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A Flatness Property for Filtered D-modules

By

Francisco J. Castro-Jiménez∗ and Michel Granger∗∗

Abstract

Let M be a coherent module over the ring DX of linear differential operators
on an analytic manifold X and let Z1, . . . , Zk be k germs of transverse hypersurfaces
at a point x ∈ X. The Malgrange-Kashiwara V-filtrations along these hypersurfaces,
associated with a given presentation of the germ of M at x, give rise to a multifiltration
U•(M) of Mx as in Sabbah’s paper [9] and to an analytic standard fan in a way similar
to [3]. We prove here that this standard fan is adapted to the multifiltration, in the
sense of C. Sabbah. This result completes the proof of the existence of an adapted
fan in [9], for which the use of [8] is not possible.

§1. Introduction

Let us consider a coherent module M over the ring DX of differential
operators on an analytic manifold X. For any smooth hypersurface Z of X,
Malgrange and Kashiwara defined a filtration along Z for DX and the notion
of a good filtration for M. Given a set of transverse smooth hypersurfaces
Z1, . . . , Zk, Sabbah considered in [9] multifiltrations of M indexed by k-uples
of integers. To be precise he dealt with linear combinations over Q+ of the
filtrations V (j) along each hypersurface Zj and with refinements V Γ of the
original multifiltration associated with each rational polyhedral simplicial cone
in the positive quadrant of (Qk)�. The original multifiltration is the one which
corresponds to the case Γ = Nk.
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122 Francisco J. Castro-Jiménez and Michel Granger

The aim of this paper is to clarify the flatness properties which appear
in [9], namely to prove the existence of a fan E , such that for any cone Γ in
this fan, the Rees module of the filtration V Γ is flat over the affine ring AΓ

of the toric blowing-up of Ck associated with the fan E . Such a fan is called
an adapted fan in [9]. The reason for this clarification is that the proof in [9]
depends on the appendix [8] in which the main tool is a division theorem in
Rees rings of differential operators which is not correct as stated. Indeed, the
infinite process that its proof suggests, would require monomials of unbounded
degrees in the differential variables of the ring of operators.

One of the main consequences of the existence of an adapted fan as devel-
oped in [9] is that we thus complete the proof of the existence of non trivial
functional equations of Bernstein-Sato type for a k-uple of functions, following
the argument of Sabbah in [9]. It should be emphasized here that this problem
involves a DX×Ck -module naturally associated with a k-uple of functions on X,
and that in this situation a multifiltration, along the transverse hypersurfaces
tj = 0 due to the factor Ck, appears in a natural way.

We must note here that the proof of the existence of Bernstein-Sato equa-
tions has already been completed in Bahloul’s paper [4], by a different method
which avoids the reference to a flatness property involved in the notion of an
adapted fan. Bahloul uses instead the analytic standard fan as defined in [3],
and described also in [5]. It is therefore not completely surprising that the
adapted fan wanted in [9] turns out in fact to be the analytic standard fan.
This emphasizes the interest of Bahloul’s proof which also has the advantage
of being constructive. This constructiveness is valuable in an algebraic setting
also. In both proofs, Bahloul’s and Sabbah’s , the latter which is completed by
this paper, the main step is the proof of the goodness of the so-called saturated
filtration. The details are given in Section 2.3.

The starting point of the proof of our main theorem (Theorem 4.3) is a cri-
terion of flatness by M. Herrmann and U. Orbanz (see [7]), for graded modules
over graded rings, where the grading is indexed by an arbitrary commutative
group. In the statement of this result there is no reference to any finiteness
property. In our case the indexing group will be Zk, and the ring a coni-
cal subring of the ring of Laurent polynomials in k variables with the obvious
multigrading by monomials. The main ingredient of the proof of Theorem 4.3 is
then the existence of a simultaneous L-standard basis of a submodule N ⊂ Dr

for all L in a cone of the analytic standard fan of N (see [3]).
The plan of the paper is as follows. In Section 2, we recall with more

details what V -multifiltrations, and Rees modules are, and the refinements of
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these multifiltrations with respect to a rational polyhedral simplicial cone. We
end this Section by defining the fiber at zero of these Rees modules seen as
modules over the ring of an affine toric blowing up. We aim to prove that this
is the fiber of a flat deformation if the cone is taken in the analytic standard
fan.

In Section 3 we recall the notion of an analytic standard fan as developed
in [3], and we sketch the easy generalization which we need from the cyclic case
treated in [3] to the general case.

In Section 4 we finally prove that the analytic standard fan is an adapted
fan in the sense of [9].

§2. Multifiltrations, Rees Rings and Rees Modules

Let us denote by O = C{x1, . . . , xn} the complex convergent power series
ring and by D the ring of germs of linear differential operators with holomorphic
coefficients (i.e. D = O[∂] = O[∂1, . . . , ∂n] where ∂i is the partial derivative
with respect to xi and the product in D is defined by the Leibnitz’s rule:
∂ia = a∂i + ∂i(a), for each a ∈ O).

An operator P in D can be written as

P =
∑

β∈Nn

pβ(x)∂β =
∑

α,β∈Nn

pαβxα∂β

where the first sum is finite, α = (α1, . . . , αn), β = (β1, . . . , βn), xα =
xα1

1 · · ·xαn
n , ∂β = ∂β1

1 · · · ∂βn
n , pβ(x) ∈ O and pαβ ∈ C.

