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Representations of a Z/3Z-Quantum Group

Dedicated to Professor Noriaki Kawanaka on his 60th birthday

By

Hiroyuki YAMANE*

Abstract

In this paper, we give a classification of the finite dimensional irreducible repre-
sentations of a nonstandard quantum group U, which may be viewed as a Z/3Z-graded
version of a quantum superalgebra.

Introduction

Since the quantum groups, also called the quantum algebras, were in-
troduced by Drinfeld [1] and Jimbo [5] in the mid 1980s, they have played
important roles in study of statistical mechanics, knot theory, conformal field
theory, and so on (cf. [19]). Moreover, the super-versions of quantum groups
(see [7], [18]), called the quantum superalgebras, have also played important
roles. For instance, they have been used to give new invariants of knots and
links, which are distinct from well-known invariants associated with quantum
algebras (see [10], [16]). So it would be interesting and important to look for
and study new-versions of quantum groups.

In this paper, we introduce a new quantum group U = U,, which can be
viewed as a Z/37Z-graded version of a quantum superalgebra (see Remark 3). As
a Hopf algebra, U is not isomorphic to any of quantum algebras and quantum
superalgebras (see Remark 7). Our main result of this paper is Theorem 4.1,
which gives a classification of the finite dimensional irreducible representations
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of U. (The positive part U™ (see §1) of U has already been known (see [2]). It
might be true that there exist only a few ‘nonstandard’ quantum groups other
than U (see [3]). We notice that U is closely related to an anyonic Hopf algebra
(see [13]).)

Let us explain the content of the paper more precisely. To prove Theo-
rem 4.1, we use a method similar to Kac’s proof [8, Theorem 8] of the classi-
fication of the finite dimensional irreducible representations of the simple Lie
superalgebras (see also Remark 1). Among quantum superalgebras, the one
resembling our U most is the quantum superalgebra U,osp(3|2). In order to
show how U resembles U,0sp(3]2), we explain in Remark 10 that we can also
classify the finite dimensional irreducible representations of U,0sp(3]2) in a way
similar to that for Theorem 4.1 (the classification result for U osp(3]2) seems
to have been well-known to experts).

In Remark 8, we introduce a finite dimensional version u = u¢ of U, where
¢ is aroot of unity. We show that u is a quasi-triangular Hopf algebra by giving
an explicit formula of the universal R-matrix of u. In Remark 9, we discuss
Drinfeld’s topological version of U.

The paper is organized as follows. In §1, we introduce U and give a PBW-
basis of the positive part UT of U (see Lemma 1.2). In §2, we introduce
irreducible highest weight U-modules L(a, b1, bs) (= L(A), where A = (a, b1, ba)
(see (2.10))). In §3, we study small U-modules. In §4, we state and prove our
main result Theorem 4.1. In §5, we give some additional remarks.

We explain the strategy of the proof of our main theorem.

Remark 1. Strategy of the proof of our main theorem Theorem 4.1. We
use the fact that U contains two subalgebras V; and V. isomorphic to sls-
quantum algebras (precisely, Vi ~ U,z2,-1sly and Va ~ Ugsly) (see Remark 5).
Roughly speaking, a part obtained from U by excluding V; and V5 is finite
dimensional (see Lemma 1.2 and Lemma 1.1 (1)—(2)). We find the finite di-
mensional modules from the irreducible highest weight modules £(\) = Uwvy
(see (2.10) for £(\) and the highest weight vector vy). To do so, we find the
condition that dim V;uy < oo for i = 1,2 (see Lemmas 2.2 and 4.1).

81. Definition of U

Let C be the field of the complex numbers and Z; = {n € Z|n > 0}.
Then Z; = NU{0}. Let K = C(q2) be the field of the rational functions
in an indeterminate ¢2. Let KX = K \ {0}. Let w = _1%‘/__3 (e KX), ie.,
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w? +w+1=0and w is a primitive third root of unity. Let

Qo (a2 _ 0 -1 .
ag1 a22 -1 2

Let p(1) =1 and p(2) = 0.
Let U = U, be a K-algebra defined with generators

(1.1) o, Ki', Ki', By, By, Fy, Fy
and relations

(1.2) =1, KK ' = K 'K, = 1, K,K; = K; K,

(1.3) oKjo ' =K;, 0Ejo™! = WwPIE;, oFo™ ! =w POE, (i € {1,2}),

(1.4) KEjK ' =q"E;, KiFjK; ' =q " F; (i,j € {1,2}),
(1.5) E;F; — FjE; = 0;;(—L; + L7") (4,5 € {1,2}),
(1.6) E} =0, E5E) — (¢ +q ") E2E1Ey + B E3 =0,
(1.7) F} =0, F3F — (q+q YR Fy + FLFy =0,

where we let L; = K;oP(.

—1
Remark 2. As for (1.5), we do not let RHS be 5z’j%~ The reason
that we let it be &;;(—L; + L; ') is that it is natural from the viewpoint of the

quantum double construction (see [1], [15], [4, Proposition 6.12 (2)] and [18,
Proposition 2.5.1 (2.5.5) and Theorem 2.9.4 (ii)]).

