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Representations of a Z/3Z-Quantum Group
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By

Hiroyuki Yamane∗

Abstract

In this paper, we give a classification of the finite dimensional irreducible repre-
sentations of a nonstandard quantum group U , which may be viewed as a Z/3Z-graded
version of a quantum superalgebra.

Introduction

Since the quantum groups, also called the quantum algebras, were in-
troduced by Drinfeld [1] and Jimbo [5] in the mid 1980s, they have played
important roles in study of statistical mechanics, knot theory, conformal field
theory, and so on (cf. [19]). Moreover, the super-versions of quantum groups
(see [7], [18]), called the quantum superalgebras, have also played important
roles. For instance, they have been used to give new invariants of knots and
links, which are distinct from well-known invariants associated with quantum
algebras (see [10], [16]). So it would be interesting and important to look for
and study new-versions of quantum groups.

In this paper, we introduce a new quantum group U = Uq, which can be
viewed as a Z/3Z-graded version of a quantum superalgebra (see Remark 3). As
a Hopf algebra, U is not isomorphic to any of quantum algebras and quantum
superalgebras (see Remark 7). Our main result of this paper is Theorem 4.1,
which gives a classification of the finite dimensional irreducible representations
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76 Hiroyuki Yamane

of U . (The positive part U+ (see §1) of U has already been known (see [2]). It
might be true that there exist only a few ‘nonstandard’ quantum groups other
than U (see [3]). We notice that U is closely related to an anyonic Hopf algebra
(see [13]).)

Let us explain the content of the paper more precisely. To prove Theo-
rem 4.1, we use a method similar to Kac’s proof [8, Theorem 8] of the classi-
fication of the finite dimensional irreducible representations of the simple Lie
superalgebras (see also Remark 1). Among quantum superalgebras, the one
resembling our U most is the quantum superalgebra Uqosp(3|2). In order to
show how U resembles Uqosp(3|2), we explain in Remark 10 that we can also
classify the finite dimensional irreducible representations of Uqosp(3|2) in a way
similar to that for Theorem 4.1 (the classification result for Uqosp(3|2) seems
to have been well-known to experts).

In Remark 8, we introduce a finite dimensional version u = uζ of U , where
ζ is a root of unity. We show that u is a quasi-triangular Hopf algebra by giving
an explicit formula of the universal R-matrix of u. In Remark 9, we discuss
Drinfeld’s topological version of U .

The paper is organized as follows. In §1, we introduce U and give a PBW-
basis of the positive part U+ of U (see Lemma 1.2). In §2, we introduce
irreducible highest weight U -modules L(a, b1, b2) (= L(λ), where λ = (a, b1, b2)
(see (2.10))). In §3, we study small U -modules. In §4, we state and prove our
main result Theorem 4.1. In §5, we give some additional remarks.

We explain the strategy of the proof of our main theorem.

Remark 1. Strategy of the proof of our main theorem Theorem 4.1. We
use the fact that U contains two subalgebras V1 and V2 isomorphic to sl2-
quantum algebras (precisely, V1 � Uω2q−1sl2 and V2 � Uqsl2) (see Remark 5).
Roughly speaking, a part obtained from U by excluding V1 and V2 is finite
dimensional (see Lemma 1.2 and Lemma 1.1 (1)–(2)). We find the finite di-
mensional modules from the irreducible highest weight modules L(λ) = Uvλ

(see (2.10) for L(λ) and the highest weight vector vλ). To do so, we find the
condition that dimVivλ <∞ for i = 1, 2 (see Lemmas 2.2 and 4.1).

§1. Definition of U

Let C be the field of the complex numbers and Z+ = {n ∈ Z|n ≥ 0}.
Then Z+ = N ∪ {0}. Let K = C(q

1
2 ) be the field of the rational functions

in an indeterminate q
1
2 . Let K× = K \ {0}. Let ω = −1+

√−3
2 (∈ K×), i.e.,
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ω2 + ω + 1 = 0 and ω is a primitive third root of unity. Let

A =

(
a11 a12

a21 a22

)
=

(
0 −1
−1 2

)
.

Let p(1) = 1 and p(2) = 0.
Let U = Uq be a K-algebra defined with generators

(1.1) σ, K±1
1 , K±1

2 , E1, E2, F1, F2

and relations

(1.2) σ3 = 1, KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi,

(1.3) σKiσ
−1 = Ki, σEiσ

−1 = ωp(i)Ei, σFiσ
−1 = ω−p(i)Fi (i ∈ {1, 2}),

(1.4) KiEjK
−1
i = qaij Ej , KiFjK

−1
i = q−aij Fj (i, j ∈ {1, 2}),

(1.5) EiFj − FjEi = δij(−Li + L−1
i ) (i, j ∈ {1, 2}),

(1.6) E3
1 = 0, E2

2E1 − (q + q−1)E2E1E2 + E1E
2
2 = 0,

(1.7) F 3
1 = 0, F 2

2 F1 − (q + q−1)F2F1F2 + F1F
2
2 = 0,

where we let Li = Kiσ
p(i).

Remark 2. As for (1.5), we do not let RHS be δij
Li−L−1

i

q−q−1 . The reason
that we let it be δij(−Li + L−1

i ) is that it is natural from the viewpoint of the
quantum double construction (see [1], [15], [4, Proposition 6.12 (2)] and [18,
Proposition 2.5.1 (2.5.5) and Theorem 2.9.4 (ii)]).