For each i = 1, . . . , n, let us remember that the V -filtration on D, with
respect to the hypersurface xi = 0, was defined by Malgrange and Kashiwara
as:

V
(i)
� (D) = V

(i)
� =

P =
∑

α,β∈Nn

pαβxα∂β ∈ D |βi − αi ≤ �


for each � ∈ Z. The family (V (i)

� )�∈Z is an increasing exhaustive filtration on
the ring D. For i = 1, the associated graded ring

grV (1)
(D) =

⊕
�

V
(1)
�

V
(1)
�−1

is isomorphic to the ring C{x2, . . . , xn}[x1, ∂1, ∂2, . . . , ∂n], graded by the so-
called V (1)-graduation, where the homogeneous elements of V (1)-degree � are∑

α,β∈Nn; β1−α1=�

pαβxα∂β .
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We have similar descriptions for i = 2, . . . , k.
We can also consider a V (i)-filtration on the free module Dr just by defining

V
(i)
� (Dr) = (V (i)

� D)r and more generally, for any vector m = (m1, . . . , mr) ∈
Zr, one can define the shifted filtration V (i)[m]�(Dr) = ⊕r

j=1V
(i)
�−mj

D. Such a
filtered module is called a V (i)-filtered free module. All the D-modules consid-
ered will be left modules.

Definition 2.1. Let M be a D-module. We say that a filtration U (i)×
(M) indexed by Z is a good V (i)-filtration if there exists a presentation M = Dr

N
as a quotient by a left submodule N of Dr, and a weight vector m such that
U

(i)
� (M) = π(V (i)[m]�(Dr)) where π is the projection Dr → M.

§2.1. V -multifiltrations and V Γ-multifiltrations

Let us fix an integer k such that 1 ≤ k ≤ n.
For each s = (s1, . . . , sk) ∈ Zk, we shall denote Vs(D) =

⋂k
i=1 V

(i)
si (D).

The family {Vs(D)}s∈Zk defines a multi-filtration on the ring D. To simplify
we shall say that V•(D) is a k-filtration on D or even, if no confusion is possible,
a filtration on D.

Let us consider a rational simplicial cone Γ in the first quadrant of the
dual space (Qk)∗ = HomQ(Qk,Q). We denote by Γ̌ the dual cone of Γ, i.e.

Γ̌ = {a ∈ Qk | γ(a) ≥ 0, ∀γ ∈ Γ}.
We associate with such a cone Γ the affine variety, denoted by SΓ, with coordi-
nate ring equal to C[Γ̌ ∩Zk]. We will denote AΓ = C[Γ̌∩Zk] and A = C[Nk].
We denote by L(Γ) the set of primitive elements in the 1-skeleton of Γ.

The multifiltration V Γ on D is defined as follows: For each s ∈ Zk we
define

V Γ
s (D) =

∑
σ∈Zk |L(σ)≤L(s);∀L∈L(Γ)

Vσ(D).

Notice that the sum is indexed by σ ∈ s − Γ̌ and that we have the inclusion
Vs(D) ⊂ V Γ

s (D). The family V Γ
• (D) is a multifiltration of the ring D, indexed

by s ∈ Zk. This means that:

V Γ
s (D).V Γ

s′ (D) ⊂ V Γ
s+s′(D) and

⋃
V Γ

s (D) = D.

We may define, in a similar way to the case of one filtration, the notion
of a free multi-filtered module and that of a good multifiltration of a finitely
generated D-module M. For that purpose we chose a shift multivector n =
(n(1), . . . , n(r)) ∈ (Zk)r called also a shift matrix, with columns n(i) ∈ Zk, and
a presentation M = Dr

N of M.
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Definition 2.2. The multifiltered free module associated with n is the
module Dr endowed with the multifiltration indexed by s ∈ Zk, and defined
as:

V [n]s(Dr) =
r⊕

i=1

Vs−n(i)(D)

Definition 2.3. A good multifiltration of M, is a filtration indexed by
s ∈ Zk, of the type

Us(M) = π(V [n]s(Dr)) =
V [n]s(Dr) + N

N
for some presentation π : Dr → M of M.

In the obvious sense these multifiltrations are compatible with the multifil-
tered structure on the ring D. Remark that the i-th generator ei of Dr is then
of multidegree n(i) ∈ Zk. We may also endow N with the induced filtration
Us(N ) = V [n]s(Dr) ∩ N , so that we also have

Us(M) =
V [n]s(Dr)

Us(N )
.

We may observe that the multifiltration on the free module Dr is defined
as the intersection of the V (i)-filtration with respect to the row vectors of n,
ni = (n(1)

i , . . . , n
(r)
i ) ∈ Zr, that is

V [n]s(Dr) = V (1)[n1]s1(Dr) ∩ · · · ∩ V (k)[nk]sk
(Dr),

but the analogue for M, with respect to the good V (i)-filtrations as defined in
Definition 2.1 is not true since the inclusion:

Us(M) =
V (1)[n1]s1(Dr) ∩ · · · ∩ V (k)[nk]sk

(Dr) + N
N

⊂
k⋂

i=1

V (i)[ni]si
(Dr) + N
N =

k⋂
i=1

U (i)
si

(M)

may be strict.
For each good filtration there is an associated Γ-filtration compatible with

the multifiltration V Γ
• (D) on D :

For each s ∈ Zk let us consider

UΓ
s (M) =

∑
σ∈Zk |L(σ)≤L(s);∀L∈L(Γ)

Uσ(M).
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The multifiltration UΓ
• (M) is a good filtration with respect to V Γ