Define an automorphism Q : U — U by Q(K;) = K; ', Qo) = o7},
We regard U as a Hopf algebra (U, A, S,¢) defined by

Alo) =0 ®0, AK) = K @ KF!,

A(E;) = E®1+L ®E;, A(F)=F,L;'+10 F,
S(o) =01, S(K;)=K; ', S(E;)=—L;'E;, S(F)) = —F,L;,
e(o) =1, e(K;) =1, e(E;) =0, e(F;) =0.
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Remark 3. Let U = {X € UloXo~ ' = w'X} for i € Z. Then U
is a Z/3Z-graded Hopf algebra with respect to U()’s, namely, U = U©® @
U gUu® ylitd) = y@ yOyd) c gt+d, AUD) c @x+y:iU(z) QUW,
SUM)=U®, ¢(U®) =K and e(UD @ UR)) = {0}.

Let U° be the subalgebra of U generated by o, K1il and Kgﬂ. Let UT
(resp. U™) be the subalgebra (with 1) of U generated by E; and Es (resp. Fi
and Fy). For m, n € Z,, we define the K-linear subspaces Uy}, ,, of U in the
following way; we first set UJO =K, UT;O = KET" and U({n = KE3 and then,
for m > 1 and n > 1, we set U , := ElUntq,n + EQUJ’nil inductively.

For a subset S of U, let Spang(S) = Y, .5 Ks. Then Spang (UTU?) is the
subalgebra of U generated by U° and U*. We also notice that Spany (UTU°) =
Spany (U°U*) and Spany (U~ U°) = Q(Spang (UTUY)).

By a well-known argument (see [1], [4, Theorem 4.21 and Proposition 6.12]
(see the second paragraph of Remark 8), [14, II. Proposition 2], [15, II.1.

Lemma 1], [17, Proposition 2.3] and [18]), we have the following.
Lemma 1.1. (1) As a K-linear space,
Un~Ut@U@U- (XZY —X®QZRY)

and
UcU oU'@UT (YZX Y ®Z®X).

(2) The set {K{"K}?0™|ny,ne € Z,ng € {0,1,2}} is a K-basis of UY.
(3) As a K-algebra (with 1), Ut can also be defined with the generators Ey
and Ey and the relations (1.6). In particular,

Ut = é Ui

m,n=0

and dimUoJfO = dimUlf0 = dimUOf1 =1.
(4) There exists a unique symmetric bilinear form

(,) : Spang (UTUY) x Spany, (UTU°) — K
which satisfies the conditions (1)—(v) below.
(i) For any X,Y, Z € Spang (UtTU"), the equation

(1.8) (XY, 2)=(XQY,A(2))
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(ii) For any X1, Xo € UT and any Z,, Z, € U°, the equation
(X121, X125) = (X1, X2)(Z1, Z)

holds.
(iii) For any c(1), ¢(2), d(1), d(2) € Z and any c(3), d(3) € {0,1,2}, the
equation

(KXW gD 5e3) | 0 [d@ 5a3)) - (3 Tioy cliaiid() ,e(3)d(3)
holds.
(iv) For any i, j € {1,2}, the equation
(Ei, Ej) = 0ij
holds.

(v) For any m, n, r,l € Zy with m #r orn # 1, the equation

(U Upp) = {0}

m,n’ = rl
holds.
Let

(1.9) Eyy = E\Ey — qFoEy, Eis = E1E1s — W qEpFy,
(1.10) Fiy = ! Q(Er2) = ! (Fy F: FyFy)

. 12_(12*1 12—(1271 142 — qlial
and

1 1 )

(111) F112 = — Q(EHQ) = ——(F1F12 — W qFlgFl).

(* = 1)(¢* —w)

Then we have the following (see also Remark 4 below and notice Q(U™) = U ™).

¢ —w

(1.12) Ei9By = q 'FEyE1s, FioFy =q 'FyFys
(1.13) E\Ei12 = wqEi12F1, FiFi12 = wqF12F)
(1.14)

E112By— ByEr12 = —q W (¢ —w) B,  FiinFe— FaFiis = ¢ 'w?(¢? — 1) Ff,
(1.15) Ei12E12 = wqE12E 112, Fi12F12 = wqlF12F7112

(1.16) E}, =0, FL=0
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Remark 4. Proof of (1.15)—(1.16). We let [X,Y]; = XY —tY X.
We first prove the first equality of (1.15). We have

0=[E1, E112E> — EsEr1p + ¢ 'w?(q% — w)Efyluge  (by (1.14))
=wqE112F12 — E12E112 + ¢ 'w?(¢° — w)(Br12B12 + w?qF12E112)  (by (1.13))
=(q+ ¢ ") (—En2E12 + wqE12E112),

which implies the desired equality.
Next, we prove the first equality of (1.16). We have

0=[[[E}, Ea)ys, Balg, Ea]g-1  (by the first equality of (1.6))
= [[E?E12 + qE1E1oE1 + ¢ E12E}, Bs) g, By
=(q+q )@ +1+q *)E}, (by (1.6)),
which implies the desired equality.

