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and a Wiener-type Algebra of
Pseudodifferential Operators
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Abstract

We provide an extension of the Fefferman-Phong inequality to nonnegative sym-
bols whose fourth derivative belongs to a Wiener-type algebra of pseudodifferential
operators introduced by J. Sjöstrand. As a byproduct, we obtain that the number of
derivatives needed to get the classical Fefferman-Phong inequality in d dimensions is
bounded above by 2d + 4 + ε. Our method relies on some refinements of the Wick
calculus, which is closely linked to Gabor wavelets. Also we use a decomposition of
C3,1 nonnegative functions as a sum of squares of C1,1 functions with sharp estimates.
In particular, we prove that a C3,1 nonnegative function a can be written as a finite
sum

P
b2
j , where each bj is C1,1, but also where each function b2

j is C3,1. A key point
in our proof is to give some bounds on (b′jb

′′
j )′ and on (bjb

′′
j )′′.
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§1. Introduction and Statement of the Results

§1.1. The Fefferman-Phong inequality and Bony’s result

Let us consider a classical second-order symbol a(x, ξ), i.e. a smooth func-
tion defined on R

n × R
n such that, for all multi-indices α, β

(1.1.1) |(∂α
ξ ∂

β
xa)(x, ξ)| ≤ Cαβ(1 + |ξ|)2−|α|.

The Fefferman-Phong inequality states that, if a satisfies (1.1.1) and is a non-
negative function, there exists C such that, for all u ∈ S(Rn),

(1.1.2) Re〈a(x,D)u, u〉L2(Rn) + C ‖u‖2
L2(Rn) ≥ 0,

or equivalently (with an a priori different constant C)

(1.1.3) aw + C ≥ 0,

where aw stands for the Weyl quantization1 of a,

(awu)(x) =
∫∫

e2iπ(x−y)ξa

(
x+ y

2
, ξ

)
u(y)dydξ.

The constant C in (1.1.2–3) depends only a finite number of Cαβ in (1.1.1).
Let us ask our first question:

(1.1.4)

How many derivatives of a in (1.1.1) are needed to control C in (1.1.2)?

1The standard quantization a(x, D) reads (a(x, D)u)(x) =
R

e2iπxξa(x, ξ)û(ξ)dξ.
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Looking at the proof by C. Fefferman and D. H. Phong [FP] (see also Theo-
rem 18.6.8 in the third volume of [H2]), it seems clear that the number N of
derivatives of a needed to control C should be

N = 4 + ν(n), ν depending on the dimension n.

Since the proof is using an induction on the dimension, it is not completely
obvious to answer to our question with a reasonably simple ν. On the other
hand, J.-M. Bony proved in [Bo1] (Théorème 3.2) the following result: if a(x, ξ)
is a nonnegative smooth function defined on R

n × R
n such that

(1.1.5) |(∂α
ξ ∂

β
xa)(x, ξ)| ≤ Cαβ, for |α| + |β| ≥ 4,

then the conclusions (1.1.2–3) hold. This result shows an interesting twofold
phenomenon:

· Only derivatives with order larger than 4 are needed.

· The control of these derivatives is quite weak, of type S0
0,0. In particular,

the derivatives of large order do not get small (the class S0
0,0 does not have

an asymptotic calculus).

Our answer to the question (1.1.4) is 4+2n+ε (for any positive ε). However, we
shall in fact prove a much more precise result involving a Wiener-type algebra
introduced by J. Sjöstrand in [S1]. To formulate our result, we need first to
introduce that algebra.

§1.2. Sjöstrand algebra of pseudodifferential operators

In [S1] and [S2], J. Sjöstrand introduced a Wiener-type algebra of pseu-
dodifferential operators as follows. Let Z

2n be the standard lattice in R
2n
X and

let 1 =
∑

j∈Z2n χ0(X − j), χ0 ∈ C∞
c (R2n), be a partition of unity. We note

χj(X) = χ0(X − j).

Proposition 1.2.1. Let a be a tempered distribution on R
2n. We shall

say that a belongs to the class A if ωa ∈ L1(R2n), with ωa(Ξ) = supj∈Z2n

|F(χja)(Ξ)|, where F is the Fourier transform2. Moreover, we have

(1.2.1) S0
0,0 ⊂ S0

0,0;2n+1 ⊂ A ⊂ C0(R2n) ∩ L∞(R2n),

where S0,0;2n+1 is the set of functions defined on R
2n such that

|(∂α
ξ ∂

β
xa)(x, ξ)| ≤ Cαβ for |α| + |β| ≤ 2n + 1. A is a Banach algebra for

the multiplication with the norm ‖a‖A = ‖ωa‖L1(R2n).

2(Fa)(Ξ) =
R

e−2iπXΞa(X)dX. We use also the notation DXj
= 1

2iπ
∂Xj

, so that

F(Dαa) = ΞαFa.
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Proof. In fact, we have the implications a ∈ A =⇒ F(χja) ∈ L1(R2n) =⇒
χja ∈ C0 ∩ L∞, and, since the sum is locally finite with a fixed overlap3, we
get a ∈ C0 ∩ L∞. Moreover, if a ∈ S0

0,0;2n+1, i.e. is bounded as well as all its
derivatives of order ≤ 2n + 1, we have, with P (Ξ) = (1 + ‖Ξ‖2)n the formula
F(χja)(Ξ) = P (Ξ)−1F(P (DX)(χja)

)
. We get the identity

F(χja)(Ξ) = P (Ξ)−1(Ξ1 + i)−1F((DX1 + i)P (DX)(χja)
)
.

This entails, in the cone {Ξ ∈ R
2n, 2n|Ξ1| ≥ ‖Ξ‖} and thus everywhere4

|F(χja)(Ξ)| ≤ P (Ξ)−1(1 + ‖Ξ‖)−1︸ ︷︷ ︸
∈L1(R2n)

mes(suppχ0) sup
0≤k≤2n+1

‖a(l)‖L∞Cn,

yielding the result.

Remark 1.2.2. Since 1 ∈ A, A is not included in F(L1(R2n)). Moreover
A contains F(L1): let a be a function in F(L1). With the above notations, we
have

|F(χja)(Ξ)| =
∣∣∣∣∫ χ̂0(Ξ −N)â(N)e2iπj(N−Ξ)dN

∣∣∣∣ ≤ ∫ |χ̂0(Ξ −N)||â(N)|dN,

and thus
∫ |ωa(Ξ)|dΞ ≤ ‖â‖L1 ‖χ̂0‖L1 , which gives the inclusion. Moreover, A

is a Banach commutative algebra for the multiplication.

Proposition 1.2.3. The algebra A is stable by change of quantization,
i.e. for all t real, a ∈ A ⇐⇒ J ta = exp(2iπtDx · Dξ)a ∈ A. The bilinear
map a1, a2 �→ a1
a2 is defined on A × A and continuous valued in A, which
is a (noncommutative) Banach algebra for 
. The maps a �→ aw, a(x,D) are
continuous from A to L(L2(Rn)).

The proof is given in [S1]. A.Boulkhemair established a lot more results
on this algebra in his paper [B1]. In our Appendix A.2, we give a few more
properties of the algebra A, which will be useful later on in this article.

We recall that (a1
a2)w = aw
1 a

w
2 with

(1.2.2) (a1
a2)(X) = 22n

∫∫
R2n×R2n

a1(Y1)a2(Y2)e−4iπ[X−Y1,X−Y2]dY1dY2,

where the bracket [ , ] stands for the symplectic form: for X = (x, ξ), Y =
(y, η) ∈ R

n × R
n, we have [X,Y ] = 〈ξ, y〉 − 〈η, x〉.

3If ∩j∈J supp χj �= ∅ then card J ≤ N0, where N0 depends only on the compact set
supp χ0.

4
R

2n = ∪1≤k≤2n{Ξ ∈ R
2n, 2n|Ξk| ≥ ‖Ξ‖} since the complement of that union is empty:

it is not possible to find Ξ so that max1≤k≤2n 2n|Ξk| < ‖Ξ‖ ≤ 2n max1≤k≤2n |Ξk|.
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Comments on the Wiener Lemma. The standard Wiener’s Lemma states
that if a ∈ �1

(
Z

d
)

is such that u �→ a ∗u = Cau is invertible as an operator on
�2
(
Z

d
)
, then the inverse operator is of the form Cb for some b ∈ �1

(
Z

d
)
. In [S2]

the author is proving several types of Wiener lemma for A. First a commutative
version, saying that if a ∈ A and 1/a is a bounded function, then 1/a belongs
to A. Next, Theorem 4.1 of [S2] provides a noncommutative version of the
Wiener lemma for the algebra A: if an operator aw with a ∈ A is invertible
as a continuous operator on L2, then the inverse operator is bw with b ∈ A.
In the paper [GL], K. Gröchenig and M. Leinert prove several versions of the
noncommutative Wiener lemma, and their definition of the twisted convolution
((1.1) in [GL]) is indeed very close to (a discrete version of) the composition
formula (1.2.2) above. It would be interesting to compare the methods used to
prove these noncommutative versions of the Wiener lemma in the papers [GL]
and [S2].

Back to the G̊arding inequalities. Also J. Sjöstrand proved in Proposi-
tion 5.1 of [S2] the standard G̊arding inequality with gain of one derivative for
his class, in the semi-classical setting, where h is a small parameter in (0, 1]:

(1.2.3) a ≥ 0, a′′ ∈ A =⇒ a(x, hξ)w + Ch ≥ 0.

A consequence of the result (1.1.5) of [Bo1] is that5

(1.2.4) a ≥ 0, a(4) ∈ S0
0,0 =⇒ a(x, hξ)w + Ch2 ≥ 0.

Let us ask our second question. Is it possible to get an inequality with gain of
2 derivatives as in (1.2.4) and also to generalize Bony’s result by replacing S0

0,0

by A? That would mean that

(1.2.5) a ≥ 0, a(4) ∈ A =⇒ a(x, hξ)w + Ch2 ≥ 0.

From the first two inclusions in (1.2.1), we see that (1.2.5) implies (1.2.4).
Moreover the constant C in (1.2.5) will depend only on the dimension and on
the norm of a(4) in A, which is much more precise than the dependence of
C in (1.2.4), which depends on a finite number of semi-norms of a in S0

0,0.
Although (1.2.5) looks stronger than (1.2.3) since h2 � h, it is not obvious
to actually deduce (1.2.3) from (1.2.5). Anyhow we shall see that they are
both true and that the proof of (1.2.3) is an immediate consequence of the

5In fact the operator h−2a(x, hξ)w is unitarily equivalent to h−2a(h1/2x, h1/2ξ)w and
the function b(x, ξ) = h−2a(h1/2x, h1/2ξ) is nonnegative and satisfies b(4)(x, ξ) =
a(4)(h1/2x, h1/2ξ) which is uniformly in S0

0,0 whenever h is bounded and a(4) ∈ S0
0,0.
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most elementary properties of the so-called Wick quantization exposed in our
Section 2. Note also that a version of the Hörmander-Melin inequality with
gain of 6/5 of derivatives was given, in the semi-classical setting, by F. Hérau
in [Hé]: this author used the assumption (6.4) of Theorem 6.2 of [H1], but with
a limited regularity on the symbol a, which is only such that a(3) ∈ A.

§1.3. The main result

We can state our main result.

Theorem 1.3.1. Let n be a positive integer. There exists a constant Cn

such that, for all nonnegative functions a defined on R
2n satisfying a(4) ∈ A,

the operator aw is semi-bounded from below and, more precisely, satisfies

(1.3.1) aw + Cn‖a(4)‖A ≥ 0.

The Banach algebra A is defined in Proposition 1.2.1. Note that the constant
Cn depends only on the dimension n.

The proof is given in Section 3.2.

Corollary 1.3.2. Let n be a positive integer.
(i) Let a(x, ξ) be a nonnegative function defined on R

n × R
n such that

(1.1.1) is satisfied for |α| + |β| ≤ 2n + 5. Then (1.1.2) and (1.1.3) hold with a
constant C depending only on n and on max|α|+|β|≤2n+5 Cαβ.

(ii) Let a(x, ξ, h) be a nonnegative function defined on R
n×R

n×(0, 1] such
that

|(∂α
ξ ∂

β
xa)(x, ξ, h)| ≤ h|α|Cαβ , for 4 ≤ |α| + |β| ≤ 2n+ 5.

Then aw +Ch2 ≥ 0 and Re a(x,D)+Ch2 ≥ 0 hold with a constant C depending
only on n and on max4≤|α|+|β|≤2n+5 Cαβ.