• (D).
The goodness means here that we can verify, with the presentation of M

as above, that UΓ
s (M) = π(V [n]Γs (Dr)), is still the quotient of a filtration on

the free module Dr which is a direct sum of convenient shifts of the filtration
V Γ
• on the ring D. More precisely the involved filtration V [n]Γ• is defined by

V [n]Γs (Dr) =
∑

σ∈Zk |L(σ)≤L(s);∀L∈L(Γ)

V [n]σ(Dr)

(
=

r⊕
i=1

(V Γ
s−n(i)(D)

)

and it remains to be remarked that:

UΓ
s (M) =

∑
σ∈Zk |L(σ)≤L(s);∀L∈L(Γ)

Uσ(M)

=
∑

σ∈Zk |L(σ)≤L(s);∀L∈L(Γ)

V [n]σ(Dr) + N
N =

V [n]Γs (Dr) + N
N

so that the goodness of the filtration U•(M) implies the goodness of UΓ
• (M).

§2.2. Rees rings and Rees modules

2.2.1. Definition of Rees rings RV (D), RΓ(D) and of related Rees
modules The Rees ring associated with the V -multifiltration on D is de-
fined by:

RV (D) =
⊕
s∈Zk

Vs(D)us

where u = (u1, . . . , uk) are variables and the product in the Rees ring is
induced by the natural product in the Laurent polynomial ring D[u±1] =
D[u1, u

−1
1 , . . . , uk, u−1

k ].
By definition the Rees ring RV (D) is a graded C-algebra with values group

Zk, whose homogeneous elements are Pus for P ∈ Vs(D) and s ∈ Zk.
Similarly given a D-module M = Dr/N and a shift matrix n, we define

from the good filtrations V [n]s(Dr), and Us(M), the Rees modules

RV [n](Dr) =⊕s∈ZkV [n]s(Dr)us

RU (M) =
⊕
s∈Zk

Us(M)us.

Both have a natural structure of mutigraded left RV (D)-module and we shall
consider RU (M) as a sub-group of M[u±1], the Laurent polynomials with
coefficients in M.
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As N is a left submodule of Dr, we can also consider on N the induced
V -filtration:

Vs(N ) := N ∩ Vs[n](Dr)

for each s ∈ Zk as defined before (see 2.1). The abelian group

RV (N ) :=
⊕
s∈Zk

Vs(N )us

is in fact an homogeneous submodule of RV [n](Dr). The RV (D)-module
RU (M) is naturally isomorphic to the quotient RV [n](Dr)/RV (N ).

Definition 2.4. We call the module RU (M) the Rees module associ-
ated with the filtration U•(M).

Let us now consider the filtration V Γ
• (D) as in 2.1. Then the Rees ring

associated with this filtration is defined in a similar way as

RΓ(D) =
⊕
s∈Zk

V Γ
s (D)us ⊂ D[u±1]

the product being induced by the one of D[u±1].
If M = Dr

N is a finitely generated D-module and U•(M) is a good filtration
on M with respect to V•(D) then, for any cone Γ as in 2.1, the abelian group

RΓ(M) =
⊕
s∈Zk

UΓ
s (M)us ⊂ M[u±1]

is a left graded RΓ(D)-module.

Definition 2.5. We call the module RΓ(M) the Rees module associ-
ated with the filtration U•(M) and the cone Γ.

The fact that a filtration is good in the sense of previous Section 2.1 is
then equivalent to the fact that the Rees module of M is finitely generated over
RV (D). Similarly the goodness of UΓ

• (M) is equivalent to the fact that the
Rees module RΓ(M) as defined above, is finitely generated over RΓ(D). Since
RΓD is a Noetherian ring, this implies in particular an Artin type property:
If M′ ⊂ M is a submodule of a D-module M endowed with a good filtration
U•(M) then the induced filtration on M′, namely UΓ

• (M) ∩M′ is good.
The ring RΓ(D) contains as a subring the C-algebra AΓ = C[Γ̌ ∩ Zk] ⊂

C[u, u−1], all these rings being included in D[u, u−1].

Theorem 2.6. There is a fan E in (Qk)∗+ such that for each cone Γ ∈ E
the Rees module RΓ(M) is flat over AΓ.
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We will prove a more precise form of this result we in Section 4, see The-
orem 4.3, after having recalled in Section 3 the notion of an analytic standard
fan.

2.2.2. The fiber at 0 Let us denote by m the ideal of RV (D) generated
by (u1, . . . , uk). This is a two-sided ideal since it is generated by central ele-
ments. The fiber at zero of RV (D) (resp. of RV [n](Dr)) is by definition the
quotient ring (resp. the quotient module),

RV (D)
m

(
resp.

RV [n](Dr)
m.RV [n](Dr)

)
.

More generally the fiber at zero of RU (M) = RV [n](Dr)

RV (N ) is the quotient

RU (M)
mRU (M)

which is naturally isomorphic to the quotient

RV [n](Dr)
RV (N ) + m.RV [n](Dr)

.

Notice that the fiber at 0 of the module RU (M) can be zero for a non-zero
RU (M), as shown in the following example. Let us denote by I the principal
ideal of D generated by the differential operator P = 1 + x2

1∂1 and let us
suppose k ≥ 1. Then RV (I) is the principal ideal of RV (D) generated by
Pu0

1 = 1 + (x2
1∂1u

−1
1 )u1 and the fiber at zero of RV (D/I) is then zero since

RV (I)+m.RV (D) contains P − (x2
1∂1u

−1
1 )u1 = 1, so that it is equal to RV (D).

