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Motion of Nonadmissible Convex Polygons by
Crystalline Curvature

By

Shigetoshi Yazaki∗

Abstract

Behavior of convex solution polygons to a general crystalline motion is investi-
gated. A polygon is called admissible if the set of its normal angles equals that of
the Wulff shape. We prove that if the initial polygon is not an admissible polygon,
then all edges disappear simultaneously, or edge disappearing occurs at most finitely
many instants and eventually a convex solution polygon becomes an admissible con-
vex polygon. In the latter case, the normal angle of disappearing edge does not belong
to the set of the normal angles of the Wulff shape. We also show five typical examples
of this motion.

§1. Introduction and a Main Result

We consider an evolution equation of a closed convex polygon P(t) in the
plane R2:

(1.1) vj = g

(
θj ,

lf (θj)
dj

)

at time t with the normal angle of the j-th edge being θj ∈ S1 = R/2πZ

(numbered j = 0, 1, . . . counterclockwise). Here vj = vj(t) denotes the normal

Communicated by H. Okamoto. Received March 28, 2005. Revised March 8, 2006.
2000 Mathematics Subject Classification(s): Primary 34A34, 34K25; Secondary 39A12,
53A04, 74N05.
Key words: admissible polygon, crystalline curvature, the Wulff shape, crystalline mo-
tion.
The author is partially supported by Grant-in-Aid for Encouragement of Young Scientists
No. 15740073 and No. 17740063.

∗Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki
889-2192, Japan.
e-mail: yazaki@cc.miyazaki-u.ac.jp

c© 2007 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



�

�

�

�

�

�

�

�

156 Shigetoshi Yazaki

velocity of the j-th edge of P(t) in the direction of the inward unit normal
nj = −t(cos θj , sin θj) and dj = dj(t) is the length of the j-th edge. The
meaning of lf and g are as follows: We assume that an interfacial energy
density σ is defined on P(t) and that σ is a convex function on R2 and satisfies
σ(r cos ν, r sin ν) = rf(ν) (r ≥ 0, ν ∈ S1) by a positive function f ∈ C(S1). In
the present paper, we consider only those σ where the Wulff shape of σ, defined
as Wf =

⋂
ν∈S1{(x, y) ∈ R2 |x cos ν + y sin ν ≤ f(ν)}, is a convex polygon. In

this case, σ is called crystalline energy and the Wulff shape becomes

Wf =
⋂

0≤j<n

{
(x, y) ∈ R2

∣∣ x cos νj + y sin νj ≤ f(νj)
}

,

where νj is the normal angle of the j-th edge of n-sided polygon Wf . Let the
set of the normal angles of Wf be

Θf = {ν0 < ν1 < · · · < νn−1 < ν0 + 2π} .

Since Wf is convex, νj−νj−1 < π holds for all j. In (1.1), lf (θj) is the (positive)
length of the j-th edge of Wf if θj ∈ Θf and lf (θj) = 0 if θj �∈ Θf . We assume
that

(A0)




the function g(θj , λ) is a given positive function for λ > 0,
g(θj , λ) is monotone nondecreasing in λ, and
limλ→∞ g(θj , λ) = ∞ and g(θj , 0) ≡ 0 hold for all θj .

A typical example is g(θj , λ) = a(θj)λα with a positive function a(·) and a
parameter α > 0. Moreover, we assume that

(A1) the map λ �→ g(θj , λ) (θj ∈ Θ0) is locally Lipschitz continuous on R+.

We will use (A1) in order to prove the time local existence of a solution polygon
(see Lemma 3.1). Under these assumptions, if the j-th normal angle θj of P(t)
belongs to Θf , then vj > 0, and if θj �∈ Θf , then vj = 0. The second variable
lf (θj)/dj (in g) is called crystalline curvature.

A polygon is called an admissible polygon if its set of normal angles equals
Θf . In this paper, if the normal angle of an edge belongs to Θf , then we call
the edge admissible edge, and if not, we call the edge nonadmissible. See Figure
1.

In the physical context, the region enclosed by the polygon P represents
the crystal. Motion of admissible polygons or crystal by the evolution equation
(1.1) is called crystalline motion or motion by crystalline curvature. See the
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Figure 1. The Wulff shape Wf (left); admissible polygon P1 (middle); nonadmissible
polygon P2 (right). The set of the normal angles of Pi (i = 1, 2), say Θi, satisfy
Θ1 = Θf and Θ2 ) Θf , respectively. In the right figure, for j = 2, 4, 7, the j-th edge
is nonadmissible since θj �∈ Θf .

pioneer works by Angenent and Gurtin [2], Taylor [14, 15], and Taylor, Cahn
and Handwerker [16], Gurtin [5] for the background story of this motion.

