L) −→ T ′

n × Λn,

such that for every (t,λ) ∈ T ′
n × Λn, we have π−1

n ((t, λ)) 
 Mα
n (t,λ, L).

For simplicity, we will omit L from now on, so we write as Mα
n = Mα

n (L),
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Mα
n (t,λ) = Mα

n (t,λ, L). We assume that α is generic so that πn is a smooth
morphism (cf. Theorem 2.1).

Let us consider natural projection maps

Mα
n

↓ πn

T ′
n × Λn

p1

↙
p2

↘
T ′

n Λn

and set ϕi = pi ◦ πn. Since ϕ1 : Mα
n −→ T ′

n is smooth, we have the following
exact sequence of tangent sheaves on Mα

n

(109) 0 −→ ΘMα
n /T ′

n×Λn
−→ ΘMα

n /T ′
n
−→ π∗

n(ΘT ′
n×Λn/T ′

n
) −→ 0.

We will describe this exact sequence in terms of the infinitesimal deformation
of the stable parabolic connections. Let us consider the natural projection map
q2 : P1 × T ′

n −→ T ′
n and defines a divisor D ⊂ P1 × T ′

n such that q−1
2 (t)∩D =

D(t) = t1 + · · ·+ tn ⊂ P1.
Let (Ẽ, ∇̃, ϕ̃, {l̃i}) be a universal family on P1×Mα

n . Consider the follow-
ing commutative diagram:

(110)

P1 ×Mα
n

ϕ̃1

↙ ↓ π̃n

P1 × T ′
n × Λn

↙
P1 × T ′

n

q2 ↓
T ′

n

For a coherent sheaf G on P1 ×Mα
n and a closed point x ∈ Mα

n , we set
Gx := G|P1×x.

We define coherent sheaves on P1 ×Mα
n as follows.

F0 :=
{
s ∈ End(Ẽ)|Tr(s) = 0, ; (s|ti×Mα

n
)(l̃i) ⊂ l̃i

}
(111)

F1 :=
{
s ∈ End(Ẽ)⊗ ϕ̃∗

1(Ω
1
P1×T ′

n/T ′
n
(D)) | Tr(s) = 0, (s|ti×Mα

n
)(l̃i) = 0

}(112)

F1,+ :=
{
s ∈ End(Ẽ)⊗ ϕ̃∗

1(Ω
1
P1×T ′

n/T ′
n
(D))|Tr(s) = 0, res(ti×Mα

n )(s)(l̃i) ⊂ l̃i

}(113)
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For a local section s of F0, define ∇1(s) := ∇̃s − s∇̃. Then it is easy to see
that ∇1(s) is a local section of F1. Since we have a natural inclusion of sheaves
ι : F1 ↪→ F1,+, we can define two complexes of sheaves on P1 ×Mα

n :

F• :=
[
∇1 : F0 −→ F1

]
,(114)

F•,+ :=
[
∇+

1 : F0 −→ F1,+
]
.(115)

Let x ∈ Mα
n be a closed point and set π(x) = (t,λ). Setting T1 =

F1,+/F1, we have the following exact sequences of the complexes on P1×Mα
n

and P1 × {x}.

(116)

0�
F0 ∇1−−−−→ F1∥∥∥ �
F0 ∇+

1−−−−→ F1,+� �
0 −−−−→ T1�

0

on P1 ×Mα
n ,

0�
F0

x

∇1,x−−−−→ F1
x∥∥∥ �

F0
x

∇+
1,x−−−−→ F1,+

x� �
0 −−−−→ T1,x�

0.

on P1 × {x}

Note that at each point ti, 1 ≤ i ≤ n, the stalk (T1,x)ti
is isomorphic to

C((ti,x)), hence H0(T1,x) 
 ⊕n
i=1C((ti,x)) 
 Cn.

Lemma 6.1. At each closed point x ∈ Mα
n (t,λ) ⊂ Mα

n the tangent
spaces can be given as follows.

(ΘMα
n /T ′

n
)x 
 H1(P1, [F0

x

∇+
1,x−→ F1,+

x ]),(117)

(ΘMα
n /T ′

n×Λn
)x 
 H1(P1, [F0

x

∇1,x−→ F1
x]),(118)

(ΘT ′
n×Λn/T ′

n
)π(x) 
 H0(T1,x) 
 Cn.(119)

Under these isomorphisms, we have the following identification of the natural
exact sequences of the tangent spaces with the exact sequences of the hyperco-
homologies :
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(120)
0 −→ (ΘMα

n /T ′
n×Λn

)x −→ (ΘMα
n /T ′

n
)x −→ (ΘT ′

n×Λn/T ′
n
)π(x) −→ 0∥∥∥ ∥∥∥ ∥∥∥

0 −→ H1([F0
x

∇1,x−→ F1
x]) −→ H1([F0

x

∇+
1,x−→ F1,+

x ]) −→ H0(T1,x) −→ 0.

Proof. The smoothness of the natural map πn : Mα
n −→ T ′

n ×Λn follows

from Theorem 2.1. (Actually, one can show that H2([F0
x

∇1,x−→ F1
x]) = {0}

(cf. Lemma 6.3)). The space of the infinitesimal deformations of logarithmic
parabolic connection with fixing the eigenvalues of the residue matrix of ∇̃x,ti

at ti is given by the hypercohomology

H1(P1, [F0
x

∇1,x−→ F1
x]).

(Cf. Arinkin [A]). Moreover it is easy to see that H1(P1, [F0
x

∇+
1,x−→ F1,+

x ]) is the
set of infinitesimal deformations of logarithmic parabolic connections without
fixing the eigenvalues of the residues of ∇̃x.

Since T1,x is a skyscraper sheaf supported on D(t) ⊂ P1×{x}, we see that
H0(0 → T1,x) = {0}, H1(0 → T1,x) = H0(T1,x) 
 Cn. Local calculations of
the maps ∇1,∇1,+ in the commutative diagram in (116) show that the natural
map

dπn,x : H1([∇+
1,x : F0

x −→ F1,+]) −→ H0(T1)

gives the differential of the map πn : Mα
n −→ Λn at x. Since H2([F0

x

∇1,x−→
F1

x]) = {0} or equivalently πn is smooth at x, the map dπx is surjective.

§6.2. The relative symplectic form Ω for πn : Mα
n −→ T ′

n × Λn

Let us consider the smooth family of moduli spaces of stable parabolic
connections:

(121) πn : Mα
n −→ T ′

n × Λn.

Now we will show that each closed fiber π−1
n (t,λ) = Mα

n (t,λ, L) admits a
canonical symplectic structure Ω, which induces a non-degenerate skew sym-
metric bilinear form on its tangent sheaf:

(122) Ω|Mα
n (t,λ,L) : ΘMα

n (t,λ,L) ⊗ΘMα
n (t,λ,L) −→ OMα

n (t,λ,L).

First, a local calculation shows the following
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Lemma 6.2. For each point x ∈ Mα
n (t,λ, L) = π−1

n (t,λ) ⊂ Mα
n , set

F i
x = F i

|P1×x for i = 0, 1. Then we have isomorphisms

(123) F1
x 
 F0∨

x ⊗ Ω1
P1 , F0

x 
 F1∨
x ⊗ Ω1

P1 .

where F i∨
x = Hom(F i

x,OP1).

The following lemma is a key of proof of the smoothness of the moduli
space Mα

n (t,λ, L). The stability assumption on the objects in Mα
n (t,λ, L) is

essential in this lemma.

Lemma 6.3. Under the notation as above, we have

(124) H2(P1,F•
x) = {0}.

Proof. Consider the dual complex (∇1)∨ : (F1)∨ ⊗ Ω1
P1 −→ (F0)∨ ⊗

Ω1
P1 which can be identified with the original complex ∇1 by Killing form (cf.

Lemma 6.2). Therefore

H2(F•) 
 coker
[
H1(F0

x) ∇1

−→ H1(F1
x)
]


 ker
[
H1(F1

x)∨
(∇1)∨−→ H1(F0

x)∨
]∨


 ker
[
H0(F0

x) ∇1

−→ H0(F1
x)
]∨
.

Since F0
x is in the trace free part of the endomorphisms, it suffices to show that

any s ∈ H0(F0
x) such that s∇ = ∇s is a scalar. For any λ ∈ C, let us set

E0
λ = ker(s− λ) and E1

λ = Im(s− λ). Then both E0
λ and E1

λ are subsheaves of
E stable under ∇. If E0

λ is locally free of rank 1, one can see that either E0
λ or

E1
λ violates the stability of E. Hence E0

λ is zero or coincides with E. Therefore
s is scalar.

Proposition 6.1. There exists a global relative 2-form

(125) Ω ∈ H0(Mα
n ,Ω

2
Mα

n /T ′
n×Λn

).

which induces a symplectic structure on each fiber of πn.

Proof. Let us consider the following commutative diagram:

(126)

P1 ×Mα
n

p2−−−−→ Mα
n� �

P1 × T ′
n × Λn

q2−−−−→ T ′
n × Λn
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Let F• :=
[
∇1 : F0 −→ F1

]
be the complex of sheaves defined in (114). From

Lemma 6.1, we have a natural isomorphism of sheaves:

(127) R1p2,∗(F•) �−→ ΘMα
n /T ′

n×Λn
.

By this isomorphism, it suffices to define a non-degenerate skew-symmetric
form

(128) Ω : R1p2,∗(F•)⊗R1p2,∗(F•) −→ R2p2,∗(Ω•
P1×Mα

n /Mα
n

) ∼= OMα
n
.

Let us fix a point x ∈Mα
n (t,λ, L) = π−1

n (t,λ) ⊂Mα
n and define the restriction

as F•
x = F•

|P1×{x}. From the following definition of Ω(x) at the stalk level of
(128), it is obvious the definition of the global relative 2-form Ω in (128), and
the non-degeneracy of Ω will be checked at the stalk of each closed point x.