Similarly for any k-dimensional cone Γ the C-algebra AΓ = C[Γ̌∩Zk] has
a maximal ideal

mΓ = C[Γ̌ ∩ Zk \ {0}]
because Γ̌ is strictly convex. Then we define the fiber at zero of the Rees module
RΓ(M) as RΓ(M)

mΓRΓ(M) . As is explained in [9], this fiber is a module over the ring
RΓ(D)

mΓRΓ(D) 	 grΓD.

2.2.3. Description of Rees rings RV (D) and RΓ(D) It is useful to
describe the Rees ring RV = RV (D) (resp. RΓ(D)) as subrings of the ring of
relative differential operators DCn×Ck/Ck (resp DCn×SΓ/SΓ). This is nothing
but an explicit version of the interpretation of a Rees ring as a ring of relative
differential operators on the deformation of Y ×0Γ to its normal cone in Cn×SΓ,

see [9]. We denote by SΓ the algebraic variety associated to the ring AΓ.
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Let us define first

A = C{X ′U, X ′′}[X ′, U, ∆] = C{X1U1, . . . , XkUk, Xk+1, . . . , Xn}[X ′, U, ∆]

where U = (U1, . . . , Uk), X ′ = (X1, . . . , Xk), X ′′ = (Xk+1, . . . , Xn), X =
(X1, . . . , Xn), ∆ = (∆1, . . . , ∆n) are new variables satisfying the following re-
lations, for i = 1, . . . , n:

∆iXi = Xi∆i + 1

the other relations being trivial.
The ring A is graded with Zk as a values group (we will say that A is a

Zk-graded ring), namely we have

A =
⊕
s∈Zk

As

where As is the set

As =

 ∑
α,β∈Nn;σ∈Nk

fαβσXα∆βUσ ∈ A
∣∣∣ fαβσ ∈ C{X ′U, X ′′}
σi + βi − αi = si; i = 1, . . . , k

 .

Proposition 2.7. There is an isomorphism of Zk-graded rings

i = iV : RV (D) → A
defined by :

• i(uj) = Uj for j = 1, . . . , k.

• i(xju
−1
j ) = Xj for j = 1, . . . , k and i(xj) = Xj for j = k + 1, . . . , n.

• i(∂juj) = ∆j for j = 1, . . . , k and i(∂j) = ∆j for j = k + 1, . . . , n.

Proof. It is clear that i is injective and that, by the formula i(xα∂βus) =
Xα∆β(Πk

i=1U
si+αi−βi

i ), i(Vs(D)us) = As for all s ∈ Zk .

Let us give now the same description for the ring RΓ(D). We shall do it in
the only case of interest for us, when the cone Γ is basic, which means that if
it is defined by k independent linear forms {L1, . . . , Lk} generating the lattice
Zk.

In this situation we are going to make a change of variables in order to
write AΓ as a polynomial ring.
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For any i we can write Li = (�i1, . . . , �ik) and we can suppose by a suitable
ordering of the linear forms Li that the determinant of the matrix L = (�ij)
equals 1.

Let us write L′ for the inverse matrix of L, then the columns {C1, . . . , Ck}
of L′ form a basis of the dual cone Γ̌.

The family uC1 , . . . , uCk generates the C-algebra AΓ = C[Γ̌ ∩ Zk]. Here
we write uCj = u

c1j

1 · · ·uckj

k where the cij ’s are the entries of the column Cj .
We will write Wi = UCi for i = 1, . . . , k. Similarly, we have Uj = WCj(L)

for j = 1, . . . , k where Cj(L) is the j − th column of the matrix L. In Section
4 we will only use the column Cj = Cj(L′).

Let us remark here that if k < n then we can still define W , the relationship
between W and U being exactly the same.

Proposition 2.8. The ring RΓ(D) is isomorphic to the subring of A′ =
C{X, W}[∆], consisting of all linear combinations with polynomials coefficients
of convergent power series with respect to the family of monomials XiUi =
XiW

Ci(L) for i = 1, . . . , k, and Xk+1, . . . , Xn.

Proof. A monomial Xα∆βUs−β+α can be written in terms of X, ∆, W as
Xα∆βWL(s−β+α). All that remains to be done is to enumerate the monomials
derived from the power series variables x1, . . . , xn

The ring AΓ is identified to the subring C[W ](= C[W1, . . . , Wk]) ⊂ RΓ(D)
and this inclusion is flat. We shall prove this statement in 4.2.

The fiber of RΓ(D) at the origin is by definition RΓ(D)⊗C[W ]
C[W ]
(W ) which

is isomorphic to a Weyl algebra, namely the Weyl algebra C[X, ∆]. This
Weyl algebra is endowed with a Zk-graduation by weight(Xi) = −εi and
weight(∆i) = εi for i = 1, . . . , k where εi is the vector in Zk whose j − th

coordinate is δij .

