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Polynomials
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By
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Abstract

As a generalization of a fundamental result about the Alexander polynomial of
links, we give a description of a Torres condition for the twisted Alexander polynomial
of links associated to a unimodular representation.

§1. Introduction

The theory of twisted Alexander polynomial was introduced by Lin [13]
and Wada [18]. Lin defined it for knots in the 3-sphere using regular Seifert
surfaces. On the other hand, Wada defined the twisted Alexander polynomial
for finitely presentable groups, which include the link groups. In particular,
as an application, Wada told the Kinoshita-Terasaka knot from the Conway
knot by means of his invariant. Shortly afterward, several significant results
on the original Alexander polynomial were generalized to the twisted case. For
example, equivalence of the twisted Alexander polynomial and the Reidemeister
torsion, and its symmetry [9], [7], sliceness obstruction for knots and a relation
to the Casson-Gordon invariant [7], [8], monicness of the twisted Alexander
polynomial for fibered knots [1], [2] and so on. Recently the twisted Alexander
polynomials are extensively investigated. See for instance [3], [4], [5], [6], [10],
[11], [12], [14], [15] and [16].
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Figure 1.

However, almost all results mentioned above are basically about knots in
the 3-sphere and it seems that there are few generalized results on links. The
purpose of the present paper is to give a generalization of the following well-
known formula for the Alexander polynomial of links.

Theorem 1.1 (Torres [17]). The Alexander polynomial ∆L(t1, . . . , tµ)
of a µ-component link L = L1 ∪ · · · ∪ Lµ satisfies

∆L(t1, . . . , tµ−1, 1) =




tl11 − 1
t1 − 1

∆L′(t1) if µ = 2

(tl11 · · · tlµ−1
µ−1 − 1)∆L′(t1, . . . , tµ−1) if µ > 2,

where L′ = L1 ∪ · · · ∪ Lµ−1 is the link obtained from L by removing Lµ and li
denotes the linking number of the components Li and Lµ.

More precisely, we give a description of a Torres condition for the twisted
Alexander polynomial of links associated to a unimodular representation. In the
next section, we briefly recall the definition of the twisted Alexander polynomial
for a link group. The precise statement and the proof of the main theorem of
this paper are given in Section 3.

§2. Twisted Alexander Polynomial for Links

Let L = L1∪· · ·∪Lµ be a µ-component link in the 3-sphere. We denote the
fundamental group of its exterior E by G(L). Namely, we put G(L) = π1(E)
and call it the link group. We choose and fix a Wirtinger presentation of G(L).
That is, given a regular projection of the link L, we assign to each overpass
a generator xi as in Figure 1, a relator xixkx−1

i x−1
j or x−1

i xjxix
−1
k . Thus we

obtain a presentation of G(L) with u generators and u relators,

〈x1, . . . , xu | r1, . . . , ru〉.
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After some reordering of the indicies, the relators r1, . . . , ru satisfy

u∏
i=1

r±1
i = 1.

This means that any one of the relators is a consequence of the other u − 1
relators. We remove one of the relators and call the resulting presentation

G(L) = 〈x1, . . . , xu | r1, . . . , ru−1〉

a Wirtinger presentation of G(L).
The abelianization homomorphism

α : G(L) → H1(E; Z) ∼= Z
⊕µ = 〈t1〉 ⊕ · · · ⊕ 〈tµ〉

is given by assigning to each generator xi the meridian element tk ∈ H1(E; Z)
of the corresponding component Lk of L. In this paper, we consider a linear
representation ρ : G(L) → SL(n; F ), where F denotes a field.

These maps naturally induce two ring homomorphisms ρ̃ : Z[G(L)] →
M(n; F ) and α̃ : Z[G(L)] → Z[t±1

1 , . . . , t±1
µ ], where Z[G(L)] is the group ring

of G(L) over Z and M(n; F ) is the matrix algebra of degree n over F . Taking
the tensor of ρ̃ and α̃, we obtain a ring homomorphism

ρ̃ ⊗ α̃ : Z[G(L)] → M
(
n; F [t±1

1 , . . . , t±1
µ ]
)
.