(iii) Let a(x, ξ) be a nonnegative function defined on R
n×R

n such that a(4)

belong to A. Then a(x, hξ)w+C‖a(4)‖Ah2 ≥ 0 and Re a(x, hD)+C‖a(4)‖Ah2 ≥
0 hold with a constant C depending only on n.

(iv) Let a(x, ξ, h) be a nonnegative function defined on R
n×R

n×(0, 1] such
that, for |α| + |β| = 4, the functions (x, ξ) �→ (∂β

1 ∂
α
2 a)(xh

1/2, ξh−1/2, h)h−|α|

belong to A with a norm bounded above by ν0 for all h ∈ (0, 1]. Then aw +
Cν0h

2 ≥ 0 and Re a(x,D) +Cν0h
2 ≥ 0 hold with a constant C depending only

on n.
That corollary is proven in Section 3.3.
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Remark. It is possible to lower the requirement on the number of deriva-
tives down to 2n + 4 + ε (any positive ε) in the statements above, by using
conditions on some fractional derivatives as in Theorem 1.1 of [B2].

§2. The Wick Calculus of Pseudodifferential Operators

§2.1. Definitions

We recall here some facts on the so-called Wick quantization (see e.g. [L1]).
That tool was introduced by F. A. Berezin in [Be], and used by many authors.
In particular its role and effectiveness in proving the G̊arding inequality with
gain of one derivative (once called sharp G̊arding inequality) was highlighted
by the papers of A. Córdoba and C. Fefferman [CF] and A. Unterberger [Un].

Definition 2.1.1. Let Y = (y, η) be a point in R
n × R

n.
(i) The operator ΣY is defined as

[
2ne−2π|·−Y |2]w. This is a rank-one

orthogonal projection: ΣY u = (Wu)(Y )τY ϕ with (Wu)(Y ) = 〈u, τY ϕ〉L2(Rn),
where ϕ(x) = 2n/4e−π|x|2 and (τy,ηϕ)(x) = ϕ(x− y)e2iπ〈x− y

2 ,η〉.

(ii) Let a be in L∞(R2n). The Wick quantization of a is defined as

(2.1.1) aWick =
∫

R2n

a(Y )ΣY dY.

(iii) Let m be a real number. We define Sm as the set of smooth functions
p(X,Λ) defined on R

2n × [1,+∞) such that, for all k ∈ N,

sup
Λ≥1,X∈R2n

|(∂k
Xp)(X,Λ)Λ−m+k

2 | = γk(p) <∞.

The following proposition is classical and easy (see e.g. Section 5 in [L1]).

Proposition 2.1.2.
(i) Let a be in L∞(R2n). Then aWick = W ∗aµW and 1Wick = IdL2(Rn)

where W is the isometric mapping from L2(Rn) to L2(R2n) given above, and
aµ the operator of multiplication by a in L2(R2n). The operator πH = WW ∗ is
the orthogonal projection on a closed proper subspace H of L2(R2n). Moreover,
we have

(2.1.2)
∥∥aWick

∥∥
L(L2(Rn))

≤ ‖a‖L∞(R2n) ,

(2.1.3) a(X) ≥ 0 for all X implies aWick ≥ 0.
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(ii) Let m be a real number and p ∈ Sm. Then pWick = pw + r(p)w, with
r(p) ∈ Sm−1 so that the mapping p �→ r(p) is continuous. More precisely, one
has

(2.1.4) r(p)(X) =
∫ 1

0

∫
R2n

(1 − θ)p′′(X + θY )Y 2e−2π|Y |22ndY dθ.

Note that r(p) = 0 if p is affine.

(iii) For a ∈ L∞(R2n), the Weyl symbol of aWick is

(2.1.5)

a ∗ 2n exp−2π| · |2 which belongs to S0
0,0 with kth-seminorm c(k) ‖a‖L∞ .

(iv) With the operator ΣY given in Definition 2.1.1, we have the estimate

(2.1.6) ‖ΣY ΣZ‖L(L2(Rn)) ≤ 2ne−
π
2 |Y −Z|2 .

(v) More precisely, the Weyl symbol of ΣY ΣZ is, as a function of the
variable X ∈ R

2n,

(2.1.7) e−
π
2 |Y −Z|2e−2iπ[X−Y,X−Z]2ne−2π|X− Y +Z

2 |2 .

Proposition 2.1.2 is sufficient to prove the standard G̊arding inequality
with gain of one derivative, and in fact the following improvement was given
by J. Sjöstrand in [S2].

Theorem 2.1.3. Let a be a nonnegative function defined on R
2n such

that the second derivatives a′′ belongs to A. Then we have

(2.1.8) aw + Cn ‖a′′‖A ≥ 0.

Proof. Although a proof of this result is given in [S2] (Proposition 5.1), it
is a nice and simple introduction to our more complicated argument of Section
3. From Proposition 2.1.2, we have

aw = aWick − r(a)w ≥ −r(a)w,

with r(a)(X) =
∫ 1

0

∫
R2n(1−θ)a′′(X+θY )Y 2e−2π|Y |22ndY dθ. Since A is stable

by translation (see Lemma A.2.1), we see that r(a) ∈ A and thus r(a)w is
bounded on L2(Rn) from Proposition 1.2.3.
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Remark 2.1.4. This theorem implies as well the following semi-classical
version; let a be function satisfying the assumption of Theorem 2.1.3. For h ∈
(0, 1], we define Ah(x, ξ) = h−1a(xh1/2, ξh1/2). The function Ah is nonnegative
with a second derivative bounded in A by cst×‖a′′‖A (see Lemma A.2.1), so
that the previous theorem implies, with C depending only on the dimension,
that Aw

h + C ‖a′′‖A ≥ 0. Since Aw
h is unitarily equivalent to h−1a(x, hξ)w, this

gives

(2.1.9) a(x, hξ)w + hC ‖a′′‖A ≥ 0.

§2.2. Sharp estimates for the remainders

Proposition 2.1.2 falls short of providing a proof for the Fefferman-Phong
inequality, which gains two derivatives.

Lemma 2.2.1. Let a be a function defined on R
2n such that the fourth

derivatives a(4) belong to A. Then we have

aw =
(
a− 1

8π
tracea′′

)Wick

+ ρ0(a(4))w,

with ρ0(a(4)) ∈ A and more precisely ‖ρ0(a(4))‖A ≤ Cn‖a(4)‖A.

Proof. The Weyl symbol σa of aWick is

σa(X) =
∫
a(X + Y )2ne−2π|Y |2dY

= a(X) +
∫

1
2
a′′(X)Y 22ne−2π|Y |2dY

+
1
3!

∫∫ 1

0

(1 − θ)3a(4)(X + θY )Y 42ne−2π|Y |2dY dθ

= a(X) +
1
8π

trace a′′(X)

+
1
3!

∫∫ 1

0

(1 − θ)3a(4)(X + θY )Y 42ne−2π|Y |2dY dθ.

Moreover the Weyl symbol θa of (trace a′′)Wick is, from Proposition 2.1.2,

θa(X) = trace a′′(X) +
∫ 1

0

∫
R2n

(1 − θ)(tracea′′)′′(X + θY )Y 2e−2π|Y |22ndY dθ.
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As a result, the Weyl symbol of the operator
(
a− 1

8π trace a′′
)Wick is

a+
1
3!

∫∫ 1

0

(1 − θ)3a(4)(X + θY )Y 42ne−2π|Y |2dY dθ

− 1
8π

∫ 1

0

∫
R2n

(1 − θ)(tracea′′)′′(X + θY )Y 2e−2π|Y |22ndY dθ.

We get the equality in the lemma with

(2.2.1)

ρ0(a(4))(X) =
1
8π

∫ 1

0

∫
R2n

(1 − θ)(tracea′′)′′(X + θY )Y 2e−2π|Y |22ndY dθ

− 1
3!

∫∫ 1

0

(1 − θ)3a(4)(X + θY )Y 42ne−2π|Y |2dY dθ.

We note now that ρ0 depends linearly on a(4) and that

(2.2.2) ρ0(a(4))(X) =
∫∫ 1

0

a(4)(X + θY )M(θ, Y )︸ ︷︷ ︸
polynomial

in Y,θ.

e−2π|Y |2dY dθ.

Looking now at the formula (2.2.2) and applying Lemma A.2.1, we get

‖ρ0(a(4))‖A ≤
∫∫ 1

0

M(θ, Y )e−2π|Y |2dY dθC0‖a(4)‖A = C1‖a(4)‖A.

The proof of Lemma 2.2.1 is complete.

Remark 2.2.2. We note that, from Lemma 2.2.1 and the L2 boundedness
of operators with symbols in A, Theorem 1.3.1 is reduced to proving
(2.2.3)

a ≥ 0, a(4) ∈ A =⇒
(
a− 1

8π
trace a′′

)Wick

is semi-bounded from below.

Naturally, one should not expect the quantity a− 1
8π trace a′′ to be nonnegative:

this quantity will take negative values even in the simplest case a(x, ξ) = x2+ξ2,
so that the positivity of the quantization expressed by (2.1.3) is far from enough
to get our result. We shall prove in Section 3 a stronger version of (2.2.3), but
before this, we need to investigate more closely the composition formula for the
Wick quantization.
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§2.3. On the composition formula for the Wick quantization

In this section, we prove some formulas of composition for operators with
very irregular Wick symbols. The first lemma below was already proven in
[L1], but we give here a complete proof for the convenience of the reader, since
these (easy) computations are not completely standard.

Lemma 2.3.1. For p, q ∈ L∞(R2n) real-valued with p′′ ∈ L∞(R2n), we
have

Re
(
pWickqWick

)
=
(
pq − 1

4π
∇p · ∇q

)Wick

+R,

‖R‖L(L2(Rn)) ≤C(n) ‖p′′‖L∞ ‖q‖L∞ .

The product ∇p · ∇q above makes sense (see our Appendix A.3) as a tempered
distribution since ∇p is a Lipschitz continuous function and ∇q is the derivative
of an L∞ function: in fact, we shall use as a definition (see our Appendix A.3)
∇p · ∇q = ∇ · ( q︸︷︷︸

L∞

∇p︸︷︷︸
Lip.

) − q︸︷︷︸
L∞

∆p︸︷︷︸
L∞

.

Proof. Using Definition 2.1.1, we see that

pWickqWick =
∫∫

R2n×R2n

p(Y )q(Z)ΣY ΣZdY dZ

=
∫∫ (

p(Z) + p′(Z)(Y − Z) + p2(Z, Y )(Y − Z)2
)
q(Z)ΣY ΣZdY dZ

=
∫

(pq)(Z)ΣZdZ +
∫∫

p′(Z)(Y − Z)ΣY dY q(Z)ΣZdZ +R0,

with R0 =
∫∫∫ 1

0

(1−θ)p′′(Z+θ(Y −Z))(Y −Z)2q(Z)ΣY ΣZdY dZdθ.

Claim 2.3.2. Let ω be a measurable function defined on R
2n × R

2n such
that

|ω(Y, Z)| ≤ γ0

(
1 + |Y − Z|)N0 .

Then the operator
∫∫
ω(Y, Z)ΣY ΣZdY dZ is bounded on L2(Rn) with L(L2(Rn))

norm bounded above by a constant depending on γ0, N0. This is an immediate
consequence of Cotlar’s lemma (see e.g. Lemma 4.2.3 in [BL] or Lemma 18.6.5
in [H2]) and of the formula (2.1.6).

Using that claim, we obtain that

(2.3.1) ‖R0‖L(L2(Rn)) ≤ C1(n) ‖p′′‖L∞(R2n) ‖q‖L∞(R2n) .
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We check now
∫

(Y − Z)ΣY dY whose Weyl symbol is, as a function of X,∫
(Y − Z)2ne−2π|X−Y |2dY =

∫
(X − Z)2ne−2π|X−Y |2dY = X − Z.

So with LZ(X) = X −Z, we have
∫

(Y −Z)ΣY dY ΣZ = (X −Z)wΣZ = Lw
ZΣZ

and thus

Re
∫

(Y − Z)ΣY dY ΣZ = Re(Lw
ZΣZ) =

(
(X − Z)2ne−2π|X−Z|2)w

=
1
4π
∂Z(2ne−2π|X−Z|2)w,

so that

(2.3.2) Re
∫

(Y − Z)ΣY dY ΣZ =
1
4π
∂Z(ΣZ).

