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On the Number of Enriques Quotients
of a K3 Surface

By

Hisanori Ohashi∗

§0. Introduction

A K3 surface X is a compact complex surface with KX ∼ 0 and H1(X,
OX) = 0. An Enriques surface is a compact complex surface with H1(Y,OY ) =
H2(Y,OY ) = 0 and 2KY ∼ 0. The universal covering of an Enriques surface is
a K3 surface. Conversely every quotient of a K3 surface by a free involution
is an Enriques surface. Here a free involution is an automorphism of order 2
without any fixed points.

The moduli space of Enriques surfaces is constructed using the periods
of their covering K3 surfaces. Precisely speaking, an Enriques surface deter-
mines a lattice-polarized K3 surface and vice versa, so that the moduli space
of Enriques surfaces can be described by the moduli space of lattice-polarized
K3 surfaces. We note that even if we do not fix any polarization on Enriques
surfaces, their covering K3 surfaces automatically have a lattice-polarization.
Then, what happens if we drop the lattice-polarization of the covering K3
surface?

We will call two Enriques quotients of a K3 surface distinct if they are not
isomorphic to each other as varieties. In his paper [3], Kondo discovered a K3
surface with two distinct Enriques quotients. He computed the automorphism
groups of the two quotients. Since then, as far as the author knows, no other
examples have been found.

In this paper we investigate this phenomenon. We show that K3 surfaces
with more than one distinct Enriques quotients have 9-dimensional components
(neither irreducible nor closed) in the period domain. Moreover we compute
the exact number of distinct Enriques quotients at a very general point of
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182 Hisanori Ohashi

each component (Proposition 3.6). This generalizes Kondo’s example in an
arithmetic way and results in the following unboundedness theorem.

Theorem 0.1. For any nonnegative integer l, there exists a K3 surface
X with exactly 2l+10 distinct Enriques quotients. In particular, there does not
exist a universal bound for the number of distinct Enriques quotients of a K3
surface.

We also generalize Kondo’s example in a geometric way. Its construction is
due to Mukai [4]. We introduce his construction and show that a generic Kum-
mer surface X of product type (see Section 4) has exactly 15 distinct Enriques
quotients, which can be constructed from classical Lieberman’s involution and
Kondo-Mukai’s involution.

Theorem 0.2. X has exactly 15 distinct Enriques quotients which are
naturally in one-to-one correspondence with nonzero elements of the discrimi-
nant group of NS(X).

From the theoretical point of view, we first show the following finiteness
theorem on the automorphism group of a K3 surface X using a theorem of
Borel.

Theorem 0.3. In Aut(X) there are only finitely many conjugacy classes
of finite subgroups.

This theorem concerns us because it bounds the number of distinct En-
riques quotients for any K3 surfaces.

Corollary 0.4. Every K3 surface X has only finitely many distinct
Enriques quotients.

The usage of the theorem of Borel is suggested by an anonimous referee.
We remark that Corollary 0.4 follows also from our counting method described
in Section 2. There, to count the exact number of distinct Enriques quotients,
we consider more directly the embeddings of the Enriques lattice U(2)⊕E8(2)
into Néron-Severi lattices.

Notations and Convention. Our main tool is the theory of lattices
and their discriminant forms. Here we collect some basic definitions about
them. See [7] for the detailed exposition.

A lattice L is a free Z-module of finite rank equipped with a Z-valued
symmetric bilinear form. L is said to be even if for all l ∈ L, l2 ∈ 2Z. In this
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paper we treat only even lattices, so that we sometimes omit mentioning the
evenness. For a lattice L, there is a natural homomorphism c : L → L∗ =
Hom(L,Z) defined by l �→ (l, ·). L is said to be nondegenerate if c is injective,
and unimodular if c is bijective. For m ∈ Q, L(m) denotes the same underlying
group equipped with the form multiplied by m, assuming that it is Z-valued.
U,E8 andD4 denote the lattices given by the matrix ( 0 1

1 0 ), the Dynkin diagrams
of type E8 and D4 respectively. We understand the latter two to be negative
definite.

A finite quadratic form is a triple (A, q, b) where A is a finite abelian group,
q is a map A→ Q/2Z and b is a bilinear map A×A→ Q/Z which is symmetric
and satisfies

q(x+ y) = q(x) + q(y) + 2b(x, y), x, y ∈ A.

In the following we abbreviate b(x, y) (resp. q(x)) to xy (resp. x2) and
sometimes (A, q, b) to (A, q). We call x2 the norm of x. As in the lattice case,
we have a natural homomorphism c : A→ A∗ = Hom(A,Q/Z) defined by using
b. (A, q) is said to be nondegenerate if c is bijective.

For an even nondegenerate lattice L, we can canonically associate a finite
quadratic form (AL, qL), called the discriminant quadratic form of L, by putting
AL := L∗/L and qL is the one naturally induced from the linear extension of
the form on L to L∗ ⊂ L ⊗ Q. The discriminant group of U(2) (resp. D4) is
denoted by u(2) (resp. v(2)).

For a lattice L, O(L) (resp. O(qL)) denotes the integral orthogonal group
of L (resp. of (AL, qL)). We note that there is a natural homomorphism
σL : O(L) → O(qL). LR (resp. LC) is the scalar extension of L to R (resp. C).