Let Fu denote the free group on generators x1, . . . , xu and

Φ : Z[Fu] → M
(
n; F [t±1

1 , . . . , t±1
µ ]
)

the composite of the surjection Z[Fu] → Z[G(L)] induced by the presentation
and the map ρ̃ ⊗ α̃.

Let us consider the (u − 1) × u matrix M = M(t1, . . . , tµ) whose (i, j)th
component is the n × n matrix

Φ
(

∂ri

∂xj

)
∈ M

(
n; F [t±1

1 , . . . , t±1
µ ]
)
,

where ∂/∂x denotes the free differential calculus. This matrix M is called the
Alexander matrix of G(L) associated to the representation ρ.

For 1 ≤ j ≤ u, let us denote by Mj = Mj(t1, . . . , tµ) the (u − 1) × (u − 1)
matrix obtained from M by removing the column corresponding to a generator
xj . We also regard Mj as an n(u − 1) × n(u − 1) matrix with coefficients in
F [t±1

1 , . . . , t±1
µ ].
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Then Wada’s twisted Alexander polynomial of a link L for a representation
ρ : G(L) → SL(n; F ) is defined to be a rational function

∆L,ρ(t1, . . . , tµ) =
|Mj |

|Φ(xj − 1)| ,

where |Mj | denotes the determinant of the matrix Mj , and it is well-defined up
to a factor ±tnk1

1 · · · tnkµ
µ (ki ∈ Z) if n is odd and up to only tnk1

1 · · · tnkµ
µ if n is

even (see [18] Section 5 for details).

Remark 2.1. In general, the twisted Alexander polynomial for a finitely
presentable group is a rational function, but it is actually a polynomial for a
link group (see [18] Proposition 9 and [10] Theorem 3.1).

§3. A Torres Condition

In this section, we state and prove a generalized Torres condition for the
twisted Alexander polynomial of links. An advantage of our description here is
that we need not separate the case for µ = 2 from the one for µ > 2. We first
prove the theorem in the case of an SL(2; F )-representation. After reading the
proof for it, one can easily show the similar result for general cases.

Theorem 3.1. Let L = L1 ∪ · · · ∪ Lµ be a µ-component link and L′ =
L1∪· · ·∪Lµ−1. For a given representation ρ′ : G(L′) → SL(2; F ), it holds that

∆L,ρ(t1, . . . , tµ−1, 1) = {(tl11 · · · tlµ−1
µ−1 )2 + ερ′tl11 · · · tlµ−1

µ−1 + 1}∆L′,ρ′(t1, . . . , tµ−1),

where ρ : G(L) → SL(2; F ) is the composite of the natural surjection G(L) →
G(L′) and ρ′, li denotes the linking number of Li and Lµ, and ερ′ is an element
of F .

Proof. For the link group G(L), we choose a Wirtinger presentation:

G(L) = 〈xij | rkl〉,

where xi1, xi2, . . . , xiji
(1 ≤ i ≤ µ) are generators corresponding to the compo-

nent Li and the relator

rkl = xk′l′xklx
−1
k′l′x

−1
k,l+1 or x−1

k′l′xklxk′l′x
−1
k,l+1

corresponds to a crossing of Lk′ over Lk. In the above presentation, we arrange
the generators and relators in lexicographic order, which is determined by the
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order of components L1, . . . , Lµ and the orientation of each component Li.
We should note that the link group G(L) has the deficiency one (namely, the
number of relators is less than that of generators).

Let us consider the Alexander matrix of G(L) associated to the represen-
tation ρ : G(L) → SL(2; F ):

M(t1, . . . , tµ) =
(

Φ
(

∂rkl

∂xij

))

=




Φ
(

∂rkl

∂xij

)
k,i �=µ

Φ
(

∂rkl

∂xµj

)
k �=µ,1≤j≤jµ

Φ
(

∂rµl

∂xij

)
i �=µ,1≤l≤jµ

Φ
(

∂rµl

∂xµj

)
1≤j,l≤jµ


 .