Let Θ0 be a set of normal angles of the initial convex polygon P(0) = P0.
Our aim in the present paper is to show the behavior of a solution polygon in
the case where

(A2) Θ0 � Θf ,

i.e., P0 is nonadmissible. The main result is as follows.

Theorem 1.1. Assume (A0), (A1) and (A2). Then there exists a con-
stant t1 > 0 and a unique nonadmissible convex solution polygon P(t) of
(1.1) on the interval t ∈ [0, t1) with the initial nonadmissible convex polygon
P(0) = P0. Let Θt be a set of normal angles of a solution polygon P(t). Then
one and only one of the following three cases holds as t tends to t1:

(1) P(t) converges to an admissible convex polygon P(t1):

Θt � Θt1 = Θf (t ∈ [0, t1));

(2) P(t) converges to a nonadmissible convex polygon P(t1):

Θt � Θt1 � Θf (t ∈ [0, t1));

(3) P(t) shrinks to a single point.
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This results say that no edges of a solution polygon P(t) disappear at
t ∈ [0, t1) starting with nonadmissible convex polygon P0. If some edges disap-
pear at time t1, then they are nonadmissible; or else if some admissible edges
disappear, then all edges disappear simultaneously. See Example 5 for case (3).

In the case (1), after the time t1, a solution polygon P(t) with initial ad-
missible polygon P(t1) evolves, while its admissibility is preserved, and even-
tually it shrinks to a single point (single point extinction phenomenon, PE in
short) or collapses to a lines segment with positive length (degenerate pinch-
ing phenomenon, DP in short) in a finite time, say T > t1, depending on the
growth condition of g(νj , λ) with respect to λ. No edges of P(t) disappear for
t ∈ [t1, T ). This result was proved by M.-H. Giga and Y. Giga [3]. Theorem
1.1 asserts that degenerate pinching does not occur without becoming an ad-
missible polygon. This is a contrast to the case where the initial polygon is
admissible. See Example 1 and Example 2 for cases (1) to PE and (1) to DP,
respectively. Andrews [1] showed a condition for an initial admissible polygon
to tend to a degenerate pinching. Moreover, Ishiwata and the author [12, 13]
showed that, in the case where g(νj , λ) = a(νj)λα with a positive function a(·)
and α ∈ (0, 1), the blow-up order of maxj vj is (T −t)−α in degenerate pinching
phenomenon under a monotonicity assumption on g. See also conjectures in
[6].

In the case (2), there exists t2 > t1 such that a solution polygon P(t)
with initial nonadmissible polygon P(t1) evolves until time t2 and the similar
three cases (as in Theorem 1.1) occur as t tends to t2. After the time t2,
even if case (1) is kept being selected, since number of edges is finite, edge
disappearing occurs at most finitely many instants 0 < t1 < · · · < tm and
eventually Θ0 � Θt1 � · · · � Θtm

= Θf holds. See Example 3 in case m = 2
and PE, and Example 4 in case m = 2 and DP.

In the next Section 2, we will present five examples of this motion. The
main theorem will be proved in the last section 3.

Recent progress of related research. Hontani, Giga, Giga and Deguchi [9]
constructed a selfsimilar expanding solution to a crystalline flow starting from
an arbitrary (nonconvex) polygonal curve (see also [4]). They called a polygonal
curve an essentially admissible crystal if its set of normal angles satisfies (A2).
If the initial curve is not necessarily an essentially admissible crystal (and is not
admissible), then there exists a corner of the curve which omit normal angles in
Θf . A reasonable way to solve a crystalline flow from such initial curve is that
one inserts zero-length edges into the curve at that corner. It is proved that
these edges agree with the initial data which is the limit of a unique selfsimilar
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expanding solution as time tends to +0. The similar strategy can be found in
[15, §2.2].

In the case where the initial polygonal curve is nonconvex, even if it is
admissible, the asymptotic behavior is not simple. For example, one can con-
struct nonconvex self-similar solutions [11, 8] (which means that PE occurs
without becoming convex), and explicit solutions which yield “whisker”-type
and split-type DP singularities [7, 8]. In [3], they showed that if PE and DP
(including self-intersection) do not occur, then the admissibility is preserved.
They also presented sufficient conditions of non-DP depending on the growth
rate of g or on the symmetry of Wf .

§2. Examples

We present five examples: Example 1, 2, Example 3, 4 and Example 5 are
typical examples of Theorem 1.1 (1), (2) and (3), respectively. In each figures,
time evolution of a solution polygon moves inward starting from the outermost
polygon to the inside. Throughout this paper we use the notation u̇(t) for
du(t)/dt.