Using that p and q are real-valued, the formula for Re(pWickqWick) becomes

Re
(
pWickqWick

)
=
∫

(pq)(Z)ΣZdZ +
∫
p′(Z)q(Z)

1
4π
∂ZΣZdZ + ReR0

=
∫ (

(pq)(Z) − 1
4π
p′(Z) · q′(Z)

)
ΣZdZ

−
∫

1
4π

trace p′′(Z)q(Z)ΣZdZ + ReR0

that is the result of the lemma, using (2.3.1) and (2.1.2) for the penultimate
term on the line above.

The next lemma is more involved.

Lemma 2.3.3. For p measurable real-valued function such that p′′,
(p′p′′)′, (pp′′)′′ ∈ L∞, we have

(2.3.3) pWickpWick =
∫ [

p(Z)2 − 1
4π

|∇p(Z)|2
]
ΣZdZ + S,

(2.3.4) ‖S‖L(L2(Rn)) ≤ C(n)
(
‖p′′‖2

L∞ + ‖(p′′p′)′‖L∞ + ‖(pp′′)′′‖L∞

)
.

Here p′′ stands for the vector (tensor) with components (∂α
Xp)|α|=2, whereas

the components of (p′′p′)′ are ∂α
X

(
∂β

X∂
γ
Xp
)

|α|=1,|β|=2,
|γ|=1

and those of (pp′′)′′ are

∂α
X

(
p∂β

Xp
)
|α|=|β|=2

.
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Proof. We have

pWickpWick =
∫∫

p(Y )p(Z)ΣY ΣZdY dZ

=
∫∫

p(Y )
(
p(Y ) + p′(Y )(Z − Y )

)
ΣY ΣZdY dZ

+
∫∫∫ 1

0

p(Y )(1 − θ)p′′(Y + θ(Z − Y ))dθ(Z − Y )2ΣY ΣZdY dZdθ

so that, using (2.3.2) for the terms pp′ in the double integral above, we get,
noting trace(p′′) = ∆p,

(2.3.5) pWickpWick =
(
p2 − 1

4π
|∇p|2 − 1

4π
p∆p

)Wick

+ Re(Ω0 + Ω1 + Ω2),

with

(2.3.6)

Ω0 =
∫∫∫ 1

0

p
(
Y + θ(Z − Y )

)
p′′
(
Y + θ(Z − Y )

)
(Z − Y )2ΣY ΣZdY dZ(1− θ)dθ,

(2.3.7)

Ω1 =
∫∫∫ 1

0

p′
(
Y + θ(Z − Y )

)
θ(Y − Z)

× p′′
(
Y + θ(Z − Y )

)
(Z − Y )2ΣY ΣZdY dZ(1 − θ)dθ

and from the claim (2.3.2),

(2.3.8) ‖Ω2‖L(L2(Rn)) ≤ C1(n) ‖p′′‖2
L∞ .

We write now Ω0 = Ω00 + Ω01, Ω1 = Ω10 + Ω11 with

Ω00 =
1
2

∫∫
p(Y )p′′(Y )(Z − Y )2ΣY ΣZdY dZ,

Ω01 =
∫∫∫ 1

0

(
(pp′′)

(
Y + θ(Z − Y )

)− (pp′′)(Y )
)
(Z − Y )2

× ΣY ΣZdY dZ(1 − θ)dθ

Ω10 =−1
6

∫∫∫ 1

0

p′(Y )(Z − Y )p′′(Y )(Z − Y )2ΣY ΣZdY dZ

‖Ω11‖ L(L2(Rn)) ≤ C2(n) ‖(p′p′′)′‖L∞ .(2.3.9)



�

�

�

�

�

�

�

�

342 Nicolas Lerner and Yoshinori Morimoto

We have also Ω01 = Ω010 + Ω011 with

Ω010 =
1
6

∫∫
(pp′′)′(Y )(Z − Y )(Z − Y )2ΣY ΣZdY dZ,

(2.3.10) ‖Ω011‖L(L2(Rn)) ≤ C3(n) ‖(pp′′)′′‖L∞ .

From (2.3.5–10), it suffices to check that the following term is a remainder
satisfying the estimate (2.3.4) to get the result of Lemma 2.3.3:

Ω̃ =− 1
4π

∫
p(Y ) trace p′′(Y )ΣY dY(2.3.11)

+
1
2

Re
∫∫

(pp′′)(Y )(Z − Y )2ΣY ΣZdY dZ

+
1
6

Re
∫∫

(pp′′)′(Y )(Z − Y )(Z − Y )2ΣY ΣZdY dZ

−1
6

Re
∫∫∫ 1

0

p′(Y )(Z − Y )p′′(Y )(Z − Y )2ΣY ΣZdY dZ.

The real part of the Weyl symbol of
∫

(Zj − Yj)(Zk − Yk)(Zl − Yl)ΣY ΣZdZ is
(see (2.1.7))∫

(Zj − Yj)(Zk − Yk)(Zl − Yl)e−
π
2 |Y −Z|2

× cos(2π[X − Y,X − Z])2ne−2π|X−Y +Z
2 |2dZ

=
∫
TjTkTle

−2π|T/2|2 cos(2π[X − Y, T ])2ne−2π|X−Y −T
2 |2dT

=
∫
TjTkTl cos(2π[X − Y, T ])e−π|X−Y −T |2dT2ne−π|X−Y |2 = νjkl(X − Y )

with

(2.3.12)

νjkl(S) =
∫
TjTkTl cos (2π[S, T ])e−π|S−T |2dT2ne−π|S|2

= 2ne−π|S|2
∫

(Tj + Sj)(Tk + Sk)(Tl + Sl) cos (2π[S, T ])e−π|T |2dT

= 2ne−π|S|2
∫

(TjTkSl + TkTlSj + TlTjSk

+ SjSkSl) cos (2π[S, T ])e−π|T |2dT.
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We notice that the function S �→ ∫
R2n TjTk exp (2iπ[S, T ])e−π|T |2dT is a second-

order derivative of S �→ ∫
R2n exp (2iπ[S, T ])e−π|T |2dT = e−π|S|2 so that

2ne−π|S|2Sl

∫
R2n

TjTk cos (2π[S, T ])e−π|T |2dT = e−2π|S|2SlPjk(S),

with Pjk even, second-order and real polynomial. The function Sl1Sl2Sl3

×e−2π|S|2 is always a linear combination of derivatives of Schwartz functions
on R

2n, since

if l1<l2≤ l3 it is the derivative with respect to Sl1 of Sl2Sl3e
−2π|S|2(−4π)−1,

if l1 = l2<l3 it is the derivative with respect to Sl3 of Sl1Sl2e
−2π|S|2(−4π)−1,

if l1 = l2 = l3 = l it is a linear combination of the third and first derivative
with respect to Sl of e−2π|S|2 , since

(et2)′′′ = (12t+ 8t3)et2 , t3et2 =
1
8
(et2)′′′ − 3

4
(et2)′.

As a result the function νjkl defined by (2.3.12) is a linear combination of
derivatives with respect to Sj , Sk or Sl of Schwartz functions on R

2n. Integrat-
ing by parts in the last two terms of (2.3.11), we see that their L(L2) norm is
bounded from above by C4(n)(‖(pp′′)′′‖L∞ +‖(p′p′′)′‖L∞). Looking at (2.3.11),
we see that we are left with
(2.3.13)

Ω̃0 = − 1
4π

∫
p(Y ) trace p′′(Y )ΣY dY +

1
2

Re
∫∫

(pp′′)(Y )(Z−Y )2ΣY ΣZdY dZ.

The real part of the operator
∫

(Zj − Yj)(Zk − Yk)ΣY ΣZdY dZ has the Weyl
symbol (function of X)

(2.3.14)∫
TjTke

−π|X−Y −T |2 cos(2π[X − Y, T ])dT2ne−π|X−Y |2

=
∫ (

(Xj − Yj)(Xk − Yk) + TjTk

)
e−π|T |2 cos(2π[X − Y, T ])dT2ne−π|X−Y |2

=
∫ (

SjSk + TjTk

)
e−π|T |2 cos(2π[S, T ])dT2ne−π|S|2 , S = X − Y.

• If j �= k, both terms in (2.3.14) are second order derivatives with respect
to Y of a Schwartz function in R

2n. In fact the first term is

SjSk2ne−2π|S|2 = ∂Sj
∂Sk

(
2ne−2π|S|2/16π2

)
= ∂Yj

∂Yk

(
2ne−2π|S|2/16π2

)
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and the second term is equal to −Sj′Sk′2ne−2π|S|2 , with j′ �= k′, also a second-
order derivative. The contribution of these terms in (2.3.13) is then, after
integration by parts, an L2 bounded operator with norm ≤ C5(n) ‖(pp′′)′′‖L∞ .

• If j = k, with j′ = j ± n (in fact j′ = j + n if 1 ≤ j ≤ n and j′ = j − n

if 1 + n ≤ j ≤ 2n), we note that (2.3.14) is equal to

S2
j 2ne−2π|S|2− 1

4π2
e−π|S|2∂2

Sj′

(
2ne−π|S|2)=2ne−2π|S|2

(
S2

j −
1

4π2
(4π2S2

j′−2π)
)
.

Taking into account the contribution of these terms in (2.3.13), we see that we
are left with

− 1
4π

∫
p(Y ) trace p′′(Y )ΣY dY +

1
2

∫∫
1
2π

trace(pp′′)(Y )ΣY dY = 0.

The proof of Lemma 2.3.3 is complete.

§3. The Proof

§3.1. Nonnegative functions as sum of squares

Theorem 3.1.1. Let m be a nonnegative integer. There exists an inte-
ger N and a positive constant C such that the following property holds. Let a
be a nonnegative C3,1 function6 defined on R

m such that a(4) ∈ L∞; then we
can write

(3.1.1) a =
∑

1≤j≤N

b2j

where the bj are C1,1 functions such that b′′j , (b
′
jb

′′
j )′, (bjb′′j )′′ ∈ L∞. More pre-

cisely, we have

(3.1.2) ‖b′′j ‖2
L∞ + ‖(b′jb′′j )′‖L∞ + ‖(bjb′′j )′′‖L∞ ≤ C‖a(4)‖L∞ .

Note that this implies that each function bj is such that b2j is C3,1 and that N
and C depend only on the dimension m.

Remark 3.1.2. We shall use the following notation: let A be a symmetric
k-linear form on real normed vector space V . We define the norm of A by

‖A‖ = sup
‖T‖=1

|AT k|.

6A C3,1 function is a C3 function whose third-order derivatives are Lipschitz continuous.
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Since the symmetrized products of T1 ⊗ · · · ⊗ Tk can be written as a linear
combination of k-th powers, that norm is equivalent to the natural norm

|‖A‖ = sup
‖Tj‖=1,

1≤j≤k

|AT1 . . . Tk|

and in fact, when V is Euclidean, we have the equality ‖A‖ = |‖A‖ (see the
paper by O. D. Kellogg [Ke]). In our Appendix A.4, we prove that for an
arbitrary normed space, the best estimate is |‖A‖ ≤ kk

k! ‖A‖.

Comment. Part of this theorem is a consequence of the classical proof
of the Fefferman-Phong inequality and of the more refined analysis of Bony in
[Bo1] (see also [Gu] and [Ta]). However the control of the L∞ norm of the quan-
tities (b′jb

′′
j )′, (bjb′′j )′′ is more difficult to achieve and seems to be new. Naturally

the inequality (3.1.2) is a key element of our proof, since it is connected with
the estimates (2.3.4). We shall thus focus our attention on the new elements
of the proof, referring the reader to our appendix or to the literature for the
more standard points.

Proof of Theorem 3.1.1. We define

(3.1.3) ρ(x) =
(|a(x)| + |a′′(x)|2)1/4

, Ω = {x, ρ(x) > 0},

assuming as we may ‖a(4)‖L∞ ≤ 1. Note that, since ρ is continuous, the set
Ω is open. The metric |dx|2/ρ(x)2 is slowly varying in Ω (see Lemma A.1.2):
∃r0 > 0, C0 ≥ 1 such that

(3.1.4) x ∈ Ω, |y − x| ≤ r0ρ(x) =⇒ y ∈ Ω, C−1
0 ≤ ρ(x)

ρ(y)
≤ C0.

The constants r0, C0 can be chosen as “universal” constants, thanks to the
normalization on a(4) above. Moreover, using Lemma A.1.1, the nonnegativity
of a implies with γj = 1 for j = 0, 2, 4, γ1 = 3, γ3 = 4,

(3.1.5) |a(j)(x)| ≤ γjρ(x)4−j , 1 ≤ j ≤ 4.

