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SUn,1-spaces
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Abstract

An operator-theoretic approach to invariant integrals on non-compact quantum
spaces is introduced on the examples of quantum ball algebras. In order to describe an
invariant integral, operator algebras are associated to the quantum space which allow
an interpretation as “rapidly decreasing” functions and as functions with compact
support. If an operator representation of a first order differential calculus over the
quantum space is known, then it can be extended to the operator algebras of integrable
functions. The important feature of the approach is that these operator algebras are
topological spaces in a natural way. For suitable representations and with respect to
the bounded and weak operator topologies, it is shown that the algebra of functions
with compact support is dense in the algebra of closeable operators used to define
these algebras of functions and that the infinitesimal action of the quantum symmetry
group is continuous.

§1. Introduction

The development of quantum mechanics at the beginning of the past
century resulted in the discovery that nuclear physics is governed by non-
commutative quantities. Recently, there have been made various suggestions
that spacetime may be described by non-commutative structures at Planck
scale. Within this approach, quantum groups might play a fundamental role.

Communicated by T. Kobayashi. Received June 23, 2003. Revised September 28, 2005.
2000 Mathematics Subject Classification(s): 17B37, 47L60, 81R50.
Key words: invariant integration, quantum groups, operator algebras
Supported by DFG grant Wa 1698/2-1 (second author)

∗Fakultät für Mathematik und Informatik, Universität Leipzig, Johannisgasse 26, 04103
Leipzig, Germany.

c© 2007 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



�

�

�

�

�

�

�

�

2 Klaus-Detlef Kürsten and Elmar Wagner

They can be viewed as q-deformations of a classical Lie group or Lie algebra
and allow thus an interpretation as generalized symmetries. At the present
stage, the theory is still in the beginning. Before constructing physical mod-
els, one has to establish the mathematical foundations—most important, the
machineries of differential and integral calculus.

In this paper, we deal with integral calculus on non-compact quantum
spaces. The integration theory on compact quantum groups is well established
and was mainly developed by S. L. Woronowicz [22]. He proved the existence of
a unique normalized invariant functional (Haar functional) on compact quan-
tum groups. If one turns to the study of non-compact quantum groups or
non-compact quantum spaces, one faces new difficulties which do not occur in
the compact case. For instance, we do not expect that there exists a normal-
ized invariant functional on the polynomial algebra of the quantum space. The
situation is analogous to the classical theory of locally compact spaces, where
one can only integrate functions which vanish sufficiently rapidly at infinity.

Our aim is to define appropriate classes of quantized integrable functions
for non-compact q-deformed manifolds. The ideas are similar to those in [15]
and [17], where a space of finite functions was associated to the the quantum
disc and to the quantum matrix ball, respectively (see also the review article
[20]). However, our treatment will make this construction more general and
will allow us to consider a wider class of integrable functions. Furthermore,
the invariant integral resembles the well-known quantum trace—an observation
that provides us with a rather natural proof of its invariance. Admittedly, we
do not elaborate harmonic analysis on quantum homogeneous SUn,1-spaces.
For this, one needs additional properties, for instance the self-adjointness of
Casimir operators.

Starting point of our approach will be what we call an operator expan-
sion of the action. Suppose we are given a Hopf *-algebra U and a U-module
*-algebra X with action �. Let π : X → L+(D) be a *-representation. (Precise
definitions will be given below.) If for any Z ∈ U there exists a finite number
of operators Li, Ri ∈ L+(D) such that

(1) π(Z�x) =
∑
i

Liπ(x)Ri, x ∈ X ,

then we say that we have an operator expansion of the action. Obviously, it is
sufficient to know the operators Li, Ri for the generators of U . The operators
Li, Ri are not unique as it can be seen by replacing Li and Ri by (−Li) and
(−Ri).

Let us briefly outline our method of dealing with invariant integrals on
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Invariant Integrals on Quantum Spaces 3

non-compact quantum spaces. Assume that g is a finite-dimensional complex
semi-simple Lie algebra. Let Uq(g) denote the corresponding quantized univer-
sal enveloping algebra. With the adjoint action adq(X)(Y ) := X(1)Y S(X(2)),
Uq(g) becomes a Uq(g)-module *-algebra. It is a well-known fact that, for finite
dimensional representations ρ of Uq(g), the quantum trace formula Tr q(X) :=
Tr ρ(XK−1

2ω ), X ∈ Uq(g), defines an adq-invariant linear functional on Uq(g).
Here, the element K2ω ∈ Uq(g) is taken such that K−1

2ω XK2ω = S2(X).
Now consider a Uq(g)-module *-algebra X and a *-representation π : X →

L+(D). In our examples, the operator expansion (1) of the Uq(g)-action on
X will resemble the adjoint action. Furthermore, it can be extended to the
*-algebra L+(D) turning L+(D) into a Uq(g)-module *-algebra. The quantum
trace formula suggests that we can try to define an invariant integral by replac-
ing K2ω by the operator that realizes the operator expansion of K2ω and taking
the trace on the Hilbert space completion of D. Since we deal with unbounded
operators, this can only be done for an appropriate class of operators, say B.

First of all, the invariant functional should be well defined. Next, we wish
that B is a Uq(g)-module *-algebra. This means that B should be stable under
the action defined by the operator expansion. If we choose B such that the
closures of its elements are of trace class and that multiplying the elements of
B by any operator appearing in the operator expansion yields an element of B,
then B is certainly stable under the action of Uq(g) on L+(D) and the invariant
functional is well defined on B. Our intention is to interpret B as the rapidly
decreasing functions on a q-deformed manifold. For this reason, we suppose
additionally that B is stable under multiplication by elements of X .

Clearly, the assumptions on B are satisfied by the *-algebra F of finite
rank operators in L+(D). The elements of F are considered as functions with
finite support on the q-deformed manifold. If we think of Uq(g) as generalized
differential operators, then we can think of B and F as infinitely differentiable
functions since both algebras are stable under the action of Uq(g).

The algebras B and F were mainly introduced in order to treat invariant
integration theory on q-deformed manifolds. Nevertheless, our approach also
allows to include differential calculi. By means of an operator representation
of a first order differential calculus over X , one can build a differential calculus
over the operator algebras B and F. In this case, we view the differential
calculus over B and F as an extension of the differential calculus over X .

Our approach has the following advantage. The algebras X (more exactly,
π(X )), B, and F are subalgebras of L+(D). In particular, they are subspaces
of the topological space L(D,D+). Therefore we can view this algebras as
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4 Klaus-Detlef Kürsten and Elmar Wagner

topological spaces in a rather natural way. As a consequence, it makes sense
to discuss topological concepts such as continuity, density, etc.

In this paper, we study the quantum ball algebra Oq(Matn,1) as a Uq(sun,1)-
module *-algebra [16]. Since our approach to invariant integrals is based on
Hilbert space representations, we shall specify *-representations of Oq(Matn,1).
We do not require that they are irreducible. It is another notable fact that our
approach works also for non-irreducible representations.

When n = 1, Oq(Matn,1) is referred to as quantum disc algebra Oq(U) [15].
As the algebraic relations and the *-representations of Oq(U) are comparatively
simple, it will serve as a guiding example in order to motivate and illustrate
our ideas and, therefore, we shall discuss it in a greater detail.

§2. Preliminaries

§2.1. Algebraic preliminaries

Throughout this paper, q stands for a real number such that 0 < q < 1,
and we abbreviate λ = q − q−1.

Let U be a Hopf algebra. The comultiplication, the counit, and the an-
tipode of a Hopf algebra are denoted by ∆, ε, and S, respectively. For the
comultiplication ∆, we employ the Sweedler notation: ∆(x) = x(1) ⊗ x(2). The
main objects of our investigation are U-module algebras. An algebra X is called
a left U-module algebra if X is a left U-module with action � satisfying

(2) f�(xy) = (f(1)�x)(f(2)�y), x, y ∈ X , f ∈ U .

For an algebra X with unit 1, we additionally require

(3) f�1 = ε(f)1, f ∈ U .

Let X be a *-algebra and U a Hopf *-algebra. Then X is said to be a left
U-module *-algebra if X is a left U-module algebra such that the following
compatibility condition holds

(4) (f�x)∗ = S(f)∗�x∗, x ∈ X, f ∈ U .

By an invariant integral we mean a linear functional h on X such that

(5) h(f�x) = ε(f)h(x), x ∈ X , f ∈ U .

Synonymously, we refer to it as U-invariant.
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A first order differential calculus (abbreviated as FODC) over an algebra
X is a pair (Γ, d), where Γ is an X -bimodule and d : X → Γ a linear mapping,
such that

d(xy) = x · dy + dx · y, x, y ∈ X , Γ = Lin{x·dy·z ; x, y, z ∈ X }.
(Γ, d) is called a first order differential *-calculus over a *-algebra X if the
complex vector space Γ carries an involution * such that

(x · dy · z)∗ = z∗ · d(y∗) · x∗, x, y, z ∈ X .
Let (aij)ni,j=1 be the Cartan matrix of sl(n + 1,C), that is, ajj = 2 for

j = 1, . . . , n, aj,j+1 = aj+1,j = −1 for j = 1, . . . , n − 1 and aij = 0 otherwise.
The Hopf algebra Uq(sln+1) is generated by Kj , K−1

j , Ej , Fj , j = 1, . . . , n,
subjected to the relations

KiKj =KjKi, K
−1
j Kj =KjK

−1
j = 1, KiEj = qaijEjKi, KiFj = q−aijFjKi,

(6)

EiEj−EjEi = 0, i �= j±1, E2
jEj±1− (q+q−1)EjEj±1Ej+Ej±1E

2
j = 0,(7)

FiFj−FjFi = 0, i �= j±1, F 2
j Fj±1− (q+q−1)FjFj±1Fj+Fj±1F

2
j = 0,(8)

EiFj−EjFi = 0, i �= j, EjFj−FjEj =λ−1(Kj−K−1
j ), j = 1, . . . , n.(9)

The comultiplication ∆, counit ε, and antipode S are given by

∆(Ej) = Ej⊗1 +Kj⊗Ej , ∆(Fj) = Fj⊗K−1
j + 1⊗Fj , ∆(Kj) = Kj⊗Kj ,

ε(Kj) = ε(K−1
j ) = 1, ε(Ej) = ε(Fj) = 0,

S(Kj) = K−1
j , S(Ej) = −K−1

j Ej , S(Fj) = −FjKj .

Consider the involution on Uq(sln+1) determined by
(10)
K∗
i = Ki, E

∗
j = KjFj , F

∗
j = EjK

−1
j , j �= n, E∗

n = −KnFn, F
∗
n = −EnK−1

n .

The corresponding Hopf *-algebra is denoted by Uq(sun,1).
If n = 1, we write K, K−1, E, F rather than K1, K−1

1 , E1, F1. Then the
algebraic relations read

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F,(11)

EF − FE = λ−1(K −K−1),(12)

K∗ = K, E∗ = −KF, F ∗ = −EK−1.(13)

For n > 1, the generators Kj , K−1
j , Ej , Fj , j = 1, . . . , n− 1 with relations

(6)–(10) generate the Hopf *-algebra Uq(sun).
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§2.2. Operator-theoretic preliminaries

We shall use the letters H and K to denote complex Hilbert spaces. If I
is an index set and H = ⊕i∈I Hi, where Hi = K for all i ∈ I, we denote by ηi
the vector of H which has the element η ∈ K as its i-th component and zero
otherwise. It is understood that ηi = 0 whenever i /∈ I.