We can obtain the second equations of (1.15)—(1.16) from the first ones
by applying Q.

We also have the following.
(1.17) A(E13) =E13®@ 14 (¢ — q)B2L1 ® By + L1 Ly ® Eqp

(1.18)  A(E112) = E112® 1 + (wg — w?q ) Bl @ By
+ ' =) —wPQE L} ® B} + LiLy ® E1ya

(1.19) (Er2, B12) = ¢° — 1
(1.20) (B2, Bug) = —(¢* —w)(¢* = 1)
Let ®(n,t) = [T1_, =5

Lemma 1.2. The set
(121) {EPVENG ENY EFPn(112),0(2) € Zy,n(1),n(12) € {0,1,2}}

is a K-basis of UT.

Proof. By (1.12)—(1.16), we see that the set (1.21) spans UT. We show
that they form an orthogonal basis. By (1.12)—(1.18) and the same argument
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as in [15, II. Lemma 1], we have
m(1 m(112) ~>m(12 m(2 n(1 n(112 n(12) n(2
(1'22) (El ( )E11(2 )E12( )E2 ( )7E1( )E11(2 )E12( )E2( ))

= 5771(1),”(1)5m(112),n(112) 57”(12)77L(12)5m(2)7n(2)
®(m(1),w)(Er, E)™Wd(m(112), wg2)(Er12, E112) ™M
B (m(12),w)(E12, E12)™ 2 ®(m(2), ¢%) (B, Es)™?.

Notice (Eq, E1) = (F2,F3) = 1 (see Lemma 1.1 (4) (iv)). By (1.19)—(1.20),
(E12, F12) # 0 and (E112, E112) # 0. Then we have the desired result. O
8§2. Verma Modules

Notice Q(UT) =U". We let [X,Y] = XY — Y X. We have the following.

(2.1) [Ey, Fio) = —¢ 'R LY, [Fi, B9l = —q¢ *(¢* — 1) By
(2.2) [E1, Fiio] = —wq 'FioL7Y,  [F1, Bi1s) = wq ' (¢* — w)E12Ly
(2.3) [Ey, Fio) = FiLay, [Fy, Ei9) = (¢* — 1)E Ly!

(24) [EQ, F112} = (,«)2}’—‘121427 [FQ,EHQ] = —w2(q2 — 1)((]2 — O.))E12L2_1
(2.5) [Ero, Fio) = —L1Ly + L7 Ly *
(2.6) [Ei2, Fii2] = FiL1La, [Fia, Fi12] = —(¢* —w)E L7 Ly !

(2.7) [Er12, Fiia) = —LiLy + L7 L5

Remark 5. By Lemma 1.1 (1)—(2) and Lemma 1.2, using {2, we see that
the elements

m(1l m(112 m(12 m(2 c(l c(2) ¢ n(1l n(112 n(12 n(2
(28) E11()E'11(2 )EIZ( )EQ()Kl( )KQ( )0_ (3)F1()F11(2 )F12( )FQ()

with m(112),m(2),n(112),n(2) € Z, ¢(1),¢(2) € Z and 0 < m(1), m(12), ¢(3),
n(1), n(12) < 2 form a basis of U. Let Vi (resp. V) be the subalgebra of U
generated by (L2Lo)*!, E11 and Fypp (resp. LQﬂ, E5 and Fy). By (1.2)—(1.5)
and (2.7), using the basis in (2.8), we see that as K-algebras, V; and V, are
isomorphic to U,24-1sly and Ugsly respectively. See also Remark 1 for Vi and
Va.
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It follows from Lemma 1.1 (1)—(3) that for a € {0, 1,2} and by, by € K*,
there exists a unique (left) U-module M(a, by, by) having the following proper-
ties.

(i) As a U~ -module, M(a, b1, b3) is free and rank one.
(ii) Let v be a basis element of the rank-one free U ~-module M (a, by, bs),
so M(a,by,by) = U~ vM. Then cvM = wM, K;oM = b;v™M and E;oM = 0.

We call M(a,by,bs) the Verma module with a highest weight (a,by,bs). Let
N(a, by, bs) be the maximal proper submodule of M(a, b1,b3). Let L(a,by,bs)
be the quotient module M/a,by,b2)/N(a,by,b2). Then L(a,by,bs) is irre-
ducible and L(a, by, be) # {0}. We let

(2.9) U(a,bl,bg) = oM +N(a,b1,b2)

(E E(a, by, bg))
Abbreviations of v(a, by, b2) and L(a,b1,bs). For A = (a,b1,b2) € {0,1,2} x
(K*)2, we let

(2.10) vy =v(a,b1,be) and L(A) = L(a,b1,b2).

We call £(A) the irreducible highest weight (U-)module with a highest weight .
We call vy a highest weight vector of L(X).
Let
A={1e{0,1,2} x (K*)?|dim L(\) < co}.

Similarly to [14, Proof of Proposition 3|, using V; in Remark 5, we have:

Lemma 2.1.  The U-modules L()\), A € A, form a complete set of non-
isomorphic finite dimensional irreducible U-modules (see (2.10) for L(N)).