We refer the reader to Section 1.4 in [H2] for the basic properties of slowly
varying metrics as well as for the following lemma.

Lemma 3.1.3. Let a, ρ,Ω, r0 be as above. There exists a positive num-
ber r′0 ≤ r0, such that for all r ∈]0, r′0], there exists a sequence (xν)ν∈N of points
in Ω and a positive number Mr, such that the following properties are satisfied.
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We define Uν , U
∗
ν , U

∗∗
ν as the closed Euclidean balls with center xν and radius

rρν , 2rρν , 4rρν with ρν = ρ(xν). There exist two families of nonnegative smooth
functions on R

m, (ϕν)ν∈N, (ψν)ν∈N such that∑
ν

ϕ2
ν(x) = 1Ω(x), suppϕν ⊂ Uν , ψν ≡ 1 on U∗

ν , suppψν ⊂ U∗∗
ν ⊂ Ω.

Moreover, for all integers l, we have supx∈Ω,ν∈N ‖ϕ(l)
ν (x)‖ρl

ν + supx∈Ω,ν∈N

×‖ψ(l)
ν (x)‖ρl

ν <∞. The overlap of the balls U∗∗
ν is bounded, i.e.⋂

ν∈N
U∗∗

ν �= ∅ =⇒ #N ≤Mr.

Moreover, ρ(x) ∼ ρν all over U∗∗
ν (i.e. the ratios ρ(x)/ρν are bounded above

and below by a fixed constant, provided that x ∈ U∗∗
ν ).

Since a is vanishing on Ωc, we obtain

(3.1.6) a(x) =
∑
ν∈N

a(x)ϕ2
ν(x).

Definition 3.1.4. Let a, ρ,Ω be as above. Let θ be a positive number
≤ θ0, where θ0 is a fixed constant satisfying the requirements of Lemma A.1.5.
A point x ∈ Ω is said to be

(i) θ-elliptic whenever a(x) ≥ θρ(x)4,

(ii) θ-nondegenerate whenever a(x) < θρ(x)4 : we have then ‖a′′(x)‖2 ≥
ρ(x)4/2.

We go on now with the proof of Theorem 3.1.1. We choose a positive
number θ satisfying the condition in Definition 3.1.4. We choose a positive
number r ≤ r′0 as defined in Lemma 3.1.3 and we consider a sequence (xν) as
in that lemma. We assume also that 4r ≤ θ/8, so that Lemma 3.1.3 can be
applied on the ball U∗∗

ν .
Let us first consider the “elliptic” indices ν such that xν is θ-elliptic. Ac-

cording to Lemma A.1.3, for x ∈ U∗∗
ν , we have a(x) ∼ ρ4

ν , so that with

(3.1.7) bν(x) = a(x)1/2ψν(x), b2ν = aψ2
ν , ϕ2

νb
2
ν = aϕ2

ν

and on suppϕν (where ψν ≡ 1),
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b′ν = 2−1a−1/2a′,
b′′ν = −2−2a−3/2a′2 + 2−1a−1/2a′′,
b′′′ν = 3 × 2−3a−5/2a′3 − 3

4a
−3/2a′a′′ + 2−1a−1/2a′′′,

b
(4)
ν = −15

16a
−7/2a′4 + 9

4a
−5/2a′2a′′ − 3

4a
−3/2a′′2 − a−3/2a′a′′′ + 1

2a
−1/2a(4),

yielding
|b′ν | ≤ 2−1a−1/2|a′| � a−1/2ρ3 � ρ,

|b′′ν | � a−3/2ρ6 + a−1/2ρ2 � 1,
|b′′′ν | � a−5/2ρ9 + a−3/2ρ3ρ2 + a−1/2ρ � ρ−1,

|b(4)ν |� a−7/2ρ12 + a−5/2ρ6ρ2 + a−3/2ρ4 + a−3/2ρ3ρ+ a−1/2 � ρ−2.

Note in particular that

(3.1.8) |bνb(4)ν | + |b(1)ν b(3)ν | + |b(2)ν b(2)ν | ≤ C(θ).

The whole difficulty is concentrated on the next case.
The nondegenerate indices ν are those for which xν is θ-nondegenerate.

Since 4r ≤ θ/8 ≤ θ1/2, we can apply Remark A.1.6 on the product7

Qν = [−θ1/4ρν + xν1, θ
1/4ρν + xν1] ×BRm−1(x′ν , θ

1/2ρν)

(here xν = (xν1, x
′
ν) ∈ R × R

m−1).

There exists α : BRm−1(x′ν , θ1/2ρν) → [xν1 − θ1/4ρν , xν1 + θ1/4ρν ] such that

(3.1.9) ∂1a(α(x′), x′) = 0

and ∂2
1a(x) ≥ ρ2

ν/2 for |x− xν | ≤ R0ρν where R0 = 10−2 according to Lemma
A.1.4. We have on Qν

(3.1.10)

a(x) = a(x1, x
′)

=
∫ 1

0

(1 − t)∂2
1a
(
α(x′) + t(x1 − α(x′)), x′

)
dt
(
x1 − α(x′)

)2 + a(α(x′), x′).

According to Remark A.1.6, we recall that we have for |x′ − x′ν | ≤ θ1/2ρν ,

(3.1.11)


|α(x′) − xν1| ≤ θ1/4ρν ,

|α′(x′)| ≤ 2ρ−2
ν ρ(α(x′), x′)2 ≤ 2C2

0 = C1,

|α′′(x′)| ≤ 2ρ−2
ν

(
42C4

0 + 42C2
0 + 12

)
ρ(α(x′), x′) ≤ C2ρ

−1
ν ,

|α′′′(x′)| ≤ C3ρ
−2
ν ,

7Naturally the choice of the linear coordinates depends on the index ν, according to
Remark A.1.6. Note also that U∗∗

ν ⊂ Qν ⊂ B(xν , R0ρν) since 4r ≤ θ1/2 ≤ θ1/4 ≤ R0,
according to the previous requirements on r and θ and also to the condition on θ in
Lemma A.1.5.
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with universal constants Cj . Let us now compute the derivatives of the function

(3.1.12) B′ = BRm−1(x′ν , θ
1/2ρν) � x′ �→ a(α(x′), x′) = c(x′).

We have, denoting by ∂2 the partial derivative with respect to x′,

c′ = α′∂1a+ ∂2a = ∂2a (here we use the identity ∂1a(α(x′), x′) ≡ 0),

c′′ = α′∂1∂2a+ ∂2
2a,

c′′′ = α′′∂1∂2a+ α′2∂2
1∂2a+ 2α′∂1∂

2
2a+ ∂3

2a,

c′′′′ = α′′′∂1∂2a+ 3α′′α′∂2
1∂2a+ 3α′′∂1∂

2
2a+ α′3∂3

1∂2a

+3α′2∂2
1∂

2
2a+ 3α′∂1∂

3
2a+ ∂4

2a

and we obtain

|c′| � ρ3, |c′′| � ρ2, |c′′′| � ρ−1ρ2 + ρ ∼ ρ, |c′′′′| � ρ−2ρ2 + ρ−1ρ+ 1 ∼ 1

so that

(3.1.13) c ∈ C3,1(B′), |c(j)| � ρ4−j
ν , 0 ≤ j ≤ 4.

Since ∂2
1a � ρ2 on Qν , we can define

(3.1.14) R(x) = ω(x)1/2, ω(x) =
∫ 1

0

(1 − t)∂2
1a
(
α(x′) + t(x1 − α(x′)), x′

)
dt.

Note also that the identity (on Qν), a = R(x)2(x1 − α)2 + a(α(x′), x′) forces
the function

B(x) = R(x)2(x1 − α)2

to be C3,1(Qν) with a j-th derivative bounded above in absolute value by ρ4−j
ν

(0 ≤ j ≤ 4) since it is the case for a and c (this fact is not obvious since the
function R is a priori only C1,1). Defining on Qν

(3.1.15) b(x) = R(x)
(
x1 − α(x′)

)
we see that

(3.1.16) a = b2 + c, |(b2)(j)| = |B(j)| � ρ4−j
ν , 0 ≤ j ≤ 4.

As a consequence with β = x1 − α(x′), b2 = R2β2 = B ∈ C3,1,

R2β2 =

=0︷ ︸︸ ︷
B(α(x′), x′)+

∈C2,1︷ ︸︸ ︷∫ 1

0

∂1B(α(x′) + θ(x1 − α(x′)), x′)dθ β,

|β(j)| � ρ1−j , 0 ≤ j ≤ 3,
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and since β vanishes on an hypersurface

(3.1.17)

{
R2β =

∫ 1

0
∂1B(α(x′) + θ(x1 − α(x′)), x′)dθ ∈ C2,1,

|(R2β)(j)| � ρ3−j
ν , 0 ≤ j ≤ 3, (from (3.1.16)).

Also we have 0 < R2 = ω ∈ C1,1, ω ∼ ρ2
ν and from (3.1.14–11),

(3.1.18) |ω(j)| � ρ2−j
ν , 0 ≤ j ≤ 2,

entailing that with R = ω1/2,∣∣∣R′ =
1
2
ω−1/2ω′

∣∣∣ � 1,
(3.1.19) ∣∣∣R′′ =−1

4
ω−3/2ω′2 +

1
2
ω−1/2ω′′

∣∣∣ � ρ−3
ν ρ2

ν + ρ−1
ν ∼ ρ−1

ν .

Using Leibniz’ formula, we get (R2β)′′′ = (ωβ)′′′ = ω′′′β+3ω′′β′+3ω′β′′+ωβ′′′,
which makes sense since ω′′′ is a distribution of order 1 and β is C2,1 (see
(3.1.11)). From (3.1.17), we know that (ωβ)′′′ is L∞, and since it is also the
case of ω′′β′, ω′β′′, ωβ′′′ from (3.1.18) and (3.1.11), we get that ω′′′β belongs to
L∞ and

(3.1.20) |ω′′′β| � 1.

On the other hand we have

ω′′′ = 2(RR′)′′ = 2(R′2+RR′′)′ = 4R′R′′+2(RR′′)′ = 6R′R′′+2 R︸︷︷︸
C1,1

R′′′︸︷︷︸
distribution
of order 1

entailing from (3.1.20), that β(6R′R′′ + 2RR′′′) is L∞ and since it is the case
of βR′R′′ (from (3.1.11) and (3.1.19)), we get that βRR′′′ is L∞ and, using
Remark 3.1.2, we obtain

(3.1.21) |βRR′′′| � 1, i.e. for all multi-indices γ with length 3, |βR∂γ
xR| � 1.

With b = Rβ, we get b′b′′ = (R′β + Rβ′)(R′′β + 2R′β′ + Rβ′′) and to check
that (b′b′′)′ is in L∞ with

(3.1.22) |(b′b′′)′| � 1,

it is enough (see (3.1.11) and (3.1.19)) to check the derivatives of R′′βR′β,
R′′βRβ′ which are, up to bounded terms (see our Appendix A.3 for the meaning
of the products)

R′′′βR′β = R′′′βRR′ β
R
, R′′′βRβ′
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which are bounded according to 3.1.21–19–11. Note that b′′ is bounded from
(3.1.19) and (3.1.11). We want also to verify that (bb′′)′′ is bounded. We use
that (b2)(4) is bounded from (3.1.16) and since we have

(3.1.23) (b2)′′′′︸ ︷︷ ︸
bounded
(3.1.16)

= 2(b′ ⊗ b′ + bb′′)′′ = 2 (b′ ⊗ b′′ + b′′ ⊗ b′)′︸ ︷︷ ︸
bounded
(3.1.22)

+2(bb′′)′′,

we obtain8 the boundedness of (bb′′)′′.

Remark 3.1.5. Before going on, we should note that our functions b, c
above are only defined on Qν where holds the identity a(x) = b(x)2 + c(x′). We
can replace the function c above by

c̃(x′) = c(x′)χ
(
(x′ − x′ν)θ−1/2ρ−1

ν

)
where χ ∈ C∞

c (Rm−1) supported in the unit ball and equal to 1 in the ball of
radius 1/2, so that c̃ is defined on R

m−1 and the identity a = b2 + c̃ holds on

xν +
1
2
(Qν − xν) ⊃ U∗

ν ⊃ suppϕν .

The bounds on the derivatives are unchanged as long as θ is fixed, which is the
case.