If T is a closable densely defined operator on H, we denote by D(T ),
σ(T ), T̄ , and T ∗ the domain, the spectrum, the closure, and the adjoint of T ,
respectively. A self-adjoint operator A is called strictly positive if A ≥ 0 and
kerA = {0}. We write σ(A) � (a, b] if σ(A)⊆[a, b] and a is not an eigenvalue of
A. By definition, two self-adjoint operators strongly commute if their spectral
projections mutually commute.

Let D be a dense linear subspace of H. Then the vector space

L+(D) := {x ∈ End(D) ; D ⊂ D(x∗), x∗D ⊂ D }
is a unital *-algebra of closeable operators with the involution x 
→ x+ :=
x∗�D and the operator product as its multiplication. Since it should cause no
confusion, we shall continue to write x∗ in place of x+. Unital *-subalgebras of
L+(D) are called O*-algebras.

Two *-subalgebras of L+(D) which are not O*-algebras will be of partic-
ular interest: The *-algebra of all finite rank operators
(14)

F(D) := {x ∈ L+(D) ; x̄ is bounded, dim(x̄H) <∞, x̄H ⊂ D, x̄∗H ⊂ D }
and, given an O*-algebra A,
(15)
B1(A) :={ t∈L+(D) ; t̄H ⊂ D, t̄∗H ⊂ D, atb is of trace class for all a, b∈A }.
It follows from [11, Lemma 5.1.4] that B1(A) is a *-subalgebra of L+(D). Ob-
viously, we have F(D) ⊂ B1(A) and 1 /∈ B1(A) if dim(H) = ∞. An operator
A ∈ F(D) can be written as A =

∑n
i=1 αiei ⊗ fi, where n ∈ N, αi ∈ C,

fi, ei ∈ D, and (ei ⊗ fi)(x) := 〈fi, x〉ei for x ∈ D.
Assume that A is an O*-algebra on a dense domain DA. A natural choice

for a topology on DA is the graph topology tA generated by the family of semi-
norms

(16) { || · ||a }a∈A, ||ϕ||a := ||aϕ||, ϕ ∈ DA.

A is called closed if the locally convex space DA is complete. The closure Ā of
A is defined by

(17) DĀ := ∩a∈AD(ā), Ā := { ā�DĀ ; a ∈ A }.
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By [11, Lemma 2.2.9], DĀ is complete.
Let D′

A denote the strong dual of the locally convex space DA. Then the
conjugate space D+

A is the topological space D′
A with the addition defined as

before and the multiplication replaced by α · f := ᾱf , α ∈ C, f ∈ D′
A. For

f ∈ D+
A and ϕ ∈ DA, we shall write 〈f, ϕ〉 rather than f(ϕ). The vector space of

all continuous linear operators mapping DA into D+
A is denoted by L(DA, D

+
A).

In the case A = L+(D), we write t instead of tA and L(D,D+) instead of
L(DA, D

+
A). We assign to L(DA, D

+
A) the bounded topology τb generated by the

system of semi-norms

{ pM ; M ⊂ DA, bounded }, pM (A) := supϕ,ψ∈M |〈Aϕ,ψ〉|, A ∈ L(DA, D
+
A)

and the weak operator topology τow generated by the system of semi-norms

{ pM ; M ⊂ DA, finite }, pM (A) := supϕ,ψ∈M |〈Aϕ,ψ〉|, A ∈ L(DA, DA).

Note that A ⊂ L(DA, D
+
A) for any O*-algebra A. Furthermore, it is known

that L+(DA) ⊂ L(DA, D
+
A) if DA is a Fréchet space.

We say that A is a commutatively dominated O*-algebra on the Fréchet
domain DA if it satisfies the following assumptions (which are consequences
from the definitions given in [8, 11]). There exist a self-adjoint operator A on
H and a sequence of Borel measurable real-valued functions rn, n ∈ N, such
that 1 ≤ r1(t), rn(t)2 ≤ rn+1(t), rn(A)�DA ∈ A, and DA = ∩n∈ND(rn(A)).

By a *-representation π of a *-algebra A on a domain D we mean a *-ho-
momorphism π : A → L+(D). For notational simplicity, we usually suppress
the representation and write x instead of π(x) when no confusion can arise. If
each decomposition π = π1 ⊕ π2 of π as direct sum of *-representations π1 and
π2 implies that π1 = 0 or π2 = 0, then π is said to be irreducible.

Given a *-representation π, it follows from [11, Proposition 8.1.12] that
the mapping

π̄ : A → L+(D(π̄)), π̄(a) := π(a)�D(π̄),

defines a *-representation on D(π̄) := ∩a∈AD(π(a)). π̄ is called the closure of
π and π is said to be closed if π̄ = π.

If we consider *-representations of *-algebras, we shall restrict ourself to
representations which are in a certain sense “well behaved”. This means that
we shall impose some regularity conditions on the (in general) unbounded op-
erators under consideration. The requirements will strongly depend on the sit-
uation. For further discussion on “well behaved” representations, see [13, 2, 1].

Suppose that X is a *-algebra and π : X → L+(D) a *-representation.
Each symmetric operator C ∈ L+(D) gives rise to a first order differential
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*-calculus (Γπ,C , dπ,C) over X defined by

Γπ,C := Lin{π(x)(Cπ(y)− π(y)C)π(z) ; x, y, z ∈ X } and(18)

dπ,C : X → Γπ,C , dπ,C(x) := i(Cπ(x) − π(x)C), x ∈ X ,(19)

where i denotes the imaginary unit (see [12]). Let (Γ, d) be a first order dif-
ferential *-calculus over X . Then (Γπ,C , dπ,C) is called a commutator repre-
sentation of (Γ, d), if there exits a linear mapping ρ : Γ → Γπ,C such that
ρ(x·dy·z) = π(x)dπ,C(y)π(z) and ρ(γ∗) = ρ(γ)∗ for all x, y, z ∈ X , γ ∈ Γ.

We close this subsection by stating three auxiliary lemmas.

Lemma 2.1. Let A be a self-adjoint operator and let w be an unitary
operator on a Hilbert space H such that

(20) qwA ⊆ Aw.

i. Then the spectral projections of A corresponding to (−∞, 0), {0}, and
(0,∞) commute with w.

ii. Suppose additionally that A is strictly positive. Then there exists a self-
adjoint operator A0 on a Hilbert space H0 with σ(A0) � (q, 1] such that,
up to unitary equivalence, H = ⊕∞

n=−∞ Hn, Hn = H0, and

Aηn = qnA0ηn, wηn = ηn+1,

where η ∈ H0 and n ∈ Z.

Proof. (i): Let e(µ) denote the spectral projections of A. Since w is
unitary, (20) implies that A = qwAw∗ and hence e(qµ) = we(µ)w∗. This
proves (i).

(ii): Let Hn := e((qn+1, qn])H and An := A�Hn, n ∈ Z. Since A is
strictly positive, H = ⊕∞

n=−∞ Hn. Now e((qn+1, qn]) = we((qn, qn−1])w∗ yields
wHn = Hn+1. Up to unitary equivalence, we can assume that Hn = H0 and
wηn = ηn+1 for η ∈ H0. Moreover, Aηn = qnwnAwn∗ηn = qnwnA0η0 =
qnA0ηn.

Lemma 2.2. Let A be a self-adjoint operator and let w be a linear isom-
etry on a Hilbert space H such that

(21) swA ⊆ Aw

for some fixed positive real number s �= 1. Suppose that A has an eigenvalue
λ such that the eigenspace H0 := ker(A − λ) coincides with kerw∗. Then the
eigenspace Hn := ker(A− sn λ) coincides with wnH0 for each n ∈ N.
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Proof. Taking adjoints in (21) gives s−1w∗A ⊆ Aw∗. Let n ∈ N0, ϕ ∈ Hn,
and ψ ∈ Hn+1. Then Awϕ = swAϕ = sn+1λwϕ and Aw∗ψ = s−1w∗Aψ =
snλw∗ψ. Hence wHn ⊂ Hn+1 and w∗Hn+1 ⊂ Hn. Since Hn+1 ⊥ H0, we have
ww∗ψ = ψ. This together with w∗w = 1 implies that w�Hn is a bijective
mapping from Hn onto Hn+1 with inverse w∗�Hn+1.

Lemma 2.3. Let ε ∈ {±1}. Assume that x is a closed densely defined
operator on a Hilbert space. Then the coincidence of domains D(xx∗) = D(x∗x)
and the relation

(22) xx∗ − q2x∗x = ε(1 − q2)

hold if and only if x is unitarily equivalent to an orthogonal direct sum of
operators determined as follows :

ε = 1:

(I) xηn = (1 − q2n)1/2ηn−1 on the Hilbert space ⊕∞
n=0Hn, Hn = H0.

(II)A x is the minimal closed operator on ⊕∞
n=−∞Hn, Hn = H0, with

xηn = (1 + q2nA)1/2ηn−1, where A is a self-adjoint operator on H0

such that σ(A) � (q2, 1].

(III)u x = u, where u is a unitary operator.

ε = −1:
x is the minimal closed operator on the Hilbert space ⊕∞

n=1Hn, Hn =
H1, with xηn = (q−2n − 1)1/2ηn+1.

Proof. Direct calculations show that the operators described in Lem-
ma 2.3 satisfy (22). Suppose now we are given an operator x satisfying the
assumptions of the lemma. Recall that x∗x is self-adjoint for every closed
densely defined operator x. Let e(µ) denote the spectral projections of the
self-adjoint operator Q = ε−x∗x. For ϕ ∈ D(Q2) = D((x∗x)2), it follows from
(22) that

Qx∗ϕ = x∗(ε− xx∗)ϕ = x∗(ε− q2x∗x− ε(1 − q2))ϕ = q2x∗Qϕ,(23)

xQϕ = (ε− xx∗)xϕ = (ε− q2x∗x− ε(1 − q2))xϕ = q2Qxϕ.(24)

The cases ε = 1 and ε = −1 will be analyzed separately.
ε = 1: Let x∗ = ua be the polar decomposition of x∗. Note that

(25) a2 = xx∗ = 1 − q2 + q2x∗x = 1 − q2Q ≥ 1 − q2,
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which implies, in particular, that ker a = keru = 0, so u is an isometry. Insert-
ing ϕ = a−1ψ in (23), where ψ ∈ D(Q2), one obtains Quψ = q2uaQa−1ψ =
q2uQψ. Since D(Q2) is a core for Q, it follows that q2uQ ⊆ Qu. By taking
adjoints, one also gets u∗Q ⊆ q2Qu∗. Furthermore, ϕ ∈ kerx = kerx∗x =
keru∗ if and only if (Q − 1)ϕ = 0. If keru∗ �= {0}, Lemma 2.2 implies that
K := ⊕∞

n=0 Hn, where Hn = ker(Q− q2n), is a reducing subspace for u and Q.
Moreover, x�K = (1− q2Q)1/2u∗�K is unitarily equivalent to an operator of the
form (I).

It suffices now to prove the assertion under the additional assumption that
keru∗ = {0}. By Lemma 2.1(i), we can treat the cases where Q is strictly
positive, zero, or strictly negative separately.

If Q were strictly positive, then it would be unbounded by Lemma 2.1(ii),
which contradicts (25). Hence we can discard this case. If Q = 0, then x = u∗

is unitarily equivalent to an operator of the form (III)u. When Q is strictly
negative, Lemma 2.1(ii) applied to the relation q2u(−Q) ⊆ (−Q)u shows that
x = (1 − q2Q)1/2u∗ is unitarily equivalent to an operator of the form (II)A.