For r(1), 7(2) € Zy, let By(1),,(2) be the subset of {0,1,2} x (K*)? formed
by the elements

(2.11) (a, 61w7a+r(1)q7r(1);§r(2) ’ 62qr(z))

with a € {0,1,2}, ¢; € {£1,+y/—1} and €3 € {£1} (see also Remark 6 below).
Let B = U(r(1),r(2))ez4 x24 Br(1),r(2)-
Let A = (a,elw_“"‘r(l)q_w,egqr(z)) € Br(1),r(2) (see (2.11)) and let
v =vy (see (2.9)-(2.10)). For later use, we give the following formulas.

r(H)+r(2)
2

(2.12) Lyv = ew" Mg~ v, Lov = eaq" P, L%Lgv = e%egw%(l)q_r(l)v
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(2.13) (L2Ly)2Flv = (wg™2) W Fly

(2.14) (L2Lo)2Fhv = (wg™2)" MW" Fiy
Remark 6. ‘We have

(2.15) B, (1),r(2)
={(a,b1,b) € {0,1,2} x (K*)?
|b§ = (q2)r(2)7 ((Wab1)2b2)2 = ((w2q71)2)r(1)}.
In order to see a significance of (2.15), recall Remark 5 and notice that for

v in (2.12), if A is also denoted as (a, by, bs), then Lov = bov and L2 Lyv =
(wabl)Zbgv.

Lemma 2.2. A CB.

Proof. (See also Remarks 1, 5 and 6.) Let A = (a,b1,b2) € A and v =
va(€ L(A)) (see (2.9)—(2.10)). Then, by (1.3)—(1.5), we have

_ 1_q—2m 1_q2m 1
2.1 EyFlo=F b — L L
(2.16) 2457V 2 ( 1—q2 2+ 1—¢q2 2 v

1— q—Zm

. b;l(bg _ q2(77l_1))F277171U

for m € N. Assume that b3 # ¢>™~Y for all m € N. Then Fj*v # 0 since
E'Fy"v € K*v by (2.16). Since KoFy'v = q~2™by v, Fi*v’s are linearly
independent, which contradicts dim £(A) < oco. Then b3 = ¢*"® for some
7(2) € Zy, 50 by = €2q" ) for some €5 € {£1}.

By (2.7) and L3Lyv = w?*b2byv, similarly to (2.16), we have
(2.17)
1— (w —2\—m
BrioFlo = — (wg™7)

T oy ) T () — (g

By the same argument as in the previous paragraph, (w?*b3by)? = (wg=2)"™
(1) +r(2

for some 7(1) € Zy. Hence by = eqw ™" (Mg~ CE® or some €1 with e} = 1.

Hence A\ € B, as desired. O

§3. Cases of r(1) <1
Let Ar(l),r(2) =AnN BT(1)7T(2). Then, by Lemma 2.2, we have

(3.1) A=UG0)r@)ezs x2, Ar(1),r(2)-
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Lemma 3.1.  Assume that r(1) < 1 and (r(1),7(2)) # (0,0). Then
Ar1y,r2) = 0.

Proof. Let A\ = (a,elw_“‘”(l)q_w,
We show X ¢ A,.(1),r(2)-

Let v = vy (see (2.9)-(2.10)) and assume A € A, (1),,(2), i.e., dimUv < oo
(recall Uv = U~ v = L(X)).

We show Fv = 0. Assume F2v # 0. By (2.1)—(2.2), we have 112 Ffv = 0.
By (2.13) for n = 2 and the same argument as in Proof of Lemma 2.2, we have

€2q"?) € By(1),r(2) (see (2.11)).

(wq2)"M=2 = (wg2)! for some | € Z, (use the same formula as (2.17) with
F}?v in place of v). This is absurd since (1) < 1. Hence Ffv = 0.

We show Fiv = 0. Assume Fyv # 0. Since F2v = 0, by (2.12), similarly
to (2.16), we have

r(M+r(2)
2

0=FEFv=—1+wH(ew Vg™ )N (Ew? M= rMHr2) _ )y Py,

Hence e2w? (Mg=((M+7(2) = . This is absurd since r(1) 4+ 7(2) > 0. Hence
F1U = O
By Fiv =0 and (2.12), we have

0= (—L1)E Fio = (L — 1)v = (S Wg=rM+r@) _ 1)y,

which contradicts 7(1) + r(2) > 0. Hence dimUv = oco. Hence A & A,(1)r(2),
contradiction. Then we have A,.(1) ,2) = (), as desired. ]

Let Ayy = {(a,6qw™% e2)la € {0,1,2},¢},e2 € {1,—1}}. We have the
following.

Lemma 3.2.  We have Ao = Ajo. Moreover, dim L(A\) = 1 if and
only if X € Ap o (see (2.10) for L(N)).