The author is grateful to Professor Shigeru Mukai for many helpful dis-
cussions and suggestions. He indicated the example in Section 4. He is also
grateful to Professors Shigefumi Mori and Noboru Nakayama for many valuable
comments throughout the seminars.

§1. Finiteness of Conjugacy Classes of Finite Subgroups

First we collect some basic definitions about K3 surfaces. Let X be a K3
surface. It is known that all K3 surfaces are diffeomorphic. A K3 lattice is a
lattice isomorphic to H2(X,Z) = U⊕3 ⊕ E⊕2

8 . ωX is the period of X, namely
CωX = H2,0(X). NS(X) = ω⊥

X ∩ H2(X,Z) is the Néron-Severi lattice of X.
TX = (NS(X))⊥ is the transcendental lattice of X.
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We recall the structure of the integral automorphism group O(NS) of
NS(X).

Definition 1.1.

1. The positive cone CX is the connected component of {x ∈ NS(X)⊗R| x2 >

0 } which contains an ample divisor.

2. The ample cone AX is the subcone of CX generated as a semigroup by
ample divisors multiplied by positive real numbers.

Definition 1.2.

1. The Weyl group WX of X is the subgroup of O(NS) generated by auto-
morphisms of the form sl : x �→ x+ (xl)l for all elements l ∈ NS(X) with
l2 = −2.

2. O↑(NS) := {ϕ ∈ O(NS)|ϕ(CX) = CX}.

3. O+(NS) := {ϕ ∈ O(NS)|ϕ(AX) = AX}.

4. O0(NS) := ker(σNS : O(NS) → O(qNS)).

Further we use the abbreviations

O↑
0(NS) = O0(NS) ∩O↑(NS) and O+

0 (NS) = O0(NS) ∩O+(NS).

O↑(NS) is of index 2 in O(NS). The inclusions O0(NS) ⊂ O(NS) and
O+

0 (NS) ⊂ O+(NS) are of finite index since O(qNS) is a finite group.
The following relation between these subgroups are important.

Proposition 1.3. We have (1) WX ⊂ O↑
0(NS), (2) O↑(NS) = WX �

O+(NS) and (3) O↑
0(NS) = WX �O+

0 (NS).

Proof. Since the generator sl ∈ WX acts trivially on the hyperplane Hl

orthogonal to l which intersects with the positive cone, WX preserves the pos-
itive cone. If x ∈ NS∗, then xl ∈ Z and sl(x) = x modulo Zl. This proves
(1). We have the semidirect product decomposition as in (2) because WX and
O↑(NS) are discrete subgroups of the isometry group of the Lobac̆evskĭi space
modeled in CX and WX is a reflection group with ample cone as its fundamental
domain. See [12]. The proof of (3) is the same.
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We proceed to the proof of Theorem 0.3. For brevity, we say that a group
G has property (FP ) if G has only finitely many conjugacy classes of finite
subgroups. For example, let G be an algebraic group defined over Q. Then GZ

has property (FP ) by [11, Theorem 4.3] which we call the theorem of Borel.

Lemma 1.4.
(1) Let α : G → K be a homomorphism of groups. If imα has property (FP)
and kerα is finite, then G has property (FP).
(2) Let G = W � K be a semidirect decomposition of a group G. If two finite
subgroups F1, F2 ⊂ K are G-conjugate, then they are also K-conjugate. In
particular if G has property (FP), then so does K.
(3) Let H ⊂ G be a subgroup of finite index. If G has property (FP), then so
does H.

Proof. (1) Let P1, · · · , Pn be the complete representatives of conjugacy
classes of finite subgroups of imα. Then any conjugacy class of finite subgroups
of G has a representative included in at least one of α−1(Pj), (j = 1, · · · , n).
(2) Assume F2 = gF1g

−1. g can be written as g = wk, w ∈W, k ∈ K. If fi ∈ Fi
satisfy f2 = gf1g

−1, then we have (kf1k−1)−1f2 = (kf−1
1 k−1wkf1k

−1)w−1 ∈
W ∩K = {1}. Hence kf1k−1 = f2. Thus F1 and F2 are conjugate by k ∈ K.
(3) Again let P1, · · · , Pn be the complete representatives of conjugacy classes
of finite subgroups of G. We put G/H = {a1H, · · · , arH}. Then the conjugacy
classes of finite subgroups ofH are represented by {a−1

i Pjai|i = 1, · · · , r and j =
1, · · · , n}.

Now we show Theorem 0.3. In our words,

Theorem 1.5. Let X be a K3 surface. Then Aut(X) has property (FP ).

Proof. First we assume that X is projective. Consider the representation
r : Aut(X) → O(NS). Since every automorphism in ker r fixes an ample
divisor, ker r is finite. Thus it is enough to show that im r has the property
(FP ) by Lemma 1.4 (1).

By the theorem of Borel above, O(NS) has property (FP ). Then, by
Lemma 1.4 and Proposition 1.3, the property (FP ) goes down to O↑(NS) and
O+(NS). Now by the global Torelli theorem [10], im r contains O+

0 (NS), since
ϕ ∈ O+

0 (NS) preserves the ample cone AX and can be extended to an isometry
of H2(X,Z) which acts trivially on TX . Thus we obtain

O+
0 (NS) ⊂ im r ⊂ O+(NS)



�

�

�

�

�

�

�

�

186 Hisanori Ohashi

and these inclusions are of finite index. We see that im r has the property (FP )
by Lemma 1.4 (3).

