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Classification of Stokes Graphs of Second Order
Fuchsian Differential Equations of Genus Two

By

Takashi Aoki∗ and Takayuki Iizuka∗∗

Abstract

Stokes curves of second order Fuchsian differential equations on the Riemann
sphere with a large parameter form sphere graphs, which are called Stokes graphs.
Topological classification of Stokes graphs are given for the case where equations have
five regular singular points. It is proved that there are exactly 25 degree sequences of
sphere triangulations associated with Stokes graphs under suitable generic conditions.

§1. Introduction

Let F (x) and G(x) be polynomials of x with complex coefficients of degree
2g + 2 and g + 2, respectively. Here g is a non-negative integer. We set

Q(x) =
F (x)
G(x)2

and consider the following differential equation with a large parameter η:

(1.1)
(
− d2

dx2
+ η2Q(x)

)
ψ = 0.

Let aj (j = 0, 1, . . . , 2g+1) denote the zeros of F and let bj (j = 0, 1, . . . , g+1)
denote the zeros of G. We assume that aj ’s and bj ’s are mutually distinct. Then
(1.1) is a second order Fuchsian differential equation with regular singularities
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242 Takashi Aoki and Takayuki Iizuka

at x = bj (j = 0, 1, . . . , g + 1) and x = ∞. We call aj a turning point of (1.1).
A Stokes curve is, by definition, an integral curve of the direction field

Im
√

Q(x) dx = 0

starting at a turning point. The set of all Stokes curves, {aj} and {bj} form a
graph with vertex 2-coloring on P1

C≈S2. This graph is called the Stokes graph of
(1.1). The integer g is said to be the genus of (1.1) or of the graph. Here we note
that g is the genus of the Riemann surface defined by y2 = Q(x). Stokes graphs
play a rôle in the global analysis of (1.1) by means of the exact(complex) WKB
analysis such as computations of Stokes coefficients (cf. [6]) or of monodromy
matrices (cf. [4]). Topological classification of Stokes graphs are given in [5]
(see also [4]) for g = 0, 1 under some suitable generic conditions. That is, there
are two types of Stokes graphs in the case of g = 0 and six types for the case
of g = 1. The aim of this article is to give all the topological types of Stokes
graphs in the case of g = 2. We find 25 types in our case. Our method is based
on the observations given in [5], [4]. The classification of the Stokes graphs is
reduced to that of triangulations of S2 of a special kind, which we call specific
triangulations. Thus we shall classify such triangulations in the case of g = 2.
However, some combinatorial complexities appear in our case. To construct all
possible configurations of specific triangulations, we develop two procedures for
such triangulations, namely, reduction and blow up. One of our main results
(Theorem 2.3) is announced in [3]. In Appendix we give examples of potentials
Q which realize 25 types of Stokes graphs of our classification.

§2. Stokes Graphs and Specific Triangulations
of the Riemann Sphere

§2.1. Triangles

Let ∆ denote the open triangle in R2 defined by

(2.1) ∆ = {(x, y)| x + y < 1, x > 0, y > 0}.

The sides of ∆ are denoted by sj (j = 1, 2, 3):

s1 = {(z, 0)| 0 < z < 1},(2.2)

s2 = {(1 − z, z)| 0 < z < 1},(2.3)

s3 = {(0, 1 − z)| 0 < z < 1}.(2.4)

We denote by tj (j = 1, 2, 3) the vertices of ∆:

t1 = (0, 1), t2 = (0, 0), t3 = (1, 0).
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The starting point and the endpoint of sj are the boundary points of sj cor-
responding to z = 0 and to z = 1 in the expressions given by (2.2)–(2.4),
respectively. For example, t1 is the starting point of s3 and, at the same time,
it is the endpoint of s2. We set

∼
∆ = ∆ ∪ s1 ∪ s2 ∪ s3

and
∆ =

∼
∆ ∪ {t1} ∪ {t2} ∪ {t3}.

A triangle on the Riemann sphere P1
C means a continuous mapping

f : ∆ −→ P1
C

so that the restrictions of f to ∆ and to each sj are injective. Sometimes the

image of ∆ (or
∼
∆, ∆) by f is also called a triangle in P1

C. Similarly, the images
of sides and vertices by f are called sides and vertices of f(∆), respectively.
Sides are called edges if they are considered to be elements of graphs on P1

C.

§2.2. Specific triangulations

Let g be a non-negative integer. A specific triangulation of P1
C of genus g

is, by definition, a set of 2g + 2 continuous mappings

fi : ∆ −→ P1
C (i = 1, 2, . . . , 2g + 2)

satisfying the following conditions:

1. The union of the sets fi(∆) (i = 1, 2, . . . , 2g + 2) coincides with P1
C.

2. If i ̸= j, the intersection of fi(∆) and fj(∆) is empty.

3. If the intersection of fi(
∼
∆) and fj(

∼
∆) is not empty for some i ̸= j, then

there exist k, l (1 ≤ k, l ≤ 3) for which fi(sk) = fj(sl) holds.

4. If the intersection of fj(sk) and fj(sl) is not empty for some k, l (1 ≤
k, l ≤ 3), then fj(sk) = fj(sl) holds.

5. The set of all vertices V = {fj(tk)|1 ≤ j ≤ 2g + 2, 1 ≤ k ≤ 3} contains
exactly g + 3 points.

6. The set
2g+2∪
j=1

3∪
k=1

fj(sk) has 3g + 3 connected components.



i
i

i
i

i
i

i
i

244 Takashi Aoki and Takayuki Iizuka

For a given specific triangulation {fi} of P1
C of genus g, we can make a sphere

graph T = (V,E, F ). Here E denotes the set of all connected components

of
2g+2∪
j=1

3∪
k=1

fj(sk) and each connected component is regarded as an edge of

T and here F denotes the set {fi(
∼
∆)} of faces. We also call T a specific

triangulation of P1
C of genus g. Two specific triangulations T and T ′ are said

to be equivalent if T and T ′ are isomorphic as sphere graphs. An equivalence
class of specific triangulations is called an abstract specific triangulation. Note
that we sometimes identify sides of triangles with edges of the triangulation if
there is no confusion.