A simple calculation shows that dj(t)’s satisfy a system of ordinary differ-
ential equations:
(2.1)
ḋj(t) = (cot(θj+1 − θj) + cot(θj − θj−1)) vj − vj+1

sin(θj+1 − θj)
− vj−1

sin(θj − θj−1)
.

Here θj ∈ Θt. See, e.g., Angenent and Gurtin [2, Fig. 10C] and Gurtin [5,
(12.29)].

Example 1 (PE in two stages: Θ0 � Θt1 = Θf ). Let g(θj , λ) = λ, and
let the Wulff shape be a square with Θf = {νj = πj/2 (j = 0, 1, 2, 3)} and
lf (νj) = 1 (∀j). See Figure 2 (left).

Figure 2. The Wulff square Wf (left); time evolution from P0 to P(t1) (middle);
time evolution from P(t1) to a single point (right).

Initial data and the first stage. Let P0 be a symmetric pentagon with
Θ0 = {θ0 = 0 < π/4 < π/2 < π < 3π/2} and d0(0) = d2(0), d3(0) = d4(0) =
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d0(0) + d1(0)/
√

2. See Figure 2 (the outermost pentagon in the middle). From
the symmetry and v1 = 0, evolution equations are ḋ0 = v0 − v3, ḋ1 = −2

√
2v0

and ḋ3 = −v0−v3. Here vi = 1/di (i = 0, 3). Put C(t) = d3(t)2 +2d0(t)d3(t)−
d0(t)2. Then Ċ(t) = −8 holds and we have solutions

d1(t) =
√

2(d3(t) − d0(t)), d3(t) = −d0(t) +
√

2d0(t)2 + C(0) − 8t.

Hence there exists a t1 > 0 satisfying C(0) = 8t1 + 2d0(t1)2, and it holds that
d1(t1) = 0, d0(t1) = d3(t1) > 0 and that Θt ≡ Θ0 for 0 ≤ t < t1. See Figure 2
(middle).

The final stage starts from an admissible square P(t1): Θt1 = Θf and
d0(t1) = di(t1) (i = 1, 2, 3) (renumbered). See Figure 2 (the outermost square
in the right). From the symmetry, an evolution equation is ḋ0 = −2v0 and
v0 = 1/d0. Then we have the exact solution d0(t) = 2

√
T − t (t1 ≤ t < T )

where T = t1 + d0(t1)2/4. A solution polygon shrinks to a single point as
t → T and Θt ≡ Θf holds for t1 ≤ t < T .

Example 2 (DP in two stages: Θ0 � Θt1 = Θf ). Let g(θj , λ) = λα

with α ∈ (0, 1), and let the Wulff shape be a square with Θf = {νj = π/4 +
πj/2 (j = 0, 1, 2, 3)} and lf (νj) = 1 (∀j). See Figure 3 (left).

Figure 3. The Wulff square Wf (left); time evolution from P0 to P(t1) (middle);
time evolution from P(t1) to a line segment with positive length (right).

Initial data and the first stage. Let P0 be a symmetric hexagon with Θ0 =
{θ0 = 0, θ1 = π/4, θ2 = 3π/4, θj = θj−3 +π (j = 3, 4, 5)} and dj(0) = dj−3(0)
(j = 3, 4, 5). Assume that d2(0) < d1(0). See Figure 3 (the outermost hexagon
in the middle). From the symmetry and v0 = 0, evolution equations are ḋ0 =
−√

2(v1 + v2), ḋ1 = v1 − v2 and ḋ2 = −v1 + v2. Here vi = d−α
i (i = 1, 2).

The last two evolution equations yield d1(t) + d2(t) = d1(0) + d2(0) = C0.
Then di(t) ≤ C0 (i = 1, 2). Hence ḋ0 ≤ −2

√
2C−α

0 and we have d0(t) ≤
d0(0) − 2

√
2C−α

0 t. From this inequality (or by Lemma 3.2 in general), there
exists a t1 ∈ (0, Cα

0 d0(0)/2
√

2] such that di(t) > 0 (∀i) holds for 0 ≤ t < t1
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and mini=0,1,2 di(t1) = 0 holds. From the assumption and the uniqueness of
solutions, we have d2(t) < d1(t) for any t. Then ḋ2 ≥ −v1 = −d−α

1 > −d−α
2 and

therefore d2(t1)1+α > d2(0)1+α−(1+α)t1 ≥ d2(0)1+α−(1+α)Cα
0 d0(0)/2

√
2 > 0

if d0(0) < 2
√

2d2(0)1+α/(1 + α)Cα
0 . Hence d0(t1) = 0 < d2(t1) < d1(t1) holds.