Define an automorphism Ω : U → U by Ω(Ki) = K−1
i , Ω(σ) = σ−1,

Ω(Ei) = Fi and Ω(Fi) = Ei. Then Ω2 = idU .
We regard U as a Hopf algebra (U, ∆, S, ε) defined by

∆(σ) = σ ⊗ σ, ∆(K±1
i ) = K±1

i ⊗K±1
i ,

∆(Ei) = Ei ⊗ 1 + Li ⊗ Ei, ∆(Fi) = Fi ⊗ L−1
i + 1⊗ Fi,

S(σ) = σ−1, S(Ki) = K−1
i , S(Ei) = −L−1

i Ei, S(Fi) = −FiLi,

ε(σ) = 1, ε(Ki) = 1, ε(Ei) = 0, ε(Fi) = 0.
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Remark 3. Let U (i) = {X ∈ U |σXσ−1 = ωiX} for i ∈ Z. Then U

is a Z/3Z-graded Hopf algebra with respect to U (i)’s, namely, U = U (0) ⊕
U (1) ⊕ U (2), U (i+3) = U (i), U (i)U (j) ⊂ U (i+j), ∆(U (i)) ⊂ ⊕x+y=iU

(x) ⊗ U (y),
S(U (i)) = U (i), ε(U (0)) = K and ε(U (1) ⊕ U (2)) = {0}.

Let U0 be the subalgebra of U generated by σ, K±1
1 and K±1

2 . Let U+

(resp. U−) be the subalgebra (with 1) of U generated by E1 and E2 (resp. F1

and F2). For m, n ∈ Z+, we define the K-linear subspaces U+
m,n of U+ in the

following way; we first set U+
0,0 := K, U+

m,0 := KEm
1 and U+

0,n := KEn
2 and then,

for m ≥ 1 and n ≥ 1, we set U+
m,n := E1U

+
m−1,n + E2U

+
m,n−1 inductively.

For a subset S of U , let SpanK(S) =
∑

s∈S Ks. Then SpanK(U+U0) is the
subalgebra of U generated by U0 and U+. We also notice that SpanK(U+U0) =
Span

K
(U0U+) and Span

K
(U−U0) = Ω(Span

K
(U+U0)).

By a well-known argument (see [1], [4, Theorem 4.21 and Proposition 6.12]
(see the second paragraph of Remark 8), [14, II. Proposition 2], [15, II.1.
Lemma 1], [17, Proposition 2.3] and [18]), we have the following.

Lemma 1.1. (1) As a K-linear space,

U � U+ ⊗ U0 ⊗ U− (XZY ← X ⊗ Z ⊗ Y )

and
U � U− ⊗ U0 ⊗ U+ (Y ZX ← Y ⊗ Z ⊗X).

(2) The set {Kn1
1 Kn2

2 σn3 |n1, n2 ∈ Z, n3 ∈ {0, 1, 2}} is a K-basis of U0.
(3) As a K-algebra (with 1), U+ can also be defined with the generators E1

and E2 and the relations (1.6). In particular,

U+ =
∞⊕

m,n=0

U+
m,n

and dim U+
0,0 = dimU+

1,0 = dim U+
0,1 = 1.

(4) There exists a unique symmetric bilinear form

( , ) : SpanK(U+U0)× SpanK(U+U0)→ K

which satisfies the conditions (i)–(v) below.

(i) For any X, Y, Z ∈ SpanK(U+U0), the equation

(1.8) (XY, Z) = (X ⊗ Y, ∆(Z))

holds.
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(ii) For any X1, X2 ∈ U+ and any Z1, Z2 ∈ U0, the equation

(X1Z1, X1Z2) = (X1, X2)(Z1, Z2)

holds.
(iii) For any c(1), c(2), d(1), d(2) ∈ Z and any c(3), d(3) ∈ {0, 1, 2}, the

equation

(Kc(1)
1 K

c(2)
2 σc(3), K

d(1)
1 K

d(2)
2 σd(3)) = q

P2
i=1

P2
j=1 c(i)aijd(j)ωc(3)d(3)

holds.
(iv) For any i, j ∈ {1, 2}, the equation

(Ei, Ej) = δij

holds.
(v) For any m, n, r, l ∈ Z+ with m �= r or n �= l, the equation

(U+
m,n, U+

r,l) = {0}
holds.

Let

(1.9) E12 = E1E2 − qE2E1, E112 = E1E12 − ω2qE12E1,

(1.10) F12 =
1

q2 − 1
Ω(E12) =

1
q2 − 1

(F1F2 − qF2F1)

and

(1.11) F112 = − 1
(q2 − 1)(q2 − ω)

Ω(E112) = − 1
q2 − ω

(F1F12 − ω2qF12F1).

Then we have the following (see also Remark 4 below and notice Ω(U+) = U−).

(1.12) E12E2 = q−1E2E12, F12F2 = q−1F2F12

(1.13) E1E112 = ωqE112E1, F1F112 = ωqF112F1

(1.14)
E112E2−E2E112 = −q−1ω2(q2−ω)E2

12, F112F2−F2F112 = q−1ω2(q2−1)F 2
12

(1.15) E112E12 = ωqE12E112, F112F12 = ωqF12F112

(1.16) E3
12 = 0, F 3

12 = 0
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Remark 4. Proof of (1.15)−(1.16). We let [X, Y ]t = XY − tY X.
We first prove the first equality of (1.15). We have

0 = [E1, E112E2 − E2E112 + q−1ω2(q2 − ω)E2
12]ωq2 (by (1.14))

= ωqE112E12 − E12E112 + q−1ω2(q2 − ω)(E112E12 + ω2qE12E112) (by (1.13))

= (q + q−1)(−E112E12 + ωqE12E112),

which implies the desired equality.
Next, we prove the first equality of (1.16). We have

0 = [[[E3
1 , E2]q3 , E2]q, E2]q−1 (by the first equality of (1.6))

= [[E2
1E12 + qE1E12E1 + q2E12E

2
1 , E2]q, E2]q−1

= (q + q−1)(q2 + 1 + q−2)E3
12 (by (1.6)),

which implies the desired equality.
We can obtain the second equations of (1.15)−(1.16) from the first ones

by applying Ω.

We also have the following.

(1.17) ∆(E12) = E12 ⊗ 1 + (q−1 − q)E2L1 ⊗ E1 + L1L2 ⊗ E12

∆(E112) = E112 ⊗ 1 + (ωq − ω2q−1)E12L1 ⊗ E1(1.18)

+(q−1 − q)(q−1 − ω2q)E2L
2
1 ⊗ E2

1 + L2
1L2 ⊗ E112

(1.19) (E12, E12) = q2 − 1

(1.20) (E112, E112) = −(q2 − ω)(q2 − 1)

Let Φ(n, t) =
∏n

i=1
1−ti

1−t .

