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Mochizuki’s Crys-Stable Bundles:
A Lexicon and Applications
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Abstract

Mochizuki’s work on torally crys-stable bundles [18] has extensive implications
for the theory of logarithmic connections on vector bundles of rank 2 on curves, once
the language is translated appropriately. We describe how to carry out this transla-
tion, and give two classes of applications: first, one can conclude almost immediately
certain results classifying Frobenius-unstable vector bundles on curves; and second,
it follows from the results of [22] that one also obtains results on rational functions
with prescribed ramification in positive characteristic.

§1. Introduction

Mochizuki’s theory of torally crys-stable bundles and torally indigenous
bundles developed in [18] has, after appropriate translation, immediate impli-
cations for logarithmic connections on vector bundles of rank 2 on curves. This
in turn has immediate implications to a subject which has recently been studied
by a number of different people (see, for instance, [15], [14], [8], [20]): Frobenius-
unstable vector bundles, and by extension the generalized Verschiebung rational
map induced on moduli spaces of vector bundles by pulling back under Frobe-
nius. Furthermore, together with the results of [22], one can use Mochizuki’s
work to describe rational functions with prescribed ramification in positive char-
acteristic. This relationship provided the original motivation for the ultimately
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self-contained arguments of [23], but also goes further by giving a finiteness
result not yet known by direct arguments.

However, because the theory of [18] was aimed towards unrelated p-adic
applications, it does not contain any translation of its results back into the lan-
guage of vector bundles with connection or Frobenius-unstable vector bundles,
and until recently remained outside the circle of literature treating these topics.
The aim of this paper is therefore primarily expository: we will give a lexicon
of Mochizuki’s language and a survey of certain key results, and then detail
the applications described above. The arguments in Section 3 were suggested
almost uniformly by Mochizuki, but any blame for the particular translation
in Section 2 of Mochizuki’s work into the language of vector bundles lies solely
with the author.

§2. The Lexicon

Fix g, r ≥ 0 with 2g−2+ r > 0, and p an odd prime. Let S = Spec A with
A local and defined over its residue field k. Now, let C be a smooth proper
curve of genus g, with r disjoint sections P1, . . . , Pr. For technical reasons, we
allow A to be any Noetherian, strictly Henselian local ring of characteristic
p. However, for conceptual purposes, it suffices to take S = Spec k, for an
algebraically closed field k of characteristic p. In this section, we give a series
of statements expressing definitions and results of [18] in terms of connections
on vector bundles; the proofs are deferred until the next section. We begin by
setting terminological conventions for some standard concepts.

Although it will not arise until later, we denote by C(p) the p-twist of C over
S, and Frobenius will always refer to the relative Frobenius map F : C → C(p).

Definition 2.1. Given a vector bundle E on C, a logarithmic S-
connection on E is an OS-linear map ∇ : E → Ω1

C/S(
∑

i[Pi]) ⊗ E , satisfy-
ing the connection rule ∇(fs) = f∇(s) + df ⊗ s. For any i, a logarithmic
S-connection has a canonical residue ResPi

∇ ∈ End(E |x) induced by the
residue map Ω1

C/S(Pi) → Γ(S,OS). We will sometimes say regular connection
to emphasize that a connection is not logarithmic: i.e., that it takes values in
Ω1

C/S ⊗ E .

Definition 2.2. Given a vector bundle E on C, a sub-bundle F of E

is said to be destabilizing (respectively, weakly destabilizing) if the slope
of F is strictly greater than (resp., greater than or equal to) the slope of E .
We denote by End0(E ) ⊂ End(E ) the sheaf of endomorphisms with vanishing
trace.
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Because S has characteristic p, there is a notion of p-curvature associated
to ∇ (see [12, §5]), which allows us to define:

Definition 2.3. We say that a logarithmic S-connection ∇ has p-
trivial determinant if the determinant connection det∇ on detE is a regular
connection with vanishing p-curvature.

As the name suggests, this definition is intended to generalize trivial deter-
minant to cases where the stricter notion wouldn’t make sense – for instance,
when E has determinant of degree p. We also remark that the regularity of the
determinant connection implies that the residues of ∇ have vanishing trace.

For each i, fix a ρi ∈ Γ(S,OS)/{±1}. The fundamental object we will deal
with is, in Mochizuki’s language, the torally crys-stable bundle (see [18,
Def. I.1.2, p. 89]). In our lexicon, we have the following equivalence:

Proposition 2.4. A torally crys-stable bundle on C/S of radii {ρi} is
equivalent to an equivalence class of vector bundles E of rank 2 on C, together
with logarithmic S-connection ∇ having p-trivial determinant, satisfying the
following conditions:

(i) for each i, Tr((ResPi
∇)2) = 2ρ2

i ;

(ii) at the closed point of S, ResPi
∇ is non-zero for all i;

(iii) for every geometric point of S, after restriction to that point there is no
weakly destabilizing sub-bundle of End0(E ) which is horizontal with respect
to the connection induced by ∇.

The equivalence relation is that obtained by allowing tensoring by any line bun-
dle with S-connection; note that conditions (i)–(iii) are invariant under such
tensoring.

Remark 2.5. We note the following:

(i) Assuming (as always) that all ranks are prime to p, two connections with
p-trivial determinant on two bundles may differ by tensoring by a line
bundle with connection only if the latter has trivial p-curvature: indeed,
this follows the fact that the p-curvature of the tensor product connection
is essentially the sum of the p-curvatures of the connections, which can
be seen from the functorial definition of p-curvature given below, or via
explicit calculations from the standard definition as in [20, Cor. 3.6 (iii)].
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(ii) Since ρi was only chosen up to sign, in the case that S is integral we see
that the radii of a torally crys-stable bundle are determined by ∇, and do
not constitute additional data.

(iii) If for any i, ResPi
∇ is diagonalizable, condition (i) will be satisfied for ρi

equal to the eigenvalues of the corresponding residue (which will necessarily
be paired with opposite sign).

(iv) Although condition (iii) is very closely related to the non-existence of a
horizontal destabilizing sub-bundle of E , describing the relationship pre-
cisely is complicated, and as stated below, will not be necessary in the case
of positive level, which will be our main focus.

We now give equivalent definitions of certain other terms of Mochizuki’s
theory which will be relevant. First, we define:

Definition 2.6. Let (E ,∇) be a logarithmic S-connection on C, where
E is of rank 2, and L a line sub-bundle of E . Then the Kodaira-Spencer
map

κ : L → E /L ⊗ Ω1
C/S

(∑
i

[Pi]
)

associated to (E ,∇) and L is the OC -linear map obtained by applying ∇ to the
natural inclusion and quotient maps. When E is unstable, we will refer to the
Kodaira-Spencer map of (E ,∇) to mean the Kodaira-Spencer map associated
to (E ,∇) and the destabilizing sub-bundle of E (see Lemma 3.4 below).

Note that the condition that a line sub-bundle L be horizontal for ∇ is
equivalent to the condition that its Kodaira-Spencer map vanish.