§2.3. Stokes graphs and specific triangulations

We briefly review some basic properties of Stokes graphs of (1.1) after [4].
For every turning point ai, there are three Stokes curves li,j (j = 1, 2, 3) that
emanate from ai. Each Stokes curve li,j terminates at some regular singular
point bk under suitable generic conditions for (1.1) (cf. [4], Chapter 3). Let A,
B and L denote the sets of all turning points, of all regular singular points and
of all Stokes curves, respectively. The triplet S = (A,B,L) can be regarded
as a sphere (multi-)graph with vertex 2-coloring. That is, the elements of A

and B are considered to be vertices of color A and of color B, respectively and
the Stokes curves are edges of the graph. We call this graph the Stokes graph
of (1.1). The faces of the graph are quadrangles and the number of faces is
3g + 3, where g is the genus of (1.1). Two Stokes graphs S and S ′ are said to
be equivalent if they are isomorphic as sphere graphs with vertex 2-coloring.
An equivalence class of Stokes graphs can be regarded as an abstract Stokes
graph ([4], Definition 3.9).

For a given abstract Stokes graph S = (A, B,L), we denote by M the
set of all faces of S. We consider a new sphere graph G∗ = (B,M,A). That
is, the vertices, the edges and the faces of G∗ are the vertices bj of color B,
the faces Mj and the vertices aj of color A of S, respectively. We consider
bj is incident with an edge Mk if bj is contained in the topological boundary
of Mk. Similarly, an edge Mj is considered to be incident with a face ak if
ak is contained in the topological boundary of Mj . Then G∗ can be regarded
as an abstract specific triangulation of the sphere. We call G∗ the specific
triangulation associated with S. Thus graph theoretic classification of abstract
Stokes graphs is reduced to that of abstract specific triangulations.

Let T = (V,E, F ) be a specific triangulation of genus g of the sphere. Let
mj be the number of edges incident with vertex vj , where a loop is counted
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by two. We call mj the degree of vj . We arrange the order of the sequence
{mj} monotonically decreasingly and denote it by d1 ≥ d2 ≥ · · · ≥ dg+3. We
set d = (d1, d2, . . . , dg+3) and call it the index of T . Of course the notion
of index can be defined also for abstract specific triangulations. Note that
g+3∑
k=1

dk = 6g + 6 holds.

Definition 2.1. A multi-index d = (d1, d2, . . . , dg+3) (di ∈ N) is called
an admissible index of genus g if there exists a specific triangulation T of genus
g of the sphere whose index is equal to d.

Let S = (A,B,L) be a Stokes graph of (1.1) of genus g. Let m′
j denote

the number of Stokes curves which terminate at bj . Let G∗ be the specific
triangulation associated with S. Note that m′

j coincides with the number of
connected components of the intersection of a sufficiently small disk with the
center at bj and the union of faces of S whose boundaries contain bj . Hence
m′

j is equal to the degree of bj . Thus the index of the associated graph G∗ is
an invariant of S as well and we may call it the index of S.

§2.4. Classification of specific triangulations of genus two

Let us consider the case where g = 2. As we saw in the preceding sub-
section, the index d = (d1, d2, . . . , d5) of a given specific triangulation of genus
two satisfies

(2.5)
5∑

k=1

dk = 18.

There are 57 solutions d = (d1, d2, . . . , d5) of (2.5) satisfying d1 ≥ d2 ≥ · · · ≥ d5,
dk ∈ N . Not all but 25 solutions of them are admissible. That is, we have

Theorem 2.1. Let T be a specific triangulation of genus two of the
sphere. Then the index d of T coincides with one of the following 25 multi-
indices:

(4, 4, 4, 3, 3), (5, 5, 3, 3, 2), (6, 4, 4, 2, 2), (6, 5, 4, 2, 1), (6, 5, 5, 1, 1),
(6, 6, 2, 2, 2), (6, 6, 4, 1, 1), (7, 4, 3, 3, 1), (7, 5, 3, 2, 1), (7, 6, 3, 1, 1),
(7, 7, 2, 1, 1), (8, 3, 3, 2, 2), (8, 4, 3, 2, 1), (8, 5, 2, 2, 1), (9, 5, 2, 1, 1),
(9, 6, 1, 1, 1), (10, 3, 2, 2, 1), (10, 3, 3, 1, 1), (10, 4, 2, 1, 1), (10, 5, 1, 1, 1),
(11, 3, 2, 1, 1), (12, 2, 2, 1, 1), (12, 3, 1, 1, 1), (13, 2, 1, 1, 1), (14, 1, 1, 1, 1).
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Conversely, we have

Theorem 2.2. For every multi-index d given in Theorem 2.1, there
exists a specific triangulation T with index d. Concrete shapes of T are as
follows:

Fig 2.1

Here the symbol ⃝ designates a vertex and each (curvilinear) segment an edge.
Thus all admissible indices of genus two are given in the table of Theorem 2.1.