Lemma 1.2. The set

(1.21) {En(1)
1 E

n(112)
112 E

n(12)
12 E

n(2)
2 |n(112), n(2) ∈ Z+, n(1), n(12) ∈ {0, 1, 2}}

is a K-basis of U+.

Proof. By (1.12)−(1.16), we see that the set (1.21) spans U+. We show
that they form an orthogonal basis. By (1.12)−(1.18) and the same argument
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as in [15, II. Lemma 1], we have

(Em(1)
1 E

m(112)
112 E

m(12)
12 E

m(2)
2 , E

n(1)
1 E

n(112)
112 E

n(12)
12 E

n(2)
2 )(1.22)

= δm(1),n(1)δm(112),n(112)δm(12),n(12)δm(2),n(2)

·Φ(m(1), ω)(E1, E1)m(1)Φ(m(112), ωq−2)(E112, E112)m(112)

·Φ(m(12), ω)(E12, E12)m(12)Φ(m(2), q2)(E2, E2)m(2).

Notice (E1, E1) = (E2, E2) = 1 (see Lemma 1.1 (4) (iv)). By (1.19)−(1.20),
(E12, E12) �= 0 and (E112, E112) �= 0. Then we have the desired result.

§2. Verma Modules

Notice Ω(U+) = U−. We let [X, Y ] = XY − Y X. We have the following.

(2.1) [E1, F12] = −q−1F2L
−1
1 , [F1, E12] = −q−1(q2 − 1)E2L1

(2.2) [E1, F112] = −ωq−1F12L
−1
1 , [F1, E112] = ωq−1(q2 − ω)E12L1

(2.3) [E2, F12] = F1L2, [F2, E12] = (q2 − 1)E1L
−1
2

(2.4) [E2, F112] = ω2F 2
1 L2, [F2, E112] = −ω2(q2 − 1)(q2 − ω)E2

1L−1
2

(2.5) [E12, F12] = −L1L2 + L−1
1 L−1

2

(2.6) [E12, F112] = F1L1L2, [F12, E112] = −(q2 − ω)E1L
−1
1 L−1

2

(2.7) [E112, F112] = −L2
1L2 + L−2

1 L−1
2

Remark 5. By Lemma 1.1 (1)–(2) and Lemma 1.2, using Ω, we see that
the elements

(2.8) E
m(1)
1 E

m(112)
112 E

m(12)
12 E

m(2)
2 K

c(1)
1 K

c(2)
2 σc(3)F

n(1)
1 F

n(112)
112 F

n(12)
12 F

n(2)
2

with m(112), m(2), n(112), n(2) ∈ Z+, c(1), c(2) ∈ Z and 0 ≤m(1), m(12), c(3),
n(1), n(12) ≤ 2 form a basis of U . Let V1 (resp. V2) be the subalgebra of U

generated by (L2
1L2)±1, E112 and F112 (resp. L±1

2 , E2 and F2). By (1.2)–(1.5)
and (2.7), using the basis in (2.8), we see that as K-algebras, V1 and V2 are
isomorphic to Uω2q−1sl2 and Uqsl2 respectively. See also Remark 1 for V1 and
V2.



�

�

�

�

�

�

�

�

82 Hiroyuki Yamane

It follows from Lemma 1.1 (1)–(3) that for a ∈ {0, 1, 2} and b1, b2 ∈ K
×,

there exists a unique (left) U -moduleM(a, b1, b2) having the following proper-
ties.

(i) As a U−-module, M(a, b1, b2) is free and rank one.
(ii) Let vM be a basis element of the rank-one free U−-moduleM(a, b1, b2),

so M(a, b1, b2) = U−vM. Then σvM = ωavM, Kiv
M = biv

M and Eiv
M = 0.

We call M(a, b1, b2) the Verma module with a highest weight (a, b1, b2). Let
N (a, b1, b2) be the maximal proper submodule of M(a, b1, b2). Let L(a, b1, b2)
be the quotient module M(a, b1, b2)/N (a, b1, b2). Then L(a, b1, b2) is irre-
ducible and L(a, b1, b2) �= {0}. We let

(2.9) v(a, b1, b2) = vM +N (a, b1, b2)

(∈ L(a, b1, b2)).
Abbreviations of v(a, b1, b2) and L(a, b1, b2). For λ = (a, b1, b2) ∈ {0, 1, 2}×

(K×)2, we let

(2.10) vλ = v(a, b1, b2) and L(λ) = L(a, b1, b2).

We call L(λ) the irreducible highest weight (U-)module with a highest weight λ.
We call vλ a highest weight vector of L(λ).

Let
A = {λ ∈ {0, 1, 2} × (K×)2| dimL(λ) <∞}.

Similarly to [14, Proof of Proposition 3], using Vi in Remark 5, we have:

Lemma 2.1. The U-modules L(λ), λ ∈ A, form a complete set of non-
isomorphic finite dimensional irreducible U-modules (see (2.10) for L(λ)).

For r(1), r(2) ∈ Z+, let Br(1),r(2) be the subset of {0, 1, 2}× (K×)2 formed
by the elements

(2.11) (a, ε1ω
−a+r(1)q−

r(1)+r(2)
2 , ε2q

r(2))

with a ∈ {0, 1, 2}, ε1 ∈ {±1,±√−1} and ε2 ∈ {±1} (see also Remark 6 below).
Let B = ∪(r(1),r(2))∈Z+×Z+Br(1),r(2).

Let λ = (a, ε1ω
−a+r(1)q−

r(1)+r(2)
2 , ε2q

r(2)) ∈ Br(1),r(2) (see (2.11)) and let
v = vλ (see (2.9)–(2.10)). For later use, we give the following formulas.