Proposition 2.7. Let (E ,∇) be a representative of a torally crys-stable
bundle. Then (E ,∇) has level � if and only if :

(i) in the case � = 0, the restriction of E to every geometric point of S is
semistable;

(ii) in the case � > 0, E has a line sub-bundle L of degree � + 1
2 deg E such

that the Kodaira-Spencer map associated to (E ,∇) is generically nonzero
on every fiber of C → S, and is an isomorphism at the Pi.

Furthermore, any bundle with connection satisfying all conditions for crys-
stability of Proposition 2.4 except possibly condition (iii), and also satisfying the
present condition (ii), is necessarily crys-stable.
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In fact, one checks that because of condition (iii) of Proposition 2.4, in the
case that there are no marked points, a destabilizing line sub-bundle necessarily
satisfies condition (ii) of Proposition 2.7, so the level of a torally crys-stable
bundle is independent of ∇, and simply measures the failure of E to be semi-
stable. Note however that unless S = Spec k, it is not necessarily the case that
any torally crys-stable bundle has a level.

It immediately follows (see [18, Lem. I.3.4, p. 104]) that we can define:

Definition 2.8. A torally indigenous bundle is a torally crys-stable
bundle of level 1

2 (2g − 2 + r).

Note that because of degree considerations, being a torally indigenous
bundle is equivalent to κ being an isomorphism.

Finally, we can state:

Proposition 2.9. A torally crys-stable bundle represented by (E ,∇) is
dormant if and only if the p-curvature of ∇ is zero. The radii of a dormant
torally crys-stable bundle are necessarily in Fp/{±1}.

Note that here we use the hypothesis of Proposition 2.4 that our connec-
tions have p-trivial determinant, as we otherwise would not have that vanishing
p-curvature is preserved under equivalence.

The results of Mochizuki central for our purposes can now be stated:
For the following two theorems, we fix radii {ρi} lying in Fp/{±1}.

Theorem 2.10 (Mochizuki). The stack of dormant torally indigenous
bundles of radii {ρi} is finite flat over Mg,r, and étale over points corresponding
to totally degenerate curves.

Theorem 2.11 (Mochizuki). Suppose that p ≥ 2g + r − 2�, and � > 0.
Then the stack of dormant torally crys-stable bundles of radii {ρi} and level �

is flat over Mg,r of relative dimension 2g − 2 + r − 2�.

§3. Proofs

The purpose of this section is to prove the statements of the preceding
section, as well as certain lemmas which will be of use for our applications. We
begin with some remarks on projective bundles and connections which hold for
vector bundles of arbitrary rank n, but we assume throughout that p does not
divide n.
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First, given a projective bundle P on a relative smooth, proper curve C

over an arbitrary Noetherian scheme S, it is well-known that étale locally on
S, we may write P = P(E ) for some vector bundle E on C. To see this, we use
that P = P(E ) if and only if there exists a line bundle on P which is O(1) on
fibers, from which one can obtain E via push-forward. First, by Tsen’s theorem
one can remove the Brauer obstruction for such an E on any special fiber after
étale base change (see, e.g., [6, Cor. 5.8, p. 132]). Next, one can extend to
the formal completion on the base by vanishing of obstructions to deforming
the O(1): indeed, if P0 and C0 denote restrictions to the closed fiber, these
obstructions lie in H2(P0,OP0), which one can check vanishes via the Leray
spectral sequence obtained by pushing forward OP0 to C0. One can effectivize
this deformation (i.e., extend to the complete local ring on the base) by [24,
Cor. 5.1.6]. Finally, one can apply the Artin approximation theorem [2, Cor.
2.2] to construct E after a further étale base change, using [25, Prop. 8.9.1] to
reduce to the case that S is of finite type over Spec Z.

We now return to the hypothesis that S is strictly Henselian. Given the
above construction, since E is unique up to tensoring by line bundles, and by
the invariance of degree in families, we may define:

Definition 3.1. Let P be a Pn−1-bundle on a smooth relative curve
C/S. Then the degree class of P is defined to be the congruence class modulo
n of the degree of any E on C with P ∼= P(E ).

Note that the degree class could be defined more intrinsically as the class
induced by P in H2

ét(C, µn); however, the more elementary definition will also
be more immediately useful.

There are a number of issues involving translation between the formalities
of the Grothendieck point of view on connections on sheaves and the classical
definitions, and similarly for the formalism of log structures. However, such
translations are well-known, and we refer the reader to [4, Prop. 2.9], [11], and
[19, p. 13]. To go between connections on P and connections on some E with
P(E ) = P, one could extend the above argument for producing such an E by
working with an O(1) obtained as an nth root of the relative canonical bundle
of P over C. However, we will take a somewhat more naive approach.

Definition 3.2. Let E be a vector bundle on C/S. Then an S-
connection ∇ on P(E ) is a global section of the sheaf PConn obtained as the
sheafification of the presheaf whose sections over any U ⊂ C are equivalence
classes of S-connections on E |U , defined up to tensoring by connections on OU .
If C has sections P1, . . . , Pr, a logarithmic S-connection ∇ on P(E ) is a global
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section of PConnlog, defined as above, but with logarithmic S-connections in-
stead of regular ones.

Such a connection on E is easily checked to yield a connection in the
Grothendieck sense on P(E ) as a scheme over C, so we have a map from the
sheaf PConn on C to the sheaf of connections in the Grothendieck sense on
P(E ) on C. Now, because p is prime to n, both sheaves are pseudo-torsors
over End0(E ) ⊗ Ω1

C/S : in the case of PConn, any two connections on E differ
naturally by an element of End(E )⊗Ω1

C/S , and modding out by tensoring with
connections on line bundles yields the quotient sheaf End0(E ) ⊗ Ω1

C/S ; in the
case of connections in the Grothendieck sense on P(E ), we simply use the fact
that End0(E ) is the sheaf of infinitesimal automorphisms of P(E ). Because E

is locally trivial, so has connections locally, we find that in fact both sheaves
are torsors, and not merely pseudo-torsors, and since the torsor structures are
natural and compatible, we conclude that the sheaves are in fact isomorphic,
and our naive definition of connection agrees with the Grothendieck definition.
The same argument applies in the logarithmic case, with Ω1

C/S replaced by
Ω1

C/S(
∑

i[Pi]), and using the appropriate formalism of log schemes to define
logarithmic connections in the Grothendieck sense.

Proposition 3.3. Let (P,∇P) be a projective bundle of dimension n−
1 with (possibly logarithmic) connection on C/S. Let L be a line bundle whose
degree modulo n is the degree class of P, and with regular connection ∇0. Then
there exists an E of determinant L on C/S such that P(E ) ∼= P, and for any
such E , there exists a unique connection ∇, logarithmic if ∇P was, whose
determinant is ∇0, and such that ∇ recovers ∇P under projectivization.