Next we assume that X is not projective. Nikulin [8] shows that any
automorphism of X of finite order acts on TX trivially. Therefore it is enough
to show that G = ker(Aut(X) → O(TX)) has property (FP ). We consider the
representation r : G→ O(NS).

If alg. dim(X) = 0, then NS(X) is negative definite. Hence NS(X) ⊕ TX
is of finite index in H2(X,Z), r is injective and G is finite since O(NS) is a
finite group.

If alg. dim(X) = 1, then NS(X) has one-dimensional kernel Ze and Q :=
NS(X)/Ze is negative definite. Every element of G fixes e since e2 = 0 and
exactly one of e and −e is represented by an effective cycle. Thus r induces
s : G → O(Q). Let g ∈ G be an element of finite order. Since the fixed part
H2(X,Z)g is nondegenerate by the lemma below, it follows that if s(g) = idQ
then g = idX . On the other hand, O(Q) is a finite group. Thus Aut(X) has
only finitely many elements of finite order and Aut(X) has property (FP ).

Lemma 1.6. Let L be a nondegenerate lattice and let g be an isometry
of L of finite order n. Let M = Lg = {x ∈ L|gx = x} be the fixed lattice. Then
M is nondegenerate.

Proof. Let 0 	= x ∈M . Since L is nondegenerate, there exists y ∈ L with
xy 	= 0. Put z = y + g(y) + · · · + gn−1(y). Obviously z ∈M and we have

xz = xy + g(x)g(y) + · · · + gn−1(x)gn−1(y) = nxy 	= 0.

Therefore M is nondegenerate.

As a corollary, Corollary 0.4 follows. In fact, if two free involutions i1
and i2 are conjugate by an automorphism g, then g induces an isomorphism
between X/i1 and X/i2.

§2. Number of Distinct Enriques Quotients

The isomorphism classes of Enriques quotients are exactly the conjugacy
classes of free involutions by the next proposition.

Proposition 2.1. Let X be a K3 surface and let i1 and i2 be free
involutions on X. Then, X/i1 and X/i2 are isomorphic if and only if there
exists an automorphism g of X such that gi1g−1 = i2.
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Proof. The “if” part is trivial; see the sentence after Lemma 1.6. Con-
versely, let h be an isomorphism from Y1 := X/i1 to Y2 := X/i2. It induces
an isomorphism of the canonical line bundles h∗KY2 → KY1 . Since X and
Y1, Y2 are related as X = Spec(OYj

⊕ KYj
) j = 1, 2, h induces the following

commutative diagram
X

g−−−−→ X

π

� �π
X/i1 −−−−→

h
X/i2

where π denotes the covering map. It is clear that g is the desired automorphism
of X.

We put

M :=
M ⊂ NS

a primitive sublattice which satisfies
(A) : M ∼= U(2) ⊕ E8(2)
(B) : No vector of square −2 in NS(X) is orthogonal to M .


 .

Recall that U⊕E8 is the Enriques lattice (modulo torsion) and U(2)⊕E8(2)
is the pullback in the covering K3 lattice. For each M ∈ M, we define an
isometry iM : H2(X,Z) → H2(X,Z) by iM (m) = m whenm ∈M and iM (n) =
−n when n is orthogonal to M . This is well-defined because M ∼= U(2)⊕E8(2)
is 2-elementary.

Proposition 2.2. On a K3 surface X, there is a one-to-one correspon-
dence between free involutions on X and primitive sublattices M of NS(X)
which satisfy (A) and (B) above and the following

(C) M contains an ample divisor.
In other words, iM defined above is a free involution if and only if M

contains an ample divisor. Also any free involution can be written in the form
iM .

Proof. We associate a free involution with its invariant sublattice in
H2(X,Z). The statement follows from [6, Corollary 2.5], [9, Theorem 4.2.2,
p. 1426] and the strong Torelli theorem for K3 surfaces [10]. In [9], the as-
sumption is slightly different from ours, but the same proof goes.

To count the number of distinct Enriques quotients, we consider the natural
action of O(NS) on M,

O(NS) 
 ϕ : M �→ ϕ(M) ∈ M.
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Corresponding lattice automorphisms satisfy iϕ(M) = ϕiMϕ
−1.

In the following, Aut(TX , ωX) is the subgroup of O(TX) consisting of the
integral orthogonal transformations whose scalar extention to C preserves the
period CωX ⊂ TX ⊗ C.

Theorem 2.3. Let M1, · · · ,Mk ∈ M be a (finite) complete set of
representatives for the action of O(NS) on M. For each j = 1, · · · , k, let

K(j) = {ϕ ∈ O(NS)|ϕ(Mj) = Mj}

be the stabilizer subgroup of Mj and σ(K(j)) its canonical image in O(qNS).
We put

B0 =
k∑
j=1

#(O(qNS)/σ(K(j))).

(1) The number of distinct Enriques quotients of X does not exceed B0.
(2) If σ : O(NS) → O(qNS) is surjective and if Aut(TX , ωX) = {± id},

then X has exactly B0 distinct Enriques quotients.