(2.12) L1v = ε1ω
r(1)q−

r(1)+r(2)
2 v, L2v = ε2q

r(2)v, L2
1L2v = ε21ε2ω

2r(1)q−r(1)v



�

�

�

�

�

�

�

�

New Quantum Group 83

(2.13) (L2
1L2)2Fn

1 v = (ωq−2)r(1)−nFn
1 v

(2.14) (L2
1L2)2Fn

12v = (ωq−2)r(1)−nFn
12v

Remark 6. We have

Br(1),r(2)(2.15)

= {(a, b1, b2) ∈ {0, 1, 2} × (K×)2

|b2
2 = (q2)r(2), ((ωab1)2b2)2 = ((ω2q−1)2)r(1)}.

In order to see a significance of (2.15), recall Remark 5 and notice that for
v in (2.12), if λ is also denoted as (a, b1, b2), then L2v = b2v and L2

1L2v =
(ωab1)2b2v.

Lemma 2.2. A ⊂ B.

Proof. (See also Remarks 1, 5 and 6.) Let λ = (a, b1, b2) ∈ A and v =
vλ(∈ L(λ)) (see (2.9)–(2.10)). Then, by (1.3)–(1.5), we have

E2F
m
2 v = Fm−1

2

(
−1− q−2m

1− q−2
L2 +

1− q2m

1− q2
L−1

2

)
v(2.16)

=−1− q−2m

1− q−2
b−1
2 (b2

2 − q2(m−1))Fm−1
2 v

for m ∈ N. Assume that b2
2 �= q2(m−1) for all m ∈ N. Then Fm

2 v �= 0 since
Em

2 Fm
2 v ∈ K×v by (2.16). Since K2F

m
2 v = q−2mb2F

m
2 v, Fm

2 v’s are linearly
independent, which contradicts dimL(λ) < ∞. Then b2

2 = q2r(2) for some
r(2) ∈ Z+, so b2 = ε2q

r(2) for some ε2 ∈ {±1}.
By (2.7) and L2

1L2v = ω2ab2
1b2v, similarly to (2.16), we have

(2.17)

E112F
m
112v = −1− (ωq−2)−m

1− (ωq−2)−1
(ω2ab2

1b2)−1((ω2ab2
1b2)2 − (ωq−2)m−1)Fm−1

112 v.

By the same argument as in the previous paragraph, (ω2ab2
1b2)2 = (ωq−2)r(1)

for some r(1) ∈ Z+. Hence b1 = ε1ω
−a+r(1)q−

r(1)+r(2)
2 for some ε1 with ε41 = 1.

Hence λ ∈ B, as desired.

§3. Cases of r(1) ≤ 1

Let Ar(1),r(2) = A ∩ Br(1),r(2). Then, by Lemma 2.2, we have

(3.1) A = ∪(r(1),r(2))∈Z+×Z+Ar(1),r(2).
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Lemma 3.1. Assume that r(1) ≤ 1 and (r(1), r(2)) �= (0, 0). Then
Ar(1),r(2) = ∅.

Proof. Let λ = (a, ε1ω
−a+r(1)q−

r(1)+r(2)
2 , ε2q

r(2)) ∈ Br(1),r(2) (see (2.11)).
We show λ /∈ Ar(1),r(2).

Let v = vλ (see (2.9)–(2.10)) and assume λ ∈ Ar(1),r(2), i.e., dimUv < ∞
(recall Uv = U−v = L(λ)).

We show F 2
1 v = 0. Assume F 2

1 v �= 0. By (2.1)–(2.2), we have E112F
2
1 v = 0.

By (2.13) for n = 2 and the same argument as in Proof of Lemma 2.2, we have
(ωq−2)r(1)−2 = (ωq−2)l for some l ∈ Z+ (use the same formula as (2.17) with
F 2

1 v in place of v). This is absurd since r(1) ≤ 1. Hence F 2
1 v = 0.

We show F1v = 0. Assume F1v �= 0. Since F 2
1 v = 0, by (2.12), similarly

to (2.16), we have

0 = E1F
2
1 v = −(1 + ω−1)(ε1ωr(1)q−

r(1)+r(2)
2 )−1(ε21ω

2r(1)q−(r(1)+r(2)) − ω)F1v.

Hence ε21ω
2r(1)q−(r(1)+r(2)) = ω. This is absurd since r(1) + r(2) > 0. Hence

F1v = 0.
By F1v = 0 and (2.12), we have

0 = (−L1)E1F1v = (L2
1 − 1)v = (ε21ω

2r(1)q−(r(1)+r(2)) − 1)v,

which contradicts r(1) + r(2) > 0. Hence dim Uv = ∞. Hence λ /∈ Ar(1),r(2),
contradiction. Then we have Ar(1),r(2) = ∅, as desired.

Let A′
0,0 = {(a, ε′1ω

−a, ε2)|a ∈ {0, 1, 2}, ε′1, ε2 ∈ {1,−1}}. We have the
following.

Lemma 3.2. We have A0,0 = A′
0,0. Moreover, dimL(λ) = 1 if and

only if λ ∈ A′
0,0 (see (2.10) for L(λ)).

Proof. Use an argument similar to that in Proof of Lemma 3.1 and the
fact that ε21 ∈ {±1} and ε21 �= ω (notice that if r(1) = r(2) = 0, ε21 =
ε21ω

2r(1)q−(r(1)+r(2))). We also use the fact that for λ ∈ Ar(1),r(1), letting v =
vλ(∈ L(λ)) (see (2.9)−(2.10)), we have F

r(2)+1
2 v = 0, F i

2v �= 0 (0 ≤ i ≤ r(2)),
F

r(1)+1
112 v = 0 and F j

112v �= 0 (0 ≤ j ≤ r(1)); these equations follow from
(2.16)−(2.17).

§4. Main Theorem

Lemma 4.1. Assume r(1) ≥ 2. Then Ar(1),r(2) = Br(1),r(2).



�

�

�

�

�

�

�

�

New Quantum Group 85

Proof. It is clear that Ar(1),r(2) ⊂ Br(1),r(2). We show Br(1),r(2) ⊂
Ar(1),r(2). Let λ = (a, ε1ω

−a+r(1)q−
r(1)+r(2)

2 , ε2q
r(2)) ∈ Br(1),r(2) (see (2.11)).