Proof of Theorems 2.1 and 2.2 is given in Section 5. We do not discuss
the uniqueness of the specific triangulation with a given index. In fact, the
uniqueness breaks down in the case of g = 3, while we empirically believe that
it holds for g ≤ 2 (up to orientation).
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§2.5. Classification of Stokes graphs of genus two

For a given abstract specific triangulation T , we can make an abstract
Stokes graph S so that the associated graph G∗ coincides with T and vice
versa. Combining this correspondence with Theorems 2.1 and 2.2, we have

Theorem 2.3. Let S be a Stokes graph of genus two and let d be the
index of S. Then d coincides with one of multi-indices given in Theorem 2.1.
Conversely, for each multi-index d given in Theorem 2.1, there is an abstract
Stokes graph S = (A,B,L) of index d. Concrete shapes of S are given as
follows:

Fig 2.2

Here the symbol △ designates a turning point (an element of A ) and the symbol
⃝ designates a regular singular point (an element of B ).
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§3. Reduction of Triangulations of Genus g

§3.1. Shape of triangles of triangulations

For a given specific triangulation T of the sphere, we take one triangle f

of T . Let V0 be the set of all points f(ti) (i = 1, 2, 3) and let n0 be the number
of elements of V0. Here ti are vertices of ∆ (cf. Section 2.1). Topologically,
there are four cases for the shape of the triangle f(∆):

• If n0 = 3, we see that the sides f(sj) do not intersect each other by Condi-
tion 3 of specific triangulations and continuity of f . Thus the triangle f(∆)
has the shape topologically equivalent to the triangle shown in Fig. 3.1: I,
which we call a triangle of type I.

• If n0 = 2 and the sides f(sj) do not intersect each other, f(∆) has the
shape topologically equivalent to the triangle shown in Fig. 3.1: II, which
we call a triangle of type II.

• If n0 = 2 and two sides f(si) and f(sj) have non-empty intersection, then
we have f(si) = f(sj) by Condition 4 and thus the triangle f(∆) has the
shape topologically equivalent to the triangle shown in Fig. 3.1: III, which
we call a triangle of type III.

• If n0 = 1, then the triangle f(∆) has the shape topologically equivalent to
the triangle shown in Fig. 3.1: IV, which we call a triangle of type IV.

I II III IV
Fig. 3.1: Four types of triangles.

Hence we may consider that T consists of triangles of these four types.

§3.2. Local configurations and reduction

Let T = (V,E, F ) be a specific triangulation of genus g ≥ 1 of the sphere.
Let d = (d1, d2, . . . , dg+3) denote the index of T .

If dg+3 = 1, there is a vertex v1 of T with degree 1. Hence there is a
triangle T0 of type III that has v1 as one of its two vertices. The adjacent
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triangle T1 via the loop-shaped side of T0 should have type II, III or IV. If it
has type III, then we see that T0 and T1 should cover the sphere and hence
g = 0. This contradicts our assumption. Thus T1 is of type II or of type IV. If
T1 is of type II, then the (topological) boundary of T0 ∪T1 consists of two sides
of T1. In this case, there are five possible configurations around T0 ∪ T1 (up to
symmetry) which are shown in Figs. 3.2: (i)–(v). Here hatched regions consist
of some triangles. If T1 is of type IV, there are two possible local configurations
shown in Figs. 3.2: (vi), (vii).

T0

T1 T0

T0

T0

T1

T1

T1

(i) (ii) (iii) (iv)

T0

T1 T1
T1

T0 T0

(v) (vi) (vii)

Fig. 3.2: Local configurations near a vertex of degree 1.

Let us remove T0, T1 and v1 from these configurations. There appear
“holes” (double hatched regions in Figs. 3.3) surrounded by two edges that had
formed sides of T1. We remove these holes by contracting the edges to one
new edge. (“Close” the holes by zipping up the two edges.) Then we have
new triangle(s) shown in the right-most figures in Fig. 3.3. Note that these
procedures do not affect triangles located in hatched regions. Comparing the
final configurations with the original ones, we see that the numbers of triangles,
edges and vertices decrease 2, 3 and 1, respectively. This intuitive illustration
can be stated by using the terminologies of the graph theory. For example, we
consider the case of Fig. 3.2: (i). Let e1 be the edge incident with v1 and let
e2 be another edge(side) of T0. Let v2 denote another vertex of T0 and let T2

denote the triangle adjacent to T0 ∪ T1 via edges(sides) e3, e4 of T1. We set
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v3

v1

v2
e1

e2

e4e3

v3

v1

v2

e1

e2

e4e3

v1

e1v2

v3
e4e3 e2

v1
e1

v2

v3
e4e3

e2

v1

v2
e2

e4

e3

v1

v2

e2

e3

e4

v1

e2
e3

e4

v2

Fig. 3.3: Reduction of local configurations.
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V ′ = V − {v1}, E′ = E − {e1, e2, e3} and F ′ = (F − {T0, T1, T2}) ∪ {T ′
2} with

T ′
2 = T2 ∪ T1 ∪ T0 ∪ {v3}. Thus we have obtained a specific triangulation T ′ of

genus g − 1 from T . Other cases can be discussed in similar manners. Next we
consider the case where dg+3 = 2. There exists a vertex v1 of T with degree
two. Hence there are two edges e1 and e2 which are incident with v1. Let v2

(resp. v3) be another vertex incident with e1 (resp. e2). If v2 = v3, there are
two loop-shaped edges(sides) e3 and e4 which have v2 as the starting point and
the endpoint. Thus v1 is a common vertex of two triangles T1 and T2 of type
II. Here T1 (resp. T2) is a triangle incident with e1, e2, e3 (resp. e1, e2, e4)(see
Fig. 3.4: (i)).

v1

v2 v3e1 e2

e3

e4

e4
v2 v1

e1

e2

e3

(i) (ii)
Fig. 3.4

If v2 ̸= v3, then there are two edges e3 and e4 which are incident with v2 and
v3. Thus v1 is a common vertex of two triangles T1 and T2 of type I. Here T1

and T2 are defined similarly as shown in Fig. 3.4: (ii). In both cases, T1 ∪ T2

is surrounded by e3 and e4. Hence there are four possible local configurations
around v1 shown in Figs. 3.5: (i)–(iv):

(i) (ii) (iii) (iv)

Fig. 3.5: Local configurations near a vertex of degree 2.