Proof. First we remark that by Proposition 1.15.1 in [7], the set of repre-
sentatives is always finite. In view of Proposition 2.1, we can count the number
of distinct Enriques quotients separately for each orbit O(NS) ·Mj . Hence,
for simplicity, we fix an orbit and omit the index j so that we use the symbols
M := Mj , O := O(NS) ·M and K = K(j).
Step 1. O contains an element which corresponds to a free involution.

Proof. The following is a standard argument used in [10]. Our proof is
taken from [6]. By the condition (A) in Proposition 2.2, M ∩CX 	= ∅. Consider
in CX countably many hyperplanes Hd = {x ∈ NSR|xd = 0}, where d runs
over (−2) vectors in NS. The union ∪Hd is a locally finite closed subset in CX
and does not contain M by the condition (B). The complement CX −∪Hd is a
collection of (at most) countably many connected open sets, namely chambers,
which corresponds to the elements of WX in one-to-one way. The ample cone
AX equals one of the chambers. Thus if we choose v ∈ M ∩ CX − ∪Hd, there
exists ϕ ∈WX ⊂ O(NS) such that ϕ(v) is an ample divisor.

Thus we can assume that iM is already a free involution of X. Next we
set

N := {M ′ ∈ O|iM ′ is a free involution}.
Step 2. N = O+(NS) ·M .
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Proof. ⊃ follows from Proposition 2.2. Let ϕ ∈ O(NS) and suppose
iϕ(M) is a free involution. We can assume ϕ ∈ O↑(NS), since otherwise −ϕ ∈
O↑(NS) and (−ϕ)(M) = ϕ(M). By Proposition 1.3, we can write ϕ = wψ

with w ∈ WX and ψ ∈ O+(NS). Using Lemma 1.4 (2), iϕ(M) = wiψ(M)w
−1

implies iϕ(M) = iψ(M). Therefore ϕ(M) = ψ(M).

Step 3. Let ψ1, ψ2 ∈ O+(NS). If σ(ψj) have the same class in O(qNS)/
σ(K), then iψ1(M) and iψ2(M) are conjugate in Aut(X).

Proof. By the assumption σ(ψ−1
1 ψ2) ∈ σ(K), so there exists ϕ ∈ K such

that σ(ϕ) = σ(ψ−1
1 ψ2). It follows that σ(ψ1ϕψ

−1
2 ) = id, so that ψ1ϕψ

−1
2 |NS

together with idTX
gives an automorphism a of X, by the Torelli theorem. It

follows that
aiψ2(M)a

−1 = iaψ2(M) = iψ1ϕ(M) = iψ1(M).

By now, we have proved that O contains at most #O(qNS)/σ(K) distinct
Enriques quotients. Assertion (1) follows.
Step 4. If Aut(TX , ωX) = {± id}, then the converse of Step 3 holds.

Proof. Assume there exists ϕ ∈ Aut(X) such that ϕiψ1(M)ϕ
−1 = iψ2(M),

which is equivalent to ϕψ1(M) = ψ2(M) and to ψ−1
2 ϕψ1 ∈ K. By the as-

sumption, σ(ϕ) = ± id which is contained in the center of O(qNS). It follows
that ±σ(ψ−1

2 ψ1) ∈ σ(K). We remark that − id ∈ σ(K) since σ(iM ) = − id.
Therefore we get σ(ψ−1

2 ψ1) ∈ σ(K).

Step 5. If σ is surjective, then the restriction σ|O+(NS) is also surjective.

Proof. Put N = M⊥ in NS. Since M is 2-elementary, t = (− idM , idN )
extends to an isometry of NS. t doesn’t preserve the positive cone. There-
fore O(NS) is generated by t and O↑(NS). This implies the surjectivity of
O↑(NS) → O(qNS). By Proposition 1.3, the assertion follows.

Now the proof is complete.

Lastly we mention a useful theorem of Nikulin in [7] which saves us from
checking one of the conditions in Theorem 2.3 (2).

Theorem 2.4 (Nikulin). Let T be an even indefinite nondegenerate lat-
tice satisfying the following two conditions:

(1) rank(T ) ≥ l(ATp
) + 2 for all prime numbers p except for 2.

(2) if rank(T ) = l(AT2), then qT2 contains a component u(2) or v(2).
Then the genus of T contains only one class, and the homomorphism

O(T ) → O(qT ) is surjective. Here ATp
denotes the p-component of the finite

abelian group AT and l denotes the number of minimal generators.
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§3. Enriques Quotients of K3 Surfaces in the Heegner Divisors

In this section we prove Theorem 0.1. We deal with certain divisors of
the period domain D of U(2) ⊕ E8(2)-polarized marked K3 surfaces. Fix the
unique primitive embedding of U(2)⊕E8(2) in the K3 lattice Λ. Then D is by
definition

D := {[ω] ∈ P((U(2) ⊕ E8(2))⊥C )|ω2 = 0, ωω > 0}.
Here P(V ) means the associated projective space of a complex vector space V ,
which consists of all lines through the origin. It follows from the surjectivity
of the period map that every point of D corresponds to a K3 surface X with
a marking H2(X,Z) ∼= Λ.