See Figure 3 (middle). Put µ = d2(t1)/d1(t1) < 1.
The final stage starts from an admissible rectangle P(t1): Θt1 = Θf and

d1(t1) = µd0(t1), di(t1) = di−2(t1) (i = 2, 3) (renumbered). See Figure 3 (the
outermost rectangle in the right). From the symmetry, evolution equations
are ḋ0 = −2v1, ḋ1 = −2v0 and vi = d−α

i (i = 0, 1). Since d0(t) > d1(t)
holds, there exists a T > t1 satisfying d0(T ) ≥ d1(T ) = 0, while we have
d0(t)1−α = d1(t)1−α+C1 with C1 = d0(t1)1−α(1−µ1−α) > 0. Hence degenerate
pinching occurs: d0(T ) = C

1/(1−α)
1 > 0 = d1(T ) holds at the final time T =

t1 +
1
2

∫ d1(t1)

0

(ξ1−α + C1)α/(1−α) dξ, and Θt ≡ Θf holds for t1 ≤ t < T . See

Figure 3 (right).

Example 3 (PE in three stages: Θ0 � Θt1 � Θt2 = Θf ). Let g(θj , λ)
= λα with α > 0, and let the Wulff shape be the same as in Example 1. See
Figure 4 (far left).

Figure 4. The Wulff square Wf (far left); time evolution from P0 to P(t1) (left);
time evolution from P(t1) to P(t2) (right); time evolution from P(t2) to a single point
(far right).

Initial data and the first stage. Let P0 be a symmetric octagon with Θ0 =
{θj = πj/4 (j = 0, 1, . . . , 7)} and d0(0) = di(0) (i = 2, 4, 6), d1(0) = d5(0),
d3(0) = d7(0). See Figure 4 (the outermost octagon in the left). Assume
d3(0) > d1(0). From the symmetry and v1 = v3 = 0, evolution equations are
ḋ0 = 2v0, ḋ1 = ḋ3 = −2

√
2v0 and v0 = d−α

0 . Then we have explicit solutions

d0(t) =
(
d0(0)α+1 + 2(α + 1)t

)1/(α+1)
, di(t) = di(0) +

√
2(d0(0) − d0(t))

for i = 1, 3 and 0 ≤ t < t1 = ((d0(0) + d1(0)/
√

2)α+1 − d0(0)α+1)/2(α + 1).
Therefore it holds that di(t) > 0 (∀i) for 0 ≤ t < t1, d0(t1) = d0(0)+d1(0)/

√
2 >
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0, d1(t1) = 0, d3(t1) = d3(0) − d1(0) > 0 and that Θt ≡ Θ0 for 0 ≤ t < t1.
The second stage. The initial polygon P(t1) is a symmetric hexagon with

Θt1 = {θ0 = 0 < π/2 < 3π/4 < π < 3π/2 < 7π/4} and d0(t1) = di(t1) (i =
1, 3, 4), d2(t1) = d5(t1) (renumbered). See Figure 4 (the outermost hexagon in
the right). From the symmetry and v2 = 0, evolution equations are ḋ0 = 0,
ḋ2 = −2

√
2v0 and v0 = d−α

0 . Then we have explicit solutions

d0(t) ≡ d0(t1), d2(t) =
2
√

2
d0(t1)α

(t2 − t) (t1 ≤ t < t2).

Here t2 = t1 + d0(t1)αd2(t1)/2
√

2. Hence it holds that d2(t2) = 0 and that
Θt ≡ Θt1 for t1 ≤ t < t2.

The final stage starts from an admissible square P(t2): Θt2 = Θf and
d0(t2) = di(t2) (i = 1, 2, 3). See Figure 4 (the outermost square in the far
right). From the symmetry, an evolution equation is ḋ0 = −2v0 and v0 = d−α

0

(renumbered). Then we have an explicit solution

d0(t) = (2(α + 1)(T − t))1/(α+1) (t2 ≤ t < T ).

Here T = t2 + d0(t2)α+1/2(α + 1). A solution polygon shrinks to a single point
as t → T and Θt ≡ Θf holds for t2 ≤ t < T .

Example 4 (DP in three stages: Θ0 � Θt1 � Θt2 = Θf ). Let g(θj , λ)
= λα with α ∈ (0, 1), and let the Wulff shape be the same as in Example 1.
See Figure 5 (far left).