ε = −1: In this case, we use the polar decomposition x = vb of x. From

(26) b2 = x∗x = −1 −Q = q−2(xx∗ + 1 − q2) ≥ q−2 − 1,

it follows that ker b = ker v = {0} so that v is an isometry. Using (24) and
arguing as above, one obtains q−2vQ ⊆ Qv and q2v∗Q ⊆ Qv∗. Note that, in the
present case, Q ≤ −q−2 by (26). Therefore ker v∗ �= {0} since otherwise Lem-
ma 2.1 would imply that 0 belongs to the spectrum of Q. Now ϕ ∈ ker v∗ =
kerx∗ = kerxx∗ if and only if Qϕ = (−1 − x∗x)ϕ = (−1 − q−2(1 − q2))ϕ =
−q−2ϕ. From Lemma 2.2, it follows that K := ⊕∞

n=1 Hn, where Hn = ker(Q+
q−2n), is a reducing subspace for v and Q. In particular, x�K = v(−1−Q)1/2�K
is unitarily equivalent to an operator of the form stated in the lemma. Finally,
we conclude that H = K since the restriction of v∗ to a non-zero orthogonal
complement of K would be injective, which is impossible as noted before.

Remark. For ε = 1, a characterization of irreducible representations of
(22) can be found in [10] as a special case of the results therein. For ε = −1,
the irreducible representations of (22) were obtained in [3] by assuming in the
proof that x∗x has eigenvectors.
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§3. Quantum Disc Algebra

§3.1. Invariant integrals associated with the quantum disc algebra

The quantum disc algebra Oq(U) is defined as the *-algebra generated by
z and z∗ with relation [5, 9]

(27) z∗z − q2zz∗ = 1 − q2.

By (27), it is obvious that Oq(U) = Lin{znz∗m ; n,m ≥ 0}. Set

(28) y := 1 − zz∗.

Then y = y∗ and

(29) yz = q2zy, yz∗ = q−2z∗y.

From zz∗ = 1 − y, z∗z = 1 − q2y, and (29), we deduce

(30) znz∗n = (y; q−2)n, z∗nzn = (q2y; q2)n,

where (t; q)0 := 1 and (t; q)n :=
∏n−1
k=0(1 − qkt), n ∈ N. In particular, each

element f ∈ Oq(U) can be written as

(31) f =
N∑
n=0

znpn(y) +
M∑
n=1

p−n(y)z∗n, N,M ∈ N,

with polynomials pn in y.
The left action � which turns Oq(U) into a Uq(su1,1)-module *-algebra can

be found in [15, 19] or [5]. On generators, it takes the form

K±1�z = q±2z, E�z = −q1/2z2, F �z = q1/2,(32)

K±1�z∗ = q∓2z∗, E�z∗ = q−3/2, F �z∗ = −q5/2z∗2.(33)

Recall our notational conventions regarding representations. For instance,
if π : Oq(U) → L+(D) is a representation, we write f instead of π(f) and X�f

in instead of π(X�f), where f ∈ Oq(U), X ∈ Uq(su1,1). The key observation of
this subsection is the following simple operator expansion.

Lemma 3.1. Let π : Oq(U) → L+(D) be a *-representation of Oq(U)
such that y−1 belongs to L+(D). Set A := q−1/2λ−1z and B := −y−1A∗. Then
the formulas

K�f = yfy−1, K−1�f = y−1fy,(34)

E�f = Af − yfy−1A,(35)

F �f = Bfy − q2fyB(36)
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define an operator expansion of the action � for f ∈ Oq(U). The same formu-
las applied to f ∈ L+(D) turn the O∗-algebra L+(D) into a Uq(su1,1)-module
*-algebra.

Proof. We take Equations (34)–(36) as definition and show that the action
� defined in this way turns L+(D) into a Uq(su1,1)-module *-algebra. To verify
that � is well defined, we use the commutation relations

(37) yA = q2Ay, yB = q−2By, AB −BA = −λ−1y−1

which are easily obtained by applying (27) and (29). For f ∈ L+(D), we have

(EF − FE)�f =ABfy + yfBA−BAfy − yfAB

= (AB −BA)fy − yf(AB −BA)

= λ−1(yfy−1 − y−1fy) = λ−1(K −K−1)�f.

The relations (11) are handled in the same way, so we conclude that the action
is well defined.

We continue by verifying (2)–(4). Since the action is associative, it is
sufficient to prove (2)–(4) for generators. Let f, g ∈ L+(D). Then

(E�f)g + (K�f)(E�g) = (Af − yfy−1A)g + yfy−1(Ag − ygy−1A)

=Afg − yfgy−1A = E�(fg),

(E�f)∗ = f∗A∗ −A∗y−1f∗y = −f∗yB + q−2Bf∗y = q−2F �f∗ = S(E)∗�f∗,

and E�1 = A − yy−1A = 0 = ε(E)1. The generators F , K and K−1 are
treated analogously. Summarizing, we have shown that the action � defined by
(34)–(36) equips L+(D) with the structure of a Uq(su1,1)-module *-algebra.

It remains to prove that (34)–(36) define an operator expansion of the ac-
tion � given by (32) and (33). Since π(Oq(U)) is a *-subalgebra of the Uq(su1,1)-
module *-algebra L+(D), it is sufficient to verify (34)–(36) for the generators
of Uq(su1,1) and Oq(U) (see Equation (2)). From the definition of A and y, it
follows by using (27) and (29) that

E�z = Az − yzy−1A = q−1/2λ−1(z2 − q2z2) = −q1/2z2,(38)

E�z∗ = Az∗ − yz∗y−1A = q−5/2λ−1(q2zz∗ − z∗z) = q−3/2.(39)

The other relations of (32) and (33) are proved similarly. This completes the
proof.
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Recall that the left adjoint action adL(a)(b) := a(1)bS(a(2)), a, b∈Uq(su1,1),
turns Uq(su1,1) into a Uq(su1,1)-module *-algebra. For the generators E, F , and
K, we obtain adL(E)(b) = Eb −KbK−1E, adL(F )(b) = FbK − q2bKF , and
adL(K)(b) = KbK−1. There is an obvious formal coincidence of this formulas
with (34)–(36) but A, B, and y do not satisfy the relations of E, F , and K

because the last equation of (37) differs from (12).
We mentioned that for a finite dimensional representation ρ of Uq(su1,1)

the quantum trace
Trq a := Tr ρ(aK−1)

defines an invariant integral on Uq(su1,1) (see [6, Proposition 7.1.14]). The proof
does not involve the whole set of relations of Uq(su1,1) but the trace property
and the relation K−1fK = S2(f) for all f ∈ Uq(su1,1). The last relation reads
on generators as K−1KK = K, K−1EK = q−2E, K−1FK = q2F and these
equations are also satisfied if we replace K by y, E by A, and F by B.

The main result of this section, achieved in Proposition 3.1 below, is a
trace formula for an invariant integral on the operator algebras B1(A) and F(D)
from Subsection 2.2 by using above observations. Note that we cannot have a
normalized invariant integral on Oq(U); if there were an invariant integral h on
Oq(U) satisfying h(1) = 1, then we would obtain

(40) 1 = h(1) = q−1/2h(F �z) = q−1/2ε(F )h(z),

a contradiction since ε(F ) = 0.

Proposition 3.1. Suppose that π : Oq(U) → L+(D) is a *-representa-
tion of Oq(U) such that y−1 ∈ L+(D). Let A be the O*-algebra generated by
the operators z, z∗, and y−1. Then the *-algebras F(D) and B1(A) defined in
(14) and (15), respectively, are Uq(su1,1)-module *-algebras, where the action
is given by (34)–(36). The linear functional

(41) h(g) := cTr gy−1, c ∈ R,

defines an invariant integral on both F(D) and B1(A).

Proof. Obviously, by the definition of F(D) and B1(A), we have afb ∈
F(D) and agb ∈ B1(A) for all f ∈ F(D), g ∈ B1(A), a, b ∈ A, so both algebras
are stable under the action of Uq(su1,1). By Lemma (3.1), this action turns
F(D) and B1(A) into Uq(su1,1)-module *-algebras.

The proof of the invariance of h uses the trace property Tr agb = Tr gba =
Tr bag which holds for all g ∈ B1(A) and all a, b ∈ A (see [11]). Since the action



�

�

�

�

�

�

�

�

14 Klaus-Detlef Kürsten and Elmar Wagner

is associative and ε a homomorphism, we only have to prove the invariance of
h for generators. Let g ∈ B1(A). Then

h(E�g) = Tr (Agy−1 − ygy−1Ay−1) = TrAgy−1 − TrAgy−1 = 0 = ε(E)h(g).

Similarly, h(F �g) = 0 = ε(F )h(g) and h(K±1�g) = h(g) = ε(K±1)h(g). Hence
h defines an invariant integral on B1(A). It is obvious that the restriction of h
to F(D) gives an invariant integral on F(D).

Commonly, the algebra Oq(U) is considered as the polynomial functions
on the quantum disc. Observe that agb ∈ B1(A) for all g ∈ B1(A) and all
polynomial functions a, b ∈ Oq(U). Note, furthermore, that the action of E and
F satisfies a “twisted” Leibniz rule. If we think of Uq(su1,1) as an algebra of
“generalized differential operators”, then we can think of B1(A) as the algebra of
infinitely differentiable functions which vanish sufficiently rapidly at “infinity”
and of F(D) as the infinitely differentiable functions with compact support.

§3.2. Topological aspects of *-representations

This subsection is concerned with some topological aspects of representa-
tions of Oq(U). The “well behaved” operators satisfying the defining relation of
Oq(U) are described in Lemma 2.3. Here we restate Lemma 2.3 by considering
only irreducible *-representations and specifying the domain on which the al-
gebra acts. As we require that y−1 exists, we exclude the case (III)u in which
y = 0. Let {ηj}j∈J denote the canonical basis in the Hilbert space H = l2(J),
where J = N0 or J = Z.

(I) The operators z, z∗, and y act on D := Lin{ ηn ; n ∈ N0 } by

zηn = λn+1ηn+1, z∗ηn = λnηn−1, yηn = q2nηn.

(II)α Let α ∈ [0, 1). The actions of z, z∗, and y on D := Lin{ ηn ; n ∈ Z } are
given by

zηn = λα,n+1ηn+1, z∗ηn = λα,nηn−1, yηn = −q2(α+n)ηn.

Here, λn = (1 − q2n)1/2 and λα,n = (1 + q2(α+n))1/2. Obviously, y−1 ∈ L+(D)
in both cases.

Let A0 be the O*-algebra on D generated by z, z∗, and y−1 = (1−zz∗)−1.
If we equip D with the graph topology tA0 , D is not complete. The situation
becomes better if we pass to the closure A of A0. By (17), A is an O*-algebra
on DA := ∩a∈A0D(ā). Some topological facts concerning A and L+(DA) are
collected in the following lemma and the next proposition.
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Lemma 3.2. Suppose we are given an irreducible *-representation of
type (I) or (II)α. Let A be the O*-algebra defined in the preceding paragraph.

i. A is a commutatively dominated O*-algebra on a Fréchet domain.

ii. DA is nuclear, in particular, DA is a Fréchet–Montel space.

Proof. (i): The operator y is essentially self-adjoint on DA and so is

(42) T := 1 + y2 + y−2.