Now we remove T1, T2, e1, e2 and v1 from T and contract two edges e3 and e4

to one new edge e′3. For every configuration given in Fig. 3.5, this procedure
does not affect the hatched region(s) and we have a specific triangulation T ′ of
genus g − 1. See Fig. 3.6.
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v1

e1

e2

v1

e1e2

v1

e1

e2

Fig. 3.6: Reduction of local configurations with a vertex of degree 2.

Finally we consider the case where dg+3 = 3. There is a vertex v0 of T of
degree three. Let e1, e2, e3 be edges incident with v0. Let vj denote the vertex
of ej different from v0 (j = 1, 2, 3). There are three cases. If v1, v2, v3 are
mutually distinct, v0 is a common vertex of three triangles T1, T2, T3 of type I.
Here we set T1 = △v0v2v3, T2 = △v0v3v1 and T3 = △v0v1v2 (cf. Fig. 3.7: (i)).
If v1 = v2 ̸= v3, v0 is a common vertex of three triangles and one of them is
not incident with v3. We denote it by T3. Other two triangles are denoted by
T1 and T2 (cf. Fig. 3.7: (ii)). Note that T3 is surrounded by edges v0v1, v1v1

and v1v0 and v1v1 is a loop. Hence T3 is of type II, while T1 and T2 are of type
I. If v1 = v2 = v3, v0 is a common vertex of two triangles T1, T2 of type II and
of a triangle T3 of type I (cf. Fig. 3.7: (iii)).
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(i) (ii) (iii)
Fig. 3.7: Local configurations near a vertex of degree 3.

In each case, we can remove T1, T2, v0 and contract relating edges to obtain a
specific triangulation of genus g − 1. This procedure is illustrated in Fig. 3.8.

v1

v1

v1

e1

e1

e1 e2

e2

e2

Fig. 3.8: Reduction of local configurations with a vertex of degree 3.

The procedure of obtaining T ′ from T (or T ′ itself) is called a reduction (of
T ). Thus we have obtained the following

Theorem 3.1. Let T be a specific triangulation of genus g ≥ 1 of the
sphere and let d = (d1, d2, . . . , dg+3) be the index of T . If dg+3 ≤ 3, then there
is at least one specific triangulation T ′ of genus g − 1 which is obtained by the
reduction of T .
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§4. Augmentation of Triangles

§4.1. Two-triangle cells

We consider procedure reciprocal to the reduction discussed in the preced-
ing section. The reduction consists of removing a pair of triangles, a vertex and
contracting related edges. Thus the reciprocal procedure should consist of blow
up one or two edge(s) (see Section 4.2) and squeeze a pair of triangles there
so that the number of triangles, edges and vertices increase 2, 3 and 1, respec-
tively. Blow up of one (resp. two) edge(s) yields a dilateral (resp. quadrangle).
There are three types of making a dilateral or a quadrangle by taking union
of two triangles. First one is obtained by glueing two sides of two triangles of
type I each other(cf. Fig. 4.1: A). Second one is made by covering the “hole”
of a triangle of type II by a triangle of type III (cf. Fig 4.1: B). Third one is
obtained by glueing one side of a triangle of type I with one side of another
triangle of type I (cf. Fig. 4.1: C). These pairs are called two triangle cell of
type A, B, and C, respectively.

type Btype A type C

Fig. 4.1: Two-triangle cells.

§4.2. Blow up

Let T be a specific triangulation of genus g of the sphere. Let T0 be a
triangle (face) of T .
(i) We consider the case where T0 is a triangle of type I. Let e1, e2, e3 denote
the sides of T0. First we take an edge, say e1, and make a copy of it. We
dislocate the copy slightly to one direction transversal to e1 by preserving its
incident vertices. Then we have a new edge e′1. We consider a dilateral D

surrounded by e1 and e′1 (see the double hatched region of Fig. 4.2: (i)).

e1

e2 e3

(i) (ii)

Fig. 4.2
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Now we replace D by a two triangle cell of type A or of type B (cf. Fig. 4.3).
This procedure yields two specific triangulations T̂ and T̂ ′ of genus g + 1. We
call this procedure one-edge blow up of T0 (or of T ) with the center e1. We
also call T̂ and T̂ ′ blow ups of T . Next we take two edges, say e2 and e3. Let
v1 denote the vertex incident with e2 and e3. Other vertices which are incident
with e2 and with e3 are denoted by v2 and v3, respectively. We make copies of
e2, e3 and v1 and dislocate them slightly preserving v2 and v3. Then we have
new edges e′2, e′3 and a new vertex v′

1. There is a quadrangle Q surrounded
by e2, e3, e′2 and e′3 (see the double hatched region of Fig. 4.2: (ii)). Now we
replace Q by a two triangle cell of type C and get a specific triangulation T̂ ′′

of genus g + 1 (cf. Fig. 4.3). We call this procedure two-edge blow up of T0 (or
of T ) with the centers e2 and e3. The specific triangulation T̂ ′′ is also called a
blow up of T .

Fig. 4.3

In the cases where T0 is of type II, III or IV, we can define one-edge blow up
and two-edge blow up in similar ways. We only give figures to illustrate these
procedures.
(ii) The case of type II:

e1
e2 e3

Fig. 4.4: Making dilaterals or quadrangles (double hatched regions).



i
i

i
i

i
i

i
i

256 Takashi Aoki and Takayuki Iizuka

Fig. 4.5: Blow up yields 6 configurations. Configurations enclosed by
dotted-lined squares are the same (up to symmetry).

(iii) The case of type III:

e1

e2

or

Fig. 4.6: Making dilaterals (double hatched regions).



i
i

i
i

i
i

i
i

Stokes Graphs of Genus Two 257

Fig. 4.7: Blow up yields 4 configurations.

