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Abstract

Non-existence theorems for Levi flat hypersurfaces have found great interest in
the literature. The question next to this that has to be asked is, when existing Levi
flat hypersurfaces are at least rigid under deformations. Here, the case of boundaries
of disc bundles over certain compact Riemann surfaces is considered.

Introduction

In several complex variables, Levi flat hypersurfaces arose as counterex-
amples in generalized function theory on complex manifolds (cf. [12], [13], [1],
[3]). Nowadays, they are considered as objects of independent interest, since
they also arise as typical examples of minimal closed subsets consisting of leaves
of complex analytic foliations (cf. [2]). However, very few Levi flat hypersur-
faces have yet been analyzed. The most remarkable results are nonexistence
theorems (cf. [17], [18], [9]). Recently an attempt has begun to classify them
(cf. [11], [14]). Under these circumstances we would like to continue the study
of disc bundles over compact Kähler manifolds from [5], where we proved as
main result that any holomorphic disc bundle D over a compact Kähler mani-
fold M is weakly 1-complete (i.e. it admits a C∞-plurisubharmonic exhaustion
function).
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172 Klas Diederich and Takeo Ohsawa

What we want to pursue further, is a rigidity property of ∂D when D is
identified with a domain in the associated P1-bundle, say P →M . For that we
shall restrict ourselves here, as a first step, to the case where M is a compact
Riemann surface of genus g > 1, since we can exploit some (deep) results on
Riemann surfaces.

First, employing Schoen-Yau’s diffeomorphism theorem for harmonic
maps, we refine the previous result as follows.

Proposition (Consequence of Proposition 1.6). Let C be a compact
Riemann surface of genus g > 1 and let D → C be a holomorphic disc bundle
associated to a homomorphism � from the fundamental group of C into the au-
tomorphism group of the unit disc D. If the image Γ of � is a Fuchsian group
such that D/Γ is homoeomorphic to C, then D is Takeuchi 1-convex in the
associated P

1-bundle P . (For the definitions see §2)

Based on this observation, we can conclude the following rigidity result.

Theorem. ∂D is rigid in P if either Γ is an abelian group or a Fuchsian
group such that D/Γ is biholomorphic to C or to its conjugate C.

(For the definition of rigidity, see §2.) For the proof of the theorem we
need a Hartogs type extension theorem of Ivashkovitch [10] and a basic fact on
projective structures described by R. C. Gunning in [7], [8].

The condition on Γ does not seem to be really essential for the rigidity of
∂D. One might even suspect that the rigidity holds true for any disc bundle
over any compact complex manifold. Although there are few methods available
to study the question in such generality, the authors believe that the present
work gives some insight towards that direction.

§1. Disc Bundles Over Compact Kähler Manifolds - Review and
Refinement

Let M be a compact complex manifold of dimension n and let D →M be
a holomorphic fiber bundle the fibers of which are biholomorphic to the unit
disc D := {ζ ∈ C : |ζ| < 1}. Recall that the group Aut D of biholomorphic
automorphisms of D consists of the maps

ζ �→ eiθ ζ − a

aζ − 1
(θ ∈ R, a ∈ D)

so that transition maps of the bundle D are locally constant. Accordingly, the
pull-back of D to the universal covering M̃ → M is the trivial disc bundle
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M̃ × D, and there exists a homeomorphism

(1) � : π1(M,x0) → Aut D (x0 ∈M)

uniquely determined up to the inner automorphism operation of Aut D, such
that

(2) D � M̃ × D/ ∼

where (x, ζ) ∼ (y, ζ ′) :⇔ y = σ(x) and ζ ′ = �(σ)ζ for some σ ∈ π1(M,x0).
Here the action of σ is defined as the covering transformation. We shall denote
D by D� when we want to refer to �. In particular, D is uniquely determined
by �.

Let P → M be the P1-bundle associated to the composite of � and the
inclusion homomorphism Aut D ↪→ Aut P1. D will be naturally identified with
a domain in P .