Let ϕ ∈ DA. A standard argument shows that, for each polynomial p(y, y−1),
there exist k ∈ N such that ||p(y, y−1)ϕ|| ≤ ||T kϕ||. By using (30), we get the
estimates

||znp(y, y−1)ϕ|| ≤ (||p̄(y, y−1)(q2y; q2)n p(y, y−1)ϕ|| ||ϕ||)1/2 ≤ ||T lϕ||,
||z∗np(y, y−1)ϕ|| ≤ (||p̄(y, y−1)(y; q−2)n p(y, y−1)ϕ|| ||ϕ||)1/2 ≤ ||T l′ϕ||

for some l, l′ ∈ N. Since T ≥ 2 and T k ≤ Tm for k ≤ m, we can find for each
finite sequence k1, . . . , kN ∈ N a k0 ∈ N such that

∑N
j=1 ||T kjϕ|| ≤ ||T k0ϕ||. By

(31), (29), and the definition of A, it follows that each f ∈ A can be written
as f =

∑N
n=0 z

npn(y, y−1) +
∑M
n=1 z

∗np−n(y, y−1). From the foregoing, we
conclude that there exist m ∈ N such that ||fϕ|| ≤ ||Tmϕ||, consequently
|| · ||f ≤ || · ||Tm . This shows that the family {|| · ||T 2k }k∈N generates the graph
topology and DA = ∩k∈ND(T̄ 2k

), which proves (i).
(ii): By (i), the graph topology is metrizable. It follows from [11, Proposi-

tion 2.2.9 and Corollary 2.3.2.(ii)] thatDA is a reflexive Fréchet space, in partic-
ular, DA is barreled. To see that DA is nuclear, consider En := (DA, || · ||Tn),
where the closure of DA is taken in the norm || · ||Tn , and the embeddings
ιn+1 : En+1 → En, where ιn+1 denotes the identity on En+1, n ∈ N. It is easy
to see that the operator T̄−1 : H → H is a Hilbert–Schmidt operator and that
the canonical basis {ej}j∈J , where J = N0 in case (I) and J = Z in case (II), is
a complete set of eigenvectors. The set {fnj }j∈J , fnj = ||Tnej ||−1ej constitutes
an orthonormal basis in En, and we have∑

j∈J
||ιn+1(fn+1

j )||2Tn =
∑
j∈J

||Tnfn+1
j ||2 =

∑
j∈J

||Tn(||Tn+1ej ||−1ej)||2

=
∑
j∈J

||T−1ej ||2 <∞

which shows that ιn+1 is a Hilbert–Schmidt operator. From this, we conclude
that DA is a nuclear space since the family {|| · ||Tn}n∈N of Hilbert semi-norms
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generates the topology on DA. As each nuclear space is a Schwartz space and
as each barreled Schwartz space is a Montel space, DA is a Montel space.

Proposition 3.2. Suppose we are given an irreducible *-representation
of type (I) or (II)α. Assume that A is the closed O*-algebra defined above.

i. F(DA) is dense in L(DA, D
+
A) with respect to the bounded topology τb.

ii. The Uq(su1,1)-action on L+(DA) is continuous with respect to τb.

Proof. (i) follows immediately from Lemma 3.2(ii) and [11, Theo-
rem 3.4.5].

(ii): Let x ∈ L+(DA) and a, b ∈ A. According to [11, Proposition 3.3.4(ii)],
the multiplication x 
→ axb is continuous. By Lemma 3.1, the action of Uq(su1,1)
is given by a finite linear combination of such expressions, hence it is continuous.

The algebra F(D) is the linear span of operators ηm⊗ηn, where n,m ∈ N0

for the type (I) representation and n,m ∈ Z for type (II) representations.
Since D ⊂ DA, we can consider F(D) as a subalgebra of F(DA) and, moreover,
as a Uq(su1,1)-module *-algebra. The interest in F(D) stems from the fact that
the operators ηn ⊗ ηm are more suitable for calculations. With a little extra
effort, we can deduce from Proposition 3.2 that the linear span of this operators
is dense in L(DA, D

+
A).

Corollary 3.1. F(D) is dense in L(DA, D
+
A) with respect to the bounded

topology τb.

Proof. In view of Proposition 3.2(i), it is sufficient to show that F(DA)
lies in the closure of F(D). With T defined in (42), consider the set of Borel
measurable functions

R := { r : σ(T̄ ) → [0,∞) ; sup
t∈σ(T̄ )

r(t)t2
n

<∞}.

It follows from Lemma 3.2(i) and [8, Proposition 3.4] that the family of semi-
norms

{|| · ||r}r∈R, ||a||r := ||r(T̄ )a r(T̄ )||, a ∈ L(DA, D
+
A),

(the norm || · || being the operator norm in L(H)) generates the topology τb.
Let ϕ, ψ ∈ DA. Note that ||r(T̄ )(ϕ ⊗ ψ)r(T̄ )|| ≤ ||r(T̄ )||2||ϕ|| ||ψ||. With

αn, βn ∈ C, write ϕ =
∑
n∈J αnηn, ψ =

∑
n∈J βnηn, where J = N0 or J = Z
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according to the type of representation considered. For k ∈ N, set ϕk :=∑
|n|≤k αnηn and ψk :=

∑
|n|≤k βnηn. Clearly, ϕk, ψk ∈ F(D). Now

||ϕ⊗ ψ − ϕk ⊗ ψk||r = ||r(T̄ )(ϕ⊗ ψ − ϕk ⊗ ψk)r(T̄ )||
≤ ||r(T̄ )||2||ϕ− ϕk|| ||ψ|| + ||r(T̄ )||2||ϕk|| ||ψ − ψk|| → 0

as k → ∞ for all r ∈ R, hence ϕ⊗ ψ lies in the closure of F(D). Since F(DA)
is the linear span of operators ϕ⊗ ψ, the assertion follows.

Proposition 3.2 and Corollary 3.1 show how F(D) and F(DA) are related
to the image of Oq(U) in L+(DA): By density and continuity, F(D) and
F(DA) carry the whole information about the action of Uq(su1,1) on L+(DA) ⊂
L(DA, D

+
A) and, in particular, on Oq(U) ⊂ L(DA, D

+
A).

It would be desirable to have also the converse statement, that is, to obtain
the action on F(D) (or F(DA)) by taking the closure of Oq(U) in L(DA, D

+
A).

Unfortunately, this is not possible in the above setting. From [11, Theo-
rem 4.5.4], it follows that, for unbounded representations of type (II), the
bounded topology τb coincides with the finest locally convex topology on A.
Since A is complete with respect to the finest locally convex topology, it is
closed with respect to τb.

For F(D) to be in the closure of Oq(U), we can consider a different locally
convex topology onD. LetD′ be the vector space of all formal series

∑
j∈J αjηj ,

where J = N or J = Z. There exists a dual pairing 〈·, ·〉 of D′ and D given by〈∑
j∈J

αjηj ,
∑

|n|≤n0

βnηn

〉
=
∑

|n|≤n0

αnβn.

We equip D and D′ with the weak topologies arising from this dual pairing.
To L(D,D′), the vector space of all continuous linear mappings from D into
D′, we assign the weak operator topology τow, that is, the topology generated
by the family of semi-norms

{pϕ,ψ}ϕ,ψ∈D, pϕ,ψ(a) := |〈aϕ, ψ〉|, a ∈ L(D,D′).

Then Oq(U) is dense in L(D,D′) with respect to τow and the action of Uq(su1,1)
on L+(D) defined by (34)–(36) is continuous. This is essentially the method
for constructing the space D(Uq)′(= L(D,D′)) of distributions on the quantum
disc as performed in [15]. The topological space D(Uq) of finite functions on the
quantum disc defined in [15] is homeomorphic to F(D) with the weak operator
topology τow.

We now give another description of F(D).
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Lemma 3.3. Let F(σ(ȳ)) be the set of (Borel measurable) functions
on σ(ȳ) with finite support, that is,

F(σ(ȳ)) = {ψ : σ(ȳ) → C ; #{t ∈ σ(ȳ);ψ(t) �= 0} <∞}.
Each f ∈ F(D) can be written as

f =
N∑
n=0

znψn(ȳ) +
M∑
n=1

ψ−n(ȳ)z∗n, N,M ∈ N,

where ψk ∈ F(σ(ȳ)), k = −M, . . . , N .
Conversely, if ψk ∈ F(σ(ȳ)), then

∑N
n=0 z

nψn(ȳ) +
∑M
n=1 ψ−n(ȳ)z∗n ∈

F(D).

Proof. To see this, consider the functions

δk(t) :=

{
1 : for t = q2k

0 : for t �= q2k

if we are given a type (I) representation, and

δk(t) :=

{
1 : for t = −q2α+2k

0 : for t �= −q2α+2k

if we are given a representation of type (II)α. Note that δk(ȳ) is the projection
on H with range Cηk, that is, δk(ȳ) = ηk ⊗ ηk.

Each ψn ∈ F(σ(ȳ)) can be written as a finite sum
∑
k ψn,kδk(t), where

ψn,k = ψn(q2k) for the type (I) representation and ψn,k = ψn(−q2α+2k) for
type (II)α representations. Furthermore, we have

znδk(ȳ) = zn(ηk ⊗ ηk) = (znηk) ⊗ ηk ∈ F(D),

δk(ȳ)z∗n = (ηk ⊗ ηk)z∗n = ηk ⊗ (znηk) ∈ F(D),

hence
∑N
n=0 z

nψn(ȳ) +
∑M

n=1 ψ−n(ȳ)z∗n ∈ F(D) whenever ψn ∈ F(σ(ȳ)) for
all n = −M, . . . , N .

On the other hand, for k ≤ n, we can write

ηn ⊗ ηk = γn,k(zn−kηk) ⊗ ηk = γn,kz
n−kδk(ȳ),

ηk ⊗ ηn = γn,kηk ⊗ (zn−kηk) = γn,kδk(ȳ)z∗n−k,

where γn,k = (q2(k+1); q2)−1/2
n−k and γn,k = (−q2(α+k+1); q2)−1/2

n−k for the repre-
sentations of type (I) and type (II)α, respectively. Hence any linear combina-
tion of ηm ⊗ ηl is equivalent to a linear combination of znδk(ȳ) and δk(ȳ)z∗n.
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Summing over equal powers of z and z∗ yields coefficients of zn and z∗n of
the form

∑
k ψn,kδk(ȳ), ψn,k ∈ C, and the functions

∑
k ψn,kδk(t) belong to

F(σ(ȳ)) since all sums are finite.

A similar result can be obtained by considering the following set of (Borel
measurable) functions

S(σ(ȳ)) := {ψ : σ(ȳ) → C ; sup
t∈σ(ȳ)

|tkψ(t)| <∞ for all k ∈ Z }.

Lemma 3.4. The element f =
∑N
n=0 z

nψn(ȳ)+
∑M
n=1 ψ−n(ȳ)z∗n, ψn ∈

S(σ(ȳ)), N,M ∈ N, belongs to B1(A). The operators ψ(ȳ), ψ ∈ S(σ(ȳ)), satisfy
on DA the commutation rules

(43) zψ(ȳ) = ψ(q2ȳ)z, z∗ψ(ȳ) = ψ(q−2ȳ)z∗.

The linear space

S(D) :=

{
N∑
n=0

znψn(ȳ) +
M∑
n=1

ψ−n(ȳ)z∗n ; ψk ∈ S(σ(ȳ)), −M ≤ k ≤ N

}

forms a Uq(su1,1)-module *-subalgebra of L+(DA).