Let v = vλ (see (2.9)−(2.10) and notice Uv = U−v = L(λ)). We show
λ ∈ Ar(1),r(2), i.e., we show dimL(λ) < ∞. We often use the fact that for
Y ∈ Ω(U+

m,n) with (m, n) �= (0, 0),

(4.1) E1Y v = E2Y v = 0 =⇒ Y v = 0.

A proof of (4.1) is as follows. Since U−Y v ⊂ ⊕(m,n) �=(0,0)Ω(U+
m,n)v, UY v =

U−Y v is a proper submodule of L(λ). By the irreducibility of L(λ), we see
U−Y v = {0}, as desired.

(Strategy of Proof. As mentioned in Remark 1 (see also Remark 5), it
suffices to show dim Viv < ∞ for i = 1, 2 (see also Step 5 below). The key of
the proof is to show F

r(1)+1
112 v = 0 (see (4.19)). To prove this equality, we first

show F 2
1 F

r(1)−1
112 v = 0 (see (4.2)), secondly F1F

r(1)
112 v = 0 (see (4.6)) and finally

F12F
r(1)
112 v = 0 (see (4.10)). Our main tool is the fact (4.1).)
We proceed in steps. We always use the equations (1.2)−(1.16) and (2.1)−

(2.7). We also use the equality E112 = E2
1E2 + ωqE1E2E1 + ω2q2E2E

2
1 (resp.

E12 = E1E2 − qE2E1) (see (1.9)) for (4.5), (4.9) and (4.18) (resp. (4.4) and
(4.8)) below.

Step 1. We show

(4.2) F 2
1 F

r(1)−1
112 v = 0.

Since F 3
1 = 0 (see (1.7)), by (1.5), (2.4) and (1.13), we have

(4.3) E2F
2
1 F

r(1)−1
112 v = 0.

Similarly to (4.3), by (2.6) and (2.1), we also have E12F
2
1 F

r(1)−1
112 v = 0. Hence,

by (4.3), we have

(4.4) E2E1F
2
1 F

r(1)−1
112 v = 0.

We see E112F
2
1 v = 0 by (2.1) and (2.2). Hence, by (2.13) for n = 2 and the

same formula as (2.17) with F 2
1 v in place of v, we have E112F

r(1)−1
112 F 2

1 v = 0.
Hence, by (1.13), E112F

2
1 F

r(1)−1
112 v = 0. Hence, by (4.3)–(4.4), we have

(4.5) E2E
2
1F 2

1 F
r(1)−1
112 v = 0.

Recall E3
1 = 0 (see (1.6)). Then E3

1F 2
1 F

r(1)−1
112 v = 0. Hence, by (4.5)

and (4.1), we have E2
1F 2

1 F
r(1)−1
112 v = 0. Hence, by (4.4) and (4.1), we have

E1F
2
1 F

r(1)−1
112 v = 0. Hence, by (4.3) and (4.1), we have (4.2).
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Step 2. We show

(4.6) F1F
r(1)
112 v = 0.

Similarly to (4.3), we have

(4.7) E2F1F
r(1)
112 v = 0.

By (4.2), (2.1) and (2.6), since F 3
1 = 0 (see (1.7)), similarly to (4.7), we have

E12F1F
r(1)
112 v = 0. Hence, by (4.7), we have

(4.8) E2E1F1F
r(1)
112 v = 0.

By (2.2), E112F1v = 0. Hence, by (2.13) for n = 1 and the same formula as
(2.17) with F1v in place of v, we have E112F

r(1)
112 F1v = 0. Hence, by (1.13),

E112F1F
r(1)
112 v = 0. Hence, by (4.7)–(4.8), we have

(4.9) E2E
2
1F1F

r(1)
112 v = 0.

By (4.7)−(4.9) and the same argument as that in the last paragraph of
Step 1, we have (4.6).

Step 3. We show

(4.10) F12F
r(1)
112 v = 0.

By (4.2), (4.6) and (2.3), similarly to (4.3), we have

(4.11) E2F12F
r(1)
112 v = 0.

Here, for later use, we give some formulas. By (2.2) and (1.15), we have

(4.12) [E1, F
m
112] = −ω2(ω2q−1)m 1− (ω2q2)m

1− ω2q2
F12F

m−1
112 L−1

1 .

By (2.1) and (1.12), we have

(4.13) [E1, F
2
12] = ω2q−2F2F12L

−1
1 .

By (2.3), we have

(4.14) [E2, F
2
12] = −(q−1(q2 − ω)F112 + ωF12F1)L2.

Let x = ε1ω
r(1)q−

r(1)+r(2)
2 . By (2.12), we have L1v = xv. By (2.1) and

(4.12), we have

E1F12F
r(1)
112 v(4.15)

=−q−1(ω2q−1)r(1)x−1F2F
r(1)
112 v

−ω2(ω2q−1)r(1) 1− (ω2q2)r(1)

1− ω2q2
x−1F 2

12F
r(1)−1
112 v.
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By (4.2), (4.14)–(4.15), (1.13), (2.3)–(2.4) and F 3
1 = 0 (see (1.7)), we have

(4.16) E2
2E1F12F

r(1)
112 v = 0.

By F 3
12 = 0 (see (1.16)), (4.12), (4.13) and (4.15), similarly to (4.15), we have

E2
1F12F

r(1)
112 v(4.17)

=−q−1(ω2q−1)r(1)x−1

·
(
−ω2(ω2q−1)r(1) 1− (ω2q2)r(1)

1− ω2q2

)
x−1F2F12F

r(1)−1
112 v

−ω2(ω2q−1)r(1) 1− (ω2q2)r(1)

1− ω2q2
x−1

·ω2q−2(ω2q−1)r(1)−1x−1F2F12F
r(1)−1
112 v

= 0.

Since E112F12v = 0 (by (2.6)), by (2.14) for n = 1 and the same formula as
(2.17) with F12v in place of v, we have E112F

r(1)
112 F12v = 0. Hence E112F12F

r(1)
112 v

= 0 by (1.15). Hence, by (4.11) and (4.17), we have

(4.18) E1E2E1F12F
r(1)
112 v = 0.