Taking that remark into account, as well as the above estimates on the
derivatives, we have finally, with E2 standing for the nondegenerate indices,

a(x) =
∑
ν∈N

bν(x)2ϕ2
ν(x) +

∑
ν∈E2

aν(x′)ϕ2
ν(x)

|bν | � ρ2
ν , |b′ν | � ρν , |b′′ν | � 1, |(bνb′′ν)′′| + |(b′νb′′ν)′| � 1

|aν | � ρ4
ν , |a′ν | � ρ3

ν , |a′′ν | � ρ2
ν , |a′′′ν | � ρν , |a′′′′ν | � 1,

aν is defined on R
m−1.

Now, we consider the function R
m−1 � t �→ A(t) = ρ−4

ν aν

(
ρνt
)

and we have

|Aν | � 1, |A′
ν | � 1, |A′′

ν | � 1, |A′′′
ν | � 1, |A′′′′

ν | � 1.
8The equality (3.1.23) is an equality between tensors (0,4) and it might look somewhat
pedantic to resort to such notations: the reader may check directly the implication

∀γ, |γ| = 4, ∂γ
x (b2) ∈ L∞,

∀γj , 1 ≤ j ≤ 3, |γ1| = 1 = |γ2|, |γ3| = 2, ∂γ1
x (∂γ2

x b∂γ3
x b) ∈ L∞,

ff

=⇒ ∀γ3, γ4, |γ3| = 2 = |γ4|, ∂γ3
x (b∂γ4

x b) ∈ L∞.
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Following the main argument in the proof by C. Fefferman and D. H. Phong,
we can use an induction on the dimension m to get

A(t) =
∑

1≤j≤Nm−1

B2
j (t), Bj ∈ C1,1, and B′′

j , (B
′
jB

′′
j )′, (BjB

′′
j )′′ ∈ L∞.

Incorporated in the induction hypothesis is that the bounds on B depend only
on the bounds on A(4). We obtain

a(x) =
∑
ν∈N

bν(x)2ϕ2
ν(x) +

∑
ν∈E2

∑
1≤j≤Nm−1

ρ4
νB

2
j,ν

(
x′

ρν

)
ϕ2

ν(x)

i.e.
a(x) =

∑
1≤j≤Nm−1+1

∑
ν∈N

bν,j(x)2ϕ2
ν(x).

One needs to pass to a finite sum, which is quite standard since the overlap
of the support of the functions ϕν is bounded; this last argument is given in
Appendix A.5. The proof of Theorem 3.1.1 is complete.

§3.2. Application of the Wick calculus: proof of Theorem 1.3.1

Let a be a nonnegative function defined on R
2n such that a(4) belongs to A

(defined in Proposition 1.2.1). Applying Lemma 2.2.1 and the L2-boundedness
of the operators with Weyl symbol in A, we see that it suffices to prove that
the operator with Wick symbol a − 1

8π trace a′′ is semi-bounded from below.
Since A ⊂ L∞(R2n), it is enough to prove the following lemma.

Lemma 3.2.1. Let a be a nonnegative function defined on R
2n such

that a(4) belongs to L∞(R2n). Theorem 3.1.1 is providing a decomposition a =∑
1≤j≤N b2j along with the estimates (3.1.2). Then we have

(
a− 1

8π
trace a′′

)Wick

=
∑

1≤j≤N

[(
bj − 1

8π
trace b′′j

)Wick
]2

+ R

where R is a L2-bounded operator such that ‖R‖L(L2(Rn)) ≤ C‖a(4)‖L∞(R2n), C
depending only on the dimension n.

Proof. We have

(3.2.1) a− 1
8π

trace a′′ = a− ∆a
8π

=
∑

1≤j≤N

b2j −
1
4π

|∇bj |2 − 1
4π
bj∆bj .
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Then using Lemma 2.3.3, we get

(3.2.2) bWick
j bWick

j =
(
b2j −

1
4π

|∇bj |2
)Wick

+ Sj ,

with

‖Sj‖L(L2(Rn)) ≤C1

(∥∥b′′j ∥∥2

L∞ +
∥∥(b′′j b′j)′∥∥L∞ +

∥∥(bjb′′j )′′
∥∥

L∞

)
≤C2‖a(4)‖L∞(R2n),

where C1, C2 depend only on the dimension. Moreover, we have, from Lemma
2.3.1,
(3.2.3)

Re
(
bWick
j (∆bj)Wick

)
=
(
bj∆bj − 1

4π
∇ · (∇bj∆bj) +

1
4π

(∆bj)2
)Wick

+Rj ,

with
‖Rj‖L(L2(Rn)) ≤ C3

∥∥b′′j ∥∥2

L∞(R2n)
≤ C4‖a(4)‖L∞(R2n).

As a consequence, from (3.2.2–3), we get

(3.2.4)
(
bj − 1

8π
trace b′′j

)Wick(
bj − 1

8π
trace b′′j

)Wick

=
(
b2j −

1
4π

|∇bj |2 − 1
4π
bj∆bj

)Wick

+
1

16π2

(
∇ · (∇bj∆bj)

)Wick

− 1
16π2

(
(∆bj)2

)Wick

+ Sj − 1
4π
Rj +

1
64π2

(∆bj)Wick(∆bj)Wick,

so that from (2.1.2), (3.1.2) and the estimates above for Rj , Sj , we obtain from
(3.2.1) that ∑

1≤j≤N

(
bj − 1

8π
trace b′′j

)Wick(
bj − 1

8π
trace b′′j

)Wick

=
(
a− 1

8π
trace a′′

)Wick

+ S

with ‖S‖L(L2(Rn)) ≤ C5‖a(4)‖L∞(R2n) C5 depending only on the dimension.
This is the result of the lemma, completing as well the proof of Theorem 1.3.1.

Remark. The proof above is giving a slightly better result, since we prove
the lemma for each aj = b2j , provided the lhs of (3.1.2) is controlled.

Comment 3.2.2. One may ask the following question: why did we not apply
this induction argument on the Sjöstrand algebra A directly, and avoid that
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complicated detour with the Wick calculus? The answer to that interrogation
is simple: as seen above the Fefferman-Phong induction procedure requires a
cutting process (this is the metric dX2/ρ(X)2) and also a bending of the phase
space (the function α is not linear). Although the cutting part may respect
A, it is not very likely that the rigid affine structure of A would survive the
bending.

§3.3. Proof of Corollary 1.3.2

Let us begin with the statement (iv) in this corollary. Let us define

(3.3.1) A(x, ξ) = h−2a(xh1/2, ξh−1/2, h).

The function A satisfies

(∂α
ξ ∂

β
xA)(x, ξ) = h−2− |α|

2 +
|β|
2 (∂β

1 ∂
α
2 a)(xh

1/2, ξh−1/2, h)

= h
|α|+|β|−4

2 (∂β
1 ∂

α
2 a)(xh

1/2, ξh−1/2, h)h−|α|

so that for |α| + |β| = 4, we have (∂α
ξ ∂

β
xA)(x, ξ) = (∂β

1 ∂
α
2 a)(xh1/2, ξh−1/2,

h)h−|α|. We have supposed that for |α| + |β| = 4, the functions (x, ξ) �→
(∂β

1 ∂
α
2 a)(xh

1/2, ξh−1/2, h)h−|α| belongs to A with a norm bounded above in-
dependently by ν0. As a result the function A(4)(x, ξ) belongs to A with a
norm bounded above by ν0. Since A(x, ξ) ≥ 0, Theorem 1.3.1 implies that
Aw + Cnν0 ≥ 0, i.e.

(
a(xh1/2, ξh−1/2, h)

)w + Cnν0h
2 ≥ 0 and since there is

a unitary mapping Uh such that U∗
ha(x, ξ, h)

wUh =
(
a(xh1/2, ξh−1/2, h)

)w
, we

obtain

(3.3.2) a(x, ξ, h)w + Cnν0h
2 ≥ 0, qed.

To get that Re a(x,D, h) + Ch2 ≥ 0, one9 should note that the symbols A(4)

defined above belong to A, which implies that it is also the case for J−1/2A(4)

and J1/2A(4) . Now we have

2 Re a(x,D, h) = 2 Re(J−1/2a)w = (J−1/2a+ J1/2ā)w,

so that rescaling10 the symbol J−1/2a+ J1/2ā, we find J−1/2A+ J1/2Ā. Since
9With the group Jt defined in Proposition 1.2.3, the formula linking the Weyl quantization
with the ordinary quantization is a(x, D) = (J−1/2a)w.

10We define

B(x, ξ) = h−2(J−1/2a)(xh1/2, ξh−1/2) + h−2(J1/2a)(xh1/2, ξh−1/2)

= (J−1/2A)(x, ξ) + (J1/2A)(x, ξ).



�

�

�

�

�

�

�

�

354 Nicolas Lerner and Yoshinori Morimoto

we have

J−1/2A = e−iπDx·DξA = A−iπDx ·DξA−
∫ 1

0

(1−θ)e−iπθDx·Dξdθπ2(Dx ·Dξ)2A,

and that A is real-valued, we get

Re(J−1/2A) = A−
∫ 1

0

(1 − θ)e−iπθDx·Dξdθπ2 (Dx ·Dξ)2A︸ ︷︷ ︸
∈A

.

Now we have from the previous identity, since A is stable by the group J t

(Theorem 1.1 in [S1]), with a uniform constant for t in a compact set,

2 ReA(x,D) =
(
2 Re(J−1/2A)

)w ∈ 2Aw + Aw.

We can then apply the result (3.3.2) and the L2 boundedness of Aw to conclude.
The proof of (iv) in Corollary 1.3.2 is complete.

Let us show that (iv) implies (iii). We define b(x, ξ, h) = a(x, hξ), which is
nonnegative; it is enough to check the functions (x, ξ) �→ (∂β

1 ∂
α
2 b)(xh

1/2, ξh−1/2,

h)h−|α|, for |α| + |β| = 4. We have in fact

(∂β
1 ∂

α
2 b)(xh

1/2, ξh−1/2, h)h−|α| = (∂β
1 ∂

α
2 a)(xh

1/2, ξh1/2).

Now, from Lemma A.2.1 in our appendix, for h ∈ (0, 1], the functions

(x, ξ) �→ (∂β
1 ∂

α
2 a)(xh

1/2, ξh1/2)

belong to A with a bounded norm since we have supposed that a(4) ∈ A. We
can then apply the already proven result (iv) in the corollary to get

a(x, ξh)w + Ch2‖a(4)‖A ≥ 0, Re a(x, hD) + Ch2‖a(4)‖A ≥ 0, qed.

Let us show that (iv) implies (ii). We assume that a(x, ξ, h) is a nonnega-
tive function satisfying the assumptions of (ii). According to the already proven
(iv), we need only to check, for |α′| + |β′| = 4, the norm in A of

(x, ξ) �→ (∂β′
1 ∂

α′
2 a)(xh1/2, ξh−1/2, h)h−|α′| = cα′β′(x, ξ).

Because of the second inclusion in (1.2.1), it is enough to find an L∞ bound on
the 2n+ 1 first derivatives of that function; we have, for |α′′| + |β′′| ≤ 2n+ 1

(3.3.3)

(∂α′′
ξ ∂β′′

x cα′β′)(x, ξ) = (∂β′+β′′
1 ∂α′+α′′

2 a)(xh1/2, ξh−1/2, h)h−|α′|h
−|α′′|+|β′′|

2
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and from the assumption in (ii), we get, since 4 ≤ |α′+α′′|+ |β′ +β′′| ≤ 2n+5,

(3.3.4) |(∂β′+β′′
1 ∂α′+α′′

2 a)(xh1/2, ξh−1/2, h)| ≤ Cα′+α′′,β′+β′′h|α
′|+|α′′|,

so that (3.3.3–4) imply

|(∂α′′
ξ ∂β′′

x cα′β′)(x, ξ)| ≤Cα′+α′′,β′+β′′h|α
′|+|α′′|h−|α′|h

−|α′′|+|β′′|
2

=Cα′+α′′,β′+β′′h
|α′′|+|β′′|

2 ≤ Cα′+α′′,β′+β′′

yielding the sought bound. The proof of (ii) is complete.

Proof of (i) in Corollary 1.3.2. Using a Littlewood-Paley decomposition,
we have

1 =
∑
ν≥0

ϕ2
ν(ξ), ϕν ∈ C∞

c (Rn),

for ν ≥ 1, suppϕν ⊂ {2ν−1 ≤ |ξ| ≤ 2ν+1}, sup
ν,ξ

|∂α
ξ ϕν(ξ)|2ν|α| <∞.