Take an affine open covering {Uα} of P1 and consider the following pairing

(129)
Ω(x) : H1(P1,F•

x)⊗H1(P1,F•
x) −→ H2(Ω•

P1) 
 C(x)

([{vαβ}, {uα}], [{v′αβ}, {u′α}]) �→ [{Tr(vαβ ◦ u′β)− Tr(uα ◦ v′αβ)}]
−[{Tr(vαβ ◦ v′βγ)}]

where we consider in Čech cohomology and {vαβ} ∈ C1(F0
x), {uα} ∈ C0(F1

x),
{∇̃xvαβ − vαβ∇̃x} = {uβ − uα} and so on. We can check that Ω(x) is a skew
symmetric pairing. Let us show that Ω(x) is non-degenerate for any point
x ∈ Mα

n (t,λ, L). From Lemma 6.3, one can show that H2(F•
x) = 0 for any

x ∈Mα
n (t,λ, L). Ω(x) induces a homomorphism

H1(F•
x)

ξ−−−−→ H1(F•
x)∨.

From the spectral sequence Hp
(
Hq(F0

x) → Hq(F1
x)
)
⇒ Hp+q(F•

x), we obtain
the following exact sequence

(130)
0 −→ H0(F0

x) −→ H0(F1
x) −→ H1(F•

x) −→ H1(F0
x) −→ H1(F1

x) −→ 0.

Then we obtain the exact commutative diagram

H0(F0
x) −−→ H0(F1

x) −−→ H1(F•
x) −−→ H1(F0

x) −−→ H1(F1
x)

b1

� b2

� ξ

� b3

� b4

�
H1(F1

x)∨ −−→ H1(F0
x)∨ −−→ H1(F•

x)∨ −−→ H0(F1
x)∨ −−→ H0(F0

x)∨,
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where b1, . . . , b4 are isomorphisms induced by the isomorphisms F0
x
∼= (F1)∨x ⊗

Ω1
P1 , F1

x
∼= (F0)∨x ⊗ Ω1

P1 and Serre-duality. Thus ξ becomes an isomorphism
by five lemma.

§6.3. Smoothness of Mα
n (t,λ, L) and its dimension

In this subsection, we prove that the morphism πn : Mα
n (L) −→ Tn × Λn

is smooth of equidimension 2n− 6, which is stated in Theorem 2.1, (2).

Proposition 6.2.

(1) The morphism πn : Mα
n (L) −→ Tn × Λn is smooth.

(2) For any closed point x ∈Mα
n (t,λ, L), we have

(131) dimC H1(F•
x) = 2n− 6.

In particular, the moduli space Mα
n (t,λ, L) is smooth of equidimension

2n− 6.

Proof. (1): By a standard argument as in [Lemma 4, [A]], the smoothness
of πn at x follows from Lemma 6.3. (2): First, by (123), we have F1 
 (F0)∨⊗
Ω1

P1 , and hence Serre duality implies that χ(P1,F1
x) = χ((F0

x)∨ ⊗ Ω1
P1) =

−χ(P1,F0). Together with the exact sequence (130), we obtain

(132) dimH1(F•
x) = −χ(P1,F0

x) + χ(P1,F1
x) = −2χ(P1,F0

x).

Setting End0(Ex) = {s ∈ End(Ẽx) | Tr(s) = 0}, by definition of F0
x (111), we

obtain the following exact sequence

(133) 0 −→ F0
x −→ End0(Ẽx) −→ ⊗n

i=1C((ti,x)) −→ 0.

Since End0(Ex) is a self-dual locally free sheaf of rank 3 on P1, Riemann-Roch
theorem implies that χ(P1, End0(Ex)) = 3+deg End0(Ex) = 3. Then the exact
sequence (133) together with (132) shows that

χ(P1,F0
x) = χ(End0(Ẽx))− n = 3− n,

which implies the assertion (131).

Remark 6.1. One can also show that

(134) H2(P1,F•+
x ) = {0},

which implies that the morphism Mα
n −→ Tn is smooth.
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§6.4. Tangent space to R(Pn,t)a

Let (E,∇, ϕ, {li}) be a stable parabolic connection on P1 corresponding
to a point x in Mα

n (t,λ, L). Let us consider the inclusion j : P1 \D(t) ↪→ P1

and define

(135) E = ker
[
∇an : E −→ (E ⊗ Ω1

P1)
]
P1\D(t)

.

Then E becomes a locally constant sheaf on P1 \ D(t). The correspondence
(E,∇, ϕ, {li}) �→ E induces an analytic morphism

(136) RHt,λ : Mα
n (t,λ, L) −→ R(Pn,t)a

which is called the Riemann-Hilbert correspondence. (Here we set a = (ai), ai =
2 cos 2πλi ). For the precise definition, see Definition 7.1 in §7.

The morphism RHt,λ will be studied in detail in the next section.
Define another locally constant sheaf on P1 \D(t) by

(137) V := {s ∈ Hom(E,E)|Tr(s) = 0}.

Note that for each point u ∈ P1 \ D(t) the fiber of Vu is isomorphic to the
Lie algebra sl2(C). Therefore V admits the natural non-degenerate pairing q :
V⊗V −→ CP1\D(t) induced by the Killing form on each fiber Vu, u ∈ P1\D(t).
Now consider the constructible sheaf j∗(V) and the following exact sequence
induced by the Leray spectral sequence for the inclusion j : P1 \D(t) ↪→ P1:

(138) 0 → H1(P1, j∗V)→ H1(P1 \D(t),V)→ H0(P1, R1j∗(V))

→ H2(P1, j∗(V))→ H2(P1 \D(t),V).

Recall that in §4 we have obtained the morphism

(139) φn : Rn −→ T ′
n ×An

such that φ−1
n ((t,a)) = R(Pn,t)a. Fixing t ∈ T ′

n, we can also define

(140) φn,t : R(Pn,t) −→ t×An.

Lemma 6.4. Let (E,∇, ϕ, {li}) ∈Mα
n (t,λ, L) be a stable parabolic con-

nection, and E := ker∇|P1−D(t) the corresponding local system. Moreover let
V be the trace free part of End(E). Let us fix a monodromy representation
ρE : π1(P1 \D(t), ∗) −→ SL2(C) associated to the local system E. Fix canoni-
cal generators γi, 1 ≤ i ≤ n of π1(P1 \D(t), ∗) and set Mi = ρE(γi) ∈ SL2(C)
for 1 ≤ i ≤ n. Consider the following conditions.

The representation ρE is irreducible.(141)
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For each i, 1 ≤ i ≤ n, the local monodromy matrix Mi around ti
is not equal to ±I2.

(142)

(1) Under the condition (141), we have

(143) H2(P1 \D(t),V) = {0}.

(2) Under the conditions (141) and (142), we have a sheaf isomorphism

(144) R1j∗(V) 
 ⊕n
i=1C(ti),

and the exact sequence of cohomology groups.

(145)
0 −→ H1(P1, j∗V) −→ H1(P1\D(t),V) −→ H0(P1, R1j∗(V)) −→ 0.

Proof. Since we have a canonical non-degenerate pairing

j∗(V)⊗ j∗(V)
Killing−→ CP1 ,

we have a self-duality (j∗V)∨ 
 j∗V and hence a duality isomorphism

H2(P1, j∗(V)) 
 H0(P1, j∗V)∨ 
 H0(P1 \D(t),V)∨.

Since by (141) the monodromy representation ρE is irreducible, H0(P1 \D(t),
End(E)) 
 C · IdE by Schur’s lemma and hence its trace free part H0(P1 \
D(t),V) is {0}, thus

(146) H2(P1, j∗(V)) = {0}.

Moreover H1(P1, R1j∗V) = {0}, for the sheaf R1j∗V is supported only on
D(t) = t1 + · · · + tn. Then the assertion (143) now easily follows from the
Leray spectral sequence for j : P1 \D(t) ↪→ P1.

From (138), we obtain the exact sequence (145) because of (146).
For the assertion (144), we first remark that the sheaf R1j∗V is supported

on D(t) = t1 + · · · + tn. We will determine the stalk R1j∗Vti
at each ti.

Let us take a small neighborhood Ui of ti and ui ∈ Ui − {ti}. Then one can
identify the fiber Vui

with the symmetric tensor Sym2(Eui
). Consider the

Vui

 Sym2(Eui

) as the vector space with the action of Mi. Then define the
invariant part as
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V〈Mi〉
ui

= Sym2(Eui
)〈Mi〉

:= ker(Sym2(Mi)− Id : Sym2(Eui
) → Sym2(Eui

)).

Then it is easy to see that

R1j∗Vti


(
V〈Mi〉

ui

)∨
.

Choose a suitable basis of Eui
and write Mi as Mi =

(
a b
c d

)
with ad − bc = 1.

Then the action of Mi on Sym2(Eui
) has the following matrix representation.

(147) Sym2(Mi) :=

 a2 ab b2

2ac ad+ bc 2bd
c2 cd d2


Then it is easy to check that the eigenvalues of Sym2(Mi) are given by the
roots of

(x− 1)(x2 − ((a+ d)2 − 2)x+ 1) = 0.

If neither of the roots of x2−((a+d)2−2)x+1 = 0 is 1, then dim ker(Sym2(Mi)−
Id) = 1. If one of the roots of x2− ((a+ d)2− 2)x+ 1 = 0 is one, then we have
(a + d)2 = 4, which implies that a + d = ±2. For those cases, the eigenvalues
of Mi are 1 or −1 respectively. We may assume that Mi �= ±I2. Then we can
assume that Mi = ( 1 b

0 1 ) or Mi =
(−1 b

0 −1

)
with b �= 0. For these cases, we can

write

Sym2(Mi) =

1 b b2

0 1 2b
0 0 1

 or

1 −b b2

0 1 −2b
0 0 1

 .

Now it is easy to check that dim ker(Sym2(Mi)− Id) = 1.