By (4.11), (4.16)−(4.18) and the same argument as that in the last para-
graph of Step 1, we have (4.10).

Step 4. By (4.6) and (4.10), we have

(4.19) F
r(1)+1
112 v = 0.

Step 5. By the same formula as (2.16), we have E2F
r(2)+1
2 v = 0. Hence,

since E1F
r(2)+1
2 v = 0, by (4.1), we have

(4.20) F
r(2)+1
2 v = 0.

By Lemma 1.2 and (4.20), using Ω, we see that U−v is spanned by the elements

(4.21) F
n(1)
1 F

n(112)
112 F

n(12)
12 F

n(2)
2 v

with 0 ≤ n(1) ≤ 2, n(112) ∈ Z+, 0 ≤ n(12) ≤ 2 and 0 ≤ n(2) ≤ r(2).
Moreover, by (4.19) and (1.12)–(1.16), we see that for given n(1), n(12) and
n(2), there exists n(112) such that the element (4.21) is zero. This implies
dimL(λ) = dim U−v < ∞. Hence λ ∈ Ar(1),r(2). Hence Br(1),r(2) ⊂ Ar(1),r(2),
which completes the proof.

Now we state our main theorem.
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Theorem 4.1. We have

A = A′
0,0 ∪ ∪∞r(1)=2 ∪∞r(2)=0 Br(1),r(2).

(See also Lemma 2.1.)

Proof. This follows from (3.1) and Lemmas 3.1, 3.2 and 4.1 immediately.
(See also Remark 1.)

§5. Additional Remarks

Here we give some additional remarks.

Remark 7. Difference between U and the (standard) quantum (super)
algebras. We show that as a Hopf algebra, U is not isomorphic to any of the
quantum algebras Uqg of the finite dimensional simple Lie algebras g. We
also show that as a Hopf algebra, U is not isomorphic to any of the Hopf
algebras (Uqa)σ associated with the quantum superalgebras Uqa of the finite
dimensional simple Lie superalgebras a of type A-G. Here (Uqa)σ are the Hopf
algebras associated with the Hopf superalgebras Uqa (see [13, 10.1] and [18,
1.9]). For a Hopf algebra H = (H, ∆H), we say that an element X of H is
pre-primitive if ∆H(X) �= X ⊗X and ∆H(X) = X ⊗ Y + Z ⊗X for some Y ,
Z ∈ H.

Let X be a pre-primitive element of U . We show that

(5.1) X = yWK
c(1)
1 K

c(2)
2 σc(3)

for some y ∈ K
×, W ∈ {E1, E2, F1, F2}, c(1), c(2) ∈ Z and c(3) ∈ {0, 1, 2}.

Let B+
mon be a basis of U+ formed by some monomial elements Ei(1) · · ·Ei(t)

with i(s) ∈ {1, 2} (1 ≤ s ≤ t). Let B0 = {Kc(1)
1 K

c(2)
2 σc(3)|c(1), c(2) ∈ Z, c(3) ∈

{0, 1, 2}}. Using the basis {Ω(Y ′)JY ′′|Y ′, Y ′′ ∈ B+
mon, J ∈ B0} of U (see

Lemma 1.1 (1)–(2)), we conclude that

(5.2) ∆(X) = X ⊗ J ′ + J ′′ ⊗X

for some J ′, J ′′ ∈ B0. Let π− : U → U/(U0 + UE1 + UE2) and π+ : U →
U/(U0 +F1U +F2U) be the canonical maps. We see that X ∈ Span

K
(U0U+)∪

SpanK(U−U0) since if this is not true, then (π− ⊗ π+)(∆(X)) �= 0, which
contradicts (5.2). Notice that if Y ∈ SpanK(U0U+) = SpanK(U+U0) =
Ω−1(Span

K
(U−U0)) and ∆(Y ) =

∑
i Y

(1)
i ⊗Y

(2)
i , then ∆(Ω(Y )) =

∑
i Ω(Y (2)

i )
⊗Ω(Y (1)

i ). So we may assume X ∈ Span
K
(U0U+). More precisely, we see that
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X ∈ U+
m,nJ for some J ∈ B0 and (m, n) �= (0, 0). Moreover, we may also

assume X ∈ U+
m,n. Using the basis (1.21) of U+, we express X as

X =
∑
(m)

a(m)E
m(1)
1 E

m(112)
112 E

m(12)
12 E

m(2)
2 ,

where (m) = (m(1), m(112), m(12), m(2)) and a(m) ∈ K. For (m) with m(1) ≥
1 and m(1) + m(112) + m(12) + m(2) ≥ 2, we have

0 = (E1 ⊗ E
m(1)−1
1 E

m(112)
112 E

m(12)
12 E

m(2)
2 , ∆(X)) (by (5.2) and Lemma 1.1)

= (Em(1)
1 E

m(112)
112 E

m(12)
12 E

m(2)
2 , X) (by (1.8))

∈ K
×a(m) (by (1.22) and (1.19)–(1.20)),

whence a(m) = 0. By the repetition of this argument and (1.17)−(1.18), we
have the desired result (5.1).

Let Û be Uqg or (Uqa)σ. By the same argument as above and the use of
[4, Proposition 8.28] (see also [6, Lemma 7] and [9, Proposition 3.2]) and [18,
Lemmas 10.2.1 and 10.3.1], we also have a result for Û similar to the above one
for U . Then, comparing the pre-primitive elements of U and those of Û and
using the fact that E2

1 �= 0 and E3
1 = 0 in U (see (1.6) and Lemma 1.2), we see

that U is not isomorphic to Û as a Hopf algebra, as desired.

Remark 8. Finite dimensional Z/3Z-quantum group. Here we give a fi-
nite dimensional version u of U , which is a counterpart of the finite dimensional
quantum groups at roots of 1 introduced by Lusztig [11].