Let S ⊂ Λ be a primitive sublattice of rank 11 containing the lattice
U(2) ⊕ E8(2) fixed above. Then the subset

D(S) := {[ω] ∈ P(S⊥
C )|ω2 = 0, ωω > 0}

is called the Heegner divisor of type S in D. Let X be a marked K3 surface
whose period is in D(S). Since NS(X) is written as Λ ∩ ω⊥

X , NS(X) contains
the primitive sublattice S.

Proposition 3.1. If X corresponds to a very general point of D(S),
namely to a point in the complement of a union of countably many closed an-
alytic subset of D(S), then we have NS(X) = S and Aut(TX , ωX) = {± id}.

Proof. This is a well-known fact. For the latter, the same proof as in [1,
Lemma 2.9] works.

We consider the case when

S = U(2) ⊕ E8(2) ⊕ 〈−2N〉,
where 〈−2N〉 is the rank 1 lattice whose generator g has g2 = −2N . It is easy
to see that the K3 lattice Λ contains S as a primitive sublattice. We fix it once
and for all. The discriminant form of S is isomorphic to q = u(2)⊕5 ⊕ c(−2N),
where c(−2N) is the discriminant form of 〈−2N〉.

Let the integer N be N = 4p1 · · · pl, where p1, · · · , pl are distinct odd
prime numbers. In the next we compute the order of O(q).

Lemma 3.2.

#{x ∈ c(−2N)| ord(x) = 2N, x2 ≡ −1/2N (mod 2Z)} = 2l+1,

#{x ∈ c(−2N)| ord(x) = 2N, x2 ≡ 1 − 1/2N (mod 2Z)} = 2l+1.
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Proof. The left-hand-side of the first equality is

#{k ∈ Z|(k, 2N) = 1, 1 ≤ k ≤ 2N − 1 and − k2/2N = −1/2N ∈ Q/2Z}
= (1/2)#{k ∈ Z|(k, 4N) = 1, 1 ≤ k ≤ 4N − 1 and k2 − 1 ≡ 0(mod 4N)}
= (1/2)#{x ∈ (Z/4NZ)×|ord(x) = 1 or 2}.

Then we can use the structure theorem of the unit group (Z/4NZ)×.
Similarly the left-hand-side of the latter is

#{k ∈ Z|(k, 2N) = 1, 1 ≤ k ≤ 2N − 1 and − k2/2N = 1 − 1/2N ∈ Q/2Z}
= (1/2)#{k ∈ Z|(k, 4N) = 1, 1 ≤ k ≤ 4N − 1 and k2 ≡ 1 − 2N(mod 4N)}
= (1/2)#{k ∈ Z|(k, 4N) = 1, 1 ≤ k ≤ 4N − 1, k2

≡ 1(mod 2N) and k2 	≡ 1(mod 4N)}.

Using the commutative diagram

(Z/4NZ)× ∼−−−−→ (Z/24Z)×⊕(Z/p1 · · · plZ)×

α

� β

� ∼
�

(Z/2NZ)× ∼−−−−→ (Z/23Z)×⊕(Z/p1 · · · plZ)×

where α, β are both 2:1 maps, we can count the number of elements which
have order 2 in the bottom row but do not in the top row.

Proposition 3.3. O(q) acts transitively on the set of elements x ∈ q

with x2 ≡ −1/2N (mod 2Z). There are 211+l such elements.

Proof. Such element x generates a subgroup 〈x〉 isomorphic to c(−2N).
Since it is nondegenerate, 〈x〉 is a direct summand in q. This implies the
transitivity. If we put the number of elements in u(2)⊕5 with norm 0 to be A
and norm 1 210 −A, we can compute the length of the orbit as 2l+1 ·A+ 2l+1 ·
(210 −A) = 211+l.

Under these computations we can prove

Theorem 3.4. For any nonnegative integer l, there exists a K3 surface
X with exactly 2l+10 distinct Enriques quotients.

Proof. By Proposition 3.1, there exists aK3 surfaceX such thatNS(X) ∼=
S and Aut(TX , ωX) = {± id}. We show that the primitive embedding of
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U(2) ⊕ E8(2) into NS(X) is unique under the action of O(NS). In fact, since
NS(1/2) is again an even lattice, we have a natural identification

Hom(U(2) ⊕ E8(2), NS) = Hom(U ⊕ E8, NS(1/2)).

We see that any primitive embedding as above is a direct summand. This
clearly implies the uniqueness.

Obviously NS(X) has a primitive sublattice M isomorphic to U(2)⊕E8(2)
and M⊥ = 〈−2N〉. Let K be the stabilizer group of M and σ(K) its canonical
image in O(qNS). Since NS ∼= M ⊕M⊥ we see that K = O(M) × O(M⊥) =
O(M)×{± idM⊥}. On the other hand by Theorem 2.4 σM : O(M) → O(qM ) is
surjective. This shows σ(K) = O(u(2)⊕5)×{± id} ⊂ O(qM ⊕ qM⊥) = O(qNS).
Thus #(O(qNS)/σ(K)) = #O(qNS)/2#O(u(2)⊕5) = 210+l by Proposition 3.3.
This together with Theorems 2.3 and 2.4 completes the proof.

