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Further Examples of Explicit Krein
Representations of Certain Subordinators

By

Catherine DONATI-MARTIN* and Marc YOR**

Abstract

In a previous paper [1], we have shown that the gamma subordinators may be
represented as inverse local times of certain diffusions. In the present paper, we give
such representations for other subordinators whose Lévy densities are of the form
m, 0 < v < 2, and the more general family obtained from those by exponential
tilting. These densities are closely linked with those of the inverse local times of the
squared radial Ornstein-Uhlenbeck processes.

§1. Aim of the Paper and Summary of [1]
§1.1

In this paper, we continue the program started in [1], that is to represent
as many subordinators (Sy, £ > 0), i.e. increasing Lévy processes started at
0, as possible as inverse local times (74, £ > 0) of some particular R -valued
diffusion (X;), such that 0 is regular for itself, relatively to X. More precisely,
assume that

Elexp(—\S¢)] = exp(—£€¥(N)), A, 1>0,
where U(X) = [;% v(dy)(1 — e~*¥). If the Lévy measure v(dy) of (S, £ > 0) is

of the form

(1.1) v(dy) = h(y)dy, with h(y) = /000 do(x)e ™Y,
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for some positive o-finite measure o(dz) on Ry, then, it is known, as a con-
sequence of Krein’s theory (cf. Knight [5], Kotani-Watanabe [6]), that there
exists a unique diffusion (X;) taking values in R, whose inverse local time
(¢, £ > 0) at 0 is distributed as (Sg, £ > 0). Finding X when v is given is
called (here) Krein representation problem.

In our paper [1], we could fill in the following:

Table 1
h(y) Generator of (X;) Distribution
1) g Loa=3d+504: 6=2(1-a) ps
0<a<l)
o e | oec.imSemas |

O<a<l;p>0) wheref(a()—yo‘K(),y>O

2 / .
®) Semrv o8t = g+ (o + VIge (VI ) | PP
(1> 0)

The measures o; (i = 1,2,3) representing h in (1), (2), (3) via formula (1.1)
are
o1(dx) =

x%dzx; o9(dr) = (v — p)idx; o3(dx) = Clz>y)dr.

T(+1) T(a+1)

Before we give some details about this Table, we explain our method of
finding diffusions which solve some Krein representation problems.

§1.2 Krein problem and the construction of associated diffusions

Let (X¢)i>0 be an R -valued diffusion, with family of laws (P;).er,. We
assume that 0 is regular, hence X admits a local time at 0, which we denote
by (Lt,t > 0). We use the notation

T = inf{t : Ly > (}, >0,
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for the corresponding inverse local time at 0, v(dy) for its Lévy measure and
(U(9),0 > 0) for its Lévy exponent. We look for a new Markovian family

(Pr)zer, such that
(1.2) Pylr, = exp(¥(0)l — 67). Polz,,.

Since the process (exp(¥(0)L; — 60t),t > 0), which occurs in (1.2), is not a (F3)
martingale, it seems natural to look for a function (¢(z);x > 0) such that

5 (Xt)
1.3 Pl = U(0)Ly — 6t). Py|x,.
( ) |]:t (p(l‘) exp( ( ) t ) ‘ft
In particular, if To(X) denotes the first hitting time of 0 by X, then,
@(Xt/\To)

exp(—0(t A Tp))

e(x)
is a (P, F:) martingale, and assuming ¢ to be decreasing, Doob’s optional
stopping theorem implies

p() = po) () := Ex[exp(=0To(X))]
(we have normalized ¢ so that ¢(0) = 1). Thus, we are led naturally to consider
the diffusion, denoted by (X{*,t > 0), with laws (P?, 2z > 0), such that

X
(1.4) P |5, = w exp(U(0)L; — 0t). Py,

o1(x)
As follows clearly from the starting point (1.2) of our method, the inverse local
time (77, £ > 0) of (XP4, ¢ > 0) satisfies

EgH(exp(—Are)) = exp(—(T (A + 0) — V(D))

i.e. this inverse local time is the #-Esscher transform of (7¢,¢ > 0) under Py, or
equivalently its Lévy measure is e~%Yv(dy).