Proof. By definition of B1(A), aψb ∈ B1(A) for all a, b ∈ A whenever
ψ ∈ B1(A). Fix a ∈ A. From the proof of Lemma 3.2(i), we know that
{|| · ||T̄n}n∈N, T = 1 + y2 + y−2, generates the graph topology on DA, so
there exist na ∈ N such that ||aϕ|| ≤ ||Tnaϕ|| for all ϕ ∈ DA. Consequently,
||aT−naϕ|| ≤ ||ϕ||, hence aT−na and T−naa∗ are bounded. The operators
ψn(ȳ)Tm, ψn ∈ S(σ(ȳ)), m ∈ N, are bounded by the definition of S(σ(ȳ)), and
T̄−1 is of trace class. From this facts, we conclude that

aψn(ȳ)b = aT−na ψn(ȳ)Tna+nb+1T̄−1T−nbb

is of trace class. This shows that the operator f from Lemma 3.4 belongs to
B1(A).

The commutation relations (43) are satisfied if we restrict the operators
to D ⊂ DA. Consider the O*-algebra generated by the elements ψ(ȳ)�D,
ψ ∈ S(σ(ȳ)), and a�D, a ∈ A. Since the operators ψ(ȳ) are bounded, the
closure of this algebra is contained in L+(DA). Taking the closure of an O*-
algebra does not change the commutation relations, hence Equation (43) holds.

Recall that A is the linear span of operators of the form znpn(y, y−1) and
p−n(y, y−1)z∗n, where pn(y, y−1) and p−n(y, y−1) are polynomials in y and y−1.
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Note, furthermore, that p(t, t−1)ψ(t) ∈ S(σ(ȳ)) for all ψ(t) ∈ S(σ(ȳ)) and all
polynomials p(t, t−1). Now it follows from (29), (30), (43), and the definition
of S(D) that S(D) is stable under the Uq(su1,1)-action defined in Lemma 3.1.
Similarly, using (30), (43), and the definition of S(D), it is easy to check that
S(D) forms a *-algebra. Therefore, by Lemma 3.1, S(D) is a Uq(su1,1)-module
*-algebra.

The description of F(D) and S(D) by functions ψ : σ(ȳ) → C suggests
that we can consider the elements of F(D) and S(D) as infinitely differentiable
functions with compact support and which are rapidly decreasing, respectively.
Note that F(D) �= F(DA) (e.g., η ⊗ η /∈ F(D) for η =

∑∞
n=0 αnηn ∈ DA

if an infinite number of αn are non-zero), and S(D) �= B1(A) (e.g., f =∑∞
k=0 exp(−ȳ2k

)δk(ȳ)z∗k ∈ B1(A), f /∈ S(D)).
Clearly, F(D) ⊂ S(D). On S(D), the invariant integral can be expressed

nicely in terms of the Jackson integral. The Jackson integral is defined by∫ 1

0

ϕ(t)dqt = (1 − q)
∞∑
k=0

ϕ(qk)qk and
∫ ∞

0

ϕ(t)dqt = (1 − q)
∞∑

k=−∞
ϕ(qk)qk.

Proposition 3.3. Suppose that

ψ =
N∑
n=1

znψn(ȳ) + ψ0(ȳ) +
M∑
n=1

ψ−n(ȳ)z∗n ∈ S(D).

Let h denote the invariant integral defined in Proposition 3.1. For irreducible
type (I) representations, we have

h(ψ) = c(1 − q2)−1

∫ 1

0

ψ0(t)t−2dq2t,

and, for irreducible type (II)α representations, we have

h(ψ) = cq−2α(1 − q2)−1

∫ ∞

0

ψ0(−q2αt)t−2dq2t.

Proof. Since 〈ηk, znψn(ȳ)y−1ηk〉= 〈ηk, ψ−n(ȳ)z∗ny−1ηk〉= 0 for all n �= 0,
we obtain for type (II)α representations

h(ψ) = cTr ψy−1 = c

∞∑
k=−∞

〈ηk, ψ0(ȳ)y−1ηk〉 = c

∞∑
k=−∞

ψ0(−q2αq2k)q−2(α+k)

= cq−2α(1 − q2)−1

∫ ∞

0

ψ0(−q2αt)t−2dq2t.

The proof for type (I) representations is similar.
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§3.3. Application: differential calculus

The bimodule structure of a first order differential *-calculus (Γ, d) over
Oq(U) has been described in [15] and [12]. The commutation relations are given
by

dz z = q2z dz, dz z∗ = q−2z∗ dz, dz∗ z = q2z dz∗, dz∗ z∗ = q−2z∗ dz∗.

Our aim is to extend this FODC to the classes of integrable functions defined in
Subsection 3.2. To this end, we use a commutator representation of the FODC.
A faithful commutator representation of the above differential calculus can be
found in [12] and is obtained as follows. Given a *-representation π of Oq(U)
from Subsection 3.2, consider the direct sum ρ := π ⊕ π on D ⊕ D ⊂ H ⊕ H
and set

C := (1 − q2)−1

(
0 π(z)

π(z∗) 0

)
.

Then the differential mapping dρ,C defined in (19) is given by

dρ,C(f) = i[C, ρ(f)] = (1 − q2)−1 i

(
0 π(zf − fz)

π(z∗f − fz∗) 0

)
, f ∈ Oq(U).

Clearly, C ∈ L+(D ⊕D), so we can extend dρ,C to L+(D ⊕D), that is,

dρ,C(x) := i[C, x], x ∈ L+(D ⊕D).

The same formula applies to any *-subalgebra of L+(D ⊕D). Note that we
can consider L+(D) as a *-subalgebra of L+(D ⊕D) by identifying A ∈ L+(D)
with the operator A ⊕ A acting on D ⊕ D. In particular, the algebras F(D)
and B1(A) from Proposition 3.1 become *-subalgebras of L+(D ⊕D). In this
way, we obtain a FODC over these algebras.

For z and z∗, we have

dρ,C(z) = i

(
0 0

π(y) 0

)
, dρ,C(z∗) = i

(
0−π(y)
0 0

)
.

For functions ψ(ȳ), the differential mapping dρ,C can be expressed in terms of
the q-differential operator Dq defined by Dqf(x) = (x − qx)−1(f(x) − f(qx)).
It follows from

(1 − q2)−1(zψ(ȳ) − ψ(ȳ)z) = zy(y − q2y)−1(ψ(ȳ) − ψ(q2ȳ)) = zDq2ψ(ȳ)y,

(1−q2)−1(z∗ψ(ȳ)−ψ(ȳ)z∗) = y(y−q2y)−1(ψ(q2ȳ)−ψ(ȳ))z∗ = −q−2Dq2ψ(ȳ)z∗y
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that

dρ,C(ψ(ȳ)) = − i ρ(z)Dq2ψ(ȳ)dρ,C(z) − i q−2Dq2ψ(ȳ)ρ(z∗)dρ,C(z∗).

In particular, the “δ-distributions” δk(ȳ) are differentiable.

§4. Quantum Ball Algebras

§4.1. Algebraic relations

Let n ∈ N and q ∈ (0, 1). We denote by Oq(Matn,1) the *-algebra generated
by z1, . . . , zn, z∗1 , . . . , z

∗
n obeying the relations

zkzl = qzlzk, k < l,(44)

z∗l zk = qzkz
∗
l , k �= l,(45)

z∗kzk = q2zkz
∗
k − (1 − q2)

n∑
j=k+1

zjz
∗
j + (1 − q2), k < n,(46)

z∗nzn = q2znz
∗
n + (1 − q2).(47)

Equations (44)–(47) are called twisted canonical commutation relations [10]
and Oq(Matn,1) is also known as q-Weyl algebra [6]. Here we consider it as a
special case of the quantum balls introduced in [16] because the Uq(sun,1)-
action on Oq(Matn,1) defined below is taken from the latter. A profound study
of quantum balls including results on invariant integrals can be found in [17, 18].

The following hermitian elements Qk will play a crucial role throughout
this section. Set

(48) Qk := 1 −
n∑
j=k

zjz
∗
j , k ≤ n, Qn+1 := 1.

Equations (46), (47), and (48) imply immediately

z∗kzk − q2zkz
∗
k = (1 − q2)Qk+1, z∗kzk − zkz

∗
k = (1 − q2)Qk,(49)

zkz
∗
k = Qk+1 −Qk, z∗kzk = Qk+1 − q2Qk.(50)

Furthermore, one easily shows by using Equations (44)–(48) that

Qkzj = zjQk, j < k, Qkzj = q2zjQk, j ≥ k,(51)

Qkz
∗
j = z∗jQk, j < k, Qkz

∗
j = q−2z∗jQk, j ≥ k.(52)

As a consequence,

(53) QkQl = QlQk, for all k, l ≤ n+ 1.
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For I = (i1, . . . , in) ∈ N
n
0 , J = (j1, . . . , jn) ∈ N

n
0 , set zI := zi11 · · · zinn ,

z∗J := z∗j11 · · · z∗jnn and define I · J = (i1j1, . . . , injn) ∈ Nn0 . We write 0 instead
of (0, . . . , 0). It follows from (51)–(53) together with the defining relations
(44)–(47) that each f ∈ Oq(Matn,1) can be expressed as a finite sum

(54) f =
∑
I·J=0

zIpIJ(Q1, . . . , Qn)z∗J

with polynomials pIJ(Q1, . . . , Qn) in Q1, . . . , Qn.
The Uq(sun,1)-action � which turns Oq(Matn,1) into a Uq(sun,1)-module

*-algebra is given by the following formulas [16].

j �= n : Ej�zj+1 = q−1/2zj , Ej�zk = 0, k �= j + 1,

Ej�z
∗
j = −q−3/2z∗j+1, Ej�z

∗
k = 0, k �= j,

Fj�zj = q1/2zj+1, Fj�zk = 0, k �= j,

Fj�z
∗
j+1 = −q3/2z∗j , Fj�z

∗
k = 0, k �= j + 1,

Kj�zj = qzj , Kj�zj+1 = q−1zj+1, Kj�zk = zk, k �= j, j + 1,

Kj�z
∗
j = q−1z∗j , Kj�z

∗
j+1 = qz∗j+1, Kj�z

∗
k = z∗k, k �= j, j + 1,

j = n : En�zn = −q1/2z2
n, k < n : En�zk = −q1/2znzk,

En�z
∗
n = q−3/2, En�z

∗
k = 0,

Fn�zn = q1/2, Fn�zk = 0,

Fn�z
∗
n = −q5/2z∗2n Fn�z

∗
k = −q5/2z∗kz∗n,

Kn�zn = q2zn, Kn�zk = qzk,

Kn�z
∗
n = q−2z∗n, Kn�z

∗
k = q−1z∗k.

If n = 1, we recover the relations of the quantum disc algebra. For n > 1,
we obtain by omitting the elements Kn, K−1

n , En, and Fn a Uq(sun)-action on
Oq(Matn,1) such that Oq(Matn,1) becomes a Uq(sun)-module *-algebra. Note
that, by Equation (2), it is sufficient to describe the action on generators.

§4.2. Representations of the *-algebra Oq(Matn,1)

Irreducible *-representations of the twisted canonical commutation rela-
tions have been classified in [10] under the condition that 1 −Q1 is essentially
self-adjoint. In this subsection, we describe *-representations of the twisted
canonical commutation relations without requiring the representation to be ir-
reducible. The result was obtained by applying repeatedly Lemmas 2.1–2.3
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and using similar methods as in [14]. For n = 1, the outcome of Proposi-
tion 4.1 is basically the series ε = 1 of Lemma 2.3.

Recall our notational conventions from Subsection 2.2 regarding direct
sums of a Hilbert space K. Let A be a self-adjoint operator on K such that
σ(A) � (q2, 1]. Then the expression µj(A), j ∈ Z, stands for the operator
µj(A) = (1 + q−2jA)1/2. We shall also abbreviate λj = (1 − q2j)1/2 and
βj = (q−2j − 1)1/2 for j ∈ N0.