Proof. Use an argument similar to that in Proof of Lemma 3.1 and the
fact that ¢ € {£1} and € # w (notice that if r(1) = r(2) = 0, & =
2w W g=rW+r(2)) " We also use the fact that for A € Ar1y,r(1), letting v =
ur(€ L(N)) (see (2.9)—(2.10)), we have Fy Ty =0, Fiv #£0 (0 < i < r(2)),
FIOTy = 0 and Fiv # 0 (0 < j < r(1)); these equations follow from
(2.16)—(2.17). O

84. Main Theorem

Lemma 4.1.  Assume r(1) > 2. Then A,q),2) = Bra),r(2)-
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Proof. Tt is clear that -Ar(l),r(2) C Br(l),r(2)~ We show BT(1)7T(2) C
-Ar(l),r(2)~ Let A = (a,elw_“‘”(l)q_w,equ(Q)) € Br(l),r(2) (see (2.11)).
Let v = vy (see (2.9)—(2.10) and notice Uv = U v = L(\)). We show
A€ A1),r(2), i-e., we show dim £(\) < oo. We often use the fact that for
Y € QU ) with (m,n) # (0,0),

(4.1) E\Yv=EYv=0 = Yuvu=0.

A proof of (4.1) is as follows. Since U~Yv C @ n)2(0,0)UUS . )v, UYv =
U~Yw is a proper submodule of £(\). By the irreducibility of £(\), we see
U~Ywv = {0}, as desired.

(Strategy of Proof. As mentioned in Remark 1 (see also Remark 5), it
suffices to show dim V;v < oo for ¢ = 1,2 (see also Step 5 below). The key of
the proof is to show Ffl(;)Hv =0 (see (4.19)). To prove this equality, we first
show F12F1T1(21)_1v =0 (see (4.2)), secondly FlFlrl(zl)v =0 (see (4.6)) and finally
F12F1T1(21)v =0 (see (4.10)). Our main tool is the fact (4.1).)

We proceed in steps. We always use the equations (1.2)—(1.16) and (2.1)—
(2.7). We also use the equality E112 = E?FEy + wqE EoEy + w?q?> Eo E? (resp.
Eiy = E1\Ey — qE2Ey) (see (1.9)) for (4.5), (4.9) and (4.18) (resp. (4.4) and
(4.8)) below.

Step 1. We show

(4.2) F2R) "y =o0.
Since F} = 0 (see (1.7)), by (1.5), (2.4) and (1.13), we have
(4.3) EyF2F D = 0.

Similarly to (4.3), by (2.6) and (2.1), we also have E1o F2F 2" v = 0. Hence,
by (4.3), we have

(4.4) EyE F2FI) v =o0.

We see E112F2v = 0 by (2.1) and (2.2). Hence, by (2.13) for n = 2 and the
same formula as (2.17) with F2v in place of v, we have E112F 3 "' F2v = 0.

Hence, by (1.13), Ey12 F2FI 2™ 0 = 0. Hence, by (4.3)-(4.4), we have
(4.5) EyE2FAFT D" = 0.

Recall E3 = 0 (see (1.6)). Then E3F2F/J)"'v = 0. Hence, by (4.5)
and (4.1), we have E2F2F/{2)"'v = 0. Hence, by (4.4) and (4.1), we have
ElFleﬁ(é)flv = 0. Hence, by (4.3) and (4.1), we have (4.2).
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Step 2. We show
(4.6) FF Dy =o0.
Similarly to (4.3), we have
(4.7) B R F v =0.

By (4.2), (2.1) and (2.6), since F} = 0 (see (1.7)), similarly to (4.7), we have
E12F1F1T1(21)v = 0. Hence, by (4.7), we have

(4.8) EyE P F v =0.

By (2.2), E112F1v = 0. Hence, by (2.13) for n = 1 and the same formula as
(2.17) with Fiv in place of v, we have Ey1oF & Fio = 0. Hence, by (1.13),
EHgFlFlrl(Zl)v = 0. Hence, by (4.7)-(4.8), we have

(4.9) EER Yy =0.

By (4.7)—(4.9) and the same argument as that in the last paragraph of
Step 1, we have (4.6).
Step 3. We show

(4.10) FioFlDv =0.
By (4.2), (4.6) and (2.3), similarly to (4.3), we have
(4.11) EyFiaFriYv =0.
Here, for later use, we give some formulas. By (2.2) and (1.15), we have

m 1- (w2q2)m

(112) B Pl = e

Fo Pt
By (2.1) and (1.12), we have

(4.13) [Ey, FE)) = w?q ?FaFo L7t

By (2.3), we have

(4.14) (B2, F] = — (¢ (¢® — w)Fi12 + wF12F1) La.

Let 7 = eqw Mg~ "2 By (2.12), we have Liv = zv. By (2.1) and
(4.12), we have
(4.15) EyFioFrSv
_ _q—l(w2q—1)r(l)m—1F2Flrl(21),U

—1\r 1- (w2q2)r(l) — r(1)—1
—w (W) T R Y

w .
q 1— w?q¢?