It is also noteworthy that, under some adequate restriction of their do-
mains, the infinitesimal generators £%' and £ are related by

d

d
0l _
L0 = £+ (log(por () « -

assuming for simplicity that

1 d? d

£ dx
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§1.3 Detalils of Table 1

In fact, the result for the first row goes back at least to Molchanov-
Ostrovski [8]. The result for the second row is deduced from that in the first
row with the help of the above discussion. Finally, the result for the third
row was deduced by letting o — 0 in the second row, while taking care of the
choice! of the local times made for £ g A compendium of choices of local
times for Bessel-like diffusions is made in [2].

§1.4

In the present paper, we wish to complete the preceding Table 1, by consid-
ering the family of Lévy measures on R, which is indexed by three parameters,
as follows:

a+1
(1.5) Uy, o, k(dy) = C <s1mféuy)> exp(pky) dy.

Let us discuss about the role of these parameters and some necessary
conditions so that (1.5) is a Lévy measure. The "true" parameters are p > 0,
k, and . As before, C is simply there to ensure an additional degree of freedom,
if necessary. In order that v, o, 1(dy) be a Lévy measure, it must satisfy

/(m/\l)yma’;@(clﬂz:)<oo7 thatis O<a<landk<1l+a.
0

We now recall, from Pitman-Yor ([11] formulae (16), p. 276) that, if Q% #,
0<d=2(1—a)<2and p >0, denotes the distribution of the squared radial
Ornstein-Uhlenbeck process with "dimension" § and parameter p, started from
z, i.e. the solution of

dZt = 2\/ thBt + (5 - Q[I,Zt)dt, Zt Z 0, Z() =z,

for some Brownian motion (B, ¢t > 0). Then, under Qg’“ , the inverse local time
(1¢,£ > 0) admits as its Lévy measure

(1.6) c (mym exp (ugy> dy,

which is a particular case of (1.5), with k =§/2 = (1 — «).

L As is well-known, the local time in a standard Markovian set up, at a given level, is unique
up to a multiplicative constant, which for our studies, needs to be chosen carefully.
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In the next section, we shall show, essentially with the help of the recipe
(1.4), how to construct a diffusion, indexed by the three parameters (a, p, k),
which solves the Krein representation problem for v, o, k.

§1.5

Among the new diffusions we are finding as solutions of Krein’s problem,
some are related by time change to the diffusions we found in [1] . We first
discovered this relationship by applying the analytical identity

(L7) Wos() = /2 K ()

between Wy g, the Whittaker function with parameters (0, 8), and Kg, the
Bessel-Macdonald function with parameter S (see the Appendix where we also
refer to Lebedev [7] for definitions and properties of the special functions in-
volved). Thus, a part of our present discussion may be considered as giving a
probabilistic interpretation to (1.7).

We also develop a similar discussion for the analytical identity

Mo, () = T3+ DVE 15 (3)

between the Whittaker function My g and the modified Bessel function Ig.

§2. Solving Krein’s Problem for v, o, &
§2.1

We take up the notation in Subsection 1.3; in fact, it is more convenient
to consider the family of radial Ornstein-Uhlenbeck processes (and not their
squares), which we shall denote as (R%#(t),t > 0), and their laws (P2 #,
r > 0). It will be helpful, for the sequel, to have the following formula at hand
for the infinitesimal generator £_,, , of R%# :

1 a2 6—1 d
24 toon=yam (' ) G

It is well-known (see, e.g., Pitman-Yor [9], p. 454, formula (6.b)) that there is
the relationship

2ut
(2.2) RO»H(t) = e M RO (621> ., t>0,
i
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where, on the RHS, (R°(u), u > 0) denotes a J-dimensional Bessel process.
Thus, we obtain

e2To _ 1 (law) (law) X
2.3 T poon) () poy Uaw) 2T
( ) ( 2M ’ > ( 0 ) (b

where, on the RHS, ~, denotes a gamma variable with parameter « = 1 — /2.
(a) follows from (2.2), while (b) is well-known and goes back to Getoor [3]. See,
e.g., Yor [13], for some variants...