Proposition 1.1. For any compact Kähler manifold M and for any
disc bundle D over M, one of the following four cases occurs:

1. D admits a unique locally nonconstant pluriharmonic section.

2. D admits a locally constant section.

3. ∂D → M, the associated circle bundle, admits a unique locally constant
section.

4. ∂D →M admits precisely two locally constant sections.

Proof. It is clear that 2) occurs if and only if D is the tubular neighbor-
hood of the zero section of a topologically trivial line bundle over M . 3) (resp.
4)) occurs if and only if the transition maps have one (resp. two) common
fixed points on the boundary of D, in which case there are no (resp. infinitely
many) pluriharmonic sections of D. By [5] the rest is contained in the (possibly
empty) case 1). (See also [6].)

Corollary 1.2 (cf. [5]). Any holomorphic disc bundle over a compact
Kähler manifold is weakly 1-complete.

Definition 1.3. A C2 real valued function ϕ on a complex manifold X
of dimension n is said to be q-convex at a point x ∈ X if the Levi form of ϕ
has at least n− q + 1 positive eigenvalues at x.
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In the cases 1), 3) and 4) of Proposition 1.1 for the disc bundles D over
a compact Kähler manifold of dimension n, it turns out that D admits an
exhaustion function of class C∞ which is n-convex outside a compact subset
of D. This can easily be seen from the proof of the above Corollary which we
have given in [5].

Instead of this general fact, we shall prove a refined variant which we shall
need later.

Definition 1.4. A relatively compact domain Ω with C2-smooth bound-
ary in a complex manifold X is said to be Takeuchi q-convex if Ω admits a
defining function r of class C2 such that, with respect to some Hermitian met-
ric on X, at least n−q+1 eigenvalues of the Levi form of − log(−r) are greater
than 1 outside a compact subset of Ω.

Remark 1.5. A. Takeuchi [19] was the first to verify that the q-convexity
in the above sense holds for q = 1, if X = Pn and Ω is a proper locally
pseudoconvex domain.

Proposition 1.6. Let C be a compact Riemann surface of genus ≥ 2,
and let D → C be a disc bundle with a harmonic section h : C → D. Suppose
that the set of critical points of h is finite. Then D admits a defining function r
in the associated P

1-bundle P such that ∂∂(− log(−r)) dominates the ambient
metric near ∂D. In other words, D is Takeuchi 1-convex in P .

Proof. In the above situation we define a function ϕ on D by putting

ϕ(x, ζ) := − log


1 −

∣∣∣∣∣
ζ − h(x)
h(x)ζ − 1

∣∣∣∣∣
2



in terms of the coordinates ζ on the fibers.
Clearly, the value ϕ does not depend on the choice of the coordinates ζ,

and ϕ is a real analytic exhaustion function of D.
Let x0 be any point of C and let ζ be a coordinate on the fiber Dx0

satisfying h(x0) = 0. Then a simple calculation gives with respect to a local
coordinate z around x0:

ϕzz = |hz|2 + |hz|2 − 2Re (ζ
2
hzhz)(3)

ϕζζ =
(
1 − |ζ|2

)−2

(4)

ϕzζ =−hz(5)
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at (x0, ζ). Hence

(6) ϕzzϕζζ −
∣∣∣ϕzζ

∣∣∣2 =
(
1 − |ζ|2

)−2 [
|ζ|2 (1 − |ζ|2) |hz|2 +

∣∣ζhz − hz

∣∣2]

holds true.
Let {x1, . . . , xm} be the set of critical points of h, and let ζi be fiber

coordinates of D over neighborhoods Ui of xi.
Let �i be C∞ nonnegative functions on C whose supports are contained in

Ui, such that �i is identically 1 near xi.
We put, for ε > 0,

Φ = ϕ+ ε
m∑

i=1

{
−�i log(1 − |ζi|2) + (1 − �i)ϕ

}
.

Then (4) and (6) imply that there exists a Hermitian metric gP on the associ-
ated bundle P → C such that ∂∂Φ > gP |D holds outside a compact subset of
D, if ε is chosen to be sufficiently small.