Note that the two-edge blow up with the centers e1, e2 yields one of the con-
figuration given in Fig. 4.3. Thus we do not need the two-edge blow up for
triangles of type III.
(iv) The case of type IV:

e1

e2 e3

Fig. 4.8: Making a quadrangle or dilaterals (double hatched regions).

Fig. 4.9: Blow up yields 5 configurations.
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Hence we have

Theorem 4.1. Let T be a specific triangulation of genus g ≥ 0 of the
sphere. Then there are specific triangulations of genus g +1 which are obtained
as a one-edge blow up or a two-edge blow up of T .

By the definition of the reduction, we have

Theorem 4.2. Let T and T ′ be specific triangulations of genus g(≥ 1)
and of g − 1 of the sphere, respectively. Let d = (d1, d2, . . . , dg+3) denote the
index of T . Suppose that dg+3 ≤ 3 and T ′ is a reduction of T . Then T is a
blow up of T ′.

§5. Proof of Theorems 2.1 and 2.2

Let T be a specific triangulation of genus two of the sphere and let d =

(d1, d2, d3, d4, d5) denote the index of T . Since
5∑

k=0

dk = 18 and d1 ≥ d2 ≥

· · · ≥ d5, we have d5 ≤ 3. It follows from Theorems 3.1 and 4.2 that T is a
blow up of some specific triangulation of genus one. We know that there are
six types of specific triangulations of genus one [5], [4]. The indices of these six
triangulations are

(3, 3, 3, 3), (4, 4, 2, 2), (9, 1, 1, 1),
(8, 2, 1, 1), (5, 5, 1, 1), (6, 3, 2, 1)

and configurations of triangles are given as follows:

(6, 3, 2, 1)

(3, 3, 3, 3)

e1

(9, 1, 1, 1)(4, 4, 2, 2)

(8, 2, 1, 1) (5, 5, 1, 1)

Fig. 5.1: Six types of specific triangulations of genus one.

Thus T is a blow up of a specific triangulation with one of these indices. We
consider all possible blow ups of triangulations of genus one.
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§5.1. The case of (3, 3, 3, 3)

Let us consider a specific triangulation T ′ of genus 1 with index (3, 3, 3, 3).
We choose one edge e1 of T ′ and take one-edge blow ups with the center e1

(see Fig. 5.2 below).

(5, 5, 3, 3, 2)

(7, 4, 3, 3, 1)

(3, 3, 3, 3)

e1

Fig. 5.2: One-edge blow up with the center e1.

Then we have two different types of specific triangulations of genus two with
indices (5, 5, 3, 3, 2) and (7, 4, 3, 3, 1), respectively. Since all edges of T ′ are
symmetric with respect to this procedure, we have these two types of specific
triangulations of genus two by the one-edge blow-up in the case of (3, 3, 3, 3).

Next we choose one vertex v1 of T ′ and two edges e1, e2 which are incident
with v1. Then the two-edge blow up with the centers e1, e2 yields a specific
triangulation of genus two with index (4, 4, 4, 3, 3) as is shown in the following
figure:

(4, 4, 4, 3, 3)(3, 3, 3, 3)

v1

e1 e2

Fig. 5.3: Two-edge blow up with the centers e1, e2.

This procedure is also symmetric with respect to the choice of v1, e1, e2.
Hence we have three admissible indices of genus two by the blow up of

(3, 3, 3, 3):

(5, 5, 3, 3, 2), (7, 4, 3, 3, 1), (4, 4, 4, 3, 3).
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§5.2. The case of (4, 4, 2, 2)

Let T ′ be a specific triangulation of genus one with index (4, 4, 2, 2). Let
v1, v2 be vertices of T ′ of degree 4 and v3, v4 vertices of degree 2. Let e1 be an
edge incident with v1, v2. Let e2 and e3 be edges incident with v1, v4 and v2,
v4, respectively. There are two ways (up to symmetry) of the one-edge blow
up. That is, the one edge blow up with the center e1 and with center e2. The
former yields admissible indices (6, 6, 2, 2, 2), (8, 5, 2, 2, 1) and the latter
(8, 4, 3, 2, 1), (6, 4, 4, 2, 2), (6, 5, 4, 2, 1) (see Figs. 5.4 and 5.5).

(4, 4, 2, 2)

(6, 6, 2, 2, 2)

(8, 5, 2, 2, 1)

v1

v2

v3 v4e1

e2

e3

Fig 5.4

(4, 4, 2, 2)
(6, 4, 4, 2, 2)

(6, 5, 4, 2, 1)

(8, 4, 3, 2, 1)v1

v2

v3 v4

e2

Fig. 5.5

On the other hand, there are two ways (up to symmetry) of the two-edge blow
up. That is, the blow up with the center e2, e3 and with e1, e2. Both cases
yield the same admissible index (5, 5, 3, 3, 2) (see Figs. 5.6 and 5.7). This
index has already been found in the preceding section.
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(4, 4, 2, 2)
(5, 5, 3, 3, 2)

v1

v2

v3 v4e1

e2

e3

Fig. 5.6

(4, 4, 2, 2)
(5, 5, 3, 3, 2)

v1

v2

v3 v4e1

e2

e3

Fig. 5.7

Hence we have five admissible indices of genus two by the blow up of (4, 4, 2, 2):

(6, 6, 2, 2, 2), (8, 5, 2, 2, 1), (8, 4, 3, 2, 1),
(6, 4, 4, 2, 2), (6, 5, 4, 2, 1).