We thus deduce the following formula from (2.3) with the help of elemen-
tary computations: for —2au < 6,

E*(exp(—6Tp))
1 o ta—l+0/2,ue—t
- T, T

_ T(at6/2p)
- T

dt

2
(2.4) (/”’52)(04_1)/26/”j /QW(l—a—O/,u)/Q, oc/2(ux2)7

where W, ;, denotes the Whittaker function with parameters (a,b). See [7, p.
279] for the integral representation of Wy .

‘We now write

a+1
_ 1%
Vin oo (A9) =C (sinhmy)) exp(uky)dy

a+1
N J _
=C (Smh(uy)> exp <u2y> exp(—0y)dy ,

where 0 = p (g — k‘) , k < 14 a. According to the preceding computation
(2.4), we now find that the diffusion with infinitesimal generator

(2.5)
d

d 2
0l _ 2\ (a—1)/2 pua?/2 2
L2y =La it e log {(/wc Y= 1)/2gua”/ Wa—a—6/u)/2, aj2(px )} b

solves Krein’s representation problem for v, o 1. We note in fact that

(1 — o= 9/”)/2 = k/Q, hence W(lfafe/p,)/Q,a/Z(g) = Wk/2,o¢/2(£)'
The case where k = 0 is particularly interesting, since on one hand
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a+1
e "
Vp,a,0(dy) =C <sinh(uy)> dy

and on the other hand (see Appendix)

(2.6) Woay2(§) = \/g Koo <§> ,

so that the diffusion which solves Krein’s representation problem for v, «, 0(dy)

0—1 I?;/Q X2
—_— X | = L) dt.
ax, t<Ka/2 (“ 2)

Here, we need to give some details about this computation:

is the solution to

a) We deduce from formula (2.5), in the particular case k = 0, i.e. § = §u/2
that

K’ 2 d
o0 _ o a2 ((2®\) A
E—a,uﬁ—a,u+<x+ﬂx+M$Ka/2 <ﬂ2)> “dr

with the help of formula (2.6).

b) Now, trivially

and

which translates into the stochastic differential equation form (2.7).

To summarize the above and as an introduction to the next discussion in Sub-

section 2.2, we write down
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Table 2
h(y) Generator of (X;) Distribution
ey L = o+ 21 %(mx)% ponl
O<a<l;p>0) (6=2(1-a))
a+1 5
¢ (sinhpiuy)) etz¥ ‘C—a,ﬂ =L o — ,Uﬂ?% pon
0<d=2(1-a)<2;u>0)
atl ]?/ 2 5
0l — o z d I
C(m) ‘C_(%H:‘C_O‘_FM'ITZ(/“L?)% Pnu'vgl
. _s
O<a<l;u>0) (9_7#)

The first row is simply taken from Table 1 (second row there). As said
above, the second row here follows from Pitman-Yor [11]. In the third row,
we have written Ee_la’ ,, for the infinitesimal generator of the process which is
defined as the radial Ornstein-Uhlenbeck process with dimension ¢ = 2(1 — «)
and drift parameter (—u), pushed downwards with parameter = 6u/2. That
this infinitesimal generator may be expressed in terms of K /2 has already been

discussed after (2.7). Another argument is given in the next Subsection 2.2.

§2.2

We shall now prove a remarkable relationship between the two families of
diffusions whose infinitesimal generators are found in Table 2. This relationship
explains precisely why (Row 1) may be deduced from (Row 2), and vice-versa.

Proposition 2.1. Let 0 < a < 1 and 6 = 2(1 — «). The following
relationship holds with 6 = dp/2,

t
(2.8) X2—a,#;9l(t) = X_%; 22 (4/0 Xza,u;Gi(u) du) )
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meaning that, starting from X = X_, 4.0, on the LHS, there exists
(X_g. ﬁl(u)’ u > 0) such that the relationship (2.8) holds.
2 8

)

Comment about our notation. In formula (2.8), and possibly several
times below, we have written Xj. 4|, etc... instead of Xfl, for some index 4. It
seemed more appropriate here, because of the power 2 which occurs on both
sides of (2.8). There should be no confusion for the reader between the different
diffusions X; ¢ and Xj, ;.