NEW QUANTUM GROUP 87

By (4.2), (4.14)~(4.15), (1.13), (2.3)~(2.4) and F? = 0 (see (1.7)), we have
(4.16) E2E FFlYv=0.
By F}, =0 (see (1.16)), (4.12), (4.13) and (4.15), similarly to (4.15), we have

(417)  EIFLF)

— _q—l(w2q—l)r(1)x—1

1— (w2q?)r®) (-1
2 2 _—1\r(1 —1 T
. <_w (OJ q ) ( )1_7&}2(12 x F2F12F112 v
. 1— w2q2 r(1) _
_wQ(qu 1) (1) ( )

1—w2q?
.w2q—2(w2q_1)”(1)_1z_1F2F12F1T1(21)_1U
p— 0,

Since Ey12F12v = 0 (by (2.6)), by (2.14) for n = 1 and the same formula as
(2.17) with Fiov in place of v, we have EllQFlrl(;)F12’U = 0. Hence E112F12F17"1(%)v
=0 by (1.15). Hence, by (4.11) and (4.17), we have

(4.18) E\Ey B FiaFriPv = 0.

By (4.11), (4.16)—(4.18) and the same argument as that in the last para-
graph of Step 1, we have (4.10).
Step 4. By (4.6) and (4.10), we have

(4.19) FriTy —o.

Step 5. By the same formula as (2.16), we have EoFj > ™y = 0. Hence,
since £y Fy Py = 0, by (4.1), we have

(4.20) FyOy — 0.
By Lemma 1.2 and (4.20), using 2, we see that U~ v is spanned by the elements
(4.21) ) pri) pr(iz) pn),,

with 0 < n(1) < 2, n(112) € Z4, 0 < n(12) < 2 and 0 < n(2) < r(2).
Moreover, by (4.19) and (1.12)—(1.16), we see that for given n(1), n(12) and
n(2), there exists n(112) such that the element (4.21) is zero. This implies
dim £(A) = dimU~v < co. Hence A € Ar1).r(2)- Hence Br.(1) r2) C Ar1),r(2)
which completes the proof. O

Now we state our main theorem.
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Theorem 4.1. We have
A= Aj o YU 2o Unlay—o Br(1).r(2)-

(See also Lemma 2.1.)

Proof. This follows from (3.1) and Lemmas 3.1, 3.2 and 4.1 immediately.
(See also Remark 1.) O

85. Additional Remarks
Here we give some additional remarks.

Remark 7. Difference between U and the (standard) quantum (super)
algebras. We show that as a Hopf algebra, U is not isomorphic to any of the
quantum algebras U,g of the finite dimensional simple Lie algebras g. We
also show that as a Hopf algebra, U is not isomorphic to any of the Hopf
algebras (Uya)? associated with the quantum superalgebras Uja of the finite
dimensional simple Lie superalgebras a of type A-G. Here (Uya)? are the Hopf
algebras associated with the Hopf superalgebras Uja (see [13, 10.1] and [18,
1.9]). For a Hopf algebra H = (H, Ay), we say that an element X of H is
pre-primitive if Ap(X) # X X and Apy(X)=X®Y 4+ Z® X for some Y,
Z c'H.

Let X be a pre-primitive element of U. We show that

(5.1) X = yWEKW K52 5e()

for some y € KX, W € {E1, Ey, F1, F»}, ¢(1), ¢(2) € Z and ¢(3) € {0,1,2}.
Let B, be a basis of Ut formed by some monomial elements E;q) - - - E;)
with i(s) € {1,2} (1 < s <t). Let B = {K* W K@ 5¢®)|¢(1), ¢(2) € Z,¢(3) €
{0,1,2}}. Using the basis {Q(Y")JY"|Y",Y" € Bf,,,J € B°} of U (see
Lemma 1.1 (1)—(2)), we conclude that

(5.2) AX)=XoJ +J'®9X

for some J', J” € BY. Let 7_ : U — U/(U° + UE, + UEy) and 71y : U —
U/(U°+ F,U + F>U) be the canonical maps. We see that X € Spany (U°U+)U
Spang (U~U?) since if this is not true, then (7_ ® 74 )(A(X)) # 0, which
contradicts (5.2). Notice that if Y € Spang(U'U*t) = Spang(UTU°) =
07 (Spang (U~U°)) and A(Y) = 32,V @ ¥, then AQ(Y)) = 52, (¥
®Q(Yi(1)). So we may assume X € Spany (U°UT). More precisely, we see that
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X e U}, J for some J € B? and (m,n) # (0,0). Moreover, we may also
assume X € UL . Using the basis (1.21) of U™, we express X as

m,n:*

m(1 m(112 m(12 m(2
X = Za(m)El ( )E11(2 )E12( )E2 ( )7
(m)

where (m) = (m(1),m(112),m(12),m(2)) and a(,,) € K. For (m) with m(1) >
1 and m(1) + m(112) + m(12) + m(2) > 2, we have

0= (B, @ Wt pm2) pm) A(X))  (by (5.2) and Lemma 1.1)
= (EVER P EREN, X)) (by (1.8)
€K*agm (by (1.22) and (1.19)(1.20)),

whence a(,y = 0. By the repetition of this argument and (1.17)—(1.18), we
have the desired result (5.1).