Lemma 6.5. Let us fix t ∈ T ′
n. The notation being as in Lemma 6.4,

let us take a point y := [E] ∈ R(Pn,t)a ⊂ R(Pn,t).

(1) Assume that the condition (141) holds for E. Then the total space R(Pn,t)
is smooth at y = [E] and we have the isomorphism

ΘR(Pn,t),y 
 H1(P1 \D(t),V).

(2) Assume that the conditions (141) and (142) hold for E. Then, the map
φn,t : R(Pn,t) −→ t × An is also smooth at y = [E]. Hence the fiber
φ−1

n,t(a) = R(Pn,t)a is smooth at y where a = φn,t(y). Moreover we have
the following linear isomorphisms :

(ΘR(Pn,t)a)y 
 H1(P1, j∗V)
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(ΘR(Pn,t))y 
 H1(P1 \D(t),V)

(Θt×An
)φn,t(y) 
 H0(P1, R1j∗(V))

Under the isomorphisms above, we have the following identification of the
natural exact sequences of the tangent spaces with the sequence (145)

(148)

0 −→ (ΘR(P(Pn,t))a)y −→ (ΘR(Pn,t))y
dφn,t∗−−−−→ (Θt×An

)φn,t(y) −→ 0.∥∥∥ ∥∥∥ ∥∥∥
0 −→ H1(P1, j∗V) −→ H1(P1 \D(t),V) −→ H0(P1, R1j∗(V) −→ 0.

Proof. 1. Since E is irreducible, it is easy to see that the Zariski tangent
space ΘR(Pn,t),y of R(Pn,t) at y = [E] is given by H1(P1 \D(t),V) and the
obstructions to deformations lie in H2(P \ D(t),V). Since we assume that
ρE is irreducible, we have H2(P \D(t),V) = {0} (cf. (143)), from which the
assertion follows.

2. From Lemma 6.4, under the assumptions, we can see that the differential

(ΘR(Pn,t))y
dφn,t∗−−−−→ (Θt×An

)φn,t(y) can be identified with the linear map

H1(P1 \D(t),V) −→ H0(P1, R1j∗(V)) 
 Cn,

which is surjective because of H2(P1, j∗V) = {0}. Therefore the map φn,t is
smooth at y = [E] and the fiber φ−1

n,t(a) = R(Pn,t)a is smooth at y. Other
assertions now easily follow from the exact sequence (145).

Lemma 6.6. Under the conditions (141) and (142) for E, we have an
isomorphism of locally constant sheaves

(149) j∗V 
 ker∇1 

[
∇1 : F0 −→ F1

]
,

which induces a canonical isomorphism

(150) H1(P1, j∗V) �−→ H1(
[
∇1 : F0 −→ F1

]
).

Moreover we have the canonical non-degenerate pairing

(151) H1(P1, j∗V)⊗H1(P1, j∗V) −→ H2(P1,CP1) 
 C,

which induces the non-degenerate pairing Ω1(y) at y = E

(152) Ω1(y) : (ΘR(Pn,t)a)y ⊗ (ΘR(Pn,t)a)y −→ (OR(Pn,t)a)y.

This pairing can be identified with (129) via the isomorphism (150).
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Proof. The assertion (149) is trivial at the point u ∈ P1 \D(t). At each
point ti i = 1, . . . , n, we will describe the connection ∇ and ∇1 locally around
ti. Let us set n = ni = resti

(∇L) ∈ Z. We separate the proof into two cases.
i) Let λ, n − λ be the eigenvalues of resti

(∇). First assume that 2λ �∈ Z.
Then λ �= n− λ. By a standard reduction theory of connection near a regular
singularity, we can choose a suitable local coordinate z around t = ti and write
down the connection matrix of ∇ by

∇ =
dz

z − t

(
λ 0
0 n− λ

)
.

Then for a local section s = ( s1 s2
s3 −s1 ) ∈ End(E), the connection ∇1s = ∇Es−

s∇E is given by(
s1 s2
s3 −s1

)
�→
(

ds1 ds2 + (2λ− n)s2(z − t)−1dz

ds3 + (n− 2λ)s3(z − t)−1dz −ds1

)
.

Solving ∇1 = 0 locally near z = t, we obtain the local solutions for z �= t as
follows.

c1

(
1 0
0 −1

)
+ c2

(
0 (z − t)n−2λ

0 0

)
+ c3

(
0 0

(z − t)2λ−n 0

)
.

Here, c1, c2, c3 ∈ C are constants. These solutions have to be single-valued
well-defined section around z = t, hence ker∇1 is generated by

(
1 0
0 −1

)
. (Note

that this local section lies in F0.) On the other hand, the stalk (j∗V)t is the
space of monodromy invariant trace-free endomorphisms of Eu, which is also
generated by

(
1 0
0 −1

)
. Hence we have an isomorphism (j∗V)t 
 ker(∇1)t.

ii) Again, let λ, n−λ be the eigenvalues of resti
(∇) and assume that 2λ ∈ Z.

Since we assume that the local monodromy Mi is not ±I2, by a reduction
theory of a connection near a regular singularity, we can choose a suitable local
coordinate z around t = ti and write down the connection matrix of ∇ by

∇ =
dz

z − t

(
m1 (z − t)m2−m1

0 m2

)
,

where 2m1, 2m2 ∈ Z, m2 −m1 ∈ Z and m1 ≤ m2. For local section ( s1 s2
s3 −s1 ) ∈

End(E), the connection ∇1s can be given by
„

s1 s2

s3 −s1

«
�→

„
ds1 + s3(z − t)m2−m1−1dz ds2 − 2s1(z − t)m2−m1−1dz + s2(m1 − m2)(z − t)−1dz

ds3 + s3(m2 − m1)(z − t)−1dz −ds1 − s3(z − t)m2−m1−1dz

«
.
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Solving ∇1s = 0 locally for z �= t, we obtain the solutions

s = c1

(
0 (z − t)m2−m1

0 0

)
+ c2

(
1 2(z − t)m2−m1 log(z − t)
0 −1

)

+ c3

(
log(z − t) (z − t)m2−m1(log(z − t))2

−(z − t)m1−m2 − log(z − t)

)
where c1, c2, c3 ∈ C are the constants. Then we can see that all single valued
solutions for ker∇1 are

c1

(
0 (z − t)m2−m1

0 0

)
,

which are also sections of (j∗V)t. Therefore we have an isomorphism
(ker∇1)t 
 (j∗V)t. Hence we have proved the assertion (149) which shows
also (150).

It is easy to see that the pairing of sheaves j∗V ⊗ j∗V −→ j∗CP1\D(t) 

CP1 is non-degenerate at each point of P1. Therefore, the pairing (151) is also
non-degenerate.

Summarizing all results in this section, we have the following

Proposition 6.3. Let φn : Rn −→ T ′
n×An be a family of moduli spaces

of representations of the fundamental group π1(P1 \D(t), ∗) as in (139). Let
R�

n be the subset of Rn whose closed points satisfy the conditions (141) and
(142).

Then R�
n is a non-singular variety and the restricted morphism

(153) φn : R�
n −→ T ′

n ×An

is smooth, so that all fibers R�
n,(t,a) = R(Pn,t)�

a are non-singular varieties. On
R�

n, there exists a relative symplectic form

(154) Ω1 ∈ Γ(R�
n,Ω

2
R�

n/T ′
n×An

)

induced by (152).

Remark 6.2.

(1) Since p2 ◦ φn : R�
n −→ T ′

n × An −→ T ′
n is locally trivial, one can lift

Ω1 ∈ Γ(R�
n,Ω2

R�
n/T ′

n×An
) to a relative regular 2-form

(155) Ω̃1 ∈ Γ(R�
n,Ω

2

R′�
n /An

).
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In §7, we can define the Riemann-Hilbert correspondence RHn : Mα
n −→

Rn which is a surjective holomorphic map. Set (Mα
n )� = RH−1

n (R�
n).

From Lemma 6.6, one can see that RH∗
n|R�

n
(Ω1) coincides with the two

form Ω|(Mα
n )� ∈ Γ((Mα

n )�,Ω2
(Mα

n )�/T ′
n×Λn

) defined in (129). Pulling back

Ω̃1 via RHn|R�
n
, we obtain

(156) Ω̃ ∈ Γ((Mα
n )�,Ω2

(Mα
n )�/Λn

)

which is a lift of Ω|(Mα
n )� via the canonical morphism Γ((Mα

n )�,Ω2
(Mα

n )�/Λn
)

−→ Γ((Mα
n )�,Ω2

(Mα
n )�/T ′

n×Λn
). (Note that a lift Ω̃ can be induced from

the splitting homomorphism (20) and the splitting homomorphism can be
defined algebraically). Since the codimension of Mα

n \ (Mα
n )� in Mα

n is
at least two, the two form Ω̃ can be extended to a regular relative two
form on Mα

n which will be denoted also by Ω̃. This extended two form
Ω̃ ∈ Γ(Mα

n ,Ω
2
Mα

n /Λn
) is a lift of Ω ∈ Γ(Mα

n ,Ω
2
Mα

n /T ′
n×Λn

) in (129) on the
whole total space Mα

n .

(2) The closedness of Ω̃, (dMα
n /Λn

(Ω̃) = 0), can be proved as follows. It is easy
to see that the two form Ω̃ here coincides with the symplectic two form
introduced in [Iw1] and [Iw2] on a Zariski dense open subset (Mα

n )′ of Mα
n .

As proved in [Iw1], [Iw2], there exists a suitable affine open covering {Ui}i

of (Mα
n )′ with local coordinates (for Ui)

(qi
1, . . . , q

i
r, p

i
1, . . . , p

i
r, t1, . . . , tn, λ1, . . . , λn)

such that Ω̃|Ui
can be written as

(157) Ω̃|Ui
=

r∑
k=1

dqi
k ∧ dpi

k −
n∑

l=1

dtl ∧ dHi
l (p,q, t,λ).

where r = n − 3 (= the half of the relative dimension of πn) and
Hi

l (p,q, t,λ) are regular algebraic functions on Ui. The closedness
dMα

n /Λn
(Ω̃) = 0 on Ui easily follows from the expression (157), hence by

analytic continuation we see that dMα
n /Λn

(Ω̃) = 0 on the total space Mα
n .