Figure 5. The Wulff square Wf (far left); time evolution from P0 to P(t1) (left); time
evolution from P(t1) to P(t2) (right); time evolution from P(t2) to a line segment
with positive length (far right).

Initial data and the first stage. Let P0 be a symmetric octagon with Θ0 =
{θj = πj/4 (j = 0, 1, . . . , 7)} and di(0) = di+4(0) (i = 0, 1, 2, 3). See Fig-
ure 5 (left). Assume d2(0) > d0(0), d3(0) > d1(0). From the symmetry and
v1 = v3 = 0, evolution equations are ḋ0 = 2v0, ḋ1 = ḋ3 = −√

2(v0 + v2),
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ḋ2 = 2v2 and vi = d−α
i (i = 0, 2). Then solutions are written di(t) =(

di(0)α+1 + 2(α + 1)t
)1/(α+1) and dj(t) = dj(0) + (d0(0) + d2(0) − d0(t) −

d2(t))/
√

2 for i = 0, 2 and j = 1, 3. Then there exists a t1 > 0 such that d2(t1) >

d0(t1) ≥ d0(0) > 0 and d3(t1) > d1(t1) = 0 hold. Put µ = d2(t1)/d0(t1) > 1.
The second stage. The initial polygon P(t1) is a symmetric hexagon with

Θt1 = {θ0 = 0 < π/2 < 3π/4 < π < 3π/2 < 7π/4} and di(t1) = di+3(t1)
(i = 0, 1, 2), d1(t1) = µd0(t1) (renumbered). See Figure 5 (the outermost
hexagon in the right). From the symmetry and v2 = 0, evolution equations
are ḋ0 = −ḋ1 = v0 − v1, ḋ2 = −√

2(v0 + v1) and vi = d−α
i (i = 0, 1). Then

we have d0(t) + d1(t) = d0(0) + d1(0). Hence there exists a t2 > t1 such
that d2(t2) = 0 < d0(t2) < d1(t2) and Θt ≡ Θt1 for t1 ≤ t < t2 hold. Put
η = d1(t2)/d0(t2) > 1.

The final stage starts from an admissible rectangle P(t2): Θt2 = Θf

and d1(t2) = ηd0(t2), di(t2) = di−2(t2) (i = 2, 3). See Figure 5 (the outer-
most rectangle in the far right). From the symmetry, evolution equations are
ḋ0 = −2v1, ḋ1 = −2v0 and vi = d−α

i (i = 0, 1) (renumbered). Then we have
d1(t)1−α = d0(t)1−α + C0. Here C0 = (η1−α − 1)d0(t2) > 0 since α ∈ (0, 1).
Hence there exists a T > t2 such that a solution polygon collapses to a line
segment with the length d1(T ) = C

1/(1−α)
0 > 0 = d0(T ) and Θt ≡ Θf holds for

t2 ≤ t < T .

Example 5 (direct PE in case: 0 ∈ Θf , π �∈ Θf � Θ0 � 0, π). Let the
Wulff shape be a symmetric pentagon (circumscribed about the unit circle)
with Θf = {ν0 = 0, νj = πj/2 − π/4 (j = 1, 2, 3, 4)} and lf (ν0) = 2(

√
2 − 1),

lf (ν1) = lf (ν4) =
√

2, lf (ν2) = lf (ν3) = 2. See Figure 6 (left). Let a(·) be a
positive function satisfying a(ν0) = 4(2 +

√
2), a(ν1) = a(ν4) = 2(1 + 2

√
2),

a(ν2) = a(ν3) =
√

2, and let g(θj , λ) = a(θj)λ.

Figure 6. The Wulff pentagon Wf (left); time evolution from P0 to a single point
(right).

PE occurs directly. Let P0 be a symmetric hexagon with Θ0 = {θ0 =
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0, θ1 = π/4, θ2 = 3π/4, θj = θj−3 + π (j = 3, 4, 5)} and d0(0) = di(0)
(i = 1, 2, . . . , 5). See Figure 6 (the outermost hexagon in the right). From
the symmetry and v3 = 0, evolution equations are ḋ0 = 2(v0 − √

2v1), ḋ1 =
−√

2v0 + v1 − v2, ḋ2 = −v1 + v2, ḋ3 = −2
√

2v2. Here v0 = 8
√

2/d0, v1 = 2(4 +√
2)/d1, v2 = 2

√
2/d2. Then we have a solution d0(t) = di(t) (i = 1, 2, . . . , 5)

satisfying the evolution equation ḋ0 = −8/d0. Hence d0(t) = 4
√

t1 − t with
t1 = d0(0)2/16. This is a self-similar solution: A solution polygon shrinks to a
single point homothetically. See Figure 6 (right).