Remark 1.7. Notice that for a disc bundle D → C associated to the
homomorphism � : π1(C, x0) → Aut D, the exterior of D in the associated P

1-
bundle P → C is equivalent to the disc bundle associated to the homomorphism
� defined by

�(σ)(z) := �(σ)(z).

Therefore, if (x, h(x)) is a locally quasiconformal section of D, (x, h(x)) is a
locally antiquasiconformal section of D�.

In order to deduce the Proposition of the introduction from Proposition
1.6, we note that a C∞-section of D� → C is naturally identified with a C∞-
map from C to D/Im � which is homotopic to a diffeomorphism. Therefore, the
harmonic section of D� → C, which exists according to the theorem of Eells
and Sampson (cf. [6]), is either quasiconformal or antiquasiconformal as a map
to D/Im �, since it is a diffeomorphism in virtue of a theorem of Schoen-Yau
[15]. Hence, the required Takeuchi 1-convexity follows from Proposition 1.6.

§2. Stability of q-convexity

Before starting to discuss the rigidity property of Levi-flat hypersurfaces,
we shall prove the stability of Takeuchi q-convexity for domains with Levi-flat
boundaries.

Recall that a C2-smooth real hypersurface S in a complex manifold X is
said to be Levi-flat if S locally admits a defining function the Levi form of
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which, restricted to the holomorphic tangent space of S, is identically 0. A real
hypersurface of class Cω then is defined by pluriharmonic functions if and only
if it is Levi-flat.

Proposition 2.1. Let Ω ⊂⊂ X be a Takeuchi q-convex domain with a
Levi-flat Cω hypersurface as boundary. Then any C2 small perturbation of Ω as
a domain with Cω Levi-flat boundary also is Takeuchi q-convex. In other words,
there exists a tubular neighborhood U and a Cω diffeomorphism ϕ between U

and the normal bundle of ∂Ω which identifies ∂Ω with the zero section of the
bundle, such that a Cω domain Ω′ ⊂⊂ X is Takeuchi q-convex if ∂Ω′ is Levi
flat and sufficiently small as a C2 section of the bundle.

Proof. Let r be a C2 defining function of ∂Ω such that ∂∂(− log(−r)) has
at least n− q + 1 eigenvalues > 1 near ∂Ω with respect to a Hermitian metric
on X. Since ∂Ω is Cω and Levi flat, r is locally the product of a pluriharmonic
defining function, say rα, and a positive C2 function, say uα. If Ω′ is a domain
with Cω Levi flat boundary such that ∂Ω′ is sufficiently close to ∂Ω in the
Cω topology, then one can choose locally pluriharmonic defining functions of
∂Ω′ which are close to rα even in the Cω topology. Therefore, Ω′ admits a
defining function r′ whose pluriharmonic and positive factors are close to the
corresponding factors rα and uα in the C2 topology, respectively.

Combining this observation with

∂∂(− log(−r)) = ∂∂(− log(−rαuα))

= ∂∂(− log(−rα)) + ∂∂(− log uα))

=
∂rα∂rα
r2α

+ ∂∂(− log uα)

one can immediately see the validity of the conclusion because of the continuity
of the eigenvalues of ∂∂(− log uα).

Definition 2.2. In what follows we say that ∂Ω′ is a displacement of
∂Ω if ∂Ω′ is identifiable with a section of the normal bundle of ∂Ω by means
of some diffeomorphism ϕ as in Proposition 2.1. “Sufficiently small” always
refers to the C2-norm. ∂Ω is said to be rigid if, for any fixed choice of ϕ, any
sufficiently small displacement of ∂Ω is isomorphic to ∂Ω as a CR manifold.

Proposition 2.3. Let D → C be a disc bundle as in Proposition 1.6.
Then any small Cω Levi flat displacement of ∂D in the associated P1 bundle
P → C bounds a Takeuchi 1-convex domain.
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§3. Proof of the Rigidity Theorem

First we will prove the second case of the Theorem.
Let C be a compact Riemann surface of genus g ≥ 2 and let D� → C be

a disc bundle such that the image Γ of � satisfies D/Γ � C or D/Γ � C̃. By
remark 1.7 it suffices to prove the theorem in the case D/Γ � C, which we shall
now consider.