Proposition 4.1. Assume that m, k, l ∈ N0 satisfy m+ l + k = n. Let
K denote a Hilbert space. Set

H := ⊕∞
in,...,in−m+1=0 ⊕∞

ik=−∞ ⊕∞
ik−1,...,i1=1Hin...i1 ,

where Hin...i1 = K, and

D := Lin{ηin...i1 ; η ∈ K, in, . . . , in−m+1 ∈ N0, ik ∈ Z, ik−1, . . . , i1 ∈ N}.

(For l > 0, we retain the notation ηin...i1 and do not write ηin...in−m+1,ik...i1 .)
Consider the operators z1, . . . , zn acting on D by

(m, 0, k) :

zjηin...i1 = qij+1+···+inλij+1ηin...ij+1...i1 , if k < j ≤ n,

zkηin...i1 = qik+1+···+inµik−1(A2)ηin...ik−1...i1 ,

zjηin...i1 = q−(ij+1+···+ik)+(ik+1+···+in)βij−1Aηin...ij−1...i1 , if 1 ≤ j < k,

and, for l > 0,

(m, l, k) :

zjηin...i1 = qij+1+···+inλij+1ηin...ij+1...i1 , if n−m < j ≤ n,

zn−mηin...i1 = qin−m+1+···+invηin...ik−1...i1 ,

zj ≡ 0, if k < j < n−m,

zkηin...i1 = q−ik+in−m+1+···+inAηin...ik−1...i1 ,

zjηin...i1 = q−(ij+1+···+ik)+(in−m+1+···in)βij−1Aηin...ij−1...i1 , if 1 ≤ j < k.

(If k = 0, then the indices i1, . . . , ik are omitted ; similarly, if m = 0, then the
indices in−m+1, . . . , in are omitted.) In both series, A denotes a self-adjoint
operator acting on the Hilbert space K such that σ(A) � (q, 1]. In the series
(m, l, k), l > 0, v is a unitary operator on K such that Av = vA.

Then the operators z1, . . . , zn define a *-representation of Oq(Matn,1),
where the action of z∗j , j = 1, . . . , n is obtained by restricting the adjoint of
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zj to D. Representations belonging to different series (m, k, l) or to different
operators A and v are not unitarily equivalent. A representation of this series
is irreducible if and only if K = C. In this case, v is a complex number of
modulus one and A ∈ (q, 1]. Only the representations (m, 0, k) are faithful.

Proof. Direct calculations show that the formulas given in Proposition 4.1
define a *-representation of Oq(Matn,1). Clearly, if a *-representation of these
series is irreducible, then A and v must be complex numbers and K = C. The
converse statement was shown in [10]. That the representations (m, 0, k) are
faithful is proved by showing that for each x ∈ Oq(Matn,1), x �= 0, there exist
ηin...i1 , ηjn...j1 ∈ H such that the matrix element 〈ηin...i1 , xηjn...j1〉 is non-zero.
The vectors can easily be found by writing x in the standard form (54) and
observing that zj , z∗j act as shift operators. We omit the details. The other
assertions of the proposition are obvious.

Remark. The operators Qj are given by

Qjηin...i1 = q2(ij+···+in)ηin...i1 , if n−m < j ≤ n,(55)

Qj ≡ 0, if k < j ≤ n−m,(56)

Qjηin...i1 = −q−2(ij+···+ik)+2(in−m+1+···+in)A2ηin...i1 , if 1 ≤ j ≤ k.(57)

The numbers m, l, k ∈ N0 correspond to the signs of the operators Qj , that is,
we have Qn ≥ · · · ≥ Qn−m+1 > 0 if m > 0, Qn−m = · · · = Qk+1 = 0 if l > 0,
and 0 > Qk ≥ · · · ≥ Q1 if k > 0. The only bounded representations are the
series (m, l, 0).

Classically, we can view CPn as homogeneous SUn,1-spaces. The SUn,1-
action on CPn has two open orbits: the unit ball and complex hyperbolic space,
the complement of the unit ball under standard embedding into the projective
space. The bounded representations (n, 0, 0) in Proposition 4.1 correspond to
the unit balls, thus the name “quantum ball” for the algebra Oq(Matn,1). The
representations (m, 0, k) with k �= 0 correspond to the complements of balls
and are related to open leaves of the complex hyperbolic space. Note that, in
this case,

∑n
j=1 zjz

∗
j > 1 since Q1 < 0 for k �= 0.

§4.3. Invariant integrals associated with the quantum ball algebra

Let D be a dense subspace of a Hilbert space H and assume that we
are given a *-representation π : Oq(Matn,1) → L+(D). Throughout this
subsection, we shall impose the following conditions on the representation:
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Firstly, the closures Qj of the operators Qj , j = 1, . . . , n, are self-adjoint and
strongly commute. Secondly, the operators Qj are injective and D is an in-
variant linear subspace of D(|Qj |−1/2) so that |Qj |−1/2�D ∈ L+(D). Thirdly,
|Ql|1/2zj ⊂ zj |Ql|1/2 for j < l and |Ql|1/2zj ⊂ qzj |Ql|1/2 for j ≥ l. Fourthly,
each of the operators Qj is either positive or negative definite, i.e., Qj = εj |Qj |,
where εj = ±1.

Note that these conditions imply that the operators |Qj |p/2 := |Qj |p/2�D,
p ∈ Z, are elements of L+(D) since |Qj | := |Qj |�D = |Qj |−1Q2 ∈ L+(D). Note
also that the representations of type (n − k, 0, k), k = 0, . . . , n, from Proposi-
tion 4.1 satisfy these conditions. In this case, εj = 1 for j > k and εj = −1
for j ≤ k. The same is true for extensions of such representations obtained by
taking the closure of the O∗-algebra generated by zj , |Qj |−1/2, j = 1, . . . , n.

To describe an invariant integral associated with the quantum ball alge-
bra, we proceed as in Subsection 3.1. The crucial step is to find an operator
expansion of the action. To begin, we prove some useful operator relations.

Lemma 4.1. Define

ρl = |Ql|1/2|Ql+1|−1|Ql+2|1/2, l < n, ρn = |Q1|1/2|Qn|1/2,(58)

Al = −q−5/2λ−1Q−1
l+1z

∗
l+1zl, l < n, An = q−1/2λ−1zn,(59)

Bl = ρ−1
l A∗

l , l < n, Bn = −ρ−1
n A∗

n.(60)

The operators ρl, Al, and Bl satisfy the following commutation relations:

(61) ρiρj = ρjρi, ρ
−1
j ρj = ρjρ

−1
j = 1, ρiAj = qaijAjρi, ρiBj = q−aijBjρi,

(62)
AiAj −AjAi = 0, i �= j ± 1, A2

jAj±1 − (q + q−1)AjAj±1Aj + Aj±1A
2
j = 0,

(63)
BiBj −BjBi = 0, i �= j ± 1, B2

jBj±1 − (q + q−1)BjBj±1Bj +Bj±1B
2
j = 0,

(64)
AiBj −AjBi = 0, i �= j, AjBj −BjAj = λ−1(εj+2εjρj − ρ−1

j ), j < n,

(65) AnBn −BnAn = −λ−1ρ−1
n ,

where (aij)ni,j=1 denotes the Cartan matrix of sl(n+ 1,C).

Proof. Our assumptions on the representation imply that

|Q|1/2l zj = zj |Q|1/2l , |Q|1/2l z∗j = z∗j |Q|1/2l , j < l,(66)

|Q|1/2l zj = qzj |Q|1/2l , |Q|1/2l z∗j = q−1z∗j |Q|1/2l , j ≥ l.(67)
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Now Equations (61)–(65) are easily shown by repeated application of the com-
mutation rules from Subsection 4.1 and Equations (66) and (67). For instance,
we have

AlBl −BlAl = q−5λ−2ρ−1
l (q2Q−1

l+1z
∗
l+1zlz

∗
l zl+1Q

−1
l+1 − z∗l zl+1Q

−2
l+1z

∗
l+1zl)

= q−1λ−2ρ−1
l Q−2

l+1

(
(Ql+2−q2Ql+1)(Ql+1−Ql)− (Ql+2−Ql+1)(Ql+1−q2Ql)

)
= λ−1ρ−1

l (Ql+2Q
−2
l+1Ql − 1) = λ−1(εl+2εlρl − ρ−1

l )

for l < n.

Remark. By (65), the operators Al, Bl, and ρl do not satisfy the defining
relations of Uq(sun,1). If n > 1, then we get only for the series (n, 0, 0) a *-rep-
resentation of Uq(sun) by assigning Kj to ρj , Ej to Aj , and Fj to Bj , j < n.

To see this, observe that we must have εj+2 = εj by (64). But εn−1 = 1
since Qn+1 = 1, and εn = 1 since εn|Qn| = Qn−1 + zn−1z

∗
n−1 > 0 by (50) (cf.

the remarks after Proposition 4.1), so εn = · · · = ε1 = 1.

Although Equations (61)–(65) do not yield a representation of Uq(sun,1),
the analogy to (6)–(9) is obvious, so it is natural to try to define an operator
expansion of the action by imitating the adjoint action. That this can be done
is the assertion of the next lemma. Again, we write f instead of π(f) and X�f

instead of π(X�f) for f ∈ Oq(Matn,1), X ∈ Uq(sun).

Lemma 4.2. With the operators ρl, Al, and Bl defined in Lemma 4.1,
set

Kj � f = ρjfρ
−1
j , K−1

j
� f = ρ−1

j fρj ,(68)

Ej � f = Ajf − ρjfρ
−1
j Aj ,(69)

Fj � f = Bjfρj − q2fρjBj(70)

for j = 1, . . . , n. Then Equations (68)–(70) applied to f ∈ Oq(Matn,1) define an
operator expansion of the action � on Oq(Matn,1). The same formulas applied
to f ∈ L+(D) turn the O∗-algebra L+(D) into a Uq(sun,1)-module *-algebra.

Proof. The lemma is proved by direct verifications. We start by showing
that L+(D) with the Uq(sun,1)-action defined by (68)–(70) becomes a Uq(sun,1)-
module *-algebra. That the action satisfies (2)–(4) is readily seen if we replace
in the proof of Lemma 3.1 y±1 by ρ±1

j , A by Aj , and B by Bj . By using Lem-
ma 4.1, it is easy to check that the action is consistent with (6)–(9). For



�

�

�

�

�

�

�

�

28 Klaus-Detlef Kürsten and Elmar Wagner

example, (61) implies

(KiEj)�f = ρi(Ajf − ρjfρ
−1
j Aj)ρ−1

i = qaij (Ajρifρ−1
i − ρjρifρ

−1
i ρ−1

j Aj)

= (qaijEjKi)�f

for all f ∈ L+(D) and i, j = 1, . . . , n.
It remains to prove that (68)–(70) define an operator expansion of the

action. That (68) yields the action of K±1
l on zj and z∗j is easily verified

by using (66) and (67). Let l < n. Applying (44), (45), (66), and (67), we
get ρlzjρ−1

l Al = Alzj and ρlz
∗
j ρ

−1
l Al = Alz

∗
j whenever j /∈ {l, l + 1}, hence

El�zj = El�z
∗
j = 0. Similarly, El�zl = El�z

∗
l+1 = 0. Equation (69) applied to

zl+1 and z∗l gives

El�zl+1 = Alzl+1 − q−1zl+1Al = −q−3/2λ−1Q−1
l+1(z

∗
l+1zl+1 − zl+1z

∗
l+1)zl

= q−1/2zl,

El�z
∗
l = Alz

∗
l − q−1z∗l Al = −q−5/2λ−1z∗l+1(q

2zlz
∗
l − z∗l zl)Q

−1
l+1 = −q3/2z∗l+1,

where we used (49). The action of En on zj and z∗j , j = 1, . . . , n, is calculated
analogously. The corresponding relations for the generators Fj follow by using
Fj�f = −(−1)δnjq2(Ej�f∗)∗.