Then we know that if we remove the column corresponding to a generator
xij (i 
= µ),

|Mij(t1, . . . , tµ)| = |Φ(xij − 1)|∆L,ρ(t1, . . . , tµ)

holds. Thus setting tµ = 1 in M(t1, . . . , tµ), it follows that

|Mij(t1, . . . , tµ−1, 1)| = |Φ(xij − 1)|∆L,ρ(t1, . . . , tµ−1, 1)

if i 
= µ.
Now the generators {xµj} (1 ≤ j ≤ jµ) appear in the following two kinds

of relators:

(i) rµj = x±1
vwxµjx

∓1
vwx−1

µ,j+1 and (ii) rpq = x±1
µl xpqx

∓1
µl x−1

p,q+1,

where the relator (i) corresponds to crossings of Lv over Lµ and (ii) corresponds
to that of Lµ over Lp. Let us see which are the contributions of these relators
to the matrix M(t1, . . . , tµ−1, 1).

Claim 1. The contributions of rµj are as follows:

(i) Φ
(

∂rµj

∂xvw

)
tµ=1

= O,

(ii) Φ
(

∂rµj

∂xµj

)
tµ=1

=

{
t±1
v ρ(xvw)±1 if µ 
= v

I if µ = v,

(iii) Φ
(

∂rµj

∂xµ,j+1

)
tµ=1

= −I,

where O and I denote the zero and the identity matrix respectively.
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Proof. (i) An easy calculation shows that

∂rµj

∂xvw
= 1 − xvwxµjx

−1
vw or − x−1

vw + x−1
vwxµj .

Putting tµ = 1, we obtain

Φ
(

∂rµj

∂xvw

)
tµ=1

= I − tvt−1
v ρ(xvw)ρ(xµj)ρ(xvw)−1 = O

or

Φ
(

∂rµj

∂xvw

)
tµ=1

= −t−1
v ρ(xvw)−1 + t−1

v ρ(xvw)−1ρ(xµj) = O,

because ρ(xµj) = I for 1 ≤ j ≤ jµ. (ii) and (iii) follow from the similar
calculation. This completes the proof of Claim 1.

Claim 2. The contributions of rpq are as follows:

(i) Φ
(

∂rpq

∂xµl

)
tµ=1

= ±(I − tpρ(xpq)),

(ii) Φ
(

∂rpq

∂xpq

)
tµ=1

= I,

(iii) Φ
(

∂rpq

∂xp,q+1

)
tµ=1

= −ρ(xpq)ρ(xp,q+1)−1 if p 
= µ

and the case p = µ has already been considered.

Proof. We only show (iii). Since

∂rpq

∂xp,q+1
= −x±1

µl xpqx
∓1
µl x−1

p,q+1,

putting tµ = 1 and using ρ(xµl) = I, we have

Φ
(

∂rpq

∂xp,q+1

)
tµ=1

= −tpt
−1
p ρ(xµl)±1ρ(xpq)ρ(xµl)∓1ρ(xp,q+1)−1

= −ρ(xpq)ρ(xp,q+1)−1,

if p 
= µ. The proof of Claim 2 is completed.

From the above two claims, we see that the matrix M(t1, . . . , tµ−1, 1) has
the following form:

M(t1, . . . , tµ−1, 1) =

(
A B

O C

)
,
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where

A =

(
Φ
(

∂rkl

∂xij

)
tµ=1

)
(k, i 
= µ), B =

(
Φ
(

∂rkl

∂xµj

)
tµ=1

)
(k 
= µ, 1 ≤ j ≤ jµ),

and

C =

(
Φ
(

∂rµl

∂xµj

)
tµ=1

)
(1 ≤ j, l ≤ jµ)

=




t
δv1
v1 ρ(xv1w1)

δv1 −I

t
δv2
v2 ρ(xv2w2)

δv2 −I

t
δv3
v3 ρ(xv3w3)

δv3

. . . −I

−I t
δvjµ
vjµ

ρ(xvjµwjµ
)δvjµ




.

Here δvi
= 1 or −1 according to crossings of Lvi

over Lµ.

Claim 3. The determinant of the submatrix C is given by

|C| = (tl11 · · · tlµ−1
µ−1 )2 + ερ′tl11 · · · tlµ−1

µ−1 + 1,

where ερ′ is an element of F .