Proof. Let E ′ be any vector bundle such that P(E ′) ∼= P. Since L is of
the appropriate degree class, and multiplication by n is étale on the Jacobian,
we find that there exists an L ′ with L ′⊗n ∼= L ⊗ (detE ′)−1, and setting
E = E ′ ⊗ L ′ will give us detE ∼= L . Next, since p does not divide n, ∇ will
certainly be uniquely determined by its determinant and projectivization, if it
exists. Moreover, everything is compatible with restriction, so by uniqueness it
suffices to produce ∇ on an open cover of C, since the restrictions on overlaps
will then have to glue. Let U be an open set on which ∇P is represented by
some ∇U on E |U . We then see that by tensoring with (OU , 1

n (∇0 − det∇U )),
we obtain the desired ∇ on U .

Specializing now to n = 2, the first part of the following lemma is standard:
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Lemma 3.4. Let C/S be a smooth, proper curve over a connected
scheme S, and E a vector bundle of rank 2 on C. Suppose that L ⊂ E is a
weakly destabilizing line sub-bundle of E . Then deg L is uniquely determined,
and if L is in fact destabilizing, L itself is uniquely determined.

Furthermore, in the case that L is destabilizing, if further we are given a
(possibly logarithmic) connection ∇ on E , such that L is not horizontal for ∇,
it follows that End0(E ) has no weakly destabilizing sub-bundles horizontal for
the connection ∇′ induced by ∇ on End0(E ).

Proof. The only observation required for the first part is that even in
the general relative setting, Nakayama’s lemma gives the statement that a line
bundle of negative degree has no non-zero global sections. The assertions then
follow by standard arguments involving composing the inclusion of one line
sub-bundle with the quotient map induced by another, and vice versa.

For the second part, we first note that if L 0 denotes the line sub-bundle of
End0(E ) sending L to 0, L 0 ∼= Hom(E /L , L ) and thus has positive degree.
Also, L 0 is not horizontal for ∇′. However, the image of L 0 under ∇′ is
contained in F ⊗ ω, where F denotes the sub-bundle of End0(E ) sending L

to L , and ω = Ω1
C/S in the case of a regular connection, or Ω1

C/S(
∑

i[Pi]) in
the logarithmic case. A local calculation shows that the image of an element
of F under ∇′ is contained in F ⊗ ω if and only if the element is in fact in
L 0 ⊂ F . It now follows that no proper sub-bundle of End0(E ) containing
L 0 can be horizontal for ∇′: indeed, such a sub-bundle would have to contain
F , hence strictly contain it, hence be all of End0(E ). Next, we observe that
given a weakly destabilizing sub-bundle F ′ of End0(E ) of rank 2, its quotient
Q would have non-positive degree, and hence the composed map L 0 → Q is
necessarily 0; but this implies that F ′ contains L 0, hence also F , i.e., that
F ′ = F , hence is not horizontal for ∇. Finally, the rank 1 case follows from
the rank 2 case by the self-duality of End0(E ).

We now give the proofs of the main statements of the previous section.

Proof of Proposition 2.4. Given a vector bundle with connection (E ,∇),
we first want to check that conditions (i)–(iii) of the proposition are equivalent
to conditions (1)–(3) of [18, Def. 1.2, p. 89] for the projectivization P(E ) with
the induced connection. For conditions (i) and (ii), one need only know that
Mochizuki’s monodromy operator µi is simply the residue of ∇ at Pi. Then,
because Ad(P(E )) ∼= End0(E ), the equivalence for condition (iii) is immediate.
Now, condition (4) of loc. cit. is vacuous since we have restricted to smooth
curves, so we find that given a vector bundle with connection (E ,∇) satisfying
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the condition of the proposition, we get a torally crys-stable bundle simply by
projectivizing.

Conversely, we want to show that, since our base is strictly Henselian,
given a torally crys-stable bundle (P,∇) we can find a vector bundle with
connection having p-trivial determinant, and such that the projectivization
recovers (P,∇). By Proposition 3.3, we need only produce a line bundle L

with the appropriate degree modulo n, and having a connection with vanishing
p-curvature. But letting L ′ be any line bundle on C(p) of degree congruent
to 1

p times the desired degree modulo n, we can take L := F ∗L ′, and the
induced canonical connection gives us the desired connection with vanishing
p-curvature.

We next have:

Proof of Proposition 2.7. We wish to compare our criteria to [18, Def.
I.3.2, p. 103]. In light of the translation provided by the above argument,
and using the equivalence between line sub-bundles of a rank-2 vector bundle
and sections of its projectivization, one need only check two statements: first,
that if hL denotes the section of P(E ) associated to a line sub-bundle L of
E , then h∗

L ωP(E )/C
∼= Hom(E /L , L ); and second, that condition (ii) of the

proposition is equivalent to condition (2) of loc. cit. together with condition
(iii) of Proposition 2.4. For the first, we consider the dual statement, and note
that h∗

L τP(E )/C is the first-order deformation space of hL , which is naturally
identified with Hom(L , E /L ).

For the second, by Lemma 3.4, we see that the existence of a non-horizontal
destabilizing L in condition (ii) of the present proposition precludes the exis-
tence of a horizontal weakly destabilizing sub-bundle of End0(E ). Conversely,
condition (iii) of Proposition 2.4 implies that L cannot be horizontal, so we
obtain the desired equivalence.

Before discussing our definition of p-curvature, we need to discuss the lift-
ing of Grothendieck-perspective connections to higher-order PD-neighborhoods.
This is completely standard in the case of classical connections on a sheaf of
modules on C/S; see, e.g., [4, Thm. 4.8]. Now, suppose we have a connection
∇ on some object P over C, which for simplicity we assume to be a separated
scheme over C; that is, if C [2] denotes the first-order neighborhood of the diago-
nal in C×SC (which is the same with or without divided powers), ∇ is an OC[2] -
linear isomorphism p∗1P ∼= p∗2P, which gives the identity when restricted to
the diagonal. We wish to show that (since C is a curve, so any connection is au-
tomatically integrable), we obtain a unique lifting to nth-order neighborhoods
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of the diagonal in C×PD
S C for any n. Let U → P be any affine cover; in partic-

ular, U is affine over C, so OU is quasi-coherent over C, and the connection on
P induces a classical connection on OU , which furthermore is compatible with
the algebra structure on OU . Now, by the classical theory, we can lift this con-
nection uniquely to nth-order neighborhoods, with the lift given by the formal
expression e

(∇ d
dt

)⊗(1⊗t−t⊗1)
for some local coordinate t: that is to say, in the

notation of [4, §4] (i.e., with Dn(1) denoting the nth order PD neighborhood of
the diagonal in C×PD

S C), and with E := OU , we take the map E → E ⊗Dn(1)
given by s �→ ∑n

i=0(∇ d
dt

)is⊗ (1⊗ t− t⊗1)[i], and extend by scalars to obtained
the desired Dn(1)-linear isomorphism Dn(1)⊗E → E ⊗Dn(1). One checks that
the product rule for exponentials implies that this lift preserves the compati-
bility with the algebra structure. By uniqueness, this lifting necessarily agrees
on restriction to intersections of open sets in the cover, so it follows that one
obtains a lifting of the connection on P to nth-order as well.