Let U be U,g or (U;a)?. By the same argument as above and the use of
[4, Proposition 8.28] (see also [6, Lemma 7] and [9, Proposition 3.2]) and [18,
Lemmas 10.2.1 and 10.3.1], we also have a result for U similar to the above one
for U. Then, comparing the pre-primitive elements of U and those of U and
using the fact that Ef # 0 and E$ = 0in U (see (1.6) and Lemma 1.2), we see
that U is not isomorphic to U as a Hopf algebra, as desired.

Remark 8. Finite dimensional Z/3Z-quantum group. Here we give a fi-
nite dimensional version u of U, which is a counterpart of the finite dimensional
quantum groups at roots of 1 introduced by Lusztig [11].

We first give some facts on U. Let P : U® U — U ® U be the K-
algebra homomorphism defined by P(X ® Y) =Y ® X (X, Y € U). Then we
have Ao Q) = (Q® Q) o Po A. (Using this, in a way similar to that for [4,
Proposition 6.12], we can prove Lemma 1.1 (4).) We also have Q0S = S"10Q
and € 0 Q = e. (See also [4, 3.8].) For all X, Y € Spany (UTU"), we have

(5.3) (X,1) = e(X) and (S(X),Y) = (X, S(X)).

(see also [4, Exercise 6.16]). For all X, Xy € Spang (UTU?), writing (A ®
id) o A)(X;) =3, Xi; @ Xj ; @ Xj!; (i € {1,2}), we have

X)Xt =D (57 (Nu), X5 ) (X1 o X)X (X5,
s,t
(see also [1, Section 13], [4, 6.17 (3)] and [18, 1.4 and 2.4]).
Set A :=C[q,q7 %, (¢*—1)7%, (¢>~w)~1](C K). Let Uy be the A-submodule
of U having the A-basis formed by the elements (2.8). By (1.2)—(1.5), (1.9)—
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(1.18) and (2.1)—(2.7), we can see that UpyUy C U,, A(UA) C Uy ®a Up
(CURU), S(Uy) = Uy, e(Uy) = A and Q(Uy) = Up. (For the last equality,
we should assume (¢ —1)7(¢?> —w)~! € A.) Then U, has an A-Hopf algebra
structure (Uy, A, S, €).

Let ¢ € C be such that ¢(¢(? —1)(¢? —w) # 0. Assume that there exists
¢’ € N such that ¢¢ = 1. Set e := min{e’ € N|¢¢ = 1}. Then  is a primitive
e-th root of unity. Regard C as an A-algebra via the C-algebra homomorphism
A — C that takes ¢ to (. Set U := Uy ®4 C. The argument in the previous
paragraph implies that U has a C-Hopf algebra structure (U, A, S, ), where
we denote again by A, S and ¢ the maps induced from the above ones. We
also denote by 2 the C-algebra automorphism of U induced from the above
one. Let U% be the subalgebra (Uy NUT) ®, C of U. Let U2° be the Hopf
subalgebra (U NSpang (UTU%)) @4 C of U. Notice that U also has a property
similar to Lemma 1.1 (1).

Denote again by (, ) the bilinear form on UZY induced from the one on
Spang (UTU®) (this is well-defined; see (1.22), (1.19)—(1.20) and Lem-
ma 1.1 (4)). Let I2% = ker(, ). By (1.8) and (5.3), we see that

U=120U=20 = 120, A(12%) cI2° @ U=0 + U0 @ 120
5.4 ’ ’
B saz0) =20, c129) = (o).

Let J; (resp. J2) be the subspace of U spanned by IZ°Q(U*) (resp. UTQ(129)).
By (5.4) and formulas in the second paragraph of this remark, we also have the
same formulas as in (5.4) with U and J; in place of UZ? and I2° (i € {1,2}).
Set u = u¢ := U/(J; + J2). Then u can be regarded as a C-Hopf algebra.
(This construction is similar to [12, 3.1.1 (a)—(e)] and [18, Theorem 2.9.4].)

Set z := min{z’ € N|(w¢2)* = 1} and y := min{y’ € N|¢¥ = 1}.
If X is of (2.8), we denote X ®5 C + (J; + J2) € u again by X. Using
formulas between (1.2) and (2.8), especially (1.22) and Lemma 1.1 (4), we see
that the elements denoted as (2.8) with 0 < m(1),m(12),¢(3),n(1),n(12) < 2,
0 <m(112),n(112) <z —1,0<m(2),n(2) <y—1land 0 <c(l),c(2) <e—1
form a C-basis of u. Then we have dimu = 3%e?z2y2.

Similarly we have the results below.