We introduce also some smooth nonnegative compactly supported functions
ψν(ξ), satisfying the same uniform estimates than ϕν and supported in 2ν−3 ≤
|ξ| ≤ 2ν+3 for ν ≥ 1, identically 1 on 2ν−2 ≤ |ξ| ≤ 2ν+2 (in particular on
the support of ϕν). We consider a nonnegative symbol a satisfying (1.1.1) for
4 ≤ |α| + |β| ≤ 2n+ 5. We write

(3.3.5) a =
∑
ν≥0

ϕ2
νa =

∑
ν≥0

(ψν
ϕ
2
νa
ψν + rν).

The proof relies on the following

Claim 3.3.1. The operator with Weyl symbol
∑

ν rν is bounded on L2(Rn).

As a matter of fact, if this claim is proven, we are left with the opera-
tor

∑
ν ψ

w
ν (ϕ2

νa)wψw
ν and we can apply the already proven result (ii) in this

corollary to get that with a uniform C,

∑
ν

ψw
ν (ϕ2

νa)
wψw

ν =
∑

ν

ψw
ν

(
(ϕ2

νa)
w + C

)︸ ︷︷ ︸
≥0

ψw
ν − C

(∑
ν

ψ2
ν

)w

︸ ︷︷ ︸
L2bounded

and so this operator is semi-bounded from below as well as aw. Let us prove
the claim. We leave as an exercise for the reader to check, using (1.2.2), the
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composition formula

(3.3.6) (a1
a2
a3)(X)

= 22n

∫∫
R2n×R2n

a1(Y1)a2(Y2)a3(X − Y1 + Y2)e−4iπ[X−Y1,X−Y2]dY1dY2.

Applying this to ψν
aν
ψν with aν = ϕ2
νa, we get

rν(x, ξ) =−2n

∫∫∫ 1

0

(1 − θ)e−4iπyηψν(ξ + η)ψν(ξ − η)

× (∂2
xaν)(x+ θy, ξ)y2dydηdθ

=
2n

16π2

∫∫∫ 1

0

(1 − θ)∂2
η(e−4iπyη)ψν(ξ + η)

× ψν(ξ − η)(∂2
xaν)(x+ θy, ξ)dydηdθ

=
2n

16π2

∫∫∫ 1

0

(1 − θ)e−4iπyη∂2
η

(
ψν(ξ + η)ψν(ξ − η)

)
× (∂2

xaν)(x+ θy, ξ)dydηdθ.

From this formula we see that rν is supported where 2ν−1 ≤ |ξ| ≤ 2ν+1 since
it is the case for aν (ν ≥ 1); since the overlap of the rings where |ξ| ∼ 2ν

is bounded, it is enough to check some bounds on the derivatives of rν to
get similar bounds on the

∑
ν rν . Moreover in the integrand, if the function

ψν(ξ + η) is differentiated, we get

2ν+2 ≤ |ξ + η| ≤ 2ν+3 or 2ν−3 ≤ |ξ + η| ≤ 2ν−2.

As a result, in the first case, we have |η| ≥ |ξ + η| − |ξ| ≥ 2ν+2 − 2ν+1 = 2ν+1,

whereas in the second case |η| ≥ |ξ| − |ξ + η| ≥ 2ν−1 − 2ν−2 = 2ν−2, which
implies that we always have |η| ≥ 2ν−2. Since we have also |η| ≤ |ξ+ η|+ |ξ| ≤
2ν+3 + 2ν+1, we obtain (note that the case when the other function ψ(ξ− η) is
differentiated is similar) on the integrand

(3.3.7) 2ν−2 ≤ |η| ≤ 2ν+4.

We write now

1
α!

(∂α
ξ ∂

β
x rν)(x, ξ) =

∑
α′+α′′=α

2n

α′!α′′!16π2

×
∫∫∫ 1

0

(1−θ)e−4iπyη∂α′
ξ ∂2

η

(
ψν(ξ+η)ψν(ξ−η))(∂α′′

ξ ∂β
x∂

2
xaν)(x+θy, ξ)dydηdθ
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and since the integral above is, for N, k even integers, N > n,

∫∫∫ 1

0

(1 − θ)e−4iπyη(1 + 4|η|2)−k/2

× (1 + 4|y|2)−N/2(1 +D2
η)N/2∂α′

ξ ∂2
η

(
ψν(ξ + η)ψν(ξ − η)

)
× (1 +D2

y)k/2
(
(∂α′′

ξ ∂β
x∂

2
xaν)(x+ θy, ξ)

)
dydηdθ

we get, for |α| + |β| + k ≤ 2n+ 3,

|(∂α
ξ ∂

β
x rν)(x, ξ)| ≤ CαβN (2ν)−k−|α′|−2+2−|α′′|+n = CαβN (2ν)−|α|+n−k.

For α, β given such that max(|α|, |β|) ≤ n + 1, we choose k = n − |α| or
k = n−|α|+1 so that k is even, and we get, uniformly in ν, |(∂α

ξ ∂
β
x rν)(x, ξ)| � 1;

note that then we have indeed

|α| + |β| + k ≤ |β| + n+ 1 ≤ 2n+ 2 ≤ 2n+ 3.

Eventually, from (a mild version of) Theorem 1.2 in [B2] we get Claim 3.3.1:
we have proven that for max(|α|, |β|) ≤ n+ 1, ∂α

ξ ∂
β
x r is bounded. The proof of

(1.1.3) is complete, under the assumptions of the corollary.

Proof of (1.1.2). To obtain also the result for the ordinary quantization
is not a direct consequence of the previous result, because of our limitation on
the regularity of a. So we have to revisit our argument above, replacing at each
step the Weyl quantization by the standard quantization. It is a bit tedious,
but unavoidable. We write

(3.3.8) a =
∑
ν≥0

ϕ2
νa =

∑
ν≥0

(ψν ◦ ϕ2
νa ◦ ψν + sν).

The proof relies on the following

Claim 3.3.2. The operator with standard symbol
∑

ν sν is bounded on
L2(Rn).

As a matter of fact, if this claim is proven, we are left with the operator

Re
∑

ν

Op (ψν)Op
(
ϕ2

νa
)
Op (ψν)

and we can apply the already proven result (ii) in this corollary to get that
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with a uniform C,∑
ν

Op (ψν) Re Op
(
ϕ2

νa
)
Op (ψν)

=
∑

ν

Op (ψν)
(
Re Op

(
ϕ2

νa
)

+ C
)︸ ︷︷ ︸

≥0

Op (ψν) − C Op

(∑
ν

ψ2
ν

)
︸ ︷︷ ︸

L2bounded

and so this operator is semi-bounded from below as well as Re Op (a). Let us
prove the claim. Reminding the ordinary composition formula, we have

(3.3.9) (a ◦ b)(x, ξ) =
∫∫

Rn×Rn

e−2iπyηa(x, ξ + η)b(y + x, ξ)dydη.

Applying this to ψν ◦ aν ◦ψν with aν = ϕ2
νa, we get ψν ◦ aν ◦ψν = ψν ◦ aνψν =

ψν ◦ aν and

(ψν ◦ aν ◦ ψν)(x, ξ) =
∫∫

e−2iπyηψν(ξ + η)aν(y + x, ξ)dydη

=
∫∫

e−2iπyηψν(ξ + η)
(
aν(x, ξ)

+
∫ 1

0

(1 − θ)∂2
xaν(x+ θy, ξ)y2dθ

)
dydη

= (aνψν)(x, ξ) − sν(x, ξ),

with

sν(x, ξ) = −
∫∫∫ 1

0

(1 − θ)e−2iπyηψν(ξ + η)(∂2
xaν)(x+ θy, ξ)y2dydηdθ.

That formula is so similar to the defining formula of rν above that we can
resume the discussion and use (a mild version of) Theorem 1.1 in [B2] we get
Claim 3.3.3: The proof of (1.1.2) is complete, under the assumptions of the
corollary. �

A. Appendix

A.1. On nonnegative functions

Let a be a nonnegative C3,1 function defined on R
m such that ‖a(4)‖L∞ ≤

1; ρ and Ω are defined in (3.1.3).

Lemma A.1.1. Let a, ρ,Ω be as above. For 0 ≤ j ≤ 4, we have
‖a(j)(x)‖ ≤ γjρ(x)4−j, with γ0 = γ2 = γ4 = 1, γ1 = 3, γ3 = 4.
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Proof. The inequalities for j = 0, 2, 4 are obvious. Let us write Taylor’s
formula,

a(x+h) = a(x)+a′(x)h+
1
2
a′′(x)h2+

1
6
a(3)(x)h3+

∫ 1

0

(1 − θ)3

3!
a(4)(x+θh)dθh4.

We get a(x + h) − a(x) − 1
2a

′′(x)h2 − |h|4
24 ≤ a′(x)h+ 1

6a
(3)(x)h3 and since

a(x + h) ≥ 0, we have −a(x) − 1
2a

′′(x)h2 − |h|4
24 ≤ a′(x)h+ 1

6a
(3)(x)h3. Since

the rhs is odd in the variable h, we obtain

(A.1.1)
∣∣∣∣a′(x)h+

1
6
a(3)(x)h3

∣∣∣∣ ≤ a(x) +
1
2
a′′(x)h2 +

|h|4
24

.

Let us choose h = ρ(x)sT where T is a unit vector and s is a real parameter.
We have

(A.1.2)
∣∣∣∣sρ(x)a′(x)T + s3ρ(x)3

1
6
a(3)(x)T 3

∣∣∣∣ ≤ ρ(x)4
(
1 +

1
2
s2 +

s4

24

)
.

Note. Let α, β, γ ∈ R, and assume that ∀s ∈ R, |sα+s3β| ≤ γ(1+ 1
2s

2+ s4

24 ).
Applying that inequality for s = 1, 3 gives |α + β| ≤ γ 37

24 , |3α + 27β| ≤ γ 213
24

and thus

24|β|= |3α+ 27β − 3(α+ β)| ≤ 324
24

γ, |β| ≤ γ
324
242

,

|α|= |α+ β − β| ≤ γ
37 × 24 + 324

242
= γ

1212
576

.

As a result, from (A.1.2), we get for ρ(x) > 0, ‖a′(x)‖ ≤ 3ρ(x)3, ‖a(3)(x)‖ ≤
4ρ(x). If ρ(x) = 0, we use the inequality (A.1.1) with h = εT where T is a unit
vector and ε is a positive parameter, providing |εa′(x)T + ε3 1

6a
(3)(x)T 3| ≤ ε4

24 .

Dividing by ε and letting it go to zero, we find a′(x)T = 0, for all T , i.e.
a′(x) = 0. Next we find that for all vectors T , a(3)(x)T 3 = 0, implying that
the symmetric trilinear form a(3)(x) is zero (see Remark 3.1.2). The proof of
the lemma is complete.

Lemma A.1.2. Let a, ρ,Ω be as above. The metric |dx|2
ρ(x)2 is slowly vary-

ing on the open set Ω, i.e. there exists C0 ≥ 1 > r0 > 0 such that

(A.1.3) x ∈ Ω and |x− y| ≤ r0ρ(x) =⇒ y ∈ Ω, C−1
0 ≤ ρ(x)

ρ(y)
≤ C0.

The constants r0 and C0 can be chosen as “universal” fixed constants (inde-
pendently of the dimension and of the function a, which is normalized by the
condition ‖a(4)‖L∞ ≤ 1).
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Proof. Using Taylor’s formula, one gets, using (A.1.1), Lemma A.1.1 and
Remark 3.1.2,

ρ(x+ h)4 = a(x+ h) + ‖a′′(x+ h)‖2

≤ a(x) + a′(x)h+
1
2
a′′(x)h2 +

1
6
a′′′(x)h3 +

1
24

|h|4

+3 ‖a′′(x)‖2 + 3 ‖a′′′(x)‖2 |h|2 + 3
1
4
|h|4

≤ 2a(x) + a′′(x)h2 +
1
12

|h|4 + 3 ‖a′′(x)‖2 + 3 ‖a′′′(x)‖2 |h|2 + 3
1
4
|h|4

≤ 2ρ(x)4 + ρ(x)2|h|2 +
1
12

|h|4 + 3ρ(x)4 + 3 24ρ(x)2|h|2 +
3
4
|h|4

≤ 5ρ(x)4 + |h|2ρ(x)2(1 + 3 24) + |h|4
(

1
12

+ 3 2−2

)
≤ 34 (ρ(x) + |h|)4 .