We are now ready to define p-curvature from the Grothendieck perspective.
The idea is to consider the following picture:

C ×PD
S C

��

V (I )

��

� ��� V (I , J [p+1])� ���

C ×S C C�
���

where the square is Cartesian, so that I is by definition the ideal in C ×PD
S

C generated by the ideal defining the diagonal in C ×S C. If we denote by
J the ideal of the diagonal in C ×PD

S C, we have J =
∑

i≥1 I [i]. Now,
the main observation is that because (I , J [p+1]) = ({I [i]}i �=0,p), one can
check that V (I , J [p+1]) has structure sheaf isomorphic to OC ⊕ F ∗ωC/S ,
with multiplication determined by setting the product of any two elements of
F ∗ωC/S to 0. Given ∇ an isomorphism between p∗1P and p∗2P on the first-
order neighborhood of the diagonal in C ×S C, we can pull back to C ×PD

S

C, to obtain such an isomorphism on V (J [2]), and we can then lift to (p +
1)st order, obtaining an isomorphism on V (J [p+1]), which we can restrict to
V (I , J [p+1]). On the other hand, on V (I ), hence on V (I , J [p+1]), we also
have the trivial isomorphism between p∗1P and p∗2P obtained by factoring
through the diagonal C ⊂ C ×S C; in particular, this is also the identity
when restricted to the diagonal in C ×PD

S C, so the difference of these two
isomorphisms gives an automorphism of p∗1P over SpecOC ⊕F ∗ωC/S , which is
the identity modulo F ∗ωC/S . Because of the square-zero structure on this sheaf,
this corresponds to a section of InfAut(P)⊗F ∗ωC/S , where InfAut(P) is the
sheaf of infinitesimal automorphisms of P over C. In the case of P = P(E )
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for some vector bundle E , we have InfAut(P) = End0(E ). This section of
End0(E ) ⊗ F ∗ωC/S is then our p-curvature associated to ∇.

We remark that these definitions can be checked to agree with those of [5,
A.1] when the latter is defined, which is when everything (including the base
scheme) is smooth over a field.

Proof of Proposition 2.9. For the first assertion, we need only check the
following two claims: first, that given any ∇ on E , the p-curvature of the
induced connection on P(E ) is simply the traceless part of the usual p-curvature
of ∇ on E ; and second, that a connection ∇ on E with p-trivial determinant
has p-curvature taking values in End0(E ) ⊗ F ∗ωC/S .

We begin by checking that the new definition of p-curvature agrees with
the usual notion, when applied simply to E . We can check this on local coordi-
nates, so if we set t to be a local coordinate for C/S, the derivations are locally
generated by d

dt , and it suffices to compare definitions on this derivation, which
satisfies ( d

dt )
p = 0. Thus, the usual definition of p-curvature is simply (∇ d

dt
)p.

On the other hand, the lifting of our connection to the (p + 1)st order neigh-
borhood in C×PD

S C is given by the formula
∑p

i=0(∇ d
dt

)i⊗ (1⊗ t− t⊗1)[i], and
when we mod out by I , which is locally generated by 1⊗ t− t⊗ t, this kills all
terms of positive order less than p, leaving only 1 + (∇ d

dt
)p ⊗ (1⊗ t− t⊗ 1)[p].

The tautological map in the opposite direction is given simply by 1, so our
automorphism of p∗1E is given simply by 1 + (1 ⊗ t − t ⊗ 1)[p] ⊗ (∇ d

dt
)p. But

(1 ⊗ t − t ⊗ 1)[p] is precisely the square-zero element we used to obtain an in-
finitesimal automorphism of E , so we find that the p-curvature from the new
definition is also (∇ d

dt
)p, just as in the usual case.

One then easily checks our first claim: indeed, the functorial nature of
the new definition of p-curvature implies that the section of End0(E )⊗F ∗ωC/S

associated to the induced connection on P(E ) is simply the traceless part of the
p-curvature of ∇ on E , since this is precisely the description of the natural map
End(E ) ∼= InfAut(E ) → InfAut(P(E )) ∼= End0(E ). The second claim follows
similarly, since the natural map End(E ) ∼= InfAut(E ) → InfAut(detE ) ∼= OC

is precisely the trace map.
Finally, the assertion that the radii of a dormant torally crys-stable bundle

lie in Fp/{±1} is the n = 0 case of [18, Prop. II.1.5, p. 128].

We now address our statements of Mochizuki’s results.

Proof of Theorem 2.10. This is the n = 0 case of [18, Thm. II.2.8, p.
153].
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Proof of Theorem 2.11. We claim that it is enough to see that the stack
of dormant torally crys-stable bundles of level � is smooth over Fp of relative
dimension 5g − 5 + 2r − 2�. Indeed, by standard commutative algebra it then
suffices to show that the fibers of the map to Mg,r have dimension at most
2g−2+r−2�, which follows from [18, Thm. II.1.9, p. 132], after noting that the
condition of dormancy gives a closed sub-functor of the functor determined by
the condition of nilpotency (defined to be square nilpotency of the p-curvature
of the connection), and that the condition on the characteristic insures that
(D�

g,r)′ is in fact all of D�

g,r. Note also the relevant statements on the map

D�

g,r → Mg,r following [18, Def. I.3.7, p. 105].
We have thus reduced down to the smoothness assertion. Over Mg,r, this

is the j = 0, i = � case of [18, Cor. III.1.6, p. 176], but we will need the full
statement, whose proof is more involved, and generally follows the n = 0 case
of [18, Thm. II.2.8, p. 153]. As in loc. cit. (see in particular the remark on
deformation theory and log schemes preceding the proof), we will check that
our stack is log smooth, and smoothness in the (2-)category of stacks will follow
formally. For the definition and properties of log deformations, see [10], and
in particular Def. 8.1, Prop. 8.6, and Ex. 10.2. We take our base scheme S

to be SpecA, where A is an Artin ring which contains its separably closed
residue field k, and suppose that we have (C log, E , L ,∇) a dormant torally
crys-stable bundle of level � on C log over Slog, where the log structure on S

is induced by pulling back from Mg,r, and on C is the standard one, see [18,
§I.1.1, p. 88]. We denote by a subscript 0 the restriction of these objects
over S to Spec k. We then take any exact closed immersion of log schemes
Slog → Slog

1 with underlying scheme S1 = SpecA1 being a small extension of S

over Spec k, in the sense that ker(A1 � A) is a square-zero principal k-module,
hence in particular isomorphic to k. We therefore want to show that we can lift
(C log, E , L ,∇) to Slog

1 , preserving the vanishing of the p-curvature. To do so,
we will generally consider log deformations of the objects involved from Slog to
Slog

1 , and the key is to consider the following maps

(3.1) Def(C log, E ,∇) ��

��

H0(C0, Adq(P(E0)) ⊗ F ∗ω
C

(p)
0

)∇0

H1(C0,Hom(L0, E0/L0))

.