Let ω1, . . . , ωn be the simple roots of the Lie algebra sln+1. For γ =∑n
j=1 pjωj , we write Kγ = Kp1

1 · · ·Kpn
n . Recall that, for a finite dimensional

representation σ of Uq(sun,1), the quantum trace

Trq,L a := Tr σ(aK−1
2ω )

defines an invariant integral on Uq(sun,1), where ω denotes the half-sum of all
positive roots (see [6, Proposition 7.14]). K2ω is chosen such that XK2ω =
K2ωS

2(X) for all X ∈ Uq(sun,1). In Subsection 3.1, we replaced K (= K2ω)
by y and proved the existence of invariant integrals on appropriate classes of
functions. Our aim is to generalize this result to Oq(Matn,1).

The half-sum of positive roots is given by ω = 1
2

∑n
l=1 l(n − l + 1)ωl.

Consider Γ :=
∏n
l=1 ρ

−l(n−l+1)
l . Inserting the definition of ρl gives

(71) Γ = |Q1|−n|Q2| · · · |Qn|, n > 1, Γ = |Q1|−1, n = 1,

since −1
2 (l − 1)(n − l + 2) + l(n − l + 1) − 1

2 (l + 1)(n − l) = 1 for 1 < l ≤ n.
The operator |Q1| appears in the definition of Γ twice, in ρ−n1 and ρ−nn , in each
factor to the power −n/2. For n = 1, Equation (71) is trivial (cf. Equation
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(58)). The following proposition shows that Γ enables us to define an invariant
functional resembling the quantum trace.

Note that zn, z∗n, K±1
n , En, and Fn satisfy the relations of the quantum

disc algebra, in particular, Equation (40) applies. Therefore we cannot have a
normalized invariant integral on Oq(Matn,1).

Proposition 4.2. Let A be the O*-algebra generated by the operators
zj , z∗j , and |Qj |−1/2, j = 1, . . . , n. Then the *-algebras F(D) and B1(A) defined
in (14) and (15), respectively, are Uq(sun,1)-module *-algebras, where the action
is given by (68)–(70). The linear functional

(72) h(f) := cTr fΓ, c ∈ R,

defines an invariant integral on both F(D) and B1(A).

Proof. From the definition of F(D) and B1(A), it is obvious that both al-
gebras are stable under the Uq(sun,1)-action defined by (68)–(70), in particular,
by Lemma 4.2, they are Uq(sun,1)-module *-algebras.

We proceed as in the proof of Proposition 3.1 and show the invariance of
h for generators by using the trace property Tr agb = Tr gba = Tr bag for all
g ∈ B1(A), a, b ∈ A. Let g ∈ B1(A). Clearly, ρl commutes with Γ, hence

h(K±1
l

�g) = Tr ρ±1
l gρ∓1

l Γ = Tr gΓ = ε(K±1
l )h(g).

It follows from the definition of Γ and from (61) that AlΓ = q2ΓAl for all l since
−(l− 1)(n− l+2)+2l(n− l+1)− (l+1)(n− l) = 2. Hence ρ−1

l AlΓ = ΓAlρ−1
l

and therefore

h(El�g) = Tr (AlgΓ − ρlgρ
−1
l AlΓ) = TrAlgΓ − TrAlgΓ = 0 = ε(El)h(g).

A similar reasoning shows h(Fl�g) = 0 = ε(Fl)h(g).

Remark. As in Subsection 3.1, we consider B1(A) as the algebra of in-
finitely differentiable functions which vanish sufficiently rapidly at “infinity”
and F(D) as the infinitely differentiable functions with compact support.

§4.4. Topological aspects of *-representations

Our first aim is to find a suitable topology on L(D,D+) such that the
algebras of integrable functions as well as the quantum ball algebra are dense
in L+(D) ⊂ L(D,D+) and that the Uq(sun,1)-action on L+(D) defined in Lem-
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ma 4.2 is continuous. Then, by extending the action continuously from a dense
set to its closure, the Uq(sun,1)-action on the algebras of integrable functions
is completely determined by the Uq(sun,1)-action on the quantum ball algebra
and vice versa. In the case of the bounded topology τb, we have seen in Subsec-
tion 3.2 that there are obstructions. However, the next proposition shows that
the answer to this problem is affirmative in the case of the weak operator
topology τow.

Proposition 4.3. Let (m, l, k), D, and z1, . . . , zn ∈ L+(D) be as in
Proposition 4.1. Suppose that B is the von Neumann algebra on K generated
by A and v in the case l > 0 and k > 0, by A in the case l = 0 and k > 0, by v
in the case l > 0 and k = 0, and by the identity on K in the case l = k = 0. Let
Pin...i1 : K → D denote the embedding Pin...i1η = ηin...i1 and P ′

in...i1
: D+ → K

its adjoint.

i. F(D) is dense in L(D,D+) with respect to the weak operator topology τow.

ii. The τow-closure of the O*-algebra generated by z1, . . . , zn coincides with

{C ∈L(D,D+) ; P ′
in...i1CPjn...j1 ∈B for all possible in, . . . , i1, jn, . . . , j1 }.

In particular, for irreducible representations, the O*-algebra generated by
z1, . . . , zn is dense in L(D,D+).

iii. For l = 0, the Uq(sun,1)-action on L+(D) defined in Lemma 4.2 is contin-
uous with respect to τow.

Proof. (i): By the Double Commutant Theorem (see, e.g., [4]), F(D) is
τow-dense in the set of all norm-bounded operators, and by [7, Corollary 4.2],
there exists a τb-dense space of norm-bounded operators belonging to L+(D).
From this, (i) follows.

(ii): Let k, l > 0. Note that finite orthogonal sums of spaces Hin...i1 are
invariant under the operators Qj and that the topology τow of operators on such
finite orthogonal sums coincides with the weak operator topology defined in the
theory of bounded operators. Therefore it follows from the Double Commutant
Theorem and Equations (55)–(57) that operators C of the following form are
in the τow-closure of the O*-algebra generated by Q1, . . . , Qn:

Cηin...i1 = Bηin...i1 , Cηjn...j1 = 0 for (jn, . . . , j1) �= (in, . . . , i1),

where B belongs to the von Neumann algebra generated by A. Recall from the
formulas of Proposition 4.1 that z∗n−mzkηin...i1 = q−ik+2(in−m+1+···+in)Avηin...i1
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and z∗kzn−mηin...i1 = q−ik+2(in−m+1+···+in)Av∗ηin...i1 . So another application of
the Double Commutant Theorem shows that all operators C of the above form
with B ∈ B are in the τow-closure of the O*-algebra generated by z1, . . . , zn.
Observe that the non-zero operators zj , z∗j act as shift operators (multiplied on
each of the spaces Hin...i1 by an invertible element of B). By taking appropriate
products, we conclude that operators C of the form Cηin...i1 = Bηrn...r1 , B ∈
B, Cηjn...j1 = 0 for (jn, . . . , j1) �= (in, . . . , i1) belong to this closure. But the
linear span of such operators is τow-dense in the space defined in (ii) and this
space is τow-closed in L(D,D+). This proves (ii) in the case k, l > 0. The other
cases are similar but easier.

(iii) follows immediately from the definition of τow and the operator ex-
pansion of the action in Lemma 4.2.

Remark. It was essential in the proof of Proposition 4.3(ii) that we con-
sidered the O*-algebra generated by z1, . . . , zn on D and not its closure nor the
closed O*-algebra A defined below.

In the remaining part of this section, we shall restrict ourselves to irre-
ducible *-representations of the series (m, 0, k). As before, let D denote the lin-
ear space defined in Proposition 4.1. Then the operators |Qj |−1/2 = |Qj |−1/2�D
belong to L+(D). Let A0 denote the O*-algebra onD generated by zj , |Qj |−1/2,
j = 1, . . . , n and let A be the closure of A0 so that DA is the Fréchet space
∩a∈A0D(ā). It turns out that the topological properties of the closed O*-algebra
A are very similar to that of Subsection 3.2.

Lemma 4.3.

i. A is a commutatively dominated O*-algebra on a Fréchet domain.

ii. DA is nuclear, in particular, DA is a Fréchet–Montel space.

Proof. The operator

(73) T := 1 +Q2
1 + · · · +Q2

n +Q−2
1 + · · · +Q−2

n

is essentially self-adjoint on DA, and T > 2. Let ϕ ∈ DA. As in the proof of
Lemma 3.2, we conclude from a standard argument that, for each polynomial
p = p(|Q1|1/2, . . . , |Qn|1/2, |Q1|−1/2, . . . , |Qn|−1/2), there exist k ∈ N such that
||pϕ|| ≤ ||T kϕ||. Furthermore, for each finite sequence k1, . . . , kN ∈ N and
real numbers γ1, . . . , γN ∈ (0,∞), we find k0 ∈ N such that

∑N
j=1 γj ||T kjϕ|| ≤
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||T k0ϕ||. Let p be as above and let I, J ∈ N
n such that I · J = 0. By (44)–

(47) and (50)–(53), (zIpz∗J )∗(zIpz∗J ) is a polynomial in |Qj |1/2, |Qj |−1/2,
j = 1, . . . , n, say p̃. Thus there exist k ∈ N such that

||zIpz∗Jϕ|| = 〈p̃ϕ, ϕ〉1/2 ≤ (||p̃ϕ|| ||ϕ||)1/2 ≤ ||T kϕ||.
From the definition of A, (54), (66), and (67), it follows that each f ∈ A can
be written as f =

∑
I·J=0 z

IpIJz
∗J , where pIJ are polynomials in |Qj |1/2,

|Qj |−1/2, j = 1, . . . , n. From the preceding arguments, we conclude that there
exist m ∈ N such that ||fϕ|| ≤ ||Tmϕ|| for all ϕ ∈ DA, therefore || · ||f ≤ ||·||Tm .
This implies that the family {|| · ||T 2k }k∈N generates the graph topology on DA

and DA = ∩k∈ND(T̄ 2k

) which proves (i).
Note that the proof of Lemma 3.2(ii) is based on the observation that

the operator T̄−1 is a Hilbert–Schmidt operator. One easily checks that this
holds also for the operator T defined in (73). Now the rest of the proof runs
completely analogous to that of Lemma 3.2.

Proposition 4.4.

i. F(DA) is dense in L(DA, D
+
A) with respect to the bounded topology τb.

ii. The Uq(sun,1)-action on L+(DA) is continuous with respect to τb.

The proof of Proposition 4.4 is completely analogous to that of Proposi-
tion 3.2.

Corollary 4.1. Let F(D) denote the O*-algebra of finite rank operators
on D defined in (14). Then F(D) is a Uq(sun,1)-module *-subalgebra of F(DA)
and F(D) is dense in L(DA, D

+
A) with respect to τb.

Proof. Since D ⊂ DA, we can consider F(D) as a *-subalgebra of F(DA).
It follows from Proposition 4.1 that F(D) is stable under the Uq(sun,1)-action
defined in Lemma 4.2, in particular, it is a Uq(sun,1)-module *-algebra. The
density of F(D) in L(DA, D

+
A) can be proved in exactly the same way as in

Corollary 3.1.

Recall that the self-adjoint operators Q̄j , j = 1, . . . , n, strongly commute.
Set

M := σ(Q̄1) × · · · × σ(Q̄n).