Since D� is according to the assumption biholomorphic to the quotient
of D × D modulo the diagonal action of Γ by (z, z) �→ (γ(z), γ(z)) for γ ∈ Γ,
D� admits a holomorphic section s : C → D� corresponding to the diagonal
∆ = {(z, z) : z ∈ D}.

Suppose now there exists a sequence of real analytic Levi flat hypersurfaces
Sk, k = 1, . . ., converging to ∂D� in the C2 sense. Then by Proposition 2.3,
Sk (k 	 1) separates the associated P1 bundle P� into two Takeuchi 1-convex
domains, say D+

k and D−
k . We normalize notation such that D+

k ⊃ s(C).
We note that the domain D−

k does not contain any compact complex curve.
In fact, if there were such a curve Ck ⊂ D−

k , Ck would define a multivalued
holomorphic section of the affine line bundle P� \ s(C). By averaging Ck pro-
duces a holomorphic section, so that the bundle becomes a line bundle. On
the other hand, it is known that � lifts to a GL(2,C) representation, say �̃,
and the rank two vector bundle V associated to �̃ admits a flat connection
(cf. [7]). However, s and the zero section of P� \ s(C) lift to line subbun-
dles L∞ and L0 of V , so that V is holomorphically equivalent to L0 ⊕ L∞.
This means that, by Weil’s criterion on the existence of flat connections (cf.
[8]), L0 and L∞ both admit flat connections, which is an absurdity because
|degL0| = |degL∞| = 2g − 2 �= 0. Hence D−

k is Stein.
On the other hand, since Sk is Cω Levi flat, there exists a neighborhood

Uk ⊃ Sk and a complex analytic foliation Fk on Uk of codimension 1 which
extends the foliation on Sk defined by the holomorphic tangent bundle of Sk.
We note that Fk is naturally identified with a holomorphic map from Uk to the
projectivization of the tangent bundle of P . Hence, in virtue of the extension
theorem of Ivashkovitch (cf. [10]), D− admits a holomorphic foliation, possibly
with finitely many singularities, which extends Fk. Similarly, since D+

k does
not contain any compact complex curves other than s(C) (s(C) would not be
exceptional otherwise), Fk extends to a holomorphic foliation on D+

k \ s(C),
possibly with finitely many singularities. But since s(C) is exceptional, the
foliation further extends, in virtue of the Remmert-Stein continuation theorem
for complex analytic subsets (cf. [16]), to D+

k , possibly with finitely many
singularities. Since these foliations converge to a foliation F of P� consist-
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ing of locally flat sections, they have for sufficiently large k no singularities.
(Any small perturbation of a holomorphic section as a meromorphic section is
holomorphic.)

Thus we obtain a family of holomorphic foliations, say F̃k on P�, for k 	 1,
extending Fk and converging to F . Note that Fk defines a flat structure on P�.
Let �k be the corresponding representation of π1(C, x0) into PSL(2,C). Then
∂D+

k ∩ Px0 must be a circle in the Riemann sphere Px0 because it is a closed
simple closed curve which contains an orbit of a point, consisting of infinitely
many points, through the action of γl (l = 1, 2, . . .) for some γ ∈ PSL(2,C).
Therefore, D±

k are biholomorphically equivalent to some disc bundles over C.
This means, that the �k are equivalent to Aut(D)-representations of

π1(C, x0), say �′k. Then �′k must be Aut(D)-equivalent to �, because D�′
k

and D� both contain s(C) as a holomorphic section. Therefore, there exist
bundle equivalences ϕk : D� → D�′

k
which extend, by inversion, to bundle

automorphisms ϕ̃k of P� (= P�k
= P�′

k
).

Now we are going to show the rest of the Theorem. Since Γ now is abelian,
the transition maps of D are either all elliptic, all parabolic or all hyperbolic
(if they are not the identity).

Suppose first that either D is trivial or the transition maps are all elliptic,
and let {ζα} be a system of fiber coordinates of D subordinate to an open
covering {Uα} of C such that ζα = eiθαβζβ for θαβ ∈ R over Uα ∩ Uβ .