Proof. We start from the stochastic differential equation satisfied by
(X—a, u01(t),t > 0) as described implicitly in Row 2 of Table 2. Taking squares,
we obtain

t t [?’ X2
X2 :x2+2/ XsdBS+5t+2/ (nX2) =22 (u) ds.
0 0 a2 N2

We now define (Y, =Y (u), u > 0) via

t
X3Y<4/ des>, t>0,
0

and find that Y satisfies

5 udS 1 “ I?(;/z 12
Y, = 2° e — 4= = ~Ys) d
u—1= +ﬂu+<4)/0 sz+2\/0 ,UKa/z (2 s) S

for some Brownian motion (3,). Since §/4 = (5 — 1)/2, with 6 = 2 — a =
2(1 — «/2), it now appears that (Y,, u > 0) is precisely the diffusion with
infinitesimal generator E':la/Q, with v2v = /2, ie. v = p?/8. O

Let us note that the proof we have just given for the Proposition relies upon
the identification of the infinitesimal generator of the diffusion X_, . (s./2)] as
given in Table 2. This identification was obtained from an analytical identity
between Wy ., and K. (see formula (2.6)).

We now explain and prove the Proposition without relying on such identi-
ties, but rather on absolute continuity relationships between the different laws
involved. We now find it a little more convenient to refer to the laws {Q?% #}
and the main absolute continuity result we need is

2 gt
(2.9) Q%" 7, = exp <;(Zt5tz)u2/ sts> . Q.
0

Here, (Z;,t > 0) denotes the coordinate process on the canonical space C (R,
R, ). We now combine this relation (2.9) with that of the "push downwards"
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with parameter 0, so that, with notations which we shall explain after writing
the formula

210 @2, = ELA cxpuo) L, - o1) -

2 t
exp (—%(Zt — 0t — Z) - %/ dSZs) . Qg']—'u
0

where we note that, for 6 = du/2, this relation simplifies as
(2.11)

su -5Z Z 2
ng J l|]:t _ exp( 2u t) ‘PGL( t) exp (\If(e)Lt_M_/ dSZS) _Qg|_7:t.
exp (—52) ¢oy(2) 2 Jo

The due explanation of formula (2.10) is that we have combined the "push-
downwards" formula (1.4), relative to {Q%#}, i.e. the function (g, and ¥(6)
are relative to that diffusion, with the preceding formula (2.9). From now on,
we keep 6 = dp/2.

We now consider what becomes of formula (2.11), once we time change
both hand sides with the inverse of (4 fot Zydu, t > O), so that, by a slight

abuse of notation, the process of reference is now (Z(h), h > 0), with Z defined
by

(2.12) Z, =7 (4 /Ot Zudu> .

Thus, we obtain

~ s €Xp —ng) <P9¢(2u) ~ 2 ~

o,y L ( 2 I 5

(2.13) 2 = . exp (\II(Q)LU — —u) QY .
’ . (e72%¢01(2)) 8 e

From the well-known property of time change for Bessel processes (see [12],

Chapter XI, Proposition 1.11), @g is the distribution of a Bessel process of
index /2, i.e. of dimension § = 2 — a, that is Q% = P°. Again, with obvious
notation, the RHS of (2.13) may be written

B2 (Zy) 2 2
?l ~ o) ~ nou ~5
—= v )L, -5=—).0Q%=,
B, o (¥ (%) B 15) - @l
8

and we discover that

(2.14)
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5 - 2
A0 1 4 Sk
ansz“ Zl:PZ 81.