§2.3. Multifiltrations and Bernstein-Sato functional equations

Let us detail the functional equation problem raised in the introduction. It
has already been remarked that it gives rise to a situation where a multifiltration
along transverse hypersurfaces comes out in a natural way. These equations
are of the type

P (λ)fλ = b(λ)fλ1+1
1 · · · fλk+1

k

where λ = (λ1, . . . , λk) is a k-uple of indeterminates, and f = (f1, . . . , fk) is a
k-uple of analytic functions on X. They are naturally written in the module
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OX

[
λ1, . . . , λk, 1

f1···fk

]
fλ, endowed with a structure of a DX [λ]-module, which

can be extended in a way discovered by B. Malgrange to a DX×Ck -module
structure with an action of the 2k variables tj , ∂tj

such that λj = −∂tj
tj . The

module M that we have then to consider is the module generated over the
ring DX×Ck by fλ, with its naturally defined multifiltration V•(DX×Ck) · fλ

along the hypersurfaces t1 = 0, · · · , tk = 0. The proof of Sabbah in [9] can be
sketched as follows: let us define for any linear form L ∈ (Qk)� with positive
rational coefficients �j ≥ 0, a filtration of UL

• (M), associated with the linear
combination

∑
�jV

(j) of the basic V - filtrations (see notations at 2). Precisely
we set (see also Notation 3.1 below):

V L
• (DX×Ck) =

P =
∑

µ,ν∈Nk

Pµν(x, ∂x)tµ∂ν
t ,
∑

�i(νi − µi) ≤ •


UL
• (M) = V L

• (DX×Ck) · fλ

Then the existence of a functional equation, in which b(λ) is a product of affine
forms L(λ) + c comes out from the following three steps:

1) There are Bernstein-Sato polynomials bL(λ), relative to each L, with
functional equations

bL(λ)fλ ∈ V L
<0(DX×Ck) · fλ.

2) The saturated filtration

Us(M) =
⋂

L∈(Qk)�

UL
L(s)(M)

can be defined by using only a finite number of fixed linear forms.
3) The saturated filtration is good which is equivalent to the existence of

a k-uple of integers κ, such that

∀s ∈ Nk, Us(M) ⊂ Us(M) ⊂ Us+κ(M).

It is step 2) which, in the proof in [9], makes an essential use of the notion
of an adapted fan, whose existence is proved in this paper, see Theorem 2.6.
In Bahloul’s paper [4], this step is made by constructive methods which do not
use the flatness property.
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§3. The Analytic Standard Fan

In this section we will summarize the main results of [3]. Since these results
are only given for a module D/I over D which is a quotient by an ideal we will
then show briefly how to adapt them to a module of the type Dr

N . Let us
remark that the fan used in this paper is obtained by a restriction of the fan
in [3] to a subset of linear forms of the set U defined below, namely the linear
combinations of the filtrations V (i).

Let U be the set of linear forms Λ : R2n → R, Λ(α, β) =
∑n

i=1 eiαi +∑n
i=1 fiβi with ei + fi ≥ 0 and ei ≤ 0 for i = 1, . . . , n. If

P =
∑
αβ

pαβxα∂β

is an element in D we define ordΛ(P ) -the Λ-order of P - to be the maximal
value of Λ(α, β) for α, β such that pαβ �= 0.

The Λ-filtration FΛ,•(D) is defined by

FΛ,� = FΛ,�(D) = {P ∈ D | ordΛ(P ) ≤ �}

for any � ∈ R. We will write FΛ,<�(D) := {P ∈ D | ordΛ(P ) < �}. If ei =
0, fi = 1 for i = 1, . . . , n the corresponding Λ-filtration is nothing but the
usual filtration by the order of differential operators. We shall denote it simply
F•(D).

Let us recall that we have fixed k ≤ n. For each linear form L ∈ (Qk)∗+
(i.e. the coefficients of L are non-negative) we denote by L̃ the linear form on
R2n defined by L̃(α, β) = L(β) − L(α) where L(α1, . . . , αn) = L(α1, . . . , αk).

Notation 3.1. We define the filtration V L
• on D, indexed by the set of

values L(Zk), as :

V L
� (D) = FeL,�(D) = {P ∈ D | ord

eL(P ) ≤ �}

Let us fix L ∈ (Qk)∗+. The graded ring associated to the filtration V L = FeL

on D, is by definition

greL(D) =
⊕

�∈eL(Z2n)

FeL,�

FeL,<�

.

If no confusion is possible we shall write simply ordL and grL(D) instead of
ord

eL and greL(D).
The graded ring grL(D) is a ring of differential operators and its structure

is the following: suppose the coefficients of the form L are (e1, . . . , ek) and
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suppose we also have ordered the variables to have ei > 0 for 1 ≤ i ≤ � for
some � ≤ k.

Then the graded ring grL(D) is isomorphic to the ring

C{x�+1, . . . , xn}[x1, . . . , x�, ∂1, . . . , ∂n].

In this ring the graduation is induced by the weights weight(xi) = −ei,

weight(∂i) = ei for 1 ≤ i ≤ � and weight(xj) = weight(∂j) = 0 otherwise.
There is only a finite number of types of these rings, one for each partition of
{1, . . . , k} into two sets.

Notation 3.2. For each P ∈ D and for each d ∈ L(Zk) with ordL(P ) ≤
d we denote by σL

d (P )-the L-symbol of P of order d- the class of P in FeL,d/

FeL,<d. The principal symbol of P is by definition σL(P ) = σL
d (P ) if d =

ordL(P ). For P, Q ∈ D we have σL(PQ) = σL(P )σL(Q). For any left ideal
I in D we denote by grL(I) the graded ideal of grL(D) generated by the set
{σL(P ) |P ∈ I}. We set σL(0) = 0.