Let ε > 0 and let S be any Cω Levi flat displacement of ∂D in the domain
{1 − ε < |ζα| < 1 + ε}. Let Ω+ and Ω− be the components of P \ S, such that
Ω+ ⊂ {|ζα| <∞}. We define a continuous function δ on {|ζα| <∞} by letting

(7) δ(x, ζα) = inf{|ζα − ζ ′α| : (x, ζ ′α) ∈ S}.
Then − log δ+ |ζα|2 is plurisubharmonic on Ω+ and real analytic near S. Since
Ω+ is clearly not 1-convex, − log δ must depend only on the fiber coordinate
(cf. [4]). Hence S is CR-equivalent to ∂D by the fiberwise retraction along the
radial directions with respect to ζα.

Next, suppose that the transition maps are parabolic, and let σ : C →
∂D be the locally constant section consisting of the common fixed points of
the transition maps. In view of the classification in Proposition 1.1 and the
extension argument for D� with Fuchsian representation �, it suffices to show
that any small Cω Levi flat displacements of ∂D are the boundaries of 1-convex
domains from both sides. In fact, ifD′ → C is another disc bundle such that the
associated P1 bundle P ′ → C is biholomorphic to P , P and P ′ are equivalent
P1 bundles because the genus of C is not zero. Hence, the transition maps of
D′ are all parabolic, too. Hence ∂D′ must contain σ(C), so that there exists a
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biholomorphism between D and D′ given by the fiberwise translations.
Let Ω+ and Ω− be the connected components of P \ S which we want

to prove to be 1-convex. If S ⊃ σ(C), there is nothing left to prove because
P \ σ(C) is already Stein. So let us suppose S �⊃ σ(C). Then S ∩ σ(C) is
either empty or the union of finitely many irreducible real analytic curves, say
γ1, . . . , γN , because of the real analyticity of S. If S ∩ σ(C) = ∅, Ω+ ⊃ σ(C)
or Ω− ⊃ σ(C). In any case, since Ω± \ σ(C) are Stein, there would arise a
2-dimensional Stein manifold with a disconnected boundary which is absurd.

Hence S ∩ σ(C) �= ∅. Let π be the bundle projection P → C. Then
π(γk) are all real analytic curves, so that C \⋃

π(γk) carries a bounded strictly
subharmonic function say ψ.

On the other hand, let ζα be the fiber coordinates of P \ σ(C) whose
transition relations are ζα = ζβ + ξαβ, ξαβ ∈ C. Hence we define a function
δ on Ω± \ σ(C) by δ(x, ζα) := inf{ |ζα − ζ ′α| : (x, ζ ′α) ∈ S} and obtain a
plurisubharmonic function ϕ on Ω± by extending − log δ to σ(C) \ S as −∞.

Let d(p) be the distance from p to S with respect to some real analytic
metric g on P , let χ : P → [0, 1] be a C∞ function such that χ ≡ 1 on a
neighborhood of S ∩ σ(C) and that there exists a strictly plurisubharmonic
function, say η, on a neighborhood of suppχ. Then we put

(8) Φ := max {λ(− log δ + ψ),− log d+ χη}
for a C∞ convex increasing function λ with inf λ = 0.

Clearly, if S is a sufficiently small displacement of ∂D, Φ is an exhaustion
function of Ω± and satisfies

(9) ∂∂Φ > cg

near S for some positive constant c, in the distribution sense. Therefore Ω±
are 1-convex.

Finally, suppose that the transition maps are hyperbolic. Then P → C

admits two holomorphic curves C1 and C2, lying in ∂D, which consist of the
common fixed points of the transition maps. Then the C∗ bundle P \ (C1∪C2)
admits a system of fiber coordinates {ζα} with transition relations ζα = eiθαβζβ
(θαβ ∈ R). Hence, for any sufficiently small Cω Levi flat displacement S of ∂D,
the components of P \ S are 1-convex, similar as in the parabolic case. The
rest also is similar to that case.
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