This implies that

(A.1.4) ρ(x+ h) ≤ 3
(
ρ(x) + |h|).

As a consequence, we have for ‖T‖ ≤ 1, r ≥ 0, ρ
(
x + rρ(x)T

)≤ 3(1 + r)ρ(x),
and thus

|y − x| ≤ rρ(x) =⇒ ρ(y) ≤ 3(1 + r)ρ(x).

Moreover if y = x+ rρ(x)T with r ≥ 0 and |T | ≤ 1, (A.1.4) gives

ρ(x) = ρ
(
y − rρ(x)T

) ≤ 3
(
ρ(y) + rρ(x)

)
and if r ≤ 1/6 we find 1

2ρ(x) ≤ 3ρ(y) ≤ (9 + 3
2 )ρ(x) providing the result of the

lemma with C0 = 1/r0 = 6.

Remark. When the normalisation condition ‖a(4)‖L∞ ≤ 1 is not sat-
isfied, it is of course possible to divide a by a constant to get back to that
normalization condition. When ‖a(4)‖L∞ �= 0, Lemma A.1.1 is providing the
inequalities

‖a′(x)‖4/3 ≤ 34/3
(
a(x)‖a(4)‖1/3

∞ + ‖a′′(x)‖2‖a(4)‖−2/3
∞

)
,(A.1.5)

‖a(3)(x)‖4 ≤ 44
(
a(x)‖a(4)‖3

∞ + ‖a′′(x)‖2‖a(4)‖2
∞
)
.(A.1.6)

Note that if ‖a(4)‖L∞ = 0, i.e. a(4) ≡ 0, a is a polynomial of degree ≤ 3, and
the nonnegativity implies a(3) ≡ 0 so that, if its minimum is realized at 0, a is
the sum of a nonnegative quadratic form and of a nonnegative constant.
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Lemma A.1.3. Let a, ρ,Ω be as above. Let θ such that 0 < θ ≤ 1/2. If
y ∈ Ω verifies a(y) ≥ θρ(y)4, then

|x− y| ≤ θρ(y)2−3 =⇒ a(x) ≥ θρ(y)4/2.

Proof. We note that for |x− y| ≤ rρ(y), using Lemma A.1.1 and Taylor’s
formula, we have

a(x) ≥ a(y) − rρ(y)3ρ(y)3 − 1
2
r2ρ(y)2ρ(y)2 − 1

6
r3ρ(y)34ρ(y) − 1

24
r4ρ(y)4,

implying, for a(y) ≥ θρ(y)4, that a(x) ≥ ρ(y)4(θ−3r− r2

2 − 2r3

3 − r4

24 ) and since
for r ≤ 1/2, we have 3r + r2

2 + 2r3

3 + r4

24 ≤ r(3 + 1/8 + 1/12 + 1/384) ≤ 4r we
obtain indeed a(x) ≥ 1

2θρ(y)
4 if r ≤ θ/8.

Lemma A.1.4. Let a, ρ,Ω be as above. There exists R0 > 0 such that
if y ∈ Ω verifies a(y) < ρ(y)4/2, then there exists a unit vector T such that,

|x− y| ≤ R0ρ(y) =⇒ a′′(x)T 2 ≥ 2−1ρ(y)2.

One can take R0 = 10−2.

Proof. We have ‖a′′(y)‖ ≥ 2−1/2ρ(y)2, so with Remark 3.1.2, we find a
unit vector T such that |a′′(y)T 2| ≥ 2−1/2ρ(y)2. Then we have for all real s

0≤ a(y + sρ(y)T ) ≤ a(y) + sρ(y)a′(y)T +
s2

2
ρ(y)2a′′(y)T 2

+
s3

6
ρ(y)3a′′′(y)T 3 +

s4

24
ρ(y)4.

The quantity sρ(y)a′(y)T + s3

6 ρ(y)
3a′′′(y)T 3 is odd in the variable s so that

a(y) +
s2

2
ρ(y)2a′′(y)T 2 +

s4

24
ρ(y)4 ≥ |sρ(y)a′(y)T +

s3

6
ρ(y)3a′′′(y)T 3| ≥ 0,

and in particular,

∀s �= 0, a′′(y)T 2 ≥− s2

12
ρ(y)2 − s−22a(y)ρ(y)−2

=⇒ a′′(y)T 2 ≥ −2 × 6−1/2a(y)1/2.

Since |a′′(y)T 2| ≥ 2−1/2ρ(y)2, this implies

(A.1.7) a′′(y)T 2 ≥ 2−1/2ρ(y)2,
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otherwise we would have −2×6−1/2a(y)1/2 ≤ a′′(y)T 2 ≤ −2−1/2ρ(y)2 and thus

a(y)1/2 ≥ 61/22−3/2ρ(y)2 =⇒ a(y) ≥ 3
4
ρ(y)4

which is incompatible with a(y) < ρ(y)4/2. Using the Taylor expansion for
x �→ a′′(x)T 2 yields the following; we write, for |x− y| ≤ ρ(y)s,

a′′(x)T 2 ≥ a′′(y)T 2 − |s|ρ(y)4ρ(y) − s2

2
ρ(y)2

≥ ρ(y)2
(

1√
2
− 12|s| − 3s2/2

)
≥ ρ(y)2/2,

provided |s| ≤ 10−2.

Lemma A.1.5. Let a, ρ,Ω, C0, r0, R0 be as above. There exists a posi-
tive constant θ0 such that if 0 < θ ≤ θ0 and y ∈ Ω is such that a(y) < θρ(y)4,
the following property is true. For all x such that |x− y| ≤ θ1/2ρ(y), the func-
tion τ �→ a′(x+ τρ(y)T )T has a unique zero on the interval [−θ1/4, θ1/4]. The
constant θ0 is a universal constant that will be chosen also ≤ min(1/2, r20, R

4
0).

Proof. From the previous lemma, we know that for y ∈ Ω such that
a(y) < ρ(y)4/2 then there exists a unit vector T such that,

|x− y| ≤ R0ρ(y) =⇒ a′′(x)T 2 ≥ 2−1ρ(y)2.

The second-order Taylor’s formula gives, for |t| ≤ r0, using (A.1.3),

0 ≤ a(y + tρ(y)T ) ≤ a(y) + tρ(y)a′(y)T +
ρ(y)2t2

2
C2

0ρ(y)
2

and thus

|t|ρ(y)|a′(y)T | ≤ a(y) + C2
0ρ(y)

4t2/2 ≤ θρ(y)4 + C2
0ρ(y)

4t2/2.

As a result choosing t = θ1/2 (which is indeed smaller than r0), we get

(A.1.8) |a′(y)T | ≤ ρ(y)3(θ1/2 + C2
0θ

1/2/2).

We have for s real

a′(y + sρ(y)T )T = a′(y)T + sρ(y)a′′(y)T 2 +
s2

2
ρ(y)2a′′′(y)T 3

+
∫ 1

0

1
2
(1 − t)2a(4)(y + tsρ(y)T )T 4dts3ρ(y)3,
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so that, using (A.1.8), we have

a′(y + sρ(y)T )T ≤ ρ(y)3θ1/2

=C1︷ ︸︸ ︷
(1 + C2

0/2)+sρ(y)a′′(y)T 2 +
s2

2
ρ(y)34 +

1
6
|s|3ρ(y)3

≤ ρ(y)3
(
θ1/2C1 + s

a′′(y)T 2

ρ(y)2
+ 2s2 +

|s|3
6

)
.

The coefficient of s inside the bracket above belongs to the interval [2−1/2, 1].
For s = −θ1/4, we get that

a′(y − θ1/4ρ(y)T )T ≤ ρ(y)3
(
θ1/2C1 − θ1/42−1/2 + 2θ1/2 +

|θ|3/4

6

)
< 0

if θ is small enough with respect to a universal constant. Since we have also
the inequality

a′(y + sρ(y)T )T ≥−ρ(y)3θ1/2C1 + sρ(y)a′′(y)T 2 − s2

2
ρ(y)34 − 1

6
|s|3ρ(y)3

≥ ρ(y)3
(
−θ1/2C1 + s

a′′(y)T 2

ρ(y)2
− 2s2 − |s|3

6

)
,

the choice s = θ1/4 shows that a′(y+θ1/4ρ(y)T )T > 0. As a result the function
φ defined by φ(τ ) = a′(y+ τρ(y)T )T vanishes for some τ with |τ | ≤ θ1/4 ≤ R0.
Moreover, from Lemma A.1.4, its derivative φ′ satisfies

φ′(τ ) = a′′(y + τρ(y)T )T 2ρ(y) ≥ 2−1ρ(y)3 > 0,

so that φ is monotone increasing of τ on the interval [−θ1/4, θ1/4], with a unique
zero on that interval. Considering now for |y − x| ≤ θ1/2ρ(y) the function

ψ(τ, x) = a′(x+ τρ(y)T )T,

we get that

φ(τ ) − θ1/2ρ(y)C2
0ρ(y)

2 ≤ ψ(τ, x) ≤ φ(τ ) + θ1/2ρ(y)C2
0ρ(y)

2

so that the same reasoning as before, we find that for all x such that |x− y| ≤
θρ(y), the function τ �→ a′(x + τρ(y)T )T has a unique zero on the interval
[−θ1/4, θ1/4], provided that θ is smaller than a positive universal constant.

Remark A.1.6. Let a, ρ,Ω, r0, C0, R0, θ0 be as in Lemma A.1.5 and 0 <
θ ≤ θ0. Let y be a point in Ω such that a(y) < θρ(y)4. We may choose the
linear orthonormal coordinates such that the vector T given by Lemma A.1.5
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is the first vector of the canonical basis of R
m. Then a consequence of Lemma

A.1.5 is that, for all x′ ∈ BRm−1(y′, θ1/2ρ(y)) the map τ �→ ∂1a(τ, x′) has a
unique zero α(x′) on the interval [−θ1/4ρ(y) + y1, θ

1/4ρ(y) + y1]. We have thus

(A.1.9) |x′ − y′| ≤ θ1/2ρ(y) =⇒ ∂1a(α(x′), x′) ≡ 0, |α(x′) − y1| ≤ θ1/4ρ(y).

From Lemma A.1.4, we get also

(A.1.10) ∂2
1a(α(x′), x′) ≥ ρ(y)2/2.

Since the function ∂1a is C2,1, the implicit function theorem entails that the
function α is C2; let us show in fact that α is C2,1. Denoting by ∂2 the x′

derivative, with a and its derivatives always evaluated at x1 = α(x′), we obtain
by differentiating the identity ∂1a(α(x′), x′) ≡ 0,

α′∂2
1a+ ∂1∂2a = 0,(A.1.11)

α′′∂2
1a+ α′2∂3

1a+ 2α′∂2
1∂2a+ ∂1∂

2
2a = 0.(A.1.12)

The identities (A.1.11–12) give for |x′ − y′| ≤ θ1/2ρ(y), using (A.1.10),

(A.1.13)


|α(x′) − y1| ≤ θ1/4ρ(y),
|α′(x′)| ≤ 2ρ(y)−2ρ(α(x′), x′)2 ≤ 2C2

0 � 1,
|α′′(x′)| ≤ 2ρ(y)−2

(
42C4

0 + 42C2
0 + 12

)
ρ(α(x′), x′) � ρ(y)−1.

We have also the identity, using (A.1.12),

α′′(x′) =−(∂2
1a(α(x′), x′))−1(α′2∂3

1a(α(x′), x′)(A.1.14)

+2α′∂2
1∂2a(α(x′), x′) + ∂1∂

2
2a(α(x′), x′)),

so that the function α′′ is Lipschitz continuous. Applying formally the chain
rule from (A.1.12) would give the identity

α′′′∂2
1a+ 3α′′α′∂3

1a+ 3α′′∂2
1∂2a+α′3∂4

1a+ 3α′2∂3
1∂2a+ 3α′∂2

1∂
2
2a+ ∂1∂

3
2a = 0.