We denote by D[t] the C-algebra O[∂, t] = C{x1, . . . , xn}[∂1, . . . , ∂n, t]
with relations (t being a new variable)

• [t, a] = [t, ∂i] = [a, b] = [∂i, ∂j ] = 0,

• [∂i, a] = ∂a
∂xi

t,

for a, b ∈ O and i = 1, . . . , n.
The ring D[t] is isomorphic to the Rees ring associated with the order

filtration F• on D. Since this Rees ring is by definition

RF (D) =
⊕
�∈Z

F�(D)v� ⊂ D[v] = D ⊗C C[v]

for a new variable v, we can define an isomorphism of graded rings ι : D[t] →
RF (D) by ι(a) = a = av0, ι(∂j) = ∂jv, and ι(t) = 1v = v.

The natural graded structure of RF (D) can be translated on D[t]. An
homogeneous element of degree d ∈ Z in D[t] is nothing but an expression∑

�+|β|=d

a� β∂βt�

for some a� β ∈ O.

For P =
∑

β pβ(x)∂β ∈ D, the element Pvord(P ) ∈ RF (D) is called the
homogenization of P , where ord(P ) is the usual order of P . It is useful to see
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Pvord(P ) as an element of D[t]. The homogenization of P is then denoted by
h(P ) and we have

h(P ) =
∑

β

pβ(x)∂βtd−|β|

for d = ord(P ) the usual order of P .
For each linear form L ∈ (Qk)∗+ we can define in a natural way a filtration

V L
• (D[t]) on D[t], the L-order -denoted ordL(R)- of an element

R =
∑
�αβ

r�αβxα∂βt�

being the maximal value of L(β)−L(α) for r�αβ �= 0. The associated graded ring
is denoted by grL(D[t]). We have a natural ring isomorphism from grL(D[t])
onto grL(D)[t], where with the notations as before we have [∂i, xj ] = δijt, δij

being the Kronecker symbol.
For each left ideal I in D we denote by h(I) the left homogeneous ideal of

D[t] generated by {h(P ) |P ∈ I}. As in the case of D, we denote by grL(h(I))
the homogeneous ideal -in grL(D[t])- generated by the set of principal symbols
σL(G) of the elements G in h(I).

The main result of [3] is the following

Theorem 3.3. Let I be a non-zero left ideal of D and let h(I) be the
associated homogenized ideal in D[t]. Then there exists a partition E of U into
convex rational polyhedral cones such that for any Γ ∈ E the ideals grΛ(h(I))
and grΛ(I) do not depend on Λ ∈ Γ.

Let us sketch the generalization of this result to the case of a D-module
M = Dr

N given by a general presentation, and endowed with a good multifil-
tration

Us(M) =
Vs[n](Dr)

Vs(N )
=

Vs[n](Dr) + N
N

associated with a multivector shift n ∈ (Zk)r.
Here we have to restrict the set U to the set of linear forms L̃, indexed by

L in (Qk)∗+, as defined above:

L̃(α, β) = L(β) − L(α).

Let us recall Notation 3.1 V L
L(s)(D) = FeL,L(s)(D), which we shall extend

to any free multifiltered module.
Precisely, given a shift multivector n = (n(1), . . . , n(r)) ∈ (Zk)r we define a

family, indexed by L ∈ (Qk)∗+, of L(Zk)-filtrations on the module M as follows:
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V L
� [L(n)](Dr) =

r⊕
i=1

V L
�−�i

(D)

where �i = L(n(i)) for i = 1, . . . , r and L(n) = (�1, . . . , �r).

UL
� (M) =

V L
� [L(n)](Dr)

V L
� (N )

=
V L

� [L(n)](Dr) + N
N .

We again have the notion of a graded associated module

grL(M) =
⊕

�∈L(Zk)

UL
� (M)

UL
<�(M)

=
grL(Dr)
grL(N )

.

We can endow the module D[t]r with a filtration of a filtered D[t]-module
by

V L
� [L(n)](D[t]r) =

r⊕
i=1

V L
�−�i

(D[t])

with the same notations as before, and the homogeneization of (P1, . . . , Pr) ∈
Dr is just

(td−d1h(P1), . . . , td−drh(Pr))

where di is the usual order of the operator Pi and d = max di.
We can now state the straightforward generalization of the main theorem

in [3].

Theorem 3.4. Let N be a non-zero left submodule of Dr endowed with
a good filtration, and let h(N ) be the associated homogenized submodule in
D[t]r. Then there exists a partition E of (Qk)∗+ into convex rational polyhedral
cones such that for any Γ ∈ E, the submodules grL(h(N )) and grL(N ) do not
depend on L ∈ Γ.

The proof of the theorem is identical to the one in [3], since the main
ingredient, which is the division theorem, can be adapted to the module case.
See for example [6], where an even more general situation (with shifts for the
variables t) is treated. In particular we still have on every cone of the partition
E the notion of a reduced Gröbner basis of h(N ), valid for any linear form L

in the cone.
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§4. Analytic Standard Fan and Flatness

After Herrmann-Orbanz [7] we have the following criterion for flatness of
a module M over a commutative ring R, both being graded by a commutative
group G:

M =
⊕
g∈G

Mg, R =
⊕
g∈G

Rg

Theorem 4.1. The (not necessarily of finite type) graded R-module M

is R-flat if and only if for any graded ideal H ⊂ R, we have:

TorR
1 (M, R/H) = 0.

We will apply this criterion to the Rees module

RΓ(M) =
⊕
s∈Zk

UΓ
s (M)us

graded by the group Zk, seen as a module over the graded ring RΓ(D), and
therefore also as a module over the graded subring R = C[W ] = C[W1, . . . , Wk]
(see 2.2).