Let uZ° be the Hopf subalgebra UZ%4-(J;4J5) of u. Identify the dual Hopf
algebra (uZ%)* of u=? with uz° itself via the non-degenerate bilinear form on
uZ% induced from (, ). Then, using the Drinfeld [1, Section 13] quantum double
D(uz%) = uz’® (uz%)* (see also [15] and [18, Proposition 1.7.1, Theorem 2.9.4
and Lemma 2.9.10]), by (1.22) and Lemma 1.1 (4), we can see that u is a quasi-
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triangular Hopf algebra whose universal R-matrix R € u ® u is given by

R= 22: % . S (:Epl(i ﬁ 11;1)121;21)2)
m(1)=0 ’ m(112)=0 ’

i (Brg @ Fip)™(12) ) yil (B ® Fp)™®

m(12)=0 o(m(12),w) m(2)=0 ®(m(2),¢?)
et <i(1)j(1)Kf(1) ® (K;2K51)j(1)

i(1).j(1)=0 ¢

62*21 <i(2)j(2)K;'(2) ® (K71)i® (i: wto® ® O't>
i(2),7(2)=0 € Pyl S '

As a C-algebra, u can also be defined with the generators denoted as (1.1)
and the same relations as (1.2)—(1.7) with ¢ in place of ¢ and the relations:

K{=K§=1 Ef,=F=0and B = FY =0

and

Efy =Fiy =0 if ¢ € {w, V-1, —v~1, —w}.

As for (5.5), see Remark 4. We can show that (5.5) cannot be dropped.

(5.5) {E112E12 = w(FE112E12, Fi12F12 = wCFi12F10 if ¢ € {V/—1,—/—1},

Remark 9.  We can consider a Drinfeld [1]-type h-adic topological ver-
sion Uy of U (by replacing q?, K; and F; with e%, e and (¢7! — q)7LF;
respectively). We can also give an explicit formula of a universal R-matrix of
Uy,. However Uy, is a topological not C[[h]]- but C((h))-algebra, where C[[R]] is
the C-algebra of the formal power series in h and C((h)) is the quotient field
of C[[h]]. In particular, it seems to be impossible to take a ‘good’ limitation
limy,_ Uy, (or limgy_,1 U).

Remark 10.  Finite dimensional irreducible representations of Uyosp(3|2).
As mentioned in Introduction, our method for U can also be applied to clas-
sify the finite dimensional irreducible representations of U,osp(3|2). Here we

A C:Ln (:112 _ 01 .
o1 Q22 —-22

explain about it.
Let
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Let p(1) =1 and p(2) = 0.
The Lie superalgebra osp(3|2) is also denoted as B(1,1) and the following
is the Dynkin diagram of osp(3|2) = B(1,1) (see [8]).

®=0
1 2
Let
Gi=q' and 7 =q*.
Let U = U,o0sp(3|2) be a K-algebra defined with generators K', E;, F;
(i € {1,2}) and defining relations K;K; ' = K; 'K, = 1, K;K; = K;K;,
KE;K7' = @ E;, KK = @ " F;, BiFy — (=1)POP0) [ By = 6,5(qi —
R B B b BB b1 g ) BR B By (g 1) Ba B 2
E\E3=0,F =0, F3F1—(q+1+q¢ YEFFy Fo+(q+14+q V) FLF§—F F3 = 0.
Then U can be viewed as a Hopf superalgebra in a standard way.
Let E12 = E1E2 - qEQEla E122 = E12E2 - E2E12, F12 = F1F2 - qF2F1
and Fiog = FioFy — F5Fy5. Then E%QQ = F1222 = 0. By an argument similar to
that in the proof of [18, Theorem 10.5.1], we see that the elements

~m(1) pm(12) mm(122) mm(2 c(1 2 1) mn(12) mn(122
D) 1) pn(122) (@) ge() gel@) gr() gr(i2) pri22) pae)

(m(1),m(122),7(1),7(122) € {0,1}, m(12),m(2),n(12),7(2) € Z4, &(1), &(2)
Z) form a K-basis of U.

Let U~ be a subalgebra of U generated by F; and F,. By the same
argument as that for £(a,by,bs) (see §2), we see that for by, by € KX, there
exists a unique (non-zero) irreducible left U-module £(b1,bs) such that K;v =
b;v, E;v = 0 and L(by,by) = U~ for some v € L(by,b2). Let A = {(b1,bs) €
(K*)?2| dim £(by, by) < oo}. Then we have the same result as Lemma 2.1. For
(F(1),7(2)) € (Z4)7, 1ot Brny oy = {(bs o) € (K¥V2[R5 = (—g~ 1)), B =

70(2)} Let Ar(l ),7(2) =An Br(l) 7(2)- Since

KKy — K{'K;?

E1oFip + FiaE1 =q ———3
q2 — 4y

by an argument similar to that in Proof of Lemma 2.2, we have A = UAz1) 7(2)-
By an argument similar to that in Proofs of Lemmas 3.1-3.2, we see that
Aoo = {(b1,b2) |63 = b3 = 1} = {(b1,b2)|dim L(b1,b2) = 1} and that if #(1) €
{0,1} and (7(1),7(2)) # (0,0), then Ax) 72 = 0. It also follows that if
7(1) > 2, then fi;(l),r—(g) = 35(1),7:(2). This can be proved in an argument
similar to that in Proof of Lemma 4.1; more precisely, in such a way that we
first show F1F12(1) 5 = 0, secondly F\F) 2(1)11 = 0 and finally Fgl)ﬂ’ =0.
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