§5.3. The case of (9, 1, 1, 1)

Let T ′ be a specific triangulation of genus one with index (9, 1, 1, 1).
Let v1 be the vertex of T ′ of degree 9 and v2, v3, v4 vertices of degree 1. Let
e4, e5 and e6 denote edges of T ′ incident with v1, v2, with v1, v3 and with v1,
v4, respectively. There are three other edges, which are denoted by e1, e2 and
e3. Note that e1, e2 and e3 are incident with only one vertex v1. There are
two possible way up to symmetry. One-edge blow up with the center e1 yields
two admissible indices (14, 1, 1, 1, 1) and (13, 2, 1, 1, 1) and that with
the center e4 yields three admissible indices (10, 5, 1, 1, 1), (13, 2, 1, 1, 1),
(11, 3, 2, 1, 1) (see Figs. 5.8 and 5.9).
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(9, 1, 1, 1)

(14, 1, 1, 1, 1)

(13, 2, 1, 1, 1)

e1

e2 e3

Fig. 5.8

(9, 1, 1, 1)

(10, 5, 1, 1, 1)

(13, 2, 1, 1, 1)

(11, 3, 2, 1, 1)

v1

v2

v3 v4

Fig. 5.9

The index (13, 2, 1, 1, 1) has been already appeared in Fig. 5.8. The two-edge
blow up of T ′ is unique up to symmetry. The blow up with the centers e2, e3

yields an admissible index (12, 3, 1, 1, 1) (see Fig. 5.10).
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(9, 1, 1, 1) (12, 3, 1, 1, 1)

e2 e3

e1

Fig. 5.10

Hence we have five admissible indices of genus two by the blow up of (9, 1, 1, 1):

(14, 1, 1, 1, 1), (13, 2, 1, 1, 1), (10, 5, 1, 1, 1),
(11, 3, 2, 1, 1), (12, 3, 1, 1, 1).

§5.4. The case of (8, 2, 1, 1)

Let T ′ be a specific triangulation of genus one with index (8, 2, 1, 1). Let
v1 be the vertex of T ′ of degree 8, v2 the vertex of degree 2 and v3, v4 vertices
of degree 1. Let e1, e2 denote edges incident with only one vertex v1. Let e3

and e4 be edges incident with v1, v3 and with v1, v4, respectively. Two edges
incident with v1, v2 are denoted by e5, e6. There are three possible ways up to
symmetry for the one-edge blow up. By the one-edge blow up with the center
e1, we obtain two admissible indices (12, 2, 2, 1, 1) and (13, 2, 1, 1, 1) but
the latter has appeared in Section 5.3.

(8, 2, 1, 1)

(12, 2, 2, 1, 1)

(13, 2, 1, 1, 1)

v3

v1

v4
v2e4 e3

e1

e5

e6

e2

Fig. 5.11

The one-edge blow up with the center e4 yields three admissible indices (12, 2,

2, 1, 1), (9, 5, 2, 1, 1), (10, 3, 2, 2, 1). The first one has already been obtained
in Fig. 5.11.
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(8, 2, 1, 1)

(12, 2, 2, 1, 1)

(9, 5, 2, 1, 1)

(10, 3, 2, 2, 1)

Fig. 5.12

By the one-edge blow up with the center e5, we have three admissible indices
(12, 3, 1, 1, 1), (9, 6, 1, 1, 1), (10, 4, 2, 1, 1). The first one has been found
in Section 5.3.

(8, 2, 1, 1)

(12, 3, 1, 1, 1)

(9, 6, 1, 1, 1)

(10, 4, 2, 1, 1)

Fig. 5.13

The two-edge blow up is unique up to symmetry. Taking the blow up with the
centers e5, e6 yields an admissible index (10, 3, 3, 1, 1).

(8, 2, 1, 1) (10, 3, 3, 1, 1)

Fig. 5.14
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Hence we have six admissible indices:

(12, 2, 2, 1, 1), (9, 5, 2, 1, 1), (10, 3, 2, 2, 1),
(9, 6, 1, 1, 1), (10, 4, 2, 1, 1), (10, 3, 3, 1, 1).

§5.5. The case of (5, 5, 1, 1)

Let T ′ be a specific triangulation of genus one with index (5, 5, 1, 1).
Let v1, v2 be the vertex of T ′ of degree 5. There are two edges incident with
v1, v2. We denote them by e1, e2. There are two other edges incident with
v1 (resp. v2): One of them is a loop (incident only with vertex v1 (resp. v2)),
which is denoted by e3 (resp. e4) and the other is denoted by e5 (resp. e6).
Edge e5 (resp. e6) is incident with v1 (resp. v2) and with another vertex, which
we denote by v3 (resp. v4). There are four possible ways (up to symmetry) of
the (one-edge or two-edge) blow up. The one-edge blow up with the center e4

yields two admissible indices (9, 5, 2, 1, 1) and (10, 5, 1, 1, 1). Both have
already been found in the preceding subsections.

(5, 5, 1, 1)

(9, 5, 2, 1, 1)

(10, 5, 1, 1, 1)

v3
v1

v4

v2

e1

e2

e3

e4

e6
e5

Fig. 5.15

Taking the one edge-blow up with the center e1, we obtain two admissible
indices (9, 6, 1, 1, 1), (7, 7, 2, 1, 1).
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(5, 5, 1, 1)

(9, 6, 1, 1, 1)

(9, 6, 1, 1, 1)

(7, 7, 2, 1, 1)

Fig. 5.16

By taking the one-edge blow up with the center e5 yields three admissible
indices (9, 5, 2, 1, 1), (6, 5, 5, 1, 1), (7, 5, 3, 2, 1), but the first one has
already been obtained.

(5, 5, 1, 1)

(9, 5, 2, 1, 1)

(6, 5, 5, 1, 1)

(7, 5, 3, 2, 1)

Fig. 5.17

The two-edge blow up with the centers e1, e2 yields an admissible index (7, 6,

3, 1, 1).

(5, 5, 1, 1) (7, 6, 3, 1, 1)

Fig. 5.18
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Hence we have four new admissible indices:

(7, 7, 2, 1, 1), (6, 5, 5, 1, 1), (7, 5, 3, 2, 1), (7, 6, 3, 1, 1).