Note that for any a ∈ Nk, C · W a, is a homogeneous subspace of R

generated by a non zero element of Zk-degree L′a, since with the notation of
Section 2.2.3 W a = uL′a. Therefore the graded ideals of R we have to take into
consideration are the monomial ideals of the polynomial ring R.

We now deal with the case of M = Dr

N . If we endow N and M with the
induced and quotient filtration, from a V•[n]-filtration on the free module Dr,
we have the exact sequence:

(S) 0 −→ RΓ(N ) −→ RΓ(Dr) −→ RΓ(M) −→ 0.

Lemma 4.2. The ring RΓ(D) is flat over C[W ].

Proof. By the theorem of Herrmann-Orbanz, it is sufficient to prove that

Tor
C[W ]
1 (RΓ(D),C[W ]/H) = 0

for any homogeneous ideal H. If we consider the tensor product by RΓ(D) of
the exact sequence

0 −→ H −→ C[W ] −→ C[W ]/H −→ 0,
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we see that this vanishing result is equivalent to the injectivity of the mapping

H ⊗RΓ(D) −→ RΓ(D).

Since the ideal H is multihomogeneous, it is a monomial ideal and we
may consider an element Q = W a1 ⊗ Q1 + · · · + W ar ⊗ Qr of the kernel of
this map. Let Qi =

∑
qi,α,β,�X

α∆βW � be the development of Qi in the ring
RΓ(D) identified to the subring of A′ described in Proposition 2.8.

The fact that Q is in the kernel can be expressed by the equation

(�)
r∑

i=1

W aiQi = 0.

Let us consider the partition of
⋃

(ai + Nk) ⊂ Nk given by:

∆1 = a1 + Nk , ∆i = (ai + Nk) \ (∆1 ∪ · · · ∪ ∆i−1), for i = 2, . . . , r

We may write Qi =
∑i

p=1 Qi,p, with:

Qi,p =
∑

�+ai∈∆p

qi,α,β,�X
α∆βW �,

operators having disjoint (W )-Newton diagrams. We set ai + vi,p = ap + wi,p,
with vi,p, wi,p ∈ Nk minimal for the componentwise partial ordering, and then
we may write Qi,p = W vi,pRi,p with Ri,p ∈ D, and we may also remark that
W aiQi,p is the part of the operator W aiQi, whose Newton diagram is contained
in ∆p. According to the description in the Proposition 2.8, this is sufficient to
guarantee that Qi,p, Ri,p ∈ RΓ(D) ⊂ A′ so that the equation (�) splits inside
the ring RΓ(D) into:

(�)p

r∑
i=p

W aiQi,p = W ap

r∑
i=p

Wwi,pRi,p = 0 for p = 1, . . . , r.

This finally implies the desired result by the following calculation:

Q =
r∑

i=1

W ai ⊗
(

i∑
p=1

W vi,pRi,p

)
=

r∑
p=1

r∑
i=p

W ai+vi,p ⊗ Ri,p

=
r∑

p=1

r∑
i=p

W ap+wi,p ⊗ Ri,p =
r∑

p=1

W ap ⊗
 r∑

i=p

Wwi,pRi,p

 = 0
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By the theorem of Herrmann-Orbanz, the flatness of RΓ(M) — if Γ is
included in a cone of the analytic fan of h(N ) — is a consequence of the
equality

Tor
C[W ]
1 (RΓ(M),C[W ]/H) = 0

for any homogeneous, that is monomial, ideal H ⊂ C[W ].
Because of the above lemma, and of the exact sequence (S), this Tor

module appears as the kernel of the map:

C[W ]/H ⊗C[W ] RΓ(N ) =
RΓ(N )

H · RΓ(N )
−→ RΓ(Dr)

H · RΓ(Dr)

and we will prove that it is injective.
The injectivity means that H · RΓ(N ) = H · RΓ(Dr) ∩ RΓ(N ) for any

monomial ideal H =
∑�

i=1 C[W ]W ai . The inclusion H ·RΓ(N ) ⊂ H ·RΓ(Dr)∩
RΓ(N ) is obvious.

Theorem 4.3. Let Γ be a cone included in the closure of a cone of the
analytic standard fan of h(N ). Then RΓ(M) is flat over AΓ = C[W ].

Proof. We have to prove the inclusion H · RΓ(N ) ⊃ H · RΓ(Dr) ∩RΓ(N )
for any monomial ideal H in C[W ]. It is enough to treat the case where H

is generated by a set of variables {Wj1 , . . . , Wjp
} for some J = {j1, . . . , jp} ⊂

{1, . . . , k}. We denote by WJ the ideal generated by {Wj1 , . . . , Wjp
} and we

call it a coordinate ideal. This is due to the two following lemmata.

Lemma 4.4. Let H1 ⊂ H2 ⊂ C[W ] be two ideals and M a C[W ]-
module such that

Tor
C[W ]
1 (M,C[W ]/H2) = Tor

C[W ]
1 (M, H2/H1) = 0

then Tor
C[W ]
1 (M,C[W ]/H1) = 0.

Lemma 4.5. Let H be a monomial ideal in C[W ] = C[W1, . . . , Wk].
Then there exists a sequence of monomial ideals

H = H0 ⊂ H1 ⊂ · · · ⊂ Hr = C[W ]

such that for any i the quotient Hi+1/Hi is isomorphic to C[W ]/WJ(i) for some
J(i) ⊂ {1, . . . , k}.