(3) The regular functions Hi
l (p,q, t,λ) on Ui in (157) are called Hamiltonians

for Painlevé or Garnier systems with respect to the time variable tl. Actu-
ally on an affine open set Ui one can obtain the Hamiltonian systems (Cf.
[Iw1], [Iw2]).

(158)
∂qi

k

∂tl
=
∂Hi

l

∂pi
k

,
∂pi

k

∂tl
= −∂H

i
l

∂qi
k

(1 ≤ k ≤ n− 3, 1 ≤ l ≤ n).
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Although these Hamiltonian systems are defined on a Zariski open subset
(Mα

n )′ of Mα
n , these Hamiltonian systems can be extended to Hamiltonian

systems on the total space Mα
n . This is because global vector fields on Mα

n

induced from the isomonodromic flows coincide with these Hamiltonian
systems on the Zariski open set (Mα

n )′ and the global vector fields on Mα
n

also preserves the symplectic form Ω̃.

§7. The Riemann-Hilbert Correspondence

In this section, we also work over T ′
n (cf. (94)). Fix (t,λ) ∈ T ′

n×Λn and set
D(t) = t1+ · · ·+tn ⊂ P1, ai = 2 cos 2πλi and a = (a1, . . . , an) ∈ An. Moreover
fix a determinant line bundle L = (L,∇L) on P1 such that resti

(∇L) ∈ Z for
every 1 ≤ i ≤ n. We have defined two moduli spaces Mα

n (t,λ, L) in (42) and
R(Pn,t)a in (97). In this section, we define the Riemann-Hilbert correspondence
RHt,λ : Mα(t,λ, L) −→ R(Pn,t)a, and show our main results for the Riemann-
Hilbert correspondence (Theorem 7.1).

§7.1. Definition of RHt,λ

As in (136), take E = (E,∇, ϕ, l) ∈ Mα
n (t,λ, L) and define the local sys-

tem on P1 \D(t) as E = ker
(
∇|P1\D(t)

)an. (Here we denote by
(
∇|P1\D(t)

)an

the analytic connection associated to
(
∇|P1\D(t)

)
.) Choosing a suitable flat

basis for the fiber E∗ at the base point ∗ ∈ P1 \D(t), one can define a mon-
odromy representation ρE : π1(P1 \ D(t), ∗) −→ SL2(C). The difference of
choices of flat basis can be given by the adjoint action of SL2(C), and hence
one has a correspondence

(159) E = (E,∇, ϕ, l) �→ [ρE].

Here [ρE] denotes the Jordan equivalence class of ρE.
Fix canonical generators γi, 1 ≤ i ≤ n of π1(P1 \ D(t), ∗). For a mon-

odromy representation ρE of (E,∇, ϕ, l), set Mi = ρE(γi) as in §4. Since
eigenvalues of resti

(∇) can be given by λi, resti
(∇L) − λi and resti

(∇L) ∈ Z,
we see that the eigenvalues of Mi are given by exp(∓2π

√
−1λi). Therefore, we

have local exponents for ρE

(160) ai := Tr[Mi] = exp(−2π
√
−1λi) + exp(2π

√
−1λi) = 2 cos(2πλi),

which are invariant under the adjoint action.
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Definition 7.1. Under the relation (160), the correspondence (159)
gives an analytic morphism

(161) RHt,λ : Mα
n (t,λ, L) −→ R(Pn,t)a,

which is called the Riemann-Hilbert correspondence.

§7.2. Fundamental properties of Riemann-Hilbert correspondence

Let us assume that n ≥ 4. In §4, (96), we have defined the family of moduli
spaces of representations of fundamental group φn : Rn −→ T ′

n × An and we
also have a smooth family πn : Mα

n (L) −→ T ′
n×Λn whose geometric fibers are

Mα(t,λ, L) (cf. Theorem 2.1). From Definition 7.1 we obtain the following
commutative diagram:

(162)

Mα
n (L) RHn−−−−→ Rn

πn

� φn

�
T ′

n × Λn
id×µn−−−−→ T ′

n ×An.

Here µn : Λn −→ An is given by

(163) µn(λ1, . . . , λn) = (a1, . . . , an) = (2 cos(2πλ1), . . . , 2 cos(2πλn)).

Of course, for each (t,λ) ∈ T ′
n × Λn, the morphism RHn|Mα

n (t,λ,L) is equal to
RHt,λ in (161).

Theorem 7.1. Under the notation and the assumption as above, we
have the following assertions.

(1) For all (t,λ) ∈ T ′
n × Λn, the Riemann-Hilbert correspondence RHt,λ :

Mα
n (t,λ, L) −→ R(Pn,t)a in (161) is a bimeromorphic proper surjective

morphism.

(2) For any (t,λ), let R(Pn,t)�
a be the Zariski open subset of R(Pn,t)a whose

closed points satisfy the conditions (141) and (142) in §6, and set
Mα

n (t,λ, L)� = RH−1
t,λ(R(Pn,t)�

a). Then the Riemann-Hilbert correspon-
dence gives an analytic isomorphism

(164) RHt,λ,|Mα
n (t,λ,L)� : Mα

n (t,λ, L)� �−→ R(Pn,t)�
a.

(Note that if λ is generic (cf. Definition 2.3, (36), (37)), R(Pn,t)�
a =

R(Pn,t)a, hence RHt,λ gives an analytic isomorphism between Mα
n (t,λ, L)

and R(Pn,t)a.)
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(3) Let us set R(Pn,t)sing
a = R(Pn,t)a \ R(Pn,t)�

a. Then the codimension of
R(Pn,t)sing

a in R(Pn,t)a is at least 2.

(4) The symplectic structures Ω on Mα
n (t,λ, L) and Ω1 on R(Pn,t)�

a can be
identified with each other via RHt,λ, that is,

(165) Ω =
(
RHt,λ,|R(Pn,t)

�
a

)∗
(Ω1) on Mα

n (t,λ, L)�.

Remark 7.1.

(1) The moduli spaces Mα
n (t,λ, L) and R(Pn,t)a are irreducible. (See §8 and

§9).

(2) The statement (165) is originally shown by Iwasaki in [Iw1], [Iw2].

Let us denote RHt,λ in (161) simply by RH. We first show the following

Lemma 7.1. Assume that n ≥ 4 and that αi (i = 1, . . . , n) are so gen-
eral that all the semistable parabolic connections are stable. Then the morphism
RH : Mα

n (t,λ, L) −→ R(Pn,t)a is a bimeromorphic surjective morphism.

Proof. Let Rirr(Pn,t)a be the open subscheme of R(Pn,t)a whose points
correspond to the irreducible representations. First we will show that
Rirr(Pn,t)a is contained in the image of RH.

Let M irr
n (t,λ, L) be the open subscheme of Mα

n (t,λ, L) consisting of
the points corresponding to the irreducible connections. Note that if
(E,∇E, ϕ, {li}) is a parabolic connection such that (E,∇E) is an irreducible
connection, we have (E,∇E, ϕ, {li}) ∈ Mα

n (t,λ, L). We consider the isomor-
phism of the moduli spaces

Elm−
ti

: M irr
n (t,λ, L) ∼−→M irr

n (t,λ′, L(−ti));
(E,∇E, ϕ, {li}) �→ (E′,∇E′ , ϕ′, {l′i}),

where E′ = ker(E → Eti
/li), ∇E′ is a connection on E′ induced by ∇E ,

l′i = ker(E′
ti
→ Eti

), l′j = lj for j �= i, λ′i = 1 + resti
(∇L)−λi, λ′j = λj for j �= i

and ϕ′ :
∧2E′ ∼→ L(−ti) is the horizontal isomorphism induced by ϕ. We also

consider the isomorphisms of the moduli spaces

⊗O(ti) : M irr
n (t,λ, L) −→M irr

n (t,λ′, L⊗O(2ti));

(E,∇E, ϕ, {li}) �→ (E ⊗O(ti),∇E⊗O(ti), ϕ⊗ 1, {l′i ⊗O(ti)|ti
}),
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where λ′i = λi−1 and λ′j = λj for j �= i and we consider for λi �= resti
(∇L)−λi,

an isomorphism

si : M irr
n (t,λ, L) ∼−→M irr

n (t,λ′, L); (E,∇E, ϕ, {li}) �→ (E,∇E, ϕ, {l′i}),

where λ′i = resti
(∇L)−λi, λ′j = λj for j �= i, l′i = ker(resti

(∇E)−λ′i) and l′j = lj
for j �= i. Note that these isomorphisms all commute with the Riemann-Hilbert
morphism RH.

Now we fix (λ1, . . . , λn) ∈ Cn and put λ+
i := λi, λ−i := resti

(∇L)− λi for
i = 1, . . . , n. Applying a certain composition of Elm−

ti
, ⊗OP1(ti) and si for

i = 1, . . . , n, we obtain an isomorphism

τ : M irr
n (t,λ, L) ∼−→M irr

n (t,λ′, L′),

where λ′i := λi +m+
i and resti

(∇L′) = resti
(∇L) +m+

i +m−
i for some integers

m+
i ,m

−
i ∈ Z such that 0 ≤ Re(λ+

i + m+
i ) < 1, 0 ≤ Re(λ−i + m−

i ) < 1 for
1 ≤ i ≤ n.

Let N irr
n (t,λ′, L′) be the moduli space of rank 2 irreducible connections

(E,∇E) with a horizontal isomorphism
∧2

E
∼→ L′ such that det(resti

(∇E) −
λ′i) = 0 for i = 1, . . . , n. By [[Del70], Proposition 5.4], we obtain an isomor-
phism

(166) rh : N irr
n (t,λ′, L′) ∼−→ Rirr(Pn,t)a.

There is a canonical surjective morphism

(167) M irr
n (t,λ′, L′)→ N irr

n (t,λ′, L′)

which is obtained by forgetting parabolic structures. Composing τ , (167) and
rh, we obtain a surjective morphism

(168) RH : M irr
n (t,λ, L) −→ Rirr(Pn,t)a.

Note that the morphism (167) is isomorphic except on the locus where the
parabolic structures are not uniquely determined by (E,∇E), namely,

Mapp
n (t,λ′, L′)

=
{

(E,∇E, ϕ, {lj}) ∈M irr
n (t,λ′, L′)

∣∣∣∣Resti
(∇E) = O or

1
2
idEti

for some i
}

whose image in R(Pn,t)a is

Rapp(Pn,t)a =
{
ρ ∈ Rirr(Pn,t)a

∣∣ ρ(γi) = ±id for some i
}
.
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Thus the restriction of RH

Mα
n (t,λ, L)�

= M irr
n (t,λ, L)\τ−1(Mapp

n (t,λ′, L′)) RH−→ Rirr(Pn,t)a\Rapp(Pn,t)a = R(Pn,t)�
a

is an isomorphism. Since dimRapp(Pn,t)a < dimRirr(Pn,t)a for n ≥ 4, RH is
a bimeromorphic morphism.

Next we will show that M red
n (t,λ, L) → Rred(Pn,t)a is surjective. Take

any point [ρ] ∈ Rred(Pn,t)a. Then the representation ρ is Jordan equivalent to
the representation ρ1 ⊕ ρ2 for some one dimensional representations ρ1, ρ2 of
π1(P1 \D(t), ∗). Put

Un,a :=

{
(M1, . . . ,Mn−1) ∈ SL2(C)n−1

∣∣∣∣∣ Tr(Mi) = ai (1 ≤ i ≤ n− 1),

Tr((M1M2 · · ·Mn−1)−1) = an

}
.

Then Un,a is irreducible by Proposition 8.2. Let Φn : Un,a → R(Pn,t)a be
the quotient map. Then there exists a point p0 ∈ Un,a such that Φn(p0) =
[ρ]. Since Un,a is irreducible, there exists a smooth irreducible curve C, a
point p of C and a morphism f : C → Un,a such that f(p) = p0 and that
Φn(f(C)) ∩ Rirr(Pn,t)a �= ∅. From [[Del70], Proposition 5.4], there exists an
analytic flat family (Ẽ,∇Ẽ , ϕ̃) of connections such that ker∇Ẽ |(P1\D(t))×C is
equivalent to the flat family of local systems on (P1 \D(t))×C over C induced
by the morphism f . Applying certain elementary transformations and tensoring
line bundles to (Ẽ,∇Ẽ , ϕ̃), we may assume that the eigenvalues of resti

(Ẽ)
are λi and resti

(∇L) − λi for i = 1, . . . , n. We can construct a flat family of
parabolic structures {l̃i} and (Ẽ,∇Ẽ , ϕ̃, {l̃i}) becomes a flat family of parabolic
connections. Taking the completion at p, we obtain a flat family of parabolic
connections (E,∇E, ϕ, {li}) on P1

C[[x]] over C[[x]]. By Corollary 5.1, there
exists a flat family (E′,∇E′ , ϕ′, {l′}) of α-semistable parabolic connections such
that (E,∇E, ϕ, {li})⊗C((x)) ∼= (E′,∇E′ , ϕ′, {l′})⊗C((x)) and gr((E′,∇E′)⊗
C[[x]]/(x)) ∼= gr((E,∇E) ⊗ C[[x]]/(x)). Then (E′,∇E′ , ϕ′, {l′}) determines a
morphism SpecC[[x]] → Mα

n (t,λ, L). If q is the image of the closed point by
this morphism, then we have RH(q) = [ρ].

7.2.1. Proof of Theorem 7.1 except for the properness of RHt,λ

Proof. Here we prove the assertions in Theorem 7.1 except for the proper-
ness of RHt,λ which will be proved in Proposition 10.1. The first asser-
tion except for the properness follows from Lemma 7.1 and the second asser-
tion is proved in the proof of Lemma 7.1. The last assertion follows from
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these assertions and Lemma 6.6. For the third assertion recall the defini-
tion of Rirr(Pn,t)a and Rapp(Pn,t)a in the proof of Lemma 7.1. Let us set
Rred(Pn,t)a = R(Pn,t)a \ Rirr(Pn,t)a. Then we see that

R(Pn,t)sing
a = Rred(Pn,t)a ∪Rapp(Pn,t)a.

If [ρ] ∈ Rred(Pn,t)a, then ρ is a reducible representation. Then the semisimpli-
fication of ρ is a direct sum of one dimensional representation ρ1, ρ2. Since ∧2ρ

is trivial, ρ2 
 ρ−1
1 . Moreover since Tr[ρ(γi)] = ai are fixed for all 1 ≤ i ≤ n, we

see that Jordan equivalence class of ρ, which is equal to the Jordan equivalence
class of ρ1 ⊕ ρ−1

1 , has finitely many possibility. Hence Rred(Pn,t)a is a zero
dimensional subscheme. Moreover for a closed point [ρ] ∈ Rapp(Pn,t)a, ρ is
irreducible and ρ(γi) = ±id for some i by definition. This means that ρ is de-
termined by ρ(γj) for j �= i and so dimRapp(Pn,t)a = dimR(Pn−1,t)a′ . Noting
that dimR(Pn,t)a = 2n − 6 for n ≥ 3, we have dimRapp(Pn,t)a = 2n − 8 for
n ≥ 4. In both cases, if n ≥ 4, the codimensions of the subschemes are at least
2.

§7.3. The case of n = 4

In the case of n = 4, let us recall the isomorphism

T ′
4/PGL2 
 B = P1 − {0, 1,∞},

where B is one-dimensional space of time variables as usual. Here the group
PGL2 acts on the base space P1 by linear fractional transformations. Therefore
the family and the morphism can be descended and one obtains the following
commutative diagram:

(169)

S u
 Mα
4

RH4−−−−→ R4

π

� π4

� φ4

�
B × Λ4 B × Λ4

id×µ−−−−→ B ×A4.

Here the family π : S −→ B × Λ4 is the family of Okamoto space of initial
conditions. The isomorphism u will be constructed in [IIS2].
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§8. Irreducibility of R(Pn,t)a

As in Lemma 4.1, we have the natural quotient morphism

Φn : SL2(C)n−1 −→R(Pn,t) 
 Spec[(Rn−1)
Ad(SL2(C))]

(M1,M2, . . . ,Mn−1) �→ [M1,M2, . . . ,Mn−1]

where Rn−1 denotes the affine coordinate ring of SL2(C)n−1. Under this quo-
tient morphism, for a = (a1, . . . , an) ∈ An = Cn, the subscheme R(Pn,t)a in
(97) is isomorphic to

R(Pn,t)a =

{
[M1, . . . ,Mn−1] ∈ R(Pn,t)

∣∣∣∣∣ Tr(Mi) = ai, (1 ≤ i ≤ n− 1),

Tr(M1M2 · · ·Mn−1)−1 = an

}
.

Proposition 8.1. Assume that n ≥ 4. The affine scheme R(Pn,t)a is
irreducible.

Set Un,a := Φ−1
n (R(Pn,t)a) so that we have a surjective morphism Un,a −→

R(Pn,t)a of schemes. Because Tr(M1M2 · · ·Mn−1)−1 = Tr(M1M2 · · ·Mn−1)
for Mi ∈ SL2(C), we have

(170)

Un,a =

{
(M1, . . . ,Mn−1) ∈ SL2(C)n−1

∣∣∣∣∣ Tr(Mi) = ai, 1 ≤ i ≤ n− 1,

Tr(M1M2 · · ·Mn−1) = an

}
.

Then it suffices to show the following

Proposition 8.2. The scheme Un,a is irreducible.

Let us prove some easy lemma which we will use later. The proof of the
following lemma is easy and we omit it.

Lemma 8.1. Fix a ∈ C and define

Va = {A =

(
s t

u v

)
∈ SL2(C) | Tr(A) = a}.

(1) Then Va is an irreducible affine subscheme of C3.

(2) Let us define a quadratic hypersurface in P3
C as :

(171) V a := {[x : y : z : w] ∈ P3
C | x2 − axw + w2 + yz = 0}.
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Then we have an isomorphism Va 
 V a \ {w = 0}, that is, V a is a com-
pactification of Va. If a �= ±2, V a is a smooth quadric hypersurface, and
if a = ±2, V a is a cone over a conic and have a unique singular point at
pa = [x : y : z : w] = [a/2 : 0 : 0 : 1].

Fix a = (a1, . . . , an) ∈ An and set a′ = (a1, . . . , an−1). Using the notation
in Lemma 8.1, we set

(172) Va′ := Va1 × Va2 × · · · × Van−1 ⊂ V a′ := V a1 × V a2 · · · × V an−1

It is obvious that Un,a is a Cartier divisor of the scheme

Va′ = {(M1, . . . ,Mn−1) ∈ SL2(C) | Tr(Mi) = ai, 1 ≤ i ≤ n− 1}

defined by the equation

(173) Tr(M1M2 · · ·Mn−1) = an.

Again from Lemma 8.1, we can introduce a homogeneous coordinates [xi : yi :
zi : wi] ∈ P3

C such that

V ai
= {[xi : yi : zi : wi] ∈ P3

C | Fai
= x2

i − aixiwi + w2
i + yizi = 0}

Let us denote by Un,a the closure of Un,a ⊂ Va′ in V a′ ⊂ (P3
C)n−1. It is easy

to see that Un,a is also a Cartier divisor in V a′ .
For 1 ≤ i ≤ n− 1, set Tn−2,i = Va1 × · · · × V̂ai

× · · · × Van−1 and Tn−2,i =

V a2 × · · · × V̂ ai
× · · · × V an−1 (omitting i-th factors) and consider the i-th

projections

(174)
Un,a ↪→ Va1 × Va2 × · · · × Van−1

πi

� π′
i

�
Tn−2,i Tn−2,i

Un,a ↪→ V a1 × V a2 × · · · × V an−1

π′
i

� πi

�
Tn−2,i Tn−2,i

Lemma 8.2. For each 1 ≤ i ≤ n − 1, the family πi : Un,a −→ Tn−2,i

can be considered as a family of hyperplane sections of V ai
⊂ P3

C parametrized
by Tn−2,i. Therefore Un,a ⊂ V a′ is a hypersurface defined by a multi-
homogeneous polynomial

(175) Ha = Ha(x1, y1, z1, w1, . . . , xn−1, yn−1, zn−1, wn−1)

in the homogeneous coordinate ring of (P3
C)n−1 of multi-degree (1, . . . , 1).
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Proof. First we prove the assertion for i = 1. For simplicity, we set
T = Tn−2,1 and T = Tn−2,1 and we write as π1 : Un,a −→ T , π1 : Un,a −→ T .
Take an element (M2,M3, . . . ,Mn−1) ∈ T and set

M2M3 · · ·Mn−1 =

(
f1 f2
f3 f4

)
and M1 =

(
s t
u a1−s

)
∈ Va1 with s(a1 − s)− tu = 1. Then we can write as

M1(M2 · · ·Mn−1) =

(
s t

u a1 − s

)(
f1 f2
f3 f4

)

=

(
sf1 + tf3 sf2 + tf4

f3(a1 − s) + uf1 (a1 − s)f4 + uf2

)
.

Hence the Cartier divisor Un,a ⊂ Va′ is defined by the polynomial

Tr(M1M2 · · ·Mn−1)− an = sf1 + tf3 + (a1 − s)f4 + uf2 − an

= (f1 − f4)s+ f3t+ f2u+ (a1f4 − an).
(176)

First, we will show that any irreducible component of Un,a is not a pullback
divisor via π1. Consider the subscheme Z of T defined by the ideal generated
by the following elements:

f1 − f4, f3, f2, a1f4 − an.

Then, it suffices to show that the codimension of Z in T is at least 2. Recall
that T is a product of Vai

’s for i = 2, . . . , n− 1.
If n ≥ 4, let us consider the natural projection ϕ : Z −→ Va2 ×· · ·×Van−2 .

We will show that every closed fiber of ϕ consists of a finite number of points
or becomes empty, which means that codimension of Z in T is at least 2. For
this purpose, let us set

M2 · · ·Mn−2 =

(
g1 g2
g3 g4

)
and

Mn−1 =

(
s t

u b− s

)
.

(Note that g1g4 − g2g3 = 1, s(b− s)− tu = 1, s = sn−1, t = tn−1, u = tn−1, b =
an−1). Since(

f1 f2
f3 f4

)
= M2 · · ·Mn−2Mn−1 =

(
g1 g2
g3 g4

)(
s t

u b− s

)
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=

(
g1s+ g2u g1t+ g2(b− s)
g3s+ g4u g3t+ g4(b− s)

)
,

the ideal of Z contains the following element

f1 − f4 = (g1 + g4)s+ g2u− g3t− g4b
f2 = g1t+ g2(b− s)
f3 = g3s+ g4u.

Using the relations g1g4 − g2g3 = 1, s(b− s)− tu = 1, from these elements we
can obtain the following elements of the ideal of Z

s2 − g2
4 , t2 − g2

2 , u2 − g2
3 .

This means that every closed fiber of the projection ϕ : Z −→ Va2×· · ·×Van−2

consists of finitely many points or becomes the empty set as desired. Let
us recall the natural projection π1 : Un,a −→ T . The assertion implies that
the Cartier divisor Un,a defined by the polynomial (176) has no irreducible
component which is a pullback Cartier divisor by π1. Then, from the expression
in (176), we conclude that the polynomial (176) is of degree 1 with respect to
s, t, u and hence the fibers of the compactifications π1 : Un,a −→ T of morphism
π1 are hyperplane sections of the quadric hypersurface V a1 ⊂ P3

C. This proves
the assertion for i = 1. Since

(177) Tr(MiMi+1 · · ·Mn−1M1 · · ·Mi−1) = Tr(M1M2 · · ·Mn−1),

the same is true for the i-th factor. Now we can conclude that Un,a is defined
by the multi-homogeneous polynomial of Ha of multi-degree (1, . . . , 1).

Now we prove

Lemma 8.3. For any a = (a1, . . . , an) ∈ An and i, 1 ≤ i ≤ n − 1, the
general fiber of πi : Un,a −→ Tn−2,i is irreducible and reduced.

Proof. By (177), we only have to prove the assertion for i = 1. From now
on, we set Tn−2 := Tn−2,1, Tn−2 = Tn−2,1 and π = π1, etc.

For (M1,M2,M3, . . . ,Mn−1) ∈ Un,a, write

M1 =

(
s1 t1
u1 a1 − s1

)
, M2M3 · · ·Mn−1 =

(
f1 f2
f3 f4

)
.
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Then for a fixed (M2,M3, . . . ,Mn−1) ∈ Tn−2, the fiber of π|Un,a
: Un,a −→ Tn−2

is defined by the equations

s1f1 + t1f3 + (a1 − s1)f4 + u1f2 − an = 0, s21 − a1s1 + 1 + t1u1 = 0

of (s, t, u) ∈ C3. Therefore again for a fixed (M2,M3, . . . ,Mn−1) ∈ Tn−2 the
equations of the fiber U f of π : Un,a −→ Tn is given by

(178)
(f1 − f4)x1 + f3y1 + f2z1 + (a1f4 − an)w1 = 0, x2

1 − a1x1w1 +w2
1 + y1z1 = 0.

Recall that [x1 : y1 : z1 : w1] is the homogeneous coordinate for P3
C and

V a1 = {x2
1−a1x1w1+w2

1−y1z1 = 0} ⊂ P3
C is a quadric hypersurface. Therefore

the fiber U f is a complete intersection of the quadric and the hyperplane defined
by the equations above. In order to see that the general fiber U f is irreducible, it
suffices to show that for a special choice of (M2, . . . ,Mn) the fiber is irreducible.
First we consider the Zariski open subset defined by z1 �= 0. Setting X =
x1
z1
, Y = y1

z1
,W = w1

z1
, the equation above can be reduced to

(179) (f1−f4)X+f3Y +f2 +(a1f4−an)W = 0, Y = −X2 +a1XW −W 2.

Therefore the above open subscheme is isomorphic to an affine quadratic curve
in C2 defined by

(180) −f3X2 + a1f3XW − f3W 2 + (f1 − f4)X + (a1f4 − an)W + f2 = 0.

It is easy to see that this affine quadric curve is reducible if and only if

(181) det

 −f3 a1f3/2 (f1 − f4)/2
a1f3/2 −f3 (a1f4 − an)/2

(f1 − f4)/2 (a1f4 − an)/2 f2

 = 0.

Then in order to prove the Lemma, we only have to find (M2,M3, . . . ,Mn−1) ∈
Tn−2 such that the equation (181) has no solution. For this purpose we choose
the following matrices.

M2 =

(
0 1
−1 a2

)
, M3M4 · · ·Mn−1 =

(
c pc−1

0 c−1

)
.

Here c is a non-zero constant and p is a free parameter. Then we have

M2M3 · · ·Mn−1 =

(
f1 f2
f3 f4

)
=

(
0 c−1

−c −pc−1 + a2c
−1

)
.



�

�

�

�

�

�

�

�

1078 Michi-aki Inaba, Katsunori Iwasaki and Masa-Hiko Saito

Then setting f1 = 0, f2 = c−1, f3 = −c, f4 = (−p+ a2)c−1, the equation (181)
becomes

(182)

det

 c −a1c/2 (p− a2)c−1/2
−a1c/2 c (a1(a2 − p)c−1 − an)/2

(p− a2)c−1/2 (a1(a2 − p)c−1 − an)/2 c−1

 = 0.

Expanding the determinant and multiplying a non-zero constant, we obtain the
explicit equation

(183) p2 + (a1an−1c− 2a2)p+ (a2
2 − a1a2anc− 4c2 + a2

1c
2 + a2

nc
2) = 0.

Since a1, a2, an−1, c are fixed constant and p is a free parameter, we can choose
a value of p so that the equation (183) has no solution. Therefore for such a
choice, the affine quadratic curve (180) is irreducible and reduced, and then it
is easy to conclude that the fiber U f defined by (178) is irreducible and reduced.

Proof of Proposition 8.2

Proof. In the proof of Lemma 8.2, we have shown that any irreducible
component of Un,a is not a pullback divisor via πi for 1 ≤ i ≤ n − 1. Since
the Cartier divisor Un,a in V a′ = V a1 × · · · × V an−1 has the multi-degree
(1, . . . , 1) with respect to the embeddings V ai

↪→ P3
C, each closed fiber of

πi : Un,a −→ Tn−2,i is isomorphic to a hyperplane section of the quadric
hypersurface V ai

. If Un,a is a reducible Cartier divisor in V a′ , there exists an
integer i, 1 ≤ i ≤ n − 1 such that all closed fiber πi is a reducible conic or a
double line, and this contradicts to Lemma 8.3.

§9. Irreducibility of Mα
n (t,λ, L)

Proposition 9.1. Mα
n (t,λ, L) is irreducible.

Proof. From the proof of Lemma 7.1,

Mα
n (t,λ, L)� RH−→ R(Pn,t)�

a

is an analytic isomorphism. Since R(Pn,t)a is irreducible by Proposition 8.1,
Mα

n (t,λ, L)� is also irreducible. IfMα
n (t,λ, L) = Mα

n (t,λ, L)�, there is nothing
to prove. So assume that 2λi ∈ Z for some i or

∑n
i=1 εiλi ∈ Z for some
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(εi) ∈ {±1}n. Note that Mα
n (t,λ, L) is smooth over C of equidimension 2n−6

(cf. Proposition 6.2). So it suffices to show that the dimension of Mα
n (t,λ, L)\

Mα
n (t,λ, L)� is less than 2n− 6.

First we consider the case 2λi ∈ Z for some i. By composing elementary
transforms at ti, we can obtain an isomorphism

τ :Mn(t,λ, L) ∼−→Mn(t,λ′, L′)

of moduli stacks of parabolic connections without stability condition, where
λ′i = resti

(∇L′)/2 and λ′j = λj for j �= i. Put

Ai :=

{
τ−1(E,∇E, ϕ, {lj}) ∈Mα

n (t,λ, L)

∣∣∣∣∣ (E,∇E) is an irreducible

connection and resti
(∇E) = λ′iid

}
.

Tensoring a certain line bundle with a connection having the residue m/2 at ti
for some integer m, we may assume that λ′i = 0. Put

t̃ := (t1, . . . , ti−1, ti+1, . . . , tn),

λ̃ := (λ1, . . . , λi−1, λi+1, . . . , λn).

Then Ai consists of the irreducible (t̃, λ̃)-parabolic connections (E,∇E, ϕ, {lj})
with a one dimensional subspace li ⊂ τ (E)|ti

. So we have dimAi = 2(n− 1)−
6 + 1 < 2n− 6.

Next consider the case
∑n

i=1 εiλi ∈ Z with εi ∈ {±1}. As in the proof of
Lemma 7.1, we can obtain, by composing elementary transforms, an isomor-
phism

τ :Mn(t,λ, L) ∼−→Mn(t,λ′, L′)

of moduli stacks of parabolic connections without stability condition, where
degL′ = 0, εiλi − λ′i ∈ Z for any i,

∑n
i=1 λ

′
i = 0 and λ′i = resti

(∇L′)/2 if
2λi ∈ Z. Put

B :=

τ−1(E,∇E, ϕ, {li}) ∈Mα
n (t,λ, L)

∣∣∣∣∣∣∣
there exists a subconnection
(F,∇F ) ⊂ (E,∇E) satisfying
resti

(∇F ) = λ′i for any i.


Take the sections ω1, ω3 ∈ H0(Ω1

P1(D(t))) satisfying resti
(ω1) = λ′i and resti

(ω3)
= resti

(∇L′)− λ′i for i = 1, . . . , n. Take any member τ−1(E,∇E, ϕ, {lj}) ∈ B.
Then there exists a subbundle F ⊂ E satisfying ∇E(F ) ⊂ F ⊗Ω1

P1(D(t)) and
resti

(∇F ) = λ′i for any i. Since
∑n

i=1 λ
′
i = 0, F ∼= OP1 and E/F ∼= OP1 . Thus

we have E ∼= OP1 ⊕OP1 and ∇E can be given by

∇E : OP1 ⊕OP1 −→ (OP1 ⊕OP1)⊗ Ω1
P1(D(t))
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f1
f2

)
�→
(
df1
df2

)
+

(
ω1 ω2

0 ω3

)(
f1
f2

)

So put

Z :=


(ω2, {li}n

i=1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

ω2 ∈ H0(Ω1
P1(D(t))) and li ⊂ (OP1 ⊕OP1)|ti

is a line
such that li = (OP1 ⊕ 0)|ti

for i satisfying resti
(ω2) �= 0

or 2λ′i /∈ Z, the parabolic connection τ−1(OP1 ⊕OP1 ,

∇, ϕ, {li}) is α-stable, where ∇ is given by ∇(f1, f2)
= (df1, df2) + (ω1f1 + ω2f2, ω3f2) for f1, f2 ∈ OP1 and
ϕ :
∧2(OP1 ⊕OP1) ∼→ L′


Then we obtain a morphism

f : Z −→ B

which is surjective.
Assume that 2λi /∈ Z for some i. In this case, ω1 − ω3 �= 0 and the group

G =

{(
c a

0 c−1

)∣∣∣∣∣ c ∈ C×, a ∈ C

}/{
±
(

1 0
0 1

)}

acts freely on Z\{the locus ω2 ∈ C(ω1 − ω3)} satisfying f(gx) = f(x) for g ∈ G
and x ∈ Z. Thus we can see that dim f(Z \ {the locus ω2 ∈ C(ω1 − ω3)}) ≤
dimH0(Ω1

P1(D(t)))− 2 = n− 3. Take a point tj satisfying restj
(ω1 − ω3) �= 0

and put

Y := {(ω2, {li}) ∈ Z|ω2 ∈ C(ω1 − ω3)},

X :=

{
(ω2, {li}) ∈ Y

∣∣∣∣∣li = C

(
restj

(ω2)
restj

(ω3 − ω1)

)
if 2λi ∈ Z and resti

(ω2) �= 0

}
.

Then dimX ≤ 1 and G acts freely on Y \X. So we have dim f(Y ) ≤ n − 3.
Thus we have dimB < 2n− 6.

Assume that 2λi ∈ Z for all i. Take any member τ−1(E,∇E, ϕ, {lj}) of
B. If resti

(∇E) �= λ′iid for any i, the object τ−1(E,∇E, ϕ, {lj}) can not be
stable for any choice of α because it has a nontrivial endomorphism. Thus
resti

(∇E) = λ′iid for some i. Then we can check that G acts freely on Z and
dim f(Z) ≤ dimZ−dimG = n−3. Since Mα

n (t,λ, L)\Mα
n (t,λ, L)� is a union

of the subsets like Ai, B, we have dim(Mα
n (t,λ, L)\Mα

n (t,λ, L)�) < 2n−6.
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§10. Properness of the Riemann-Hilbert Correspondence

We set

R(Pn,t)irr
a := {[ρ] ∈ R(Pn,t)a|ρ is irreducible}.

For λ ∈ Λn such that 2 cos 2πλi = ai for i = 1, . . . , n, we put

M irr
n (t,λ, L) := {p ∈Mα

n (t,λ, L)|RH(p) ∈ R(Pn,t)irr
a }.

Lemma 10.1. The restriction M irr
n (t,λ, L) RH−→ R(Pn,t)irr

a is a proper
morphism.

Proof. As in the proof of Lemma 7.1, we can obtain an isomorphism

τ : M irr
n (t,λ, L) ∼−→M irr

n (t,λ′, L′)

by composing elementary transforms and other transforms, where 0 ≤ Re(λ′i) <
1 and 0 ≤ Re(resti

(∇L′) − λ′i) < 1 for i = 1, . . . , n. Let N irr
n (t,λ′, L′) be the

moduli space of irreducible connections (E,∇E) with a horizontal isomorphism
det(E) ∼= L′ satisfying det(resti

(∇E)−λ′i) = 0 for i = 1, . . . , n. As in the proof
of Lemma 7.1, we obtain a factorization

RH : M irr
n (t,λ, L) ∼−→M irr

n (t,λ′, L′) π−→ N irr
n (t,λ′, L′) ∼−→ R(Pn,t)irr

a .

So it is sufficient to show that π : M irr
n (t,λ′, L′) → N irr

n (t,λ′, L′) is proper.
Let R be any discrete valuation ring and K its quotient field. Assume that a
commutative diagram

SpecK
η−−−−→ M irr

n (t,λ′, L′)� �π

SpecR
ξ−−−−→ N irr

n (t,λ′, L′)

is given. Then ξ corresponds to a flat family of connections (E,∇E, ϕ) on
P1

R over R and η corresponds to parabolic structures {lj ⊂ (E ⊗ K)|tj⊗K}
satisfying (restj⊗K(∇E ⊗ K) − λ′j)|lj = 0. We can take subbundles l̃j ⊂
E|tj⊗R such that l̃j ⊗ K = lj as subspaces of (E ⊗ K)|tj⊗K . Then we have
(restj⊗R(∇E) − λ′j)|l̃j = 0 and (E,∇E, ϕ, {lj}) becomes an R-valued point of
M irr

n (t,λ′, L′) whose image by π is ξ and the restriction to SpecK is η. Thus
π : M irr

n (t,λ′, L′) → N irr
n (t,λ′, L′) becomes a proper morphism by the valua-

tive criterion of properness.
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Put

R(Pn,t)red
a := R(Pn,t)a \ R(Pn,t)irr

a

Mred
n (t,λ, L) := Mα

n (t,λ, L) \M irr
n (t,λ, L).

Lemma 10.2. Mred
n (t,λ, L) is a closed subset of Mα

n (t,λ, L) which is
proper over C.

Proof. First we will show that Mred
n (t,λ, L) is a constructible subset of

Mα
n (t,λ, L). Take any member (E,∇E, ϕ, {li}) of Mα

n (t,λ, L). Then

(E,∇E, ϕ, {li}) ∈Mred
n (t,λ, L)

⇔ ∃F ⊂ E: subbundle of rank 1 such that ∇E(F ) ⊂ F ⊗ Ω1
P1(D(t)).

Note that such subbundles F must satisfy

(184) resti
(∇E |F ) = λi or resti

(∇E |F ) = resti
(∇L)− λi for i = 1, . . . , n,

from which the choice of isomorphism classes of (F,∇E|F ) must be finite. Let
L1, L2, . . . , Lm be all the line bundles with connections satisfying the condition
(184). Then we can see that the set{

(p, Li
ι→ E)

∣∣∣∣∣p = (E,∇E, ϕ, {li}) ∈Mα
n (t,λ, L) and ι is an injective

homomorphism such that ∇E(ι(Li)) ⊂ ι(Li)⊗ Ω1
P1(D(t))

}

can be parameterized by a scheme of finite type over Mα
n (t,λ, L). Thus

Mred
n (t,λ, L) is a constructible subset of Mα

n (t,λ, L).
So it suffices to show by [H], Chapter II, Lemma 4.5 that Mred

n (t,λ, L)
is stable under specialization in the compactification Mα′β

n (t,λ, L). Take any
scheme point x1 ∈Mred

n (t,λ, L) and T be the closure of {x1} in Mα′β
n (t,λ, L).

Take any point x0 ∈ T . Put K := k(x1). Then there exists a discrete valuation
ring R with quotient field K which dominates Ox0 . A morphism ι : SpecR →
Mα′β

n (t,λ, L) satisfying ι(η) = x1 and ι(ξ) = x0 is induced, where η is the
generic point of SpecR and ξ the closed point of SpecR. ι corresponds to a
flat family of (t,λ)-parabolic φ-connections (Ẽ1, Ẽ2, φ̃, ∇̃, ϕ̃, {l̃i}) on P1

R over
R. Put

(E1, E2, φ,∇, ϕ, {li}) := (Ẽ1, Ẽ2, φ̃, ∇̃, ϕ̃, {l̃i})⊗ k(η)
(E′

1, E
′
2, φ

′,∇′, ϕ′, {l′i}) := (Ẽ1, Ẽ2, φ̃, ∇̃, ϕ̃, {l̃i})⊗ k(ξ),
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Since (E1, E2, φ,∇, ϕ, {li}) ∈Mred
n (t,λ, L)(K), φ is isomorphic and there exist

commutative diagrams

(185)

0 0� �
F1

φ1−−−−→∼ F2� �
E1

φ−−−−→∼ E2� �
G1

φ2−−−−→∼ G2� �
0 0

0 0� �
F1

∇1−−−−→ F2 ⊗ Ω1
P1(D(t))� �

E1
∇−−−−→ E2 ⊗ Ω1

P1(D(t))� �
G1

∇2−−−−→ G2 ⊗ Ω1
P1(D(t))� �

0 0,

where F1, F2, G1, G2 are line bundles. There exist quotient coherent sheaves
Ẽ1 → G̃1, Ẽ2 → G̃2 which are flat over R and whose fibers over η are isomorphic
to E1 → G1 and E2 → G2, respectively. Put F̃1 := ker(Ẽ1 → G̃1) and
F̃2 := ker(Ẽ2 → G̃2). Then we obtain commutative diagrams

0 0� �
F̃1

φ̃1−−−−→ F̃2� �
Ẽ1

φ̃−−−−→ Ẽ2� �
G̃1

φ̃2−−−−→ G̃2� �
0 0

0 0� �
F̃1

∇̃1−−−−→ F̃2 ⊗ Ω1
P1(D(t))� �

Ẽ1
∇̃−−−−→ Ẽ2 ⊗ Ω1

P1(D(t))� �
G̃1

∇̃2−−−−→ G̃2 ⊗ Ω1
P1(D(t))� �

0 0,

whose fibers over η are the commutative diagrams (185). Put G′
1 :=

G̃1(ξ)/(G̃1(ξ))tor, G′
2 := G̃2(ξ)/(G̃2(ξ))tor, F ′

1 := ker(Ẽ1(ξ) → G′
1) and F ′

2 :=
ker(Ẽ2(ξ) → G′

2), where (G̃1(ξ))tor and (G̃1(ξ))tor are the torsion parts of



�

�

�

�

�

�

�

�

1084 Michi-aki Inaba, Katsunori Iwasaki and Masa-Hiko Saito

G̃1(ξ) and G̃2(ξ), respectively. Then we obtain commutative diagrams

(186)

0 0� �
F ′

1

φ′
1−−−−→ F ′

2� �
Ẽ1(ξ)

φ′
−−−−→ Ẽ2(ξ)� �

G′
1

φ′
2−−−−→ G′

2� �
0 0

0 0� �
F ′

1

∇′
1−−−−→ F ′

2 ⊗ Ω1
P1(D(t))� �

Ẽ1(ξ)
∇′

−−−−→ Ẽ2(ξ)⊗ Ω1
P1(D(t))� �

G′
1

∇′
2−−−−→ G′

2 ⊗ Ω1
P1(D(t))� �

0 0.

Assume that x0 /∈Mα
n (t,λ, L). Then we have either{
φ′1 = 0 and degF ′

1 ≥ degF ′
2 or

φ′2 = 0 and degG′
1 ≥ degG′

2.

Assume φ′1 = 0 and degF ′
1 ≥ degF ′

2. Then resti
(∇′

1) = λ′iφ
′
1(ti) = 0 for

i = 1, . . . , n, where λ′i = λi or λ′i = resti
(∇L) − λi. We must have ∇′

1 = 0,
since H0(P1, (F ′

1)∨ ⊗ F ′
2 ⊗ Ω1

P1) = 0. Then (F ′
1, 0) collapses the stability of

(Ẽ1(ξ), Ẽ2(ξ), φ̃(ξ), ∇̃(ξ), ϕ̃(ξ), {l̃i(ξ)}). Assume φ′2 = 0 and degG′
1 ≥ degG′

2.
Then resti

(∇′
2) = λ′iφ

′
2(ti) = 0 for i = 1, . . . , n, where λ′i = λi or λ′i =

resti
(∇L) − λi. Again we have ∇′

2 = 0, because degG′
1 ≥ degG′

2. Then
(Ẽ1(ξ), F ′

2) collapses the stability of (Ẽ1(ξ), Ẽ2(ξ), φ̃(ξ), ∇̃(ξ), ϕ̃(ξ), {l̃i(ξ)}).
Hence we must have x0 ∈Mα

n (t,λ, L) and so x0 ∈Mred
n (t,λ, L).

Now we are ready to prove the following

Proposition 10.1. The analytic morphism

RHt,λ : Mα
n (t,λ, L) −→ Rn(Pn,t)a

defined in (161) is proper.

Proof. Recall that we have proved the assertions in Theorem 7.1 except
for the properness of RHt,λ. Therefore, we see that RHt,λ induces the an
analytic isomorphism

Mα
n (t,λ, L)� �−→ R(Pn,t)�

a.
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(See (164)). From the third assertion of Theorem 7.1, we see thatR(Pn,t)sing
a =

R(Pn,t)a \ R(Pn,t)�
a has codimension ≥ 2 in R(Pn,t)a. Moreover Lemma

10.1 and Lemma 10.2 shows that every fiber of RHt,λ at each closed point
of Rn(Pn,t)a is compact. Therefore the assertion follows from the following
lemma due to A. Fujiki.

Lemma 10.3. Let f : X → Y be a surjective holomorphic mapping
of irreducible analytic varieties. Assume that an analytic closed subset S of Y
exists such that codimY S ≥ 2, X� := f−1(Y �) is dense in X, where Y � = Y \S
and that the restriction f |X� : X� → Y � is an analytic isomorphism. Moreover
assume that the fibers f−1(y) are compact for all y ∈ Y . Then f is a proper
mapping.

Proof. Since normalization morphism is proper, we may assume that both
X and Y are normal by replacing them by their normalizations. Take any
point y ∈ Y . Since f−1(y) is compact, there is an open neighborhood U of
f−1(y) and V of y such that f(U) ⊂ V and the restriction f |U : U → V is a
proper mapping. Since Y � is normal, we may assume that Y �∩V is connected.
f(X�∩U) is open in Y �∩V , because X� f−→ Y � is an isomorphism. f(X�∩U)

is also closed in Y � ∩ V , because X� ∩ U f−→ Y � ∩ V is proper. Thus we have
f(X� ∩ U) = Y � ∩ V , because X� is dense in X.

Assume that f−1(V ) \ U �= ∅ and take a point b ∈ f−1(V ) \ U . Take an
open neighborhood W of b such that f(W ) ⊂ V . X� ∩W is nonempty and
dense in W . From the injectivity of f |X� and the fact f(X� ∩U) = Y � ∩V , we
have X� ∩W ⊂ X� ∩U , since f(X� ∩W ) ⊂ Y � ∩ V . Taking closures in W , we
have b ∈W ⊂ U , which is a contradiction. Thus we have f−1(V ) = U .
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§11. List of Notation

Notation number of
equation

page

Tn (32) 1010
Λn (33) 1010
D(t) (34) 1010
pardegαE (39) 1012
Mα

n (t,λ, L) (42) 1013

Mα′β
n (t,λ, L) (43) 1014

πn :Mα′β
n (L) −→ Tn × Λn (48) 1015

πn :Mα
n (L) −→ Tn × Λn (48) 1015

Elm+
ti

: Mα
n (t,λ, L) −→Mα

n (t,λ′, L(ti)) (56) 1018
Elm−

ti
: Mα

n (t,λ, L) −→Mα
n (t,λ′, L(−ti)) (57) 1018

Ri(E) (70) 1020
BLn (76) 1022
R(Pn,t) = Spec[(Rn−1)

Ad(SL2(C))] (88) 1025
T ′

n := T̃n/Γn−1 −→ Tn (94) 1027
φn : Rn −→ T ′

n ×An (96) 1027
R(Pn,t)a (97) 1027
F0 (111) 1054
F1 (112) 1054
F1,+ (113) 1054
F• (114) 1055
F•,+ (115) 1055
Ω ∈ H0(Mα

n ,Ω2
Mα

n /T ′
n×Λn

) (125) 1057
Ω1 ∈ Γ(R�

n,Ω2
R�

n/T ′
n×An

) (154) 1065

RHt,λ : Mα
n (t,λ, L) −→ R(Pn,t)a (161) 1068

RHn : Mα
n (L) −→ Rn (162) 1068

µn (163) 1068
RHt,λ,|Mα

n (t,λ,L)� : Mα
n (t,λ, L)� �−→ R(Pn,t)�

a (164) 1068

MD,α,τ
X/S (r, d, {di}) (104) 1030
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