Again, let us explain, very much in the same spirit, the first relation
~ 3
Puz | (2) = e pp1(2)

in (2.14). This translates as

(2.15) E, (exp (-%QTO(Z)» =e 5*E, (exp (-%”TO(Z))) ,

where Z simply denotes a BES process with dimension g, and Z a process with
law Q% #. This may be well understood by considering the absolute continuity
relationship (2.9), when we replace ¢t by Ty(Z). Then, from that relationship,
it follows that

Qy* (exp (—%TMZ))) =e7Q’ (e_“; Jo'® ds ZS)

which is precisely (2.15).
Now, it is well known (see [3], [4], [10]) that the Laplace transform of 7o,
under the distribution P? of a Bessel process, is given by

(216) 3,2,(2) = B (exp<—“§To>) ot ()7 () K ().

Using (2.14), we can recover the expression of ¢g for = §u/2 obtained in
(?7?) using the identity (2.6).

§2.3

We now develop a discussion similar to the one which led to (2.8), but with
the downwards arrows | now changed into upwards arrows T; for the definition
of these pushed upwards and downwards processes obtained from a diffusion,
see Pitman-Yor [10]. The analogue of formula (2.10) is now

(2.17)  Q%H 9|z,

©o1(Zt) < 0 1w /lt ) 5
= exp(—0t)exp | —=(Zy — 0t —2) — — [ dsZs | .Q%|x
O exp(—ttyexp (<5 (Z— ot -2 - 1y [ Qll

and we note again that, for 0 = du/2, this relation simplifies as

o exp (—47Z, Z 2t
218) Q¥ T, = P52 enlZ) —“—/ dsZ,) . Q2| x,.
exp (—42) o1 (2) 2 /o
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We note that this formula is even simpler than (2.11), since here there is no
local time contribution.

We now continue to develop an analogous discussion to that made in Sub-
section 2.2, formula (2.8). Thus, we time-change both sides of the absolute
continuity relation (2.18) with the inverse of (4 fg Zy du, t > 0). Thus, with
2, as defined from Z in (2.12), we obtain

W5 ~

5, O €xp <*§Zu> ©01(Zu) 2u ~

Q" 2T|]?-u: m exp (1) Q05
exp (—gz) wo1(2)

With obvious notation, this RHS may be written

Pu2,(2) 8 *u
51
with
(2.19) Puz(2) = 27001 (2).
5. 1y BL .
Qj’”’ > 1 is the distribution of a Bessel process of dimension § = 2 — « with

2
drift £, i.e.

N 2
A6, s S 3t 1
e 2 :PZ 8 .

The analytical counterpart of (2.19) is the companion formula of (2.6) (see
Appendix)

MO,—a/2(£) = 4_%F(1 - %)\/g I—a/2 <g> )

while the companion formula of (2.16) is

e By P E) e ()

B
8

a well-known formula which goes back to Kent [4], Pitman-Yor [10].

8§3. Appendix : On the Whittaker and Bessel-
Macdonald Functions

The following formulae involving these classical special functions are found
in Lebedev [7], to which we refer with numberings such as : (N,) ...
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a) The Whittaker functions M}, ,(z) and Wy, ,(2) are a pair of solutions of
Whittaker’s equation

1k (A—p?
u”+<4+z+(422u)>u0

(p- 279.).
b) Wy, admits the integral representation
k —= oo u—k+1
t 2
R T
Pp—k+3)Jo z
(see Problem 17,, p. 279,).

c)
z z
Wo.u(2) = \/; K (3)
(see Problem 19, p. 279,).

d) In terms of the confluent hypergeometric functions U, there are the rela-
tions

1z 1
Wi u(2) = 2" 2730 (5 —k+p, 2u+1; z)
(see (9.13.16)., p. 274.),
1
K, (2) = Vm(22)" e * ¥ <u + 2 2u+1; 22)

(see (9.13.15),, p. 274,).
Thus, taking k = 0 in the above formula for Wy, ,, one recovers c).

e) In terms of the confluent hypergeometric functions ®, there are the relations
1z 1
My, (2) =2""2e7 2 (5 —k+p, 2u+1; z)
(see (9.13.16)., p. 274.),

I'(p+1) 2

(see (9.13.14)., p. 274,).
Thus, taking k = 0 in the above formula for Mj, ,,, we obtain

1) = o (ot g 2w 1 22

Mo,u(z) = 4T+ DV 1 (5 )
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