§3. Proof of Theorem 1.1

Combining (1.1) and (2.1), we obtain the local existence theorem from a
general theory.

Lemma 3.1. Assume (A1) and (A2). Then there is a constant t∗ > 0
and a unique convex solution polygon P(t) of (1.1) with a prescribed initial
convex polygon P(0) = P0 and the set of normal angles Θt ≡ Θ0 for t ∈ [0, t∗).

We will see that some edges disappear in a finite time. In what follows,
we assume (A0) additionally. Let L(t) be a total length of P(t):

L(t) =
∑

θj∈Θ0

dj(t) (t ∈ [0, t∗)).

From (2.1), we have

L̇(t) = −
∑

θj∈Θ0

γjvj = −
∑

θj∈Θf

γjvj (t ∈ [0, t∗)),

since vj = 0 for θj ∈ Θ0\Θf . Here

γj =
1 − cos(θj+1 − θj)

sin(θj+1 − θj)
+

1 − cos(θj − θj−1)
sin(θj − θj−1)

= tan
θj+1 − θj

2
+ tan

θj − θj−1

2
.

Note that 0 < θj − θj−1 < π holds by convexity of P(t) and then γj > 0 for
all j. Therefore L̇ ≤ 0 holds and we have L(t) ≤ L(0). Obviously, dj(t) ≤ L(t)
holds for all j. Since g(θj , λ) is monotone nondecreasing in λ, if θj ∈ Θf , then
g is bounded from below by a positive constant, say C0:

g

(
θj ,

lf (θj)
dj

)
≥ min

θk∈Θf

g

(
θk,

lf (θk)
dk

)
≥ min

θk∈Θf

g

(
θk,

lf (θk)
L(0)

)
= C0 > 0

(θj ∈ Θf ).
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Therefore there exist a t1 ≤ t∗ and a positive constant C1 satisfying

L̇(t) ≤ −nC0 min
θj∈Θf

γj = −C1 < 0 (t ∈ [0, t1)),

and then it holds that

min
θj∈Θ0

dj(t) ≤ L(t) ≤ L(0) − C1t (t ∈ [0, t1)).

Hence we have the following lemma.

Lemma 3.2. Assume (A0), (A1) and (A2). Then there exist a θk ∈ Θ0

and a t1 > 0 such that limt→t1 dk(t) = 0 and dj(t) > 0 hold for all θj ∈ Θ0

and t ∈ [0, t1). The limit limt→t1 dk(t) = 0 follows from a weaker condition
lim inft→t1 dk(t) = 0.

Theorem 1.1 follows from the following lemma.

Lemma 3.3. Assume (A0), (A1) and (A2). Let t1 be the same as in
Lemma 3.2. Put

J =
{

θj ∈ Θ0

∣∣∣∣ lim
t→t1

dj(t) = 0
}

.

If J �= Θ0, then J ⊆ Θ0\Θf holds.

Proof. One can represent J as a disjoint sum of Jk; namely J =
⊕

k Jk,
where Jk’s are maximal subsets having mk consecutive elements θj of the form

Jk = {θj ∈ J | j = jk, jk+1, . . . , jk + mk − 1} ,

with the boundary of Jk:

∂Jk = {θj | j = jk − 1, jk + mk} .

By the definition, mk ≥ 1 holds for each k. If J �= Θ0, then ∂Jk ⊆ Θ0\J , i.e.,
inf0<t<t1 dj(t) > 0 holds for θj ∈ ⊕

k ∂Jk.
Let Lj(t) be the straight line extending the j-th edge of P(t) for θj ∈ Θ0,

and let Bj(t) be the intersection point of Lj(t) and Lj−1(t), i.e., Bj(t) is the
j-th vertex of P(t). We denote p = jk − 1 and q = jk + mk for simplicity. By
the definition of Jk, vertices Bp+1(t), . . . , Bq(t) converge to a point, say B∗,
as t → t1:

B∗ ∈
⋂

0≤t<t1

⋂
p≤j≤q

{
x ∈ R2

∣∣ 〈x − Bj(t), nj〉 ≥ 0
}

.
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Here 〈·, ·〉 is the usual Euclidean inner product. Note that the intersection is
taken over p ≤ j ≤ q since the sign of vj is nonnegative for all p ≤ j ≤ q. See,
e.g., Ishii and Soner [10, Fig. 3]. We denote |Jk| = |θp − θq|.