However the meaning of the last four terms above is not clear since the fourth
derivative of a is only L∞, so to restrict it to the hypersurface x1 = α(x′)
does not make sense. In fact, we do not need that, but only the fact that
the composition of Lipschitz continuous function gives a Lipschitz continuous
functions with the obvious bound on the Lipschitz constant. We start over from
(A.1.14) and we write the duality products with a smooth compactly supported
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test function χ, aε a regularized a,

〈α′′′, χ〉=−
∫
α′′χ′dm =

∫
χ′(α′2∂3

1a+ 2α′∂2
1∂2a+ ∂1∂

2
2a)(∂

2
1a)

−2dm

= lim
ε→0

∫
χ′(α′2∂3

1aε + 2α′∂2
1∂2aε + ∂1∂

2
2aε)(∂2

1a)
−2dm

=− lim
ε→0

∫
χ
(
(α′2∂3

1aε + 2α′∂2
1∂2aε + ∂1∂

2
2aε)(∂2

1a)
−2
)′
dm.

The computation of the derivative between the parenthesis above, with uniform
bounds wih respect to ε gives indeed

|α′′′(x′)| � ρ(y)−2.(A.1.15)

A.2. More properties of the algebra A

Lemma A.2.1. Let b be a function in A and T ∈ R
2n, t ∈ R. Then the

functions τT b, bt defined by τT b(X) = b(X − T ), bt(X) = b(tX) belong to A
and

sup
T∈R2n

‖τT b‖A ≤ C ‖b‖A , ‖bt‖A ≤ (1 + |t|)2nC ‖b‖A ,(A.2.1)

where C depends only on the dimension.

Proof. We check, using that T = S + j0, j0 ∈ Z
2n, S ∈ [0, 1]2n,

F(χjτT b)(Ξ) =
∫
e−2iπXΞχj(X)b(X − T )dX

= e−2iπTΞ

∫
e−2iπXΞχj−j0(X + S)b(X)dX

= e−2iπTΞ

∫
e−2iπXΞχj−j0(X + S)

( ∑
|k|≤R0

χj−j0+k(X)b(X)
)
dX

= e−2iπTΞ
∑

|k|≤R0

F((τ−Sχj−j0)(χj−j0+kb)
)
(Ξ)

= e−2iπTΞ
∑

|k|≤R0

(F(τ−Sχj−j0) ∗ F(χj−j0+kb)
)
(Ξ)

so that

|F(χjτT b)(Ξ)| ≤C0

∫
|F(τ−Sχj−j0)(Ξ − Ξ′)|ωb(Ξ′)dΞ′

=C0

∫
|F(χ0)(Ξ − Ξ′)|ωb(Ξ′)dΞ′,
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entailing
∫

supj∈Z2n |F(χjτT b)(Ξ)|dΞ ≤ C0 ‖χ̂0‖L1 ‖b‖A and the first part of
(A.2.1). The second part is obvious if t = 0 since A is continuously embedded
in C0 ∩ L∞ (Proposition 1.2.1). Assuming t �= 0, we look now at

F(χjbt)(Ξ) =
∫
e−2iπXΞχ0(X − j)b(tX)dX

=
∑

k∈Z2n

∫
e−2iπXΞχ0(X − j)χk(tX)b(tX)dX,

and since on the support of the integrand, we have |X−j| ≤ R0, |k−tX| ≤ R0

and thus |k − tj| ≤ R0 + |t|R0, we get

F(χjbt)(Ξ) =
∫
e−2iπXΞχ0(X − j)b(tX)dX

=
∑

k
|k−tj|≤R0(1+|t|)

∫
e−2iπXΞχ0(X − j)b(tX)χk(tX)dX

=
∑

|k−tj|≤R0(1+|t|)

∫∫
e−2iπt−1XΞχ̂0(N)e2iπN(t−1X−j)

× (χkb)(X)dXdN |t|−2n

=
∑

|k−tj|≤R0(1+|t|)

∫∫
e−2iπt−1XΞχ̂0(tN)e2iπN(X−tj)(χkb)(X)dXdN

=
∑

|k−tj|≤R0(1+|t|)

∫∫
χ̂0(tN)e−2iπNtje2iπX(N−t−1Ξ)(χkb)(X)dXdN

=
∑

|k−tj|≤R0(1+|t|)

∫∫
χ̂0(tN + Ξ)e−2iπNtje−2iπΞje2iπXN

× (χkb)(X)dXdN

=
∑

|k−tj|≤R0(1+|t|)

∫
χ̂0(−tN + Ξ)e2iπNtje−2iπΞj

×
(∫

e−2iπXN (χkb)(X)dX
)
dN,

so that

|F(χjbt)(Ξ)| ≤
∑

|k−tj|≤R0(1+|t|)

∫
|χ̂0(−tN + Ξ)|

∣∣∣∣∫ e−2iπXN (χkb)(X)dX
∣∣∣∣dN

≤CnR
2n
0

∫
|χ̂0(−tN + Ξ)|ωb(N)dN(1 + |t|)2n,
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and finally the sought result
∫

supj |F(χjbt)(Ξ)|dΞ ≤ CnR
2n
0 (1 + |t|)2n ‖χ̂0‖L1

×‖b‖A .

A.3. On Leibniz formulæ

Let a be a function in L1
loc of some open set Ω of R

m and let u be a locally
Lipschitz continuous function on Ω. Although a′ may be a distribution of order
1 and u is not C1, it is possible to define the product T = a′u as follows (ϕ is
a test function):

〈T, ϕ〉 = −
∫
a(u′ϕ+ uϕ′)dx

so that T is a distribution of order 1 satisfying the identity (au)′ = T +au′. As
a matter of fact, we have 〈(au)′, ϕ〉 = − ∫ auϕ′dx = 〈T, ϕ〉 +

∫
au′ϕdx = 〈T +

au′, ϕ〉. It means in particular that one can multiply the first-order distribution
d
dx (ln |x|) = pv 1

x by the Lipschitz continuous function |x| and get (pv 1
x )|x| =

d
dx ((ln |x|)|x|)−(ln |x|) signx = sign x as it is easily verified. On the other hand
it is not possible to multiply the first order distribution δ′0 by the Lipschitz
continuous function |x|.

A.4. Symmetric k-tensors as sum of k-th powers

Since the symmetrized products of T1 ⊗ · · · ⊗Tk can be written as a linear
combination of k-th powers, the norm of the k-linear symmetric form A given
by ‖A‖ = sup‖T‖=1 |AT k| is equivalent to the natural norm

|‖A‖ = sup
‖Tj‖=1,

1≤j≤k

|AT1 . . . Tk|

and we have the inequalities ‖A‖ ≤ |‖A‖ ≤ κk ‖A‖ with a constant κk depend-
ing only on k. The best constant constant in general is κk = kk/k!. In fact, in
a commutative algebra on a field with characteristic 0, using the polarization
formula, the products T1 . . . Tk are linear combination of k-th powers

T1T2 . . . Tk =
1

2kk!

∑
εj=±1

ε1 . . . εk(ε1T1 + · · · + εkTk)k.

Using the triangle inequality, we get |‖A‖ ≤ 1
2kk!

2kkk ‖A‖ , and thus κk ≤ kk

k! .

On the other hand, for Tj ∈ R
k and A defined by

A(T1, . . . , Tk) =
1
k!

∑
σ∈Sk

Tσ(1),1 . . . Tσ(k),k,
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we have A(e1, . . . , ek) = 1/k! so that |‖A‖ ≥ 1
k! and for θ ∈ R

k (with the norm∑ |θj |),
|Aθk| = |θ1 . . . θk| ≤

(∑ |θj |
k

)k

=⇒ ‖A‖ ≤ k−k,

so that κk ≥ |‖A‖
‖A‖ ≥ kk

k! .

A.5. From discrete sums to finite sums

At the end of the proof of Theorem 3.1.1, we have established that

(A.5.1) a(x) =
∑

1≤j≤1+Nm−1

∑
ν∈N

bν,j(x)2ϕν(x)2

with (ϕν) satisfying the properties of Lemma 3.1.3 and the bν,j are C1,1 func-
tions such that

(A.5.2) |b(l)ν,j | ≤ c0ρ
2−l
ν , 0 ≤ l ≤ 2, |(b′ν,jb

′′
ν,j

)′| ≤ c0 |(bν,jb
′′
ν,j

)′′| ≤ c0,

where c0 is a universal constant (we keep the normalization assumption
‖a(4)‖L∞(Rm) ≤ 1). We want to write a as a finite sum with similar properties,
using the slow variation of the metric |dx|2/ρ(x)2. We are given a positive
number r ≤ r′0, where r′0 is defined in Lemma 3.1.3. We define a sequence (xν)
and balls Uν as in that lemma.

· N1 = maximal subset of N containing 0 such that for ν′ �= ν′′ both in N1,

Uν′ ∩ Uν′′ = ∅. Let ν2 = minN c
1 .

· N2 = maximal subset of N c
1 containing ν2 such that for ν′ �= ν′′ both in N2,

Uν′ ∩ Uν′′ = ∅. Let ν3 = min(N1 ∪ N2)c.

. . . Let νk+1 = min(N1 ∪ · · · ∪ Nk)c.

· Nk+1 = maximal subset of (N1 ∪ · · · ∪ Nk)c containing νk+1

such that for ν′ �= ν′′ both in Nk+1,

Uν′ ∩ Uν′′ = ∅. Let νk+2 = min(N1 ∪ · · · ∪ Nk+1)c.

. . .

We observe the following.
• The sets Nj are two by two disjoint.
• For all j, k such that 1 ≤ j ≤ k, there exists ν ∈ Nj so that Uν ∩Uνk+1 �=

∅ : otherwise, we could find 1 ≤ j ≤ k so that for all ν ∈ Nj , Uν ∩ Uνk+1 = ∅,
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so that the set Nj ∪ {νk+1} would satisfy the property that the maximal Nj

should satisfy.
• For k large enough, we have N1 ∪ · · · ∪ Nk = N: otherwise νk+1 is

always well-defined and using the property above, we get that one can find
µj ∈ Nj , 1 ≤ j ≤ k, so that Uµj

∩ Uνk+1 �= ∅. As a consequence, for 1 ≤ j ≤ k,
we find yj ∈ Uµj

such that

|xµj
− yj | ≤ rρ(xµj

) ≤ C0rρ(yj),

|xνk+1 − yj | ≤ rρ(xνk+1) ≤ C0rρ(yj) ≤ C2
0rρ(xνk+1)

and thus

(A.5.3) |xνk+1 − xµj
| ≤ (C2

0r + r)ρ(xνk+1),

with distinct µj (they belong to two by two disjoint sets). On the other hand,
we know by construction (see Lemma 1.4.9 in [H2]) that there exists a positive
r1 such that, for ν′ �= ν′′,

‖xν′ − xν′′‖ ≥ r1ρ(xν′),

so that, with a fixed r2 > 0, the balls
(
B(xµj

, r2ρ(xµj
))
)
1≤j≤k

are two by two
disjoint as well as

(
B(xµj

, r3ρ(xνk+1))
)
1≤j≤k

with a fixed positive r3. Thanks to
(A.5.3), they are also all included inB(xνk+1 , r4ρ(xνk+1)) with a fixed positive r4
so that k ≤ rm

4 /r
m
3 and thus k is bounded. We can thus write, with Mm = λm

0 ,
since the balls Uν(⊃ suppϕν) are two by two disjoint for ν running in each Nk,

a =
∑

1≤j≤1+Nm−1

∑
1≤k≤Mm

( ∑
ν∈Nk

bν,jϕν

)2

and defining Bj,k =
∑

ν∈Nk
bν,jϕν we get

(A.5.4) a =
∑

1≤j≤1+Nm−1

∑
1≤k≤Mm

B2
j,k

with |B′′
j,k| ≤

∑
ν∈Nk

c0ψν � 1. Moreover the identities

(B′
j,kB

′′
j,k)′ =

∑
ν∈Nk

(
(bν,jϕν)′(bν,jϕν)′′

)′
ψν ,

(Bj,kB
′′
j,k)′′ =

∑
ν∈Nk

(
(bν,jϕν)(bν,jϕν)′′

)′′
ψν
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yield the sought estimates on the derivatives. As a final question, one may ask
for some estimate of the Pythagorean number, i.e. the number of squares nec-
essary for the decomposition. From the formula (A.5.4), we have the estimate

Nm ≤ (1 +Nm−1

)
λm

0 , λ0 universal constant,

which gives Nm ≤ µm2

0 , which is probably a very crude estimate, compared to
the exponential bound known for the Artin theorem of decomposition as sum
of squares of nonnegative rational fractions. As a matter of fact, a recent paper
of Bony [Bo2] is providing the equality N1 = 2, which is optimal in view of the
Glaeser counterexample ([Gl]); however his proof is much more involved than
our argument as exposed above with our set of indices Nk.
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[Bo2] , Décomposition des fonctions positives en sommes de carrés, in Journées
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