Proof. By definition of the determinant of a matrix, we have

|C| =
jµ∏

i=1

|ρ(xviwi
)δvi |t2δvi

vi + (−1)jµ

∑
σ∈S

(sgn σ)γσ
1 · · · γσ

jµ
t
δv1
v1 · · · tδvjµ

vjµ

+ (sgn σ0)(−1)2jµ ,

where γσ
i ∈ F denotes a component of the 2× 2-matrix ρ(xviwi

)δvi determined
by a permutation σ, S is a subset of the symmetric group S2jµ

consisting of
permutations which choose just one component from each submatrix ρ(xviwi

)δvi

and
σ0 = (135 . . . 2jµ − 1)(246 . . . 2jµ) ∈ S2jµ

.

For example, when jµ = 2, the permutation σ = (1342) ∈ S ⊂ S4 assigns the
coefficient

γσ
1 γσ

2 = c1b2,

where c1, b2 are components of the images

ρ(xviwi
)δvi =

(
ai bi

ci di

)
, (i = 1, 2).
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On the other hand, in the matrix C, there is an appearance of tδi
i for each

crossing of Li over Lµ (1 ≤ i ≤ µ) and δi = 1 or −1 according as Li crosses

over Lµ from left to right or from right to left. Thus t
δv1
v1 · · · tδvjµ

vjµ
= tl11 · · · tlµ−1

µ−1

holds. Since sgn σ0 = 1, if we put

ερ′ = (−1)jµ

∑
σ∈S

(sgn σ)γσ
1 · · · γσ

jµ
∈ F,

we obtain
|C| = (tl11 · · · tlµ−1

µ−1 )2 + ερ′tl11 · · · tlµ−1
µ−1 + 1.

This completes the proof of Claim 3.

Next the matrix A is equivalent to the Alexander matrix M ′(t1, . . . , tµ−1)
of G(L′) associated to the representation ρ′ : G(L′) → SL(2; F ). Hence if we
remove a column corresponding to a generator xij (i 
= µ), then we have

|Mij(t1, . . . , tµ−1, 1)| = |Aij ||C|
= {(tl11 · · · tlµ−1

µ−1 )2 + ερ′tl11 · · · tlµ−1
µ−1 + 1}|M ′

ij(t1, . . . , tµ−1)|,

where Aij is the matrix obtained from A by removing the column corresponding
to xij . Therefore, by definition of the twisted Alexander polynomial, we see
that

∆L,ρ(t1, . . . , tµ−1, 1) = {(tl11 · · · tlµ−1
µ−1 )2 + ερ′tl11 · · · tlµ−1

µ−1 + 1}∆L′,ρ′(t1, . . . , tµ−1).

This completes the proof of Theorem 3.1.

Remark 3.2. The fact that ∆L,ρ(t1, . . . , tµ−1, 1) is divisible by ∆L′,ρ′(t1,
. . . , tµ−1) also follows from a recent result of Kitano, Suzuki and Wada in [12].
However, we can have no detailed information on the quotient from their result.

A linear representation ρ : G(L) → GL(n; F ) is called reducible if it has
a nontrivial invariant subspace in Fn. In this case, we can obtain a piece of
information about the coefficient ερ′ .

Corollary 3.3. Under the setting as in Theorem 3.1, if ρ′ : G(L′) →
SL(2; F ) is a reducible representation, then we have

ερ′ = −
(

µ−1∏
i=1

λli
i +

µ−1∏
i=1

λ−li
i

)
,

where λi is an eigenvalue of the image of a generator xij (i 
= µ) of G(L′).
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Proof. First we can assume that the images of generators in a Wirtinger
presentation of G(L) have the following forms:

ρ(xij) =

(
aij bij

0 a−1
ij

)
(i 
= µ) and ρ(xµj) = I,

where aij ∈ F× and bij ∈ F . Because the representation ρ′ has a 1-dimensional
invariant subspace in F 2.