§5.6. The case of (6, 3, 2, 1)

Let T ′ be a specific triangulation of genus one with index (6, 3, 2, 1). Let
v1, v2, v3 and v4 denote vertices of T ′ of degree 6, 3, 2, 1, respectively. The edge
incident with v1, v4 is denoted by e1. Let e2 and e3 denote edges incident with
v1, v3 and v3, v2, respectively. There are two edges incident with v1, v2. We
denote them by e4, e5. There is one more edge, which is denoted by e6. There
are eight possible ways (up to symmetry) of the one-edge or the two-edge blow
up of T ′. The one-edge blow up with the center e1 yields admissible indices
(7, 5, 3, 2, 1), (10, 3, 2, 2, 1), (8, 3, 3, 2, 2). The first two have already
been found in Sections 5.4 and 5.5.

(6, 3, 2, 1)

(10, 3, 2, 2, 1)

(7, 5, 3, 2, 1)

(8, 3, 3, 2, 2)

v4

v1

v3
v2

e1 e2 e3

e4

e5

e6

Fig. 5.19

The one-edge blow up with the center e2 yields admissible indices (10, 3, 3, 1,

1), (7, 6, 3, 1, 1), (8, 4, 3, 2, 1). All these indices have already been obtained
in the preceding subsections.
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(6, 3, 2, 1) (7, 6, 3, 1, 1)

(10, 3, 3, 1, 1)

(8, 4, 3, 2, 1)

Fig. 5.20

Taking one-edge blow up with the center e3, we have admissible indices (6, 6,

4, 1, 1), (7, 6, 3, 1, 1), (6, 5, 4, 2, 1). The first one is new.

(6, 3, 2, 1) (7, 6, 3, 1, 1)

(6, 6, 4, 1, 1)

(6, 5, 4, 2, 1)

Fig. 5.21

The one-edge blow up with the center e4 yields admissible indices (10, 4, 2, 1,

1), (7, 7, 2, 1, 1), (8, 5, 2, 2, 1). All these indices have already been obtained
in the preceding subsections.
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(6, 3, 2, 1) (7, 7, 2, 1, 1)

(10, 4, 2, 1, 1)

(8, 5, 2, 2, 1)

Fig 5.22

The one-edge blow up with the center e6 yields admissible indices (10, 3, 2,

2, 1), (11, 3, 2, 1, 1), which have already been found.

(6, 3, 2, 1)
(10, 3, 2, 2, 1)

(11, 3, 2, 1, 1)

Fig 5.23

The two-edge blow up with the centers e4, e5 yields an admissible indices
(8, 4, 3, 2, 1), which has been obtained in Section 5.2.

(6, 3, 2, 1) (8, 4, 3, 2, 1)

Fig 5.24

The two-edge blow up with the centers e2, e3 (resp. e4, e6) yields an admissible
index (7, 4, 3, 3, 1) (resp. (8, 4, 3, 2, 1)) which has already appeared.
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(7, 4, 3, 3, 1)(6, 3, 2, 1)

Fig 5.25

(6, 3, 2, 1) (8, 4, 3, 2, 1)

Fig 5.27

Hence we have obtained two new admissible indices:

(8, 3, 3, 2, 2), (6, 6, 4, 1, 1).

§5.7. Finish of the proof

By the discussion in Sections 5.1–5.6, we see that 25 multi-indices in the
statement of Theorem 2.1 are admissible and, at the same time, we obtain con-
figurations of abstract specific triangulations with these indices. This completes
the proof of Theorems 2.1 and 2.2.

§6. Appendix

For each Stokes graph S given in Theorem 2.3, we can find potentials Q so
that the Stokes graphs of (1.1) coincide with S by using numerical experiments.
We give an example of such a Q for each admissible index. Here we note that,
by taking suitable Möbius transformations, we consider the case where all of the
regular singularities are finite. Hence the degree of G in the following examples
is g + 3 = 5.

(i) (4,4,4,3,3):

Q(x) =
(x − (1 − i))(x − (1 − 3i))(x − 2i)(x + 4i)(x + (1 + i))(x + (1 + 3i))

(x − 1)2x2(x + 2i)2(x + 3i)2(x + 1)2
.

(ii) (5,5,3,3,2):

Q(x) =
(x − (1 − 3i))x(x + i)(x − 2i)(x + 4i)(x + (1 + 3i))

(x − 1)2(x − i)2(x + 2i)2(x + 3i)2(x + 1)2
.
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(iii) (6,4,4,2,2):

Q(x) =
(x − (1 + i))(x − (1 − i))(x − 2i)(x + 2i)(x + (1 − i))(x + (1 + i))

(x − 2)2(x − 1)2x2(x + 1)2(x + 2)2
.

(iv) (6,5,4,2,1):

Q(x) =
(x − (2 − i))(x − (1 − i))(x + 3i)(x − 4i)(x + (1 + i))(x + (2 + i))

x2(x − i)2(x + i)2(x − 2i)2(x − 3i)2
.

(v) (6,5,5,1,1):

Q(x) =
(x − i)(x + i)(x − 2i)(x + 2i)(x − 9i

2 )(x + 9i
2 )

x2
(
x − 5i

2

)2 (
x + 5i

2

)2 (x − 3i)2(x + 3i)2
.

(vi) (6,6,2,2,2):

Q(x) =
(x − i)(x + i)(x − 2i)(x + 2i)(x − 4i)(x + 4i)

(x − 2)2x2(x − 3i)2(x + 3i)2(x + 2)2
.

(vii) (6,6,4,1,1):

Q(x) =
(x − (2 − 2i))(x + i)(x + 2i)(x − 4i)(x + 4i)(x + (2 + 2i))

x2(x − i)2(x − 2i)2(x − 3i)2(x + 3i)2
.

(viii) (7,4,3,3,1):

Q(x) =
(x − (1 − 2i))x(x + i)(x − 3i)(x + 3i)(x + (1 + 2i))

(x − (1 − i))2(x − i)2(x − 2i)2(x + 2i)2(x + (1 + i))2
.