Here ω denotes the logarithmic differentials, and Adq(P(E0)) denotes a certain
subsheaf of End0(E0) which is equal to the latter away from the marked points
(see [18, p. 148]). Finally, Def(C log, E ,∇) denotes the space of logarithmic
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deformations of the triple from Slog to Slog
1 : for C log, this is equivalent to

classical deformations of C which induce fixed deformations formally locally at
each node (determined by the map of log structures of Slog → Slog

1 ), together
with deformations of each marked point and some additional data associated
to the log structures at the nodes. The horizontal arrow is the p-curvature
map, while the vertical arrow is the map giving the obstruction to deforming
L inside the given deformation of E ; both will be examined in more detail
shortly. We remark that we consider deformations up to tensoring with any
line bundle with connection on any C1 over S1 which is trivial when restricted
to C. We also denote by Def(C log) and DefClog

1
(E ,∇) the spaces of logarithmic

deformations of C log over Slog
1 , and of (E ,∇) over a fixed deformation C log

1 of
C log, respectively.

The main point is that the triple (C log
0 , E0,∇0) determines a locally free

crystal in the logarithmic crystalline site over Slog
1 , so if we have a logarith-

mic deformation C log
1 of C log, by considering it as a logarithmic PD-thickening

of C, the theory of crystals gives a natural identification between the spaces
DefClog

1
(E ,∇) as C log

1 is allowed to vary. We thus have a splitting Def(C log, E ,

∇) = Def(C log)×Def(E ,∇), where Def(E ,∇) is an abstract torsor over H1(C0,

End0(E0)
∇0→ End0(E0) ⊗ ωC0). Moreover, under this splitting, the p-curvature

map factors through Def(E ,∇). Now, the existence of the map measuring the
obstruction to deforming L inside the deformation of E is addressed implicitly
by the first isomorphism of [18, Prop. 1.7, p. 94]; however, one can also under-
stand the map quite directly, using the fact that deformations of L0 within E0

are parametrized by Hom(L0, E0/L0), and standard Cech cocycle arguments.
One checks that for a fixed element of Def(E ,∇), as the element of Def(C log)
varies from a fixed choice by an element of H1(C0, τ (C0)), the obstruction
class varies by the corresponding image of the natural map H1(C0, τC0) →
H1(C0,Hom(L0, E0/L0)) induced by the Kodaira-Spencer map of ∇0 after
tensoring by τClog

0
⊗ L −1

0 , where τClog
0

denotes the logarithmic tangent sheaf.
Surjectivity of the obstruction map then follows from the hypothesis that the
Kodaira-Spencer map is non-zero, and hence has a torsion sheaf for its cokernel.

To complete the proof, it was pointed out to the author by Mochizuki that
the arguments and results [18, pp. 150–152] do not in fact make use of the
torally indigenous hypothesis, requiring only that the bundle be torally crys-
stable. We then find that the p-curvature map is surjective by [18, Lem. 2.7,
p. 152]. This surjectivity, together with the surjectivity of the obstruction map
and our observations about the behavior of the two maps under our splitting,
imply that we can find a deformation of (C log, E ,∇) to Slog

1 which has vanishing
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p-curvature and no obstruction to deforming L , so we conclude the desired
smoothness by standard deformation theory arguments over small extensions.
Lastly, the dimension is the dimension of the simultaneous kernel of the p-
curvature and obstruction maps. Again as in the proof of [18, Thm. II.2.8, p.
153], the kernel of the p-curvature map on Def(E ,∇) has dimension 3g− 3+ r,
and by the surjectivity of the obstruction map, we obtain the dimension of
the total kernel by adding dim Def(C log) − dim H1(C0,Hom(L0, E0/L0)) =
3g − 3 + r − (g − 1 + 2�) = 2g − 2 + r − 2�, giving a total of 5g − 5 + 2r − 2�,
as desired.

We conclude with two results stated entirely in terms of Mochizuki’s lan-
guage (in particular, they are over singular curves), but which we will need for
our applications.

Proposition 3.5. A dormant torally indigenous bundle of radii {ρi}
on a nodal curve C over Spec k is equivalent to a collection of dormant torally
indigenous bundles on each connected component C̃i of the normalization of the
curve, where points on the C̃i lying above nodes are designated marked points,
having radii {ρi} at the points lying above marked points of C, and arbitrary
radii at points lying above nodes, subject to the restriction that the radii of the
two points lying above any given node must agree.

Proof. This follows immediately from [18, §I.4.4, p. 118], taking into
account the fact that dormancy, being a condition of vanishing of p-curvature,
will not be affected by the gluing.

We remark that the following lemma, whose proof is relatively straight-
forward from the results of [22] and [23], would be far more complicated if
one attempted to directly apply Mochizuki’s technique of considering totally
degenerate curves, because such curves have no torally crys-stable bundles of
intermediate level. In particular, by considering instead irreducible rational
nodal curves, we avoid the machinery of PTCS bundles [18, §II.1.6, p. 137].

Lemma 3.6. Let C be a general irreducible rational nodal curve over
Spec k of arithmetic genus g ≥ 2, with no marked points. Then for any � with
0 < � ≤ g − 1, there exists a dormant torally crys-stable bundle of level � on C.

Proof. We make use of [22], which generalizes the construction of [18,
§IV.2.1] to the case of arbitrarily many marked points, and non-maximal level.
Let C̃ be the normalization of C, with 2g marked points lying above the nodes.
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We first consider the case that � is an integer. Let f be any function C̃ ∼= P1 →
P1 of degree g − �, and unramified at the marked points. By [22, Thm. 6.7]
(with, in the notation of loc. cit., d = �, n = 2g, m = g, δ = 0, and αi = p−1

2

and βi = 0 for all i), this gives a dormant torally crys-stable bundle of level �

on C̃ with radii p−1
2 at every marked point, and by the previous proposition

we can glue to obtain a dormant torally crys-stable bundle of level � on C, as
desired.