By the spectral theorem of self-adjoint operators, we can assign to each (Borel
measurable) function ψ : M → C an operator ψ(Q̄1, . . . , Q̄n) such that

ψ(Q̄1, . . . , Q̄n)ηin...i1 = ψ(ti1 , . . . , tin)ηin...i1 ,
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where tij = q2(ij+···+in+α) for j > k, tij = −q−2(ij+···+ik)+2(ik+1+···+in+α) for
j ≤ k, and A = q2α. (A denotes the operator appearing in the type (m, 0, k)
representations for k > 0. If k = 0, set α = 0.) Define

S(M) :=

{ψ : M → C ; sup
(t1,...,tn)∈M

|ts11 · · · tsn
n ψ(t1, . . . , tn)| <∞ for all s1, . . . , sn ∈ Z},

S(D) :=

{ ∑
I·J=0

zIψIJ (Q̄1, . . . , Q̄n)z∗J ; ψIJ ∈ S(M), #{ψIJ �= 0} <∞
}
.

Lemma 4.4. With the action defined in Lemma 4.2, S(D) becomes a
Uq(sun,1)-module *-subalgebra of B1(A). The operators zj, z∗j , j = 1, . . . , n,
and ψ(Q̄1, . . . , Q̄n), ψ ∈ S(M), satisfy the following commutation rules

ψ(Q̄1, . . . , Q̄j , Q̄j+1, . . . , Q̄n)zj = zjψ(q2Q̄1, . . . , q
2Q̄j , Q̄j+1, . . . , Q̄n)

z∗jψ(Q̄1, . . . , Q̄j , Q̄j+1, . . . , Q̄n) = ψ(q2Q̄1, . . . , q
2Q̄j , Q̄j+1, . . . , Q̄n)z∗j .

The proof of Lemma 4.4 differs from that of Lemma 3.4 only in notation,
the argumentation to establish the result remains the same.

Since F(D) ⊂ F(DA) and S(D) ⊂ B1(A), we can consider F(D) and B1(A)
as algebras of infinite differentiable functions with compact support and which
are rapidly decreasing, respectively. It is not difficult to see that F(D) is the set
of all

∑
I·J=0 z

IψIJ (Q̄1, . . . , Q̄n)z∗J ∈ S(D), where the functions ψIJ ∈ S(M)
have finite support. On S(D), we have the following explicit formula of the
invariant integral.

Proposition 4.5. Set M0 := σ(Q̄1)\{0} × · · · × σ(Q̄n)\{0}. Assume
that f =

∑
I·J=0 z

IψIJ(Q̄1, . . . , Q̄n)z∗J ∈ S(D). Then the invariant integral h
defined in Proposition 4.2 is given by

h(f) = c
∑

(t1,...,tn)∈M0

ψ00(t1, . . . , tn)|t1|−n|t2| · · · |tn|.

(If n = 1, then t2, . . . , tn are omitted.)

Proof. Recall that h(f) = cTr fΓ, where Γ is given by (71). If I �=
(0, . . . , 0) or J �= (0, . . . , 0), then 〈ηin...i1 , zIψIJ (Q̄1, . . . , Q̄n)z∗JΓηin...i1〉 = 0
since, by Proposition 4.1, ψIJ (Q̄1, . . . , Q̄n) and Γ are diagonal and zI and z∗J

act as shift operator on H. Hence only ψ00(Q̄1, . . . , Q̄n)Γ contributes to the
trace.
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For each tuple (t1, . . . , tn) ∈ M0, there exists exactly one tuple (i1, . . . , in)
such that ηin...i1 ∈ D and Qjηin...i1 = tjηin...i1 , j = 1, . . . , n. This can be seen
inductively; Qn determines in uniquely, and if in, . . . , in−k+1 are fixed, then
Qn−k determines uniquely in−k (see the remark after Proposition 4.1). Since
the vectors ηin...i1 constitute an orthonormal basis of eigenvectors of the Qj ’s,
and since Γ is given by Γ = |Q1|n|Q2|−1 · · · |Qn|−1 for n > 1, Γ = |Q1| for
n = 1, the assertion follows.

In the following, let n > 1. We noted in Subsection 4.1 that the action of
the elements Ej , Fj , K±1

j , j = 1, . . . , n − 1 on Oq(Matn,1) induces a Uq(sun)-
action which turns Oq(Matn,1) into a Uq(sun)-module *-algebra. Uq(sun) is
regarded as a compact real form of Uq(sln). Naturally, the compactness should
manifest in the existence of a normalized invariant integral on Oq(Matn,1).
This is indeed the case. Consider a irreducible *-representation of type (n, 0, 0).
Then the operators Qj , j = 1, . . . , n, are bounded, and Q1 is of trace class. In
Proposition 4.2, a Uq(sun,1)-invariant functional h was given by h(f) := cTr fΓ,
where Γ = |Q1|−n|Q2| · · · |Qn|. Note that the proof of Proposition 4.2 uses
only the commutation relations of Γ with Ai, Bi, and ρi, i = 1, . . . , n. The
crucial observation is that Q1 commutes with Aj , Bj , and ρj , j = 1, . . . , n− 1.
Therefore the commutation relations used in proving the invariance of h remain
unchanged if we multiply Γ by Qn+1

1 . Furthermore, ΓQn+1
1 is of trace class.

This suggests that h(f) := cTr fΓQn+1
1 defines a Uq(sun)-invariant integral

on Oq(Matn,1). The only difficulty is that the definitions of Aj , Bj , and ρ±1
j

involve the unbounded operators Q−1
j , therefore we cannot freely apply the

trace property in proving the invariance of h. Nevertheless, a modified proof
will establish the result.

Proposition 4.6. Let n > 1 and set c :=
∏n
k=1(1−q2k)−1. Suppose we

are given an irreducible *-representation of Oq(Matn,1) of type (n, 0, 0). Then
the linear functional

(74) h(f) := cTr fΓQn+1
1 = cTr fQ1 · · ·Qn , f ∈ Oq(Matn,1),

defines a normalized Uq(sun)-invariant integral on Oq(Matn,1).

Proof. First note that the vectors ηin...i1 , i1, . . . , in ∈ N0, form a complete
set of eigenvectors of the positive operator Q1 with corresponding eigenvalues
q2(i1+···+in). As

∑
i1,··· ,in∈N0

q2(i1+···+in) <∞, Q1 is of trace class. This implies
that fΓQn+1

1 = fQ1 · · ·Qn is of trace class for all f ∈ Oq(Matn,1) since the
representations of the series (n, 0, 0) are bounded. Therefore h is well defined.
An easy calculation shows that h(1) = 1.
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As in the proof of Proposition 3.1, it suffices to verify the invariance of h
for the generators of Uq(sun). Recall that Oq(Matn,1) is the linear span of the
elements zIpIJz∗J , where I, J ∈ Nn0 , I · J = 0, and pIJ is a polynomial in Qi,
i = 1, . . . , n. If I �= 0 or J �= 0, then the same arguments as in the proof of
Proposition 4.5 show
(75)
0 = 〈ηin...i1 , ρ±1

j zIpIJz
∗Jρ∓1

j ΓQn+1
1 ηin...i1〉 = 〈ηin...i1 , zIpIJz∗JΓQn+1

1 ηin...i1〉.

Hence h(K±1
j

�(zIpIJz∗J )) = ε(K±1
j )h(zIpIJz∗J ) = 0. If I = J = 0, then

K±1
j

�p00 = ρ±1
j p00ρ

∓1
j = p00, so h(K±1

j
�p00) = h(p00) = ε(K±1

j )h(p00).
Recall that Ak = −q−5/2λ−1Q−1

k+1z
∗
k+1zk, k < n. If I �= (0, . . . , 1, . . . , 0) or

J �= (0, . . . , 1, . . . , 0) with 1 in the (k+ 1)th and kth positions, respectively, we
have similarly to Equation (75)

0 = 〈ηin...i1 , AkzIpIJz∗JΓQn+1
1 ηin...i1〉

= 〈ηin...i1 , ρkzIpIJz∗Jρ−1
k AkΓQn+1

1 ηin...i1〉.

Thus h(Ek�(zIpIJz∗J )) = ε(Ek)h(zIpIJz∗J ) = 0.
Now let p denote an arbitrary polynomial in Qi, i = 1, . . . , n. Then, by the

definition of Γ and repeated application of the commutation rules of Qi with
zj and z∗j , we obtain

Q−1
k+1z

∗
k+1zkzk+1pz

∗
kΓQ

n+1
1 = z∗k+1zkzk+1pz

∗
kQ1 · · ·QkQk+2 · · ·Qn,

ρkzk+1pz
∗
kρ

−1
k Q−1

k+1z
∗
k+1zkΓQ

n+1
1 = zk+1pz

∗
kQ1 · · ·QkQk+2 · · ·Qnz∗k+1zk.

All operators on the right hand sides are bounded and Q1 is of trace class, in
particular, the trace property applies. Therefore, the difference of the traces of
the right hand sides vanishes. Hence

h(Ek�(zk+1pz
∗
k)) = cTr (Akzk+1pz

∗
k − ρkzk+1pz

∗
kρ

−1
k Ak)ΓQn+1

1 = 0

= ε(Ek)h(zk+1pz
∗
k)

which establishes the invariance of h with respect to Ek, k = 1, . . . , n− 1.
To verify that h is invariant with respect to Fk, k = 1, . . . , n−1, note that

h(f∗) = h(f) for all f ∈ Oq(Matn,1) since the operator ΓQn+1
1 is self-adjoint.

Thus, by (4) and the preceding,

h(Fk�f) = h(S(Fk)∗�f∗) = −q2h(Ek�f∗) = 0 = ε(Fk)h(f)

for all f ∈ Oq(Matn,1).
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Corollary 4.2. Let f =
∑
I·J=0 z

IpIJ(Q1, . . . , Qn)z∗J ∈ Oq(Matn,1).
Then the invariant integral h defined in Proposition 4.6 is given by

h(f) = c
∑

j1,...,jn∈N0

p00(qj1 , . . . , qjn)qj1 · · · qjn .

Proof. Taking into account that M0 = {(qj1 , . . . , qjn) ; j1, . . . , jn ∈ N0}
for representations of the series (n, 0, 0), Corollary 4.2 is verified by an obvious
modification of the proof of Proposition 4.5.

§5. Concluding remarks

In general, the definition of quantum spaces is completely algebraic. How-
ever, our definition of integrable functions involves operator algebras. This is
not a disadvantage since operator algebras form a natural setting for the study
of (non-compact) quantum spaces. For example, Hilbert space representations
provide us with the powerful tool of spectral theory which allows to define func-
tions of self-adjoint operators. We emphasize that different representations will
lead to different algebras of integrable functions. If one accepts that represen-
tations carry information about the underlying quantum space (for instance,
by considering the spectrum of self-adjoint operators), then representations can
be used to distinguish between q-deformed manifolds which are isomorphic on
purely algebraic level. It is another advantage of our method that it works in
a unique way for different representations.

The crucial step of our approach was to find an operator expansion of
the action. At first sight it seems a serious drawback that no direct method
was given to obtain an operator expansion of the action. This problem can
be removed by considering cross product algebras. Inside the cross product
algebra, the action can be expressed by algebraic relations. Representations of
cross product algebras lead therefore to an operator expansion of the action.
Moreover, the operator expansion is given by the adjoint action so that our
ideas concerning invariant integrals apply [21]. Hilbert space representations
of some cross product algebras can be found in [14] and [21].
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[11] K. Schmüdgen, Unbounded operator algebras and representation theory, Birkhäuser,
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