(ix) (7,5,3,2,1):

Q(x) =
(x − (1 + 2i))x(x + i)(x − 4i)(x + 4i)(x + (1 − 2i))

(x − i)2
(
x + 3i

2

)2
(x − 2i)2(x + 2i)2(x − 3i)2

.

(x) (7,6,3,1,1):

Q(x) =
(x − (1 − 3i))

(
x − i

2

)
(x − i)(x − 4i)(x + 4i)(x + (1 + 3i))

x2(x + i)2(x − 2i)2(x − 3i)2(x + 3i)2
.

(xi) (7,7,2,1,1):

Q(x)
(x − (1 + 3i))(x − i)(x + i)(x − 4i)(x + 4i)(x + (1 + 3i))

(x − 2)2
(
x −

(
3
2 + 2i

))2
x2

(
x +

(
3
2 + 2i

))2 (x + 2)2
.
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(xii) (8,3,3,2,2):

Q(x)=

(
x −

(
1
2 + i

))(
x −

(
1
2 − i

))
(x − 3i)(x + 3i)

(
x +

(
1
2 − i

))(
x +

(
1
2 + i

))
x2(x − i)2(x + i)2(x − 2i)2(x + 2i)2

.

(xiii) (8,4,3,2,1):

Q(x) =
(x − 1)(x − (1 − 2i))(x + 3i)(x − 4i)(x + 1)(x + (1 + 2i))

(x − (1 − i))2(x + i)2(x − 2i)2(x − 3i)2(x + (1 + i))2
.

(xiv) (8,5,2,2,1):

Q(x) =
(x + i)(x − 2i)(x + 2i)(x − 3i)(x − 5i)(x + 5i)

x2(x − i)2
(
x + 12i

5

)2 (
x + 14i

5

)2
(x − 4i)2

.

(xv) (9,5,2,1,1):

Q(x) =

(
x −

(
1
2 + 2i

))
(x + i)(x + 2i)(x − 4i)(x + 4i)

(
x +

(
1
2 − 2i

))
x2(x − i)2(x − 2i)2(x − 3i)2(x + 3i)2

.

(xvi) (9,6,1,1,1):

Q(x) =
(x − (1 − 3i))x

(
x − i

2

)
(x − 4i)(x + 4i)(x + (1 + 3i))

(x − i)2(x + i)2(x − 2i)2(x − 3i)2(x + 3i)2
.

(xvii) (10,3,2,2,1):

Q(x) =
(x − 1)(x − (1 − 2i))x(x − 4i)(x + 4i)(x + (2 − 3i))

(x − 3)2(x + 3i)2(x + 1)2(x + 2)2(x + (2 − 2i))2
.

(xviii) (10,3,3,1,1):

Q(x) =
(x − (1 − 2i))

(
x − i

2

)
(x − i)(x + 3i)(x − 4i)(x + (1 + 2i))(

x −
(
1 − 3i

2

))2 (x + i)2
(
x − 3i

2

)2 (
x − 5i

2

)2 (
x +

(
1 + 3i

2

))2 .

(xix) (10,4,2,1,1):

Q(x) =
(x − i)(x + i)(x − 2i)(x + 2i)(x − 4i)(x + 4i)

x2
(
x − i

2

)2 (
x + i

2

)2
(x − 3i)2(x + 3i)2

.
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(xx) (10,5,1,1,1):

Q(x) =
(x − 1)(x − (1 − 2i))(x − 3i)(x + 4i)(x + 1)(x + (1 + 2i))

(x − (1 + i))2(x − i)2(x − 2i)2(x + 3i)2(x + (1 − i))2
.

(xxi) (11,3,2,1,1):

Q(x) =
(x − (1 + 2i))(x − (1 − 2i))(x + 3i)(x − 4i)(x + (1 − 2i))(x + (1 + 2i))

(x − (1 − i))2x2(x − i)2(x − 3i)2(x + (1 + i))2
.

(xxii) (12,2,2,1,1):

Q(x) =
(x − i)(x + i)(x − 2i)(x + 2i)(x − 4i)(x + 4i)

x2
(
x − i

2

)2 (
x + i

2

)2 (x − 3i)2(x + 3i)2
.

(xxiii) (12,3,1,1,1):

Q(x) =
(x − 1)(x − (1 − 2i))(x − 3i)(x + 4i)(x + 1)(x + (1 + 2i))

(x − (1 + i))2(x − i)2(x − 2i)2(x + 3i)2(x + (1 − i))2
.

(xxiv) (13,2,1,1,1):

Q(x) =
(x − (1 − 2i))(x − i)(x − 2i)(x + 3i)(x − 4i)(x + (1 + 2i))

(x − (1 − i))2x2
(
x − i

2

)2 (x − 3i)2(x + (1 + i))2
.

(xxv) (14,1,1,1,1):

Q(x)=
(x − (1 + 2i))(x − (1 − 2i))(x − 3i)(x + 3i)(x + (1 − 2i))(x + (1 + 2i))

(x − (1 + i))2(x − (1 − i))2x2(x + (1 − i))2(x + (1 + i))2
.

We also give the Stokes geometries for them. In the following figures, small
disks designate regular singular points and larger ones turning points.

(i) (ii) (iii)
Fig. A.1
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(iv) (v) (vi)

(vii) (viii) (ix)

(x) (xi) (xii)

(xiii) (xiv) (xv)

(xvi) (xvii) (xviii)

Fig. A.2
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(xix) (xx) (xxi)

(xxii) (xxiii) (xxiv)

(xxv)
Fig. A.3

These figures are drawn by using Mathemtaica. Once the Stokes geometry is
obtained, one can compute the monodromy matrices for Equation (1.1) with
respect to the WKB-solution basis by using the exact WKB analysis [1], [4].
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