Since xijx
−1
ik (i 
= µ, j 
= k) is an element of the commutator subgroup of

G(L), [G(L), G(L)], we see that aij = aik holds for these generators. We then
put λi = aij for simplicity. Each lower left component of ρ(xij) is zero, so that

the nontrivial terms appeared in the coefficient of t
δv1
v1 · · · tδvjµ

vjµ
are just

(−1)jµ(sgn σ1)λ
δv1
v1 · · ·λδvjµ

vjµ
+ (−1)jµ(sgn σ2)λ

−δv1
v1 · · ·λ−δvjµ

vjµ
,

where σ1 = (246 . . . 2jµ) and σ2 = (135 . . . 2jµ−1) are elements of the symmet-
ric group S2jµ

. Then it is easy to check that (−1)jµsgn σ1 = (−1)jµsgn σ2 =
−1 holds. Therefore we can have the desired formula. This completes the
proof.

Example 3.4. Let ρ′ : G(L′) → SL(2; F ) be a reducible representation
of a knot L′ = L1. Then the twisted Alexander polynomial of L′ associated to
ρ′ is given by

∆L′,ρ′(t1) =
∆L′(λt1)∆L′(λ−1t1)
(t1 − λ)(t1 − λ−1)

,

where ∆L′(t1) is the original Alexander polynomial of L′ and λ is an eigenvalue
of the image of a generator of G(L′) (see the proof of [10] Theorem 3.1 for
instance). Hence we have

∆L,ρ(1, 1) = {2 − (λl1 + λ−l1)}∆L′,ρ′(1)

=
(1 − λl1)(1 − λ−l1)
(1 − λ)(1 − λ−1)

∆L′(λ)∆L′(λ−1)

= (1 + λ + · · · + λl1−1)(1 + λ−1 + · · · + λ−(l1−1))∆L′(λ)∆L′(λ−1).

In particular, if ρ′ has the eigenvalue λ = 1, then we obtain ∆L,ρ(1, 1) = l1
2

(because ∆L′(1) = ±1).

Example 3.5. Let ρ′ : G(L′) → SL(2; F ) be the trivial representation.
In this case ερ′ = −2 holds, so that we have

∆L,ρ(t1, . . . , tµ−1, 1) = (tl11 · · · tlµ−1
µ−1 − 1)2∆L′,ρ′(t1, . . . , tµ−1).
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This formula corresponds to the square of Torres’ original formula in Theorem
1.1. In particular, ∆L,ρ(1, . . . , 1) = 0 holds for µ > 2.

If we slightly modify the proof of Theorem 3.1, we obtain the following
general formula for a unimodular representation ρ′ : G(L′) → SL(n; F ). We
omit here the repetitious proof.

Theorem 3.6. Let L = L1 ∪ · · · ∪ Lµ be a µ-component link and L′ =
L1∪· · ·∪Lµ−1. For a given representation ρ′ : G(L′) → SL(n; F ), it holds that

∆L,ρ(t1, . . . , tµ−1, 1) =

{
(tl11 · · · tlµ−1

µ−1 )n +
n−1∑
k=1

εk,ρ′(tl11 · · · tlµ−1
µ−1 )n−k + (−1)n

}

× ∆L′,ρ′(t1, . . . , tµ−1),

where ρ : G(L) → SL(n; F ) is the composite of the natural surjection G(L) →
G(L′) and ρ′, li denotes the linking number of Li and Lµ, and εk,ρ′ (1 ≤ k ≤
n − 1) are elements of F .

Remark 3.7. If ρ is a representation to the general linear group GL(n; F ),
then the coefficient of the leading term (tl11 · · · tlµ−1

µ−1 )n becomes a unit element
ε0,ρ′ ∈ F×.

Finally, we extend Corollary 3.3 when all the images of the representation
ρ′ : G(L′) → SL(n; F ) are upper triangle matrices.

Corollary 3.8. Under the setting as in Theorem 3.6, if Im(ρ′) are upper
triangle matrices, then the coefficient εk,ρ′ is given by

εk,ρ′ = (−1)k
∑

1≤j1<···<jk≤n

µ−1∏
i=1

(λi1 · · · λ̂ij1 · · · λ̂ijk
· · ·λin)li ,

where λim (1 ≤ m ≤ n) are the eigenvalues of the image of a generator xij (i 
=
µ) of G(L′) and λ̂im implies that λim is removed from the product.
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