In fact we can classify all the possible Néron-Severi lattices of a K3 surface
with Picard number 11 having an Enriques quotient. In each case, we can
compute the number of Enriques quotients as follows by an explicit calculation.
Details are omitted. The result is as follows.

Proposition 3.5. Let X be a K3 surface with Picard number 11 hav-
ing an Enriques quotient. Then the Néron-Severi lattice of X is one of the
followings.

Type I : U(2) ⊕ E8(2) ⊕ 〈−2N〉 (N ≥ 2)
Type II : U ⊕ E8(2) ⊕ 〈−4M〉 (M ≥ 1).

If we put 2N = 2epe11 · · · pel

l in type I, or 4M = 2epe11 · · · pel

l in type II, the
bound B0 in Theorem 2.3 is as follows.

Proposition 3.6.

B0 =




2l−1 in Type I and e = 1

(25 + 1) · 2l+4 in Type I and e = 2

2l+10 in Type I and e ≥ 3

1 in Type II and e = 2, l = 0

2l−1 in Type II and e = 2, l > 0

22l+5 in Type II and e ≥ 3

The lattice S we used fits in the third case.
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§4. Enriques Quotients of Generic Kummer Surfaces
of Product Type

Kondo found the first example of a K3 surface which has two distinct
Enriques quotients in [3, Remark 3.5.3], where he computed the automorphism
groups of the two quotients. Recently Mukai generalized Kondo’s example
which we now describe.

Kummer surfaces of product type. Let C1 and C2 be elliptic curves
and construct the Kummer surface as X = Km(C1×C2). We put the 2-torsion
points of C1 (resp. C2) as {b1 = 0, b2, b3, b4} (resp. {c1 = 0, c2, c3, c4}) and
denote by δ the natural rational map of C1 × C2 to X. Let Ek (resp. Fk) be
the image of C1 × {ck} (resp. {bk} × C2) by δ. Then X has the configuration
of 24 smooth rational curves as in Figure 1, where Gij is the exceptional curve
corresponding to (bi, cj) ∈ C1 × C2.

Sometimes it is called the double Kummer configuration. In the following
we introduce two kinds of free involutions on X with parameters.

G11

G12

G13

G14

G21 G31 G41

E1

E2

E3

E4

F1 F2 F3 F4

Figure 1. The double Kummer configuration

Involutions of Lieberman type. Let a = (bi, cj) ∈ C1 × C2 be a 2-
torsion point not lying on C1×{0} or {0}×C2. Let τ (resp. ρ) be the involution
of X induced by the automorphism (− idC1 , idC2) (resp. the translation by a)
of C1 × C2. Then σ = τρ is a free involution. We remark that a has the
parameter i, j with 2 ≤ i, j ≤ 4.
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Involutions of Kondo-Mukai type. Let τ be as above. X/τ is iso-
morphic to P1 × P1 with sixteen points blown up, which correspond to Gij ’s
in Figure 1. We regard P1 × P1 as a smooth quadric in P3 so that there are
morphisms

X −−−−→ X/τ −−−−→
ε

P1 × P1 ⊂ P3.

Choose two permutations I = {i1, i2, i3, i4} and J = {j1, j2, j3, j4} of {1, 2,
3, 4} and we put gk = ε(Gikjk) ∈ P1×P1. We project P1×P1 onto a hyperplane
∼= P2 of P3 from g4. This birational map ε′ contracts two curves whose images
we denote by P and Q ∈ P2. Let gk = ε′(gk), k = 1, 2, 3. Then we obtain two
involutions on X: One is the covering transformation ν of the degree 2 map
X → P2. The other involution µ is induced by the unique Cremona transfor-
mation of P2 centered at g1, g2, g3 interchanging P and Q. Then σ = νµ is a
free involution. It can be shown that σ depends only on the set {Gikjk}1≤k≤4.
See [4] for such canonical description of this involution. Therefore the param-
eter is the set {Gikjk}1≤k≤4. There are twenty-four choices of parameters in
appearance, but we will reveal that there are essentially six.

If C1 and C2 are chosen to be general enough, we see that

NS(X) ∼= U ⊕ E8 ⊕D⊕2
4 , TX ∼= U(2)⊕2, ANS(X) = u(2)⊕2

and Aut(TX , ωX) = {± id}.
We will call such X a generic Kummer surface of product type. In the

following main theorem of this section we classify the all free involutions on
X.

Theorem 4.1. Let X be a generic Kummer surface of product type.
Then X has exactly fifteen distinct Enriques quotients which are naturally in
one-to-one correspondence with nonzero elements of ANS(X). Moreover all of
them can be geometrically constructed from the preceding examples by choosing
appropriate parameters.

We remark that the Lieberman involutions correspond to nine elements
of norm 0 of ANS(X) and Kondo-Mukai involutions to six elements of norm
1. In the rest of this section we prove Theorem 4.1. First we determine
the isomorphism classes of primitive embeddings of M := U(2) ⊕ E8(2) ⊂
S = U ⊕ E8 ⊕D⊕2

4 . This step is purely lattice-theoretic. We use the following
theorem of Nikulin [7, Propositions 1.5.1 and 1.15.1].