Proof. By noetherianity of C[W ] it is sufficient to construct H1 = H0 +
C[W ]m where m is a monomial in C[W ] such that m �∈ H0 and (H0 : m) is
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some coordinate ideal WJ . In the artinian case just take an element in the
socle and in general use an induction on the dimension of C[W ]/H.

So, in order to prove Theorem 4.3 it is sufficient to treat the case H

generated by {W1, . . . , Wp} for any p ≤ k. We have (see 2.2.3) Wi = UCi

for i = 1, . . . , k where Ci ∈ Zk is the i-th column of the matrix L′. Since
the considered submodules of RΓ(Dr) are V•[n]-homogeneous, it is sufficient to
prove that any homogeneous element Qus ∈ H · RΓ(Dr) ∩ RΓ(N ) belongs to
H ·RΓ(N ). As H ·RΓ(Dr) is the submodule

∑
uCiRΓ(Dr), the vector-operator

Q, which belongs to N , can be written Q =
∑p

i=1 Qi for some Qi ∈ V Γ
s−Ci

(Dr).
For any i, j = 1, . . . , p we have (see Notation 3.2):

ordLi(Qj) ≤ Li(s) − δij .

σLi

Li(s)

∑
j

Qj

 = σLi

Li(s)

∑
j �=i

Qj

 .

There exists a family �, �1, . . . , �p of non-negative integer numbers such
that

t�h(Q) =
∑

i

t�ih(Qi).

Let us consider H1, . . . , Hq a simultaneous reduced L-standard basis of
h(N ) for any L in Γ. The existence of such a simultaneous L-standard basis
is a consequence of the inclusion of Γ in the closure of a cone of the analytic
standard fan of h(N ) (see the proof of [3, Th. 20]). By the analytic division
theorem in D[t] (see [3, Th. 7], and [6, Th. 4.1.]) we can write

t�h(Q) =
q∑

m=1

AmHm

for some F -homogeneous elements Aj ∈ D[t].
For an element B =

∑
αβi bαβix

α∂βei in Dr we denote by NV (B) its V•[n]-
Newton diagram. By definition this is the subset of Zk defined by:

NV (B) = {(β1 − α1 + n
(i)
1 , . . . , βk − αk + n

(i)
k ) ∈ Zk | bαβi �= 0}.

If no confusion is possible we shall denote β−α+n(i) = (β1−α1+n
(i)
1 , . . . , βk−

αk + n
(i)
k ). We have an analogous definition for the V•[n]-Newton diagram of

an element in D[t]r.
We have

NV (t�h(Q)) = NV (Q) ⊂
p⋃

i=1

((s − Ci) − Γ̌).
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Since the operators Hm are elements of an L-standard basis for any L ∈ Γ we
have NV (Hm) ⊂ exp(Hm) − Γ̌, and therefore as a consequence of the division
theorem in D[t], we have N (Am) + V•[n](exp(Hm)) ⊂ ⋃p

i=1((s − Ci) − Γ̌) for
m = 1, . . . , q, where V•[n](α, β, i) if by definition β − α + n(i) and exp stands
for the privileged exponent with respect to a previously fixed well ordering on
N2n+1 × {1 · · · r} (see [6, pp. 174-175] for more details).

As a consequence of the division theorem we also have

σL1
L1(s)

(t�h(Q)) =
p∑

j=2

σL1
L1(s)

(t�jh(Qj))

=
q∑

m=1

σL1
L1(s)

(AmHm) =
q∑

m=1

am(x, ∂, t)σL1
d1,m

(Hm)

where d1,m = ordL1(Hm) and am(x, ∂, t) is L1-homogeneous. As the V•[n]-
Newton diagram of σL1

L1(s)
(t�h(Q)) =

∑p
j=2 σL1

L1(s)
(t�j h(Qj)) is included in⋃p

j=2((s − Cj) − Γ̌) we have, for any m = 1, . . . , q the inclusion

NV (am(x, ∂, t)) + V•[n](exp(Hm)) ⊂
p⋃

j=2

((s − Cj) − Γ̌).

Let us write

R1 = t�h(Q) −
q∑

m=1

am(x, ∂, t)Hm, and Q′
1 = (R1)|t=1.

We have:

ordL1(R1) ≤ L1(s) − 1,

ordLj (R1) ≤ Lj(s), j = 2, . . . , p,

and we can decompose each am(x, ∂, t) into a sum

am(x, ∂, t) =
p∑

j=2

Amj

such that NV (Amj) + V•[n](exp(Hm)) ⊂ ((s − Cj) − Γ̌) for m = 1, . . . , q and
j = 2, . . . , p.

Let us write Rj =
∑q

m=1 AmjHm ∈ h(N ) and Q′
j = (Rj)|t=1 ∈ N for

j = 2, . . . , p.
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We see Q′
1 = Q−∑p

j=2 Q′
j ∈ N . We have Q′

1 ∈ V Γ
s−C1

(N ) by the properties
of the orders ordLj (R1), and for i = 2, . . . , k we have Q′

i ∈ V Γ
s−Ci

(N ), by the
properties of the V•[n]-Newton diagram of the Amj . Therefore we can write

Qus = (R1)|t=1 = Q′
1u

s−C1uC1 + · · · + Q′
pu

s−CpuCp ∈ HRΓ(N ).

That ends the proof.
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