The case that � is a strictly half-integer is similar, but somewhat more
complicated. If we choose an identification C̃ ∼= P1 such that ∞ is not a
marked point, we would like f to have degree p

2 + g − �, and be ramified to
order at least p at ∞. Of course, this is only possible if p

2 + g − � ≥ p; if in
fact p

2 + g − � > p, we can choose a rational function f1 of degree g − � − p
2

and unramified at the marked points, and with the additional hypotheses that
f1(∞) = 0 and f1 is unramified at ∞. We then set f = f1 + xp, and observing
that ramification indices < p away from ∞ remain unchanged, we obtain a
function of the desired degree and ramification, and again apply [22, Thm.
6.7], with d = p

2 + �, n = 2g, m = g − 1, δ = 1, and αi = p−1
2 and βi = 0 for all

i.
Finally, if p

2 + g − � ≤ p, we set e = p − 1 − (2g − 2 − 2�), and e′ = p±1
2

an odd integer according to the value of p mod 4. We claim that because
C and hence the marked points Pi on C̃ are general, we can find a function
f1 of degree 1

2 (p ± 1 + (2g − 1)(p − 2 − (2g − 2 − 2�))) ramified to order e′

at P1 and P2g, and e at ∞ and the remaining Pi, and unramified elsewhere,
and mapping ∞ to ∞. Indeed, the last requirement can be achieved for any
f1 by applying an appropriate linear fractional transformation. Momentarily
considering ∞ to be P2g+1, the claim then follows from the second formula of
Theorem 5.5 below (see also [23] for a self-contained proof), by noting that if
all e′i are chosen to be equal to e′, the conditions for existence of the desired
f1 are satisfied. We then set f = f1 + xp, obtaining a function with the
same ramification at P1, . . . , P2g, ramification of order p at infinity, and degree
1
2 (3p± 1 − 2 + (2g − 3)(p− 2− (2g − 2 − 2�))). As before, we apply [22, Thm.
6.7], with d = p

2 + �, n = 2g, m = g− 1, δ = 1, βi = 0 for all i, α1 = α2g = p∓1
4

and αi = g− 1− � + 1
2 for the remaining i ≤ 2g. The only additional difference

is that since the radii are no longer all the same, we are required to glue P1 to
P2g in forming our nodal curve.
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§4. Frobenius-Unstable Vector Bundles

In this section, we apply Theorem 2.11 to the study of the locus of
Frobenius-unstable vector bundles on a curve. In particular, we restrict further
to the case that r = 0. While it would be convenient to work with the entire
Frobenius-unstable locus at once, it appears difficult to define this functorially,
so we first define:

Definition 4.1. Given a half-integer � > 0, a Frobenius-unstable
vector bundle of level � is a semi-stable vector bundle F of rank 2 together
with a line sub-bundle of F ∗F with degree equal to � + p

2 deg F .

We then claim:

Proposition 4.2. Given a positive half-integer �, fix a line bundle L on
C(p), with degree having the same parity as 2�. Then dormant torally crys-stable
bundles of level � on C are equivalent to vector bundles on C(p) of determinant
L which are Frobenius-unstable of level �, up to tensoring by (one of the 22g)
line bundles of order 2.

Proof. First, given an F on C(p) which is semi-stable, but such that F ∗F
has a destabilizing sub-bundle of level �, if we denote by ∇can the canonical
connection associated to the Frobenius pullback (see [12, Thm. 5.1]) it is easy
to see that (F ∗F ,∇can) gives a dormant torally crys-stable of level �, taking
into account the comment following Proposition 2.7, and noting that the fact
that r = 0 renders the additional conditions irrelevant.

Conversely, Proposition 3.3 tells us that given a torally crys-stable bundle
of level �, we can choose a representing pair (E ,∇) such that E has deter-
minant F ∗L , with ∇ having determinant equal to the corresponding canoni-
cal connection. Next, given the dormancy condition, the Cartier isomorphism
(see [12, Thm. 5.1]) gives us an F on C(p) with determinant L , such that
(E ,∇) = (F ∗F ,∇can). The destabilizing sub-bundle of E in the definition
of level of a torally crys-stable bundle gives us the required destabilizing sub-
bundle of F ∗F , but the fact that the destabilizing sub-bundle is not horizontal
for ∇can implies by Lemma 3.4 that F itself is stable. The only ambiguity
in this was in the choice of E , since once ∇ is required to have a particular
determinant it is uniquely determined. But E is determined up to tensoring by
a line bundle, and for the determinant to remain unchanged, the line bundle
must be of order 2. Since p > 2, this is equivalent to tensoring F by a line
bundle of order 2, as desired.
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Recall that the space of semi-stable vector bundles with trivialized deter-
minant naturally forms an algebraic stack (see [3, §3, §8], where the stack is
denoted SLX(r)ss). Although our results are ultimately in terms of coarse
moduli spaces, it will be convenient to argue in terms of stacks.

Lemma 4.3. The stack of Frobenius-unstable vector bundles of level �

is a locally closed sub-stack of the stack of stable vector bundles (of rank 2 and
the appropriate determinant).

Proof. By Lemma 3.4, Frobenius-unstable vector bundles form a sub-
stack of the stack of semi-stable vector bundles, and we see by the same lemma
that they must lie within the stable locus. We thus need to check that this is a
locally closed sub-stack; since both stacks deal only with quasi-coherent sheaves
which are (locally) of finite presentation, and maps between such sheaves, they
are clearly locally of finite presentation (i.e., on the level of rings they commute
with direct limits; see [16, Prop. 4.15]), so it is easy to see that we may
restrict to schemes T of finite type over S, and in particular schemes which
are Noetherian. Now, suppose we are given a vector bundle F of rank 2 on
C(p) ×S T ; we want to show that the locus of T on which F ∗F has a line
sub-bundle, or equivalently, locally free quotient of rank 1, of the required
degree, is given functorially as a locally closed subscheme of T . Let Q/T be
the Quot scheme of quotients of F ∗F with the appropriate Hilbert polynomial,
and Q′ ⊂ Q the open subscheme parametrizing locally free quotients, which
then have the desired rank and degree; see [7, Thm. 2.2.4, Lem. 2.1.7, Lem.
2.1.8], and note that Q is proper over T . We want to show that Q′ → T is an
immersion. We already observed that it is a monomorphism, so by [18, Cor.
I.2.13, p. 102] it suffices to check the valuative criterion for radimmersions, [18,
Thm. I.2.12, p. 101] (where we note that in the statement of (*) in loc. cit., the
phrases “horizontal morphisms on the left” and “horizontal morphisms on the
right” should read “vertical morphisms on the left” and “vertical morphisms on
the right”). Because Q is proper over T , we immediately see that it is enough
to show that any k-valued point of Q whose image in T is in the image of Q′

must itself be in Q′. Recalling that k is a field, this is equivalent to the assertion
that over a field, if F ∗F has a locally free quotient of rank 1 and the required
degree, then it has no other quotients that yield points of Q. Finally, we can
conclude the desired statement because we are on a smooth curve, so taking a
saturation of the kernel of such a quotient would produce a destabilizing line
sub-bundle, and we could then apply Lemma 3.4 once more.

It thus follows via Theorem 2.11 and general moduli space theory that we
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can conclude:

Theorem 4.4. Suppose that p > 2g − 2, S = Spec k with k an alge-
braically closed field, and C is general. Then the locus of Frobenius-unstable
vector bundles of trivial determinant in the coarse moduli space M2(C(p)) of
semi-stable vector bundles of rank two and trivial determinant on C(p) is non-
empty of dimension 2g − 4. The locus of Frobenius-unstable vector bundles
inside the coarse moduli space of semi-stable vector bundles of rank two and
fixed odd determinant is non-empty of dimension 2g − 3. More generally, the
locus of Frobenius-unstable vector bundles of level � and fixed determinant has
dimension 2g − 2 − 2�.