Theorem 4.2. Let M ⊂ S be a primitive embedding of even nondegen-
erate lattices. Put N := M⊥. Then the following isomorphisms exist. (Note
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that (1) expresses AS in terms of AM and AN while (2) expresses AN in terms
of AM and AS.)
(1) There are subgroups ΓM ⊂ AM ,ΓN ⊂ AN and a sign-reversing isometry
γ : ΓM → ΓN such that if Γ is the pushout of γ, namely Γ = {(x, γ(x)) ∈
AM ⊕AN |x ∈ ΓM}, then

qS ∼= (qM ⊕ qN |Γ⊥/Γ).

(2) There are subgroups ΓM ⊂ AM ,ΓS ⊂ AS and a sign-reversing isometry
γ : ΓM → ΓS such that if Γ is the pushout of γ, then

qN ∼= (−qM ⊕ qS |Γ⊥/Γ).

Proposition 4.3. Let

S = U ⊕ E8 ⊕D⊕2
4 and M = U(2) ⊕ E8(2).

Assume M is a primitive sublattice of S which is orthogonal to no (−2) vectors
of S. Then
(1) N := M⊥ is isomorphic to E8(2).
(2) There are exactly two such primitive sublattices up to the action of O(S).

Proof. By Theorem 4.2 (2), AN is a 2-elementary abelian group and qN
takes only integral values on AN . On the other hand, N is a negative definite
lattice of rank 8. This implies

AN ∼=
{
u(2)⊕a, 0 ≤ a ≤ 4, or

v(2) ⊕ u(2)⊕a, 0 ≤ a ≤ 3.

by the decomposition theorem of 2-elementary finite quadratic forms (see [7,
Proposition 1.8.1]).

Checking the signature of (AN , qN ), we see that the latter does not occur.
In all other cases, we find that N has a unimodular overlattice of rank 8, i.e.,
E8. The index [E8 : N ] is given by 2a.

Claim. Let N ⊂ E8 be an overlattice and assume N contains no (−2)
vectors. Then [E8 : N ] ≥ 9.

Proof. We take a basis of E8 as in Figure 2. Consider the elements
f0 := 0, fj := e1 + · · ·+ ej , 1 ≤ j ≤ 7 and f8 := 2e1 + 3e2 + 4e3 + 5e4 + 6e5 +
4e6 + 2e7 + 3e8. It is easy to see that any difference fj − fi, 0 ≤ i < j ≤ 8 has
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e1 e2 e3 e4 e5 e6 e7

e8

Figure 2. Dynkin diagram of type E8

norm −2. This means that every fi is a distinct element of the reminder class
group E8/N .

Thus we obtain AN = u(2)⊕4. Therefore N has the maximal number of
minimal generators of the discriminant group. This implies that for any n ∈ N ,
n/2 ∈ N∗. In particular N(1/2) is a unimodular lattice. Thus we see that
N ∼= E8(2) and (1) is proved.

For (2), we use the notation introduced in Theorem 4.2 (1). Since qM⊕qN is
nondegenerate #Γ = #ΓN = (#AM · #AN/#AS)1/2 = 27. Therefore #Γ⊥

N =
#AN/#Γ = 2 and we can put Γ⊥

N = {0, zN}. There are two cases where
qN (zN ) = 0, 1. Thus there are at least two distinct primitive embedding of
M ⊂ S. On the other hand, the canonical homomorphism σM : O(M) →
O(qM ) and σN : O(N) → O(qN ) are both surjective by Proposition 2.4 and [1].
Thus the primitive embedding of M ⊂ S is classified by the invariant qN (zN )
as we see from the following argument.

Claim. Let M1 and M2 be two primitive sublattices of S satisfying the
assumption. For each k = 1, 2, we use the same notation as above, indexed by
k. If qN1(zN1) = qN2(zN2), then there exists ϕ ∈ O(S) which transforms M1

onto M2.

Proof. By Witt’s theorem on the finite quadratic forms, there exist ψM
and ψN fitting in the square inside.

AM1 ⊃ ΓM1

γ1−−−−→ ΓN1 ⊂ AN1

ϕM

� ψM

� �ψN

�ϕN

AM2 ⊃ ΓM2

γ2−−−−→ ΓN2 ⊂ AN2

Again by Witt’s theorem we can extend ψM (resp. ψN ) to ϕM (resp. ϕN )
in the diagram. By the surjectivity of σM and σN mentioned above, these
isomorphisms lift to an isomorphism between M1 ⊕ N1 and M2 ⊕ N2 which
preserves the overlattice S. This was the assertion.
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Remark 4.4. The same but geometric situation of the proposition is con-
sidered in [5]. There (1) is proved by a geometric method.

Now we regard S as the Néron-Severi lattice NS of a generic Kummer
surface of product type. To see the natural correspondence in Theorem 4.1, we
have to associate a free involution with an element of ANS(X) = ANS .

Definition 4.5. Let M ∼= U(2)⊕E8(2) ⊂ NS be a primitive sublattice.
We use the same notation as in Proposition 4.3. Then we define the patching
element vM ∈ ANS associated with the primitive sublattice M to be the image
of the element (0, zN ) ∈ AM ⊕AN in ANS under the isomorphism of Theorem
4.2 (1).

We note that vM 	= 0. Also we note the equality qN (zN ) = qNS(vM ).
Using vM , we can describe the group σNS(K) in the Theorem 2.3. Recall that
K ⊂ O(NS) is the stabilizer subgroup of M .