Claim. |Jk| ≤ π holds.
Suppose |Jk| > π. Without loss of generality, we may assume that π <

θq − θp < 2π. Then we have

〈Bp+1 − Bq, nq〉 = 〈Bp − Bq, nq〉 + dp〈tp, nq〉 ≥ inf
0<t<t1

dp(t) sin(θp − θq) > 0,

where tj = t(− sin θj , cos θj) = (Bj+1 − Bj)/dj is the unit tangent vector
on the j-th edge. Therefore inf0<t<t1〈Bp+1(t) − Bq(t), nq〉 > 0 holds, which
contradicts limt→t1 Bj(t) = B∗ for j = p + 1, q. Hence assertion holds.

If J ⊆ Θ0\Θf does not hold, then we may choose a k such that Jk ∩
Θf �= ∅. Then there exists at least one normal angle, say θr ∈ Jk ∩ Θf ,
such that p < r < q holds, and inf0<t<t1 vr(t) > 0 and limt→t1 vr(t) =
limt→t1 g(θr, lf (θr)/dr(t)) = ∞ hold.

Case |Jk| < π. Let y(t) be the intersection point of Lp(t) and Lq(t):

y(t) = Bp+1(t) +
〈Bq(t) − Bp+1(t), tp − µtq〉

1 − µ2
tp, µ = 〈tp, tq〉 = cos(θp − θq).

Note that |µ| < 1 holds since 0 < |θp − θq| < π, and that y(t) converges to B∗
as t → t1. An evolution equation of the j-th vertex is

Ḃj = vj−1nj−1 +
vj−1 cos(θj − θj−1) − vj

sin(θj − θj−1)
tj−1(3.1)

= vjnj +
vj−1 − cos(θj − θj−1)vj

sin(θj − θj−1)
tj .(3.2)

By using Ḃp+1 with (3.1) and Ḃq with (3.2), we have

ẏ = vpnp +
〈vqnq − vpnp, tp − µtq〉

1 − µ2
tp.

If θp, θq ∈ Θ0\Θf , then vp = vq = 0 and ẏ = 0 hold, which contradicts to
convergence of y to B∗. So either θp ∈ Θf or θq ∈ Θf hold. Since θp, θq �∈ J ,
sup0<t<t1 vj(t) is bounded from above (j = p, q), and therefore there exists a
positive constant, say C∗, such that sup0<t<t1 |ẏ(t)| ≤ C∗ holds. We define

a(t) = 〈B∗ − y(t), nr〉, b(t) = dist(B∗, Lr(t)) = 〈B∗ − Br(t), nr〉.
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Then a(t) ≥ b(t) holds for t ∈ [0, t1) and limt→t1 a(t) = limt→t1 b(t) = 0 holds.
Therefore by ȧ(t) = −〈ẏ(t), nr〉, |ȧ(t)| ≤ C∗ and ḃ = −〈Ḃr(t), nr〉 = −vr,

there exists η ∈ (t, t1) such that

0 <

∫ t1

t

vr(τ ) dτ = −
∫ t1

t

ḃ(τ ) dτ = b(t) ≤ a(t) = −ȧ(η)(t1 − t) ≤ C∗(t1 − t).

This contradicts the fact vr → ∞ as t → t1.
Hence Jk ∩ Θf = ∅ for all k, i.e., J ⊆ Θ0\Θf holds, in other words, only

some nonadmissible edges disappear (any admissible edges do not disappear)
at time t1. See Example 1, 2, 3 and 4.

Case |Jk| = π. By a geometric inspection, there exist exactly two sets
J1,J2 such that J =

⊕2
k=1 Jk and Θ0\J = {θp, θq} hold. If {θp, θq}∩Θf = ∅,

then vp = vq = 0, which is impossible. Therefore {θp, θq}∩Θf �= ∅ holds. Since
θp, θq �∈ J , sup0<t<t1 vj(t) is bounded from above (j = p, q).

Assume that θp+1, θq−1 ∈ J1 and θq+1, θp−1 ∈ J2.

Claim 1. {θp+1, θq−1} ∩ Θf �= ∅ and {θq+1, θp−1} ∩ Θf �= ∅ hold.
We may assume without loss of generality that θp = ν0. Then θp < ν1 <

θq = θp + π holds. Suppose {θp+1, θq−1} ∩ Θf = ∅. If J1 = {θp+1 = θq−1},
then θp+1 = θq−1 = ν1 ∈ Θf , which is a contradiction. If J1 = {θp+1 < θp+2 =
θq−1}, then either θp+1 = ν1 or θq−1 = ν1 holds. This is also a contradiction.
If J1 = {θp+1 < θp+2 < · · · < θq−1}, then there exists θr = ν1 such that
θp+1 < θr < θq−1, and then vp+1 = vq−1 = 0 and inf0<t<t1 vr > 0 hold.
Therefore we have

Ḃp+1 =
vp

sin(θp+1 − θp)
tp+1, Ḃq = − vq

sin(θq − θq−1)
tq−1

from (3.2) and (3.1), respectively. Hence Bp+1 and Bq converge, as t → t1, to
the intersection point of Lp+1 and Lq−1, say y:

y = Bp+1 +
〈Bq − Bp+1, tp+1 − µtq−1〉

1 − µ2
tp+1,

µ = 〈tp+1, tq−1〉 = cos(θp+1 − θq−1).