Proof. Since the Frobenius-unstable locus in the moduli space is clearly
the image of the disjoint union of the loci for each level, the first two assertions
follow from the last. Noting that the argument of Proposition 4.2 used no
hypotheses on the base to go from a Frobenius-unstable bundle to a dormant
torally crys-stable bundle, we get a morphism from the stack of Frobenius-
unstable bundles of level � to the algebraic space of dormant torally crys-stable
bundles of level �.

We wish to see that the locus of Frobenius-unstable bundles of level � in
M2(C(p)) represents the étale sheafification of the stack of Frobenius-unstable
bundles of level �. This is certainly well-known to the experts, but due to lack of
an appropriate reference, we include a (somewhat circuitous) argument based
on available citations. We first argue that the stable locus of M2(C(p)) itself
represents the sheafification of the corresponding stack: by [13, Prop. 9.1], the
stable locus is the GC quotient of the stack, which is determined by a universal
property for maps to algebraic spaces. On the other hand, [1, Thm. 5.1.5] as-
serts that we can, in effect, mod out by the automorphisms of the stack of stable
vector bundles to obtain a quotient stack without automorphisms, and having
the same “moduli space” (i.e., algebraic space representing the sheafification).
But since this quotient is already automorphism-free, by [16, Cor. 8.1.1] it is
an algebraic space, and hence is itself the sheafification of the stack of stable
bundles. But by construction, this quotient satisfies a universal property (in
fact for maps to arbitrary stacks), so it must agree with the GC quotient, and
in fact be the scheme obtained by GIT, as desired. Moreover, we see from this
that the stack of stable bundles is a µ2-gerbe over the coarse moduli space, so
to conclude that the locus of Frobenius-unstable bundles represents the étale
sheafification of the stack, by the previous lemma it suffices to argue that for
a µ2-gerbe, sheafification commutes with passing to a locally closed substack.
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But this follows from [17, Prop. 2.2.1.6], which implies ideal sheaves on the
gerbe are equipped with the trivial µ2 action, and hence correspond to ideal
sheaves on the base via pushforward.

Since we have seen that the locus of Frobenius-unstable bundles of level �

in M2(C(p)) represents the étale sheafification of the corresponding stack, any
map from this stack to an algebraic space factors through the locus in question.
Since the stack of dormant torally indigenous bundles is an algebraic space (see
[18, Thm. I.2.7, p. 99, Prop. I.3.3, p. 104]; dormancy simply gives a further
closed condition), we obtain a map from the locus of Frobenius-unstable bundles
of level � in M2(C(p)) to the space of dormant torally indigenous bundles of
level �. Furthermore, we know that this map is bijective on k-valued points, so
we conclude the dimension of the locus of Frobenius-unstable bundles of level �

from Theorem 2.11. We may finish the proof by considering the minimal cases
� = 1

2 , 1 as appropriate, as long as we know that the spaces in question are
non-empty. By the flatness assertion of Theorem 2.11, it suffices to show that
the locus of torally crys-stable bundles of level � is non-empty for all � > 0 on
any single curve C0, which is Lemma 3.6.

Remark 4.5. Because our lexicon was developed over arbitrary strictly
Henselian bases, it is easy to check that in fact the map from the locus of
Frobenius-unstable bundles to the algebraic space of dormant torally crys-stable
bundles is étale; the former is therefore an explicit étale cover of the latter by
a scheme.

Remark 4.6. We observe that for bundles of rank 2, there is a notable
distinction between the case p = 2 and p > 2. For p = 2, results of Joshi,
Ramanan, Xia, Yu, Laszlo and Pauly have shown [9, Thm. 1.1], [15, Prop. 6.1
2], [8, Thm. 4.6.4] that the dimension of the Frobenius-unstable locus is 2g−4,
independent of whether the determinant has odd or even degree. However, for
p > 2, Theorem 4.4 implies that the dimension does depend on the degree. More
specifically, we see that the dimension obtained for p = 2 is the same as that
obtained for p > 2 in the even degree case. This is perhaps not surprising given
that p = 2 is the only case for which F ∗E always has even degree irrespective
of the degree of E .

We also mention that in the only case for which the number of Frobenius-
unstable bundles is finite, Mochizuki’s results also give the number.

Theorem 4.7. The number of Frobenius-unstable vector bundles of
rank 2 and trivial determinant on a general curve C of genus 2 is given by
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2(p3−p)
3 . Further, they all have no non-trivial deformations, in the sense that

for a Frobenius-unstable bundle F , no non-trivial first-order deformation of F

on the fixed curve C(p) induces the trivial deformation of F ∗F .

Proof. In this case, the only possible positive integral level is � = 1. By
Theorem 4.2, the number of Frobenius unstable bundles is 22g = 16 times the
number of dormant torally indigenous bundles on C. It follows from Theo-
rem 2.10 that dormant torally indigenous bundles on a fixed general curve C

have no non-trivial deformations, so in particular any Frobenius-unstable bun-
dle has no non-trivial deformations such that the pullback remains fixed. It
also follows from Theorem 2.10 that to conclude the desired formula it suffices
to consider the case that C is totally degenerate; we choose the totally degen-
erate curve obtained by gluing two copies of P1 to each other three times. By
Proposition 3.5, and the fact [18, p. 206] that a torally indigenous bundle on P1

with three marked points is determined by its radii, we find that this number
is the same as the number of dormant torally indigenous bundles on P1 with
three marked points, which is p3−p

24 by [18, Cor. V.3.7, p. 267].

Remark 4.8. One natural question which is not addressed by these tech-
niques, due to the necessity of working level by level, is the relationship be-
tween the strata of different levels. Particularly if one wanted to conclude, for
instance, that the Frobenius-unstable locus is pure of the given dimension, one
would want to show that every higher-level bundle is a specialization of one
with lower (but still positive) level. However, the deformation theory raised by
such a question seems substantially more delicate than the constant-level case.

§5. Rational Functions with Prescribed Ramification

For the desired applications to self-maps of P1, the statements of equiva-
lences with dormant torally indigenous bundles are slightly more complicated.
We specialize to the case g = 0, and show:

Theorem 5.1. Fix radii {ρi} ⊂ Z/pZ for each of the r marked points
on C = P1, with sign mod p chosen so that 0 < ρi < p

2 . Then there is
a natural map ϕ from the set of self-maps of P1 ramified to order p − 2ρi

at the marked points and unramified elsewhere, to the set of dormant torally
indigenous bundles on P1 of radii {ρi}. We have further :

(i) The map ϕ is injective after passing to equivalence classes of maps related
by post-composition by automorphisms of the image.
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(ii) If the marked points are general, the map ϕ is surjective.

(iii) If the marked points are general, there is a bijective correspondence between
self-maps of P1 as above, and self-maps of P1 for which any even number
of the ramification indices p − 2ρi have been replaced by 2ρi.