Lemma 4.6. σNS(K) is equal to the stabilizer subgroup GvM
⊂ O(qNS)

of vM .

Proof. According to the isomorphism in Theorem 4.2 (1), we consider the
group

H := {(αM , αN ) ∈ O(qM ) ×O(qN )|αM (ΓM )

= ΓM , αN (ΓN ) = ΓN , αMγ = γαN}
and decompose σNS as K

p−−−−→ H
q−−−−→ O(qNS). Since an automorphism

in K preserves ΓM and ΓN , it is clear that σNS(K) ⊂ GvM
.

We prove the converse, σNS(K) ⊃ GvM
. First we note that p is surjective

since σM and σN are both surjective as seen in the proof of Proposition 4.3.
Thus it is enough to see im q ⊃ GvM

. By Theorem 4.2, we have an isomorphism

(1) qM ∼= (qN ⊕ qNS |Γ′⊥)/Γ′

where Γ′ is an isotropic subgroup of qN ⊕ qNS which is a pushout of an isomor-
phism γ′ : Γ′

N → Γ′
NS between subgroups of AN and ANS respectively. Using

the same notation of Proposition 4.3, it is easy to see that Γ′ = {0, (zN , vM )}.
Suppose we are given an element β ∈ GvM

. Then the automorphism

(idN , β) ∈ O(qN ) ×O(qNS)

clearly preserves Γ′ and induces an element αM ∈ O(qM ) under the isomor-
phism (1). Since the element (0, vM ) of the right-hand-side of (1) corresponds
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to zM , αM preserves zM . By construction αMγ = γ idN holds and therefore
(αM , idN ) ∈ H.

Proposition 4.7. Let M1 and M2 be the fixed lattices of two free invo-
lutions iM1 , iM2 on X. Then they give the isomorphic quotients if and only if
their patching elements coincide.

Proof. Suppose X/iM1
∼= X/iM2 . There exists ϕ ∈ Aut(X) such that

ϕ(M1) = M2. ϕ preserves the overlattice NS so that we have ϕ(zM1) = zM2

and σNS(ϕ)(vM1) = vM2 . On the other hand, ϕ acts on ANS trivially by the
assumption of the theorem. Thus we see vM1 = vM2 .

Conversely assume the patching elements vM ∈ ANS concide. By Proposi-
tion 4.3, the primitive embeddings M1 and M2 are isomorphic and there exists
ϕ ∈ O(NS) such that ϕ(M1) = M2, namely ϕiM1ϕ

−1 = iM2 . By assumption,
σNS(ϕ)(vM ) = vM . We can assume ϕ ∈ O↑(NS) by replacing ϕ by −ϕ if neces-
sary. According to Proposition 1.3 (2), ϕ = wψ where w ∈ WX , ψ ∈ O+(NS).
Then Lemma 1.4 (2) implies ψ(M1) = (M2). On the other hand, since w acts
on ANS trivially, σNS(ψ) = σNS(ϕ) and this element fixes vM . We apply The-
orem 2.3, Step 3 to M = M1, ψ1 = ψ, ψ2 = idNS . Both ψ1 and id stabilize vM ,
therefore their images by σNS have the same class in O(qNS)/σNS(K) by the
previous lemma. Thus the conclusion holds.

Next we compute the patching elements of involutions of Lieberman and
Kondo-Mukai. They involve parameters as mentioned in the beginning of this
section and we have to consider the dependence of patching elements on the
parameters. This is directly done. We take the following basis of ANS .
e1 = (G11 +G13 +G31 +G33)/2, f1 = (G22 +G23 +G32 +G33)/2,

e2 = (G21 +G23 +G31 +G33)/2, f2 = (G12 +G13 +G32 +G33)/2.
Then the result is as in Figures 3 and 4.

From these figures we can see which patching element we obtain when we
choose a parameter of a geometrically constructed free involution. In Figure 4,
we normalized the cases to only i4 = j4 = 4.

Since the vectors in Figures 3 and 4 run all over ANS − {0}, we obtain

Proposition 4.8. The two kinds of free involutions gives the all distinct
Enriques quotients of X.

The proof of Theorem 4.1 is completed.

Remark 4.9. (1) The involution τ acts trivially on NS(X). So it induces
a numerically trivial involution on the fifteen Enriques quotients. The Kondo-
Mukai case of this is the last and missing result of [5], first found in [3].
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C1

C2

e1+f1+e2+f2

e1+f2 e2+f1

e1+e2 e1 e2

f1+f2 f2 f1

Figure 3. Lieberman involutions

e2+f2 f1+e2+f2 e1+f1+e2

e1+e2+f2 e1+f1 e1+f1+f2

Figure 4. Kondo-Mukai involutions
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(2) The number of Enriques quotients can be computed in other 2-elementary
cases, using the argument of this section.

When NS(X) ∼= U(2) ⊕ E⊕2
8 , the Barth-Peters case, the number B0 is

equal to 1.
When NS(X) ∼= U(2) ⊕ E8(2), then X has only one Enriques quotient.

Finally using the result of [5], we see that in other 2-elementary cases X has
no Enriques quotients.
(3) The generators of the whole automorphism group Aut(X) are found in [2].
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