Note that |µ| < 1 holds since θp < θp+1 < θq−1 < θq = θp + π, and that ẏ = 0
holds. The r-th vertex Br (θp+1 < θr < θq−1) is given by

Br = Bp+1 +
r−1∑

m=p+1

dmtm = Bq −
q−1∑
m=r

dmtm.
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Then we have

〈Br − Bp+1, np+1〉 =
r−1∑

m=p+1

dm〈tm, np+1〉 =
r−1∑

m=p+1

dm sin(θm − θp+1) > 0,

and

〈Br − Bq, nq−1〉 = −
q−1∑
m=r

dm〈tm, nq−1〉 = −
q−1∑
m=r

dm sin(θm − θq−1) > 0,

from θp+1 < θr−1 < θr < θq−1 (we have Br = Bp+2 if θp+1 = θr−1). Therefore
Br is in the sector Bp+1yBq or on its boundary except for Lq−1. Then Br �= y

holds, since the number of elements of J1 is greater than or equal to three. From
dist(y, Lr) = −〈y − Br, nr〉 > 0,

d

dt
dist(y, Lr) = −〈ẏ − Ḃr, nr〉 ≥ inf

0<t<t1
vr > 0

holds. Hence inf
0<t<t1

dist(y, Lr) > 0 holds, i.e., Br does not converge to y. This

is a contradiction. Then our assertion holds and also {θq+1, θp−1} ∩ Θf �= ∅
holds.

Claim 2. J � Θf holds.
Suppose J �⊆ Θf . Then there exists θr ∈ J ∩ Θ0\Θf . Without loss

of generality, assume that θr ∈ J1 and that θp+1 ∈ Θf (by Claim 1). Then
p+1 < r < q holds. Let y be the intersection point of Lp and Lr. Since |J1| = π

and θr ∈ Θ0\Θf , vertices Bp+1, . . . , Bq and y converge to a point B∗ which
is on the r-th edge. Put a(t) = 〈B∗ − y, np+1〉 and b(t) = 〈B∗ −Bp+1, np+1〉.
One can repeat the same argument as in Case |Jk| < π (since vp+1 → ∞ as
t → t1), which leads us to a contradiction. Then J ⊆ Θf holds and also
J �= Θf holds since {θp, θq} ∩ Θf �= ∅.

From Claim 2, if {θp, θq} � Θf , then Θ0 = Θf holds, which contradicts
the assumption Θ0 � Θf . Therefore, either Θ0 = {θp}⊕Θf or Θ0 = {θq}⊕Θf

holds. Assume that Θ0 = {θq} ⊕ Θf , i.e., nonadmissible edge is only the q-th
edge.

By the closedness of Wf and 0 < θi − θi−1 < π (i = q, q + 1), we have 0 <

θq+1−θq−1 < π. Then either 0 < θq−θq−1 < π/2 or 0 < θq+1−θq < π/2 holds.
Assume that 0 < θq − θq−1 < π/2. For i = p, q, let yi be the intersection point
between Li and the straight line in the direction of nq−1 which passes Bq−1.
Vertices Bp+1, . . . , Bq and yq converge to a point, say B∗, as t → t1: B∗ is on
the q-th edge and B∗ = Bq+αtq holds with α > 0 (since inf0<t<t1 vq−1(t) > 0).
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Let w(t) be the width between Lp and Lq. Put a(t) = |yp − yq| =
w(t)/ cos(θq − θq−1) and b(t) = 〈B∗ − Bq, nq−1〉 = α sin(θq − θq−1). Note
that ẇ = −vp, ḃ = −vq−1 and limt→t1 vq−1 = ∞. Therefore one can repeat
the same argument as in Case |Jk| < π, which leads us to a contradiction.
Consequently, the case |Jk| = π has been excluded, i.e., degenerate pinching
does not occur.

From Lemma 3.3 it follows that J = Θ0\Θf , J � Θ0\Θf or J = Θ0 holds
exclusively. These correspond to Theorem 1.1 (1), (2) and (3), respectively.
Hence the proof of Theorem 1.1 is completed.
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