Proof. We will once again use [22], which generalizes the construction of
[18, §IV.2.1] to arbitrarily many marked points. Since we are on P1, there need
not be any ambiguity in our choices of vector bundles with connection: for r

even, we can choose E = O(− r
2 + 1)⊕O( r

2 − 1), and for r odd, we can choose
E = O(p−r

2 +1)⊕O( r+p
2 −1), and then ∇ will be uniquely determined as there is

only one connection with vanishing p-curvature on the determinant line bundles
O and O(p). We then apply [22, Thm. 1.1] to conclude the existence of ϕ as
well as assertions (i) and (ii). Assertion (iii) is in fact unrelated to indigenous
bundles; this is simply [23, Lem. 5.2], which is an essentially elementary lemma
on rational functions in positive characteristic.

One conclusion is:

Corollary 5.2. The number of self-maps of P1 ramified to order less
than p at r general marked points Pi and unramified elsewhere, counted modulo
automorphism of the image P1, is 2r−1 times the number of dormant torally
indigenous bundles on P1 with the same marked points.

Proof. In light of the previous theorem, it suffices to check that 2r−1 gives
the number of ways of replacing an even number of the p− 2ρi by 2ρi, which is
to say, the number of even subsets of {1, . . . , r}. But this is simple enough: for
instance, one sees by expanding (1 − 1)r with the binomial theorem that the
number of even subsets is the same as the number of odd ones.

More importantly, as an immediate corollary of (i) of Theorem 5.1 together
with the finiteness assertion of Theorem 2.10, we can conclude:

Theorem 5.3. Fix distinct points P1, . . . , Pr on P1, and odd integers
e1, . . . , er less than p. Then the number of maps from P1 to itself which are
ramified to order ei at the Pi and unramified elsewhere, when counted modulo
automorphisms of the image P1, is finite.

Remark 5.4. The parity hypothesis on the ei in this theorem is not ex-
pected to be necessary; indeed, if based on the desired parity of ramification
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indices one varies the determinant of the vector bundle with connection corre-
sponding to the given torally indigenous bundle, as in [18, p. 206], one should
obtain the injectivity of Theorem 5.1 (i) without parity hypotheses. However,
because the preceding theorem is stated for (and only of interest for) arbitrary
distinct marked points, rather than just general points, we cannot simply apply
Theorem 5.1 (iii) to remove the parity hypothesis, as we did in Corollary 5.2.

In contrast, the hypothesis that all ei are less than p is unquestionably
necessary, as demonstrated by families such as xp+2 + txp +x. We give a direct
proof of this finiteness result when the Pi are general (and without assumptions
on the parity or size of the ei, as long as p � ei) in [23], but a direct proof for
arbitrary distinct Pi remains elusive. The proof in the context of dormant
torally indigenous bundles is carried out by first enlarging to the category of
nilpotent torally indigenous bundles, and proving a finiteness result there; it is
this construction which is lacking in the context of self-maps of P1.

This finiteness result leads to strong non-existence statements for certain
tame branched covers of P1 by P1; see [21].

We conclude with a discussion of the relevance of dormant torally indige-
nous bundles to counting self-maps of P1 with prescribed ramification. Specifi-
cally, Proposition 3.5 allows us to obtain an alternate proof of the main theorem
of [23].

Theorem 5.5. Given positive integers n ≥ 3, d and e1, . . . , en with ei <

p and ei ≤ d for all i and 2d − 2 =
∑

i(ei − 1), the number Ngen({ei}i) of
separable self-maps of P1 of degree d and ramified to order ei at general Pi,
modulo automorphisms of the image space, is given by

(5.1) Ngen(e1, e2, e3) =

{
1 p > d

0 otherwise

(5.2) Ngen({ei}i) =
∑

d − en−1 + 1
d − en + 1

≤d′≤ d
p + d − en−1 − en

Ngen({ei}i≤n−2, e),

with e = 2d′ − 2d + en−1 + en − 1

Equivalently, for n > 3, Ngen({ei}i) is given as the number of (n − 3)-
tuples of positive integers e′2, . . . , e

′
n−2 such that any consecutive triple e, e′, e′′

of the sequence e1, e2, e
′
2, e3, e

′
3, . . . , en−2, e

′
n−2, en−1, en, with e = e1 or some

e′i, satisfies the following properties:
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(i) The sum e + e′ + e′′ is odd, and less than 2p;

(ii) The triple e, e′, e′′ satisfies the triangle inequality: i.e., e ≤ e′ + e′′, e′ ≤
e + e′′, and e′′ ≤ e + e′.

Proof. The two statements are easily seen to be equivalent by induction
on n. The n = 3 case is simplest; see, for instance, [23, Cor. 4.3], or [18,
Intro., Thm. 1.3]. One checks by direct calculation (see [23, Cor. 5.3]) that
the asserted formulas are invariant under replacing pairs of ei by p − ei, so
that by Theorem 5.1 (iii), it suffices to handle the case where all ei are odd.
By Theorem 5.1, we see that Ngen({ei}i) then counts the number of dormant
torally indigenous bundles of radii {p−ei

2 }i. By Theorem 2.10, it may then be
computed on a totally degenerate curve; we choose a chain with P1, P2 lying
on the first component, P3 on the second, and so forth, until Pn−1 and Pn lie
on the last component. By Proposition 3.5, and then another application of
Theorem 5.1, this may then be described precisely as claimed in our second
formulation, noting that the parity condition forces all the e′i to also be odd,
so that the sign ambiguity which produces the factor of 2r−1 in Corollary 5.2
does not arise.

Remark 5.6. Although this proof is far more circuitous in translating to
vector bundles with connection, invoking Mochizuki’s theory, and then trans-
lating back to maps, both chronologically and in spirit it preceded the ulti-
mately self-contained proof of [23]. Indeed, although a self-contained argument
was the original intent, after some study of the situation there remained the
stumbling block of controlling degeneration from separable to inseparable maps,
ultimately addressed by [23, Thm. 6.1]. However, we know from [22, Thm. 6.7]
that for the special configurations of marked points where the map ϕ of The-
orem 5.1 fails to be surjective, the dormant torally indigenous bundles which
are not in the image in fact correspond to families of self-maps of P1 with the
prescribed ramification at the marked points, together with an additional rami-
fication point of order greater than p at an additional point. By [23, Prop. 5.4]
such families are known to exist only for special configurations (and indeed,
this is how the surjectivity of ϕ is shown for general configurations of marked
points). On the other hand, separable maps can certainly degenerate to insep-
arable maps as the ramification points are allowed to move. Now, Mochizuki’s
finite flatness theorem implies that dormant torally indigenous bundles can nei-
ther appear nor disappear under specialization, so the natural conclusion is that
separable maps can degenerate to inseparable maps only when the ramification
points move into special configurations allowing the existence of families of
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maps with exactly one ramification index greater than p. With this realization,
it was then possible to write down examples of degenerations of connections
which explicitly demonstrated the phenomenon, and finally to discover the con-
struction which led to a self-contained proof of this statement [23, Thm. 6.1]
and hence the formula for self-maps of P1 with prescribed ramification.
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