We first give some facts on U . Let P : U ⊗ U → U ⊗ U be the K-
algebra homomorphism defined by P (X ⊗ Y ) = Y ⊗X (X, Y ∈ U). Then we
have ∆ ◦ Ω = (Ω ⊗ Ω) ◦ P ◦ ∆. (Using this, in a way similar to that for [4,
Proposition 6.12], we can prove Lemma 1.1 (4).) We also have Ω ◦S = S−1 ◦Ω
and ε ◦ Ω = ε. (See also [4, 3.8].) For all X, Y ∈ SpanK(U+U0), we have

(5.3) (X, 1) = ε(X) and (S(X), Y ) = (X, S(X)).

(see also [4, Exercise 6.16]). For all X1, X2 ∈ Span
K
(U+U0), writing ((∆ ⊗

id) ◦∆)(Xi) =
∑

j Xi,j ⊗X ′
i,j ⊗X ′′

i,j (i ∈ {1, 2}), we have

Ω(X2)X1 =
∑
s,t

(S−1(X1,s), X ′′
2,t)(X

′′
1,s, X2,t)X ′

1,sΩ(X ′
2,t)

(see also [1, Section 13], [4, 6.17 (3)] and [18, 1.4 and 2.4]).
Set A := C[q, q−1, (q2−1)−1, (q2−ω)−1](⊂ K). Let UA be the A-submodule

of U having the A-basis formed by the elements (2.8). By (1.2)−(1.5), (1.9)−
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(1.18) and (2.1)−(2.7), we can see that UAUA ⊂ UA, ∆(UA) ⊂ UA ⊗A UA

(⊂ U ⊗ U), S(UA) = UA, ε(UA) = A and Ω(UA) = UA. (For the last equality,
we should assume (q2 − 1)−1(q2 − ω)−1 ∈ A.) Then UA has an A-Hopf algebra
structure (UA, ∆, S, ε).

Let ζ ∈ C be such that ζ(ζ2 − 1)(ζ2 − ω) �= 0. Assume that there exists
e′ ∈ N such that ζe′

= 1. Set e := min{e′ ∈ N|ζe′
= 1}. Then ζ is a primitive

e-th root of unity. Regard C as an A-algebra via the C-algebra homomorphism
A → C that takes q to ζ. Set U := UA ⊗A C. The argument in the previous
paragraph implies that U has a C-Hopf algebra structure (U, ∆, S, ε), where
we denote again by ∆, S and ε the maps induced from the above ones. We
also denote by Ω the C-algebra automorphism of U induced from the above
one. Let U+ be the subalgebra (UA ∩ U+) ⊗A C of U. Let U≥0 be the Hopf
subalgebra (UA∩SpanK(U+U0))⊗A C of U. Notice that U also has a property
similar to Lemma 1.1 (1).

Denote again by ( , ) the bilinear form on U≥0 induced from the one on
Span

K
(U+U0) (this is well-defined; see (1.22), (1.19)–(1.20) and Lem-

ma 1.1 (4)). Let I≥0 = ker( , ). By (1.8) and (5.3), we see that

(5.4)

{
U≥0I≥0U≥0 = I≥0, ∆(I≥0) ⊂ I≥0 ⊗U≥0 + U≥0 ⊗ I≥0,

S(I≥0) = I≥0, ε(I≥0) = {0}.

Let J1 (resp. J2) be the subspace of U spanned by I≥0Ω(U+) (resp. U+Ω(I≥0)).
By (5.4) and formulas in the second paragraph of this remark, we also have the
same formulas as in (5.4) with U and Ji in place of U≥0 and I≥0 (i ∈ {1, 2}).
Set u = uζ := U/(J1 + J2). Then u can be regarded as a C-Hopf algebra.
(This construction is similar to [12, 3.1.1 (a)–(e)] and [18, Theorem 2.9.4].)

Set x := min{x′ ∈ N|(ωζ−2)x′
= 1} and y := min{y′ ∈ N|ζ2y′

= 1}.
If X is of (2.8), we denote X ⊗A C + (J1 + J2) ∈ u again by X. Using
formulas between (1.2) and (2.8), especially (1.22) and Lemma 1.1 (4), we see
that the elements denoted as (2.8) with 0 ≤ m(1), m(12), c(3), n(1), n(12) ≤ 2,
0 ≤ m(112), n(112) ≤ x− 1, 0 ≤ m(2), n(2) ≤ y − 1 and 0 ≤ c(1), c(2) ≤ e− 1
form a C-basis of u. Then we have dimu = 35e2x2y2.

Similarly we have the results below.
Let u≥0 be the Hopf subalgebra U≥0+(J1+J2) of u. Identify the dual Hopf

algebra (u≥0)∗ of u≥0 with u≥0 itself via the non-degenerate bilinear form on
u≥0 induced from ( , ). Then, using the Drinfeld [1, Section 13] quantum double
D(u≥0) = u≥0⊗(u≥0)∗ (see also [15] and [18, Proposition 1.7.1, Theorem 2.9.4
and Lemma 2.9.10]), by (1.22) and Lemma 1.1 (4), we can see that u is a quasi-
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triangular Hopf algebra whose universal R-matrix R ∈ u⊗ u is given by

R=

 2∑
m(1)=0

(E1 ⊗ F1)m(1)

Φ(m(1), ω)

 ·
 x−1∑

m(112)=0

(E112 ⊗ F112)m(112)

Φ(m(112), ωζ−2)


·
 2∑

m(12)=0

(E12 ⊗ F12)m(12)

Φ(m(12), ω)

 ·
 y−1∑

m(2)=0

(E2 ⊗ F2)m(2)

Φ(m(2), ζ2)


·
 e−1∑

i(1),j(1)=0

ζi(1)j(1)K
i(1)
1 ⊗ (K−2

1 K−1
2 )j(1)

e


·
 e−1∑

i(2),j(2)=0

ζi(2)j(2)K
i(2)
2 ⊗ (K−1

1 )j(2)

e

 ·( 2∑
s,t=0

ωstσs ⊗ σt

3

)
.

As a C-algebra, u can also be defined with the generators denoted as (1.1)
and the same relations as (1.2)−(1.7) with ζ in place of q and the relations:

Ke
1 = Ke

2 = 1, Ex
112 = F x

112 = 0 and Ey
2 = F y

2 = 0

and

(5.5)

{
E112E12 = ωζE112E12, F112F12 = ωζF112F12 if ζ ∈ {√−1,−√−1},
E3

12 = F 3
12 = 0 if ζ ∈ {ω,

√−1,−√−1,−ω}.

As for (5.5), see Remark 4. We can show that (5.5) cannot be dropped.

Remark 9. We can consider a Drinfeld [1]-type h-adic topological ver-
sion Uh of U (by replacing q

1
2 , Ki and Fi with e

h
2 , ehHi and (q−1 − q)−1Fi

respectively). We can also give an explicit formula of a universal R-matrix of
Uh. However Uh is a topological not C[[h]]- but C((h))-algebra, where C[[h]] is
the C-algebra of the formal power series in h and C((h)) is the quotient field
of C[[h]]. In particular, it seems to be impossible to take a ‘good’ limitation
limh→0 Uh (or limq→1 U).

Remark 10. Finite dimensional irreducible representations of Uqosp(3|2).
As mentioned in Introduction, our method for U can also be applied to clas-
sify the finite dimensional irreducible representations of Uqosp(3|2). Here we
explain about it.

Let

Ā =

(
ā11 ā12

ā21 ā22

)
=

(
0 1
−2 2

)
.
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Let p̄(1) = 1 and p̄(2) = 0.
The Lie superalgebra osp(3|2) is also denoted as B(1, 1) and the following

is the Dynkin diagram of osp(3|2) = B(1, 1) (see [8]).

1 2
×� �=⇒

Let
q̄1 = q−1 and q̄2 = q

1
2 .

Let Ū = Uqosp(3|2) be a K-algebra defined with generators K̄±1
i , Ēi, F̄i

(i ∈ {1, 2}) and defining relations K̄iK̄
−1
i = K̄−1

i K̄i = 1, K̄iK̄j = K̄jK̄i,
K̄iĒjK̄

−1
i = q̄

āij

i Ēj , K̄iF̄jK̄
−1
i = q̄

−āij

i F̄j , ĒiF̄j − (−1)p̄(i)p̄(j)F̄jĒi = δij(q̄i −
q̄ −1
i )−1(K̄i−K̄−1

i ), Ē2
1 = 0, Ē3

2Ē1−(q+1+q−1)Ē2
2Ē1Ē2+(q+1+q−1)Ē2Ē1Ē

2
2−

Ē1Ē
3
2 = 0, F̄ 2

1 = 0, F̄ 3
2 F̄1−(q+1+q−1)F̄ 2

2 F̄1F̄2+(q+1+q−1)F̄2F̄1F̄
2
2−F̄1F̄

3
2 = 0.

Then Ū can be viewed as a Hopf superalgebra in a standard way.
Let Ē12 = Ē1Ē2 − qĒ2Ē1, Ē122 = Ē12Ē2 − Ē2Ē12, F̄12 = F̄1F̄2 − qF̄2F̄1

and F̄122 = F̄12F̄2 − F̄2F̄12. Then Ē2
122 = F̄ 2

122 = 0. By an argument similar to
that in the proof of [18, Theorem 10.5.1], we see that the elements

F̄
m̄(1)
1 F̄

m̄(12)
12 F̄

m̄(122)
122 F̄

m̄(2)
2 K̄

c̄(1)
1 K̄

c̄(2)
2 Ē

n̄(1)
1 Ē

n̄(12)
12 Ē

n̄(122)
122 Ē

n̄(2)
2

(m̄(1), m̄(122), n̄(1), n̄(122) ∈ {0, 1}, m̄(12), m̄(2), n̄(12), n̄(2) ∈ Z+, c̄(1), c̄(2)
∈ Z) form a K-basis of Ū .

Let Ū− be a subalgebra of Ū generated by F̄1 and F̄2. By the same
argument as that for L(a, b1, b2) (see §2), we see that for b̄1, b̄2 ∈ K×, there
exists a unique (non-zero) irreducible left Ū -module L̄(b̄1, b̄2) such that K̄iv̄ =
b̄iv̄, Ēiv̄ = 0 and L̄(b̄1, b̄2) = Ū−v̄ for some v̄ ∈ L̄(b̄1, b̄2). Let Ā = {(b̄1, b̄2) ∈
(K×)2| dim L̄(b̄1, b̄2) < ∞}. Then we have the same result as Lemma 2.1. For
(r̄(1), r̄(2)) ∈ (Z+)2, let B̄r̄(1),r̄(2) = {(b̄1, b̄2) ∈ (K×)2|b̄2

1b̄
2
2 = (−q−1)r̄(1), b̄2

2 =
qr̄(2)}. Let Ār̄(1),r̄(2) = Ā ∩ B̄r̄(1),r̄(2). Since

Ē12F̄12 + F̄12Ē12 = q
K̄1K̄2 − K̄−1

1 K̄−1
2

q̄2 − q̄−1
2

,

by an argument similar to that in Proof of Lemma 2.2, we have Ā = ∪Ār̄(1),r̄(2).
By an argument similar to that in Proofs of Lemmas 3.1–3.2, we see that

Ā0,0 = {(b̄1, b̄2)|b̄2
1 = b̄2

2 = 1} = {(b̄1, b̄2)| dim L̄(b̄1, b̄2) = 1} and that if r̄(1) ∈
{0, 1} and (r̄(1), r̄(2)) �= (0, 0), then Ār̄(1),r̄(2) = ∅. It also follows that if
r̄(1) ≥ 2, then Ār̄(1),r̄(2) = B̄r̄(1),r̄(2). This can be proved in an argument
similar to that in Proof of Lemma 4.1; more precisely, in such a way that we
first show F̄1F̄

r̄(1)−1
12 v̄ = 0, secondly F̄1F̄

r̄(1)
12 v̄ = 0 and finally F̄

r̄(1)+1
